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We consider in the 3-3-1 model with heavy leptons the box contributions to the mass difference in K and
B neutral mesons induced by neutral (pseudo)scalars, exotic charged quarks, singly and doubly charged
scalar and gauge bosons. In particular, we include the effects of a real scalar with mass near 125 GeV but
with nondiagonal couplings to quarks. We show that, as in the tree level case, there are ranges of the
parameters in which these contributions can be suppressed enough by negative interference among several
amplitudes. Hence, in this model these ΔF ¼ 2 processes may be dominated by the standard model
contributions. Our results are valid in the minimal 3-3-1 model without the sextet.
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I. INTRODUCTION

Nowadays all the predictions of the Standard Model
(SM) have been experimentally tested and are in agreement
with the model’s predictions at a given order in perturbation
theory. However, there are reasons for expecting the
existence of new particles. Among others, the existence
of dark matter [1] and the neutrino masses [2] need, for
their implementation in any model, particles that do not
belong to the degrees of freedom in the SM. These new
particles, if any, can be observed by the direct search at
colliders like the LHC, or by their effects on rare decays
that are suppressed, by several reasons, in the SM [3]. For
instance, the rare B0

s → μþμ− decay has been recently
observed at CERN [4] with a branching ratio compatible
with the SM model prediction.
Almost all the extensions of the electroweak standard

model (ESM) have a rich scalar sector. Some of them
introduce new quarks and/or leptons along with neutral and
charged extra scalars and vector bosons. All these cases
occur in models whose gauge symmetry is larger than the
SM symmetries, in particular in the minimal 3-3-1 model
(m331 as shorthand) [5–7], and in the 3-3-1 model with
heavy leptons (331HL) [8]. Moreover, the extra neutral
vector (generically denoted by Z0) and scalar bosons induce
flavor changing neutral current (FCNC) processes at tree
level which are supposed to be the dominant extra con-
tributions (besides that of the SM). In 331 models, as in
many extensions of the SM, such processes are induced by
neutral (pseudo)scalars and, since the discovery of a spin-0
resonance with mass 125 GeV [9,10], it is mandatory to
take its effects into account.
The FCNC at the tree level were revisited in the context

of the m331 model [11] for two reasons: First, usually when

considering the Z0 phenomenology in this model, the
contributions of the (pseudo)scalars are neglected
[12–20]. Second, as we said before, the scalar sector of
any model beyond the SM (BSM) must contain a scalar
field with the mass around 125 GeVand diagonal couplings
compatible, within the experimental error, with those of the
ESM Higgs boson at least with the third quark generation.
However, generally this ESM-like Higgs scalar also medi-
ates FCNC at tree level and its effects have to be computed.
See for instance [21]. From the experimental point of view,
the CMS has reported measured of h → μτ which is 2.5σ
different from zero [22]. Recall that in the ESM, FCNC
processes occur only at the one-loop level [23].
The conclusions of Ref. [11] establish that in ΔF ¼ 1, 2

FCNC processes, when the CP even SM-like neutral Higgs
boson and one of theCP odd scalars are considered, there is
positive and negative interference among these fields and
the Z0 in such a way that the previous constraints on the
mass of the Z0 boson are avoided. For instance, the
measured value of strange and bottom mesons, ΔMK;BðsÞ ,
a lower limit MZ0 > 1.8 TeV is still possible and is also
compatible with the constraints coming from weak decays.
Depending on the values of the unitary matrices in the
neutral scalar and pseudoscalar sectors, even lower values
may be allowed.
The value of the lower limit for the Z0 mass depends not

only on the projections of the neutral scalars over the SM-
like Higgs but also on the unitary matrices which rotate
quarks and leptons symmetry eigenstates to the respective
mass eigenstates, VU;D

L;R . Numerical values for the latter
matrices were obtained in [11]. This reduces the number
of free parameters in the model. In fact, the only free
parameters remaining are the unitary matrices that diago-
nalize the scalar mass matrices. These results are valid in
the m331 and in 331HL models since both have the same
quark content. However the scalar mass spectra are differ-
ent in both models, the former needs a scalar sextet for
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generating the charged leptons masses, and the later one
does not.
Here we will concentrate only in the 331HL model. Our

results are valid in the m331 when the sextet is avoided and
the charged lepton masses need the contributions of a
dimension five operator built with two triplets [24]. We
emphasize that the entries of the matrices VU;D

L;R obtained in
[11] are not unique and different solutions imply different
phenomenology.
In Ref. [11] it was reasonable to consider only the tree

level amplitudes because certainly these are the main extra
contributions to theΔF ¼ 1, 2 processes in the m331model
and in addition, these amplitudes involve only theZ0, neutral
scalars and pseudoscalars. However, there are also one-loop
diagrams, for instance boxes and penguin,which include not
only the neutral scalar and vector bosons, but all the particle
spectrum of the model: exotic charged quarks, singly and
double charged scalar and vector bosons. Accordingly, we
have to evaluate their effects in order to see if there is, or not,
some values of the parameters of the model in which the
constraints on the mass of Z0 obtained at tree level are not
spoiled by one-loop corrections. Hence, it is necessary to
quantify the effects of all these particles in FCNC processes
and this is the aim of the present paper.
The outline of this paper is as follows. In Sec. IIwe present

the representation content of the model. In Secs. II A
and II B we show the Yukawa and the quark-vector boson
interactions, respectively. In Sec. III we give the effective
Hamiltonian which arises from the boxes with at least one
of the extra particles in the 331HL model. In Sec. III A we
consider the amplitudes involving two (pseudo)scalars,
while boxes with two vector bosons are considered in
Sec. III C. Those with one scalar and one vector bosons
are shown in Sec. III B.Boxes involving one photon or oneZ
is shown in Secs. III D and III E, respectively. Our results are
summarized in Sec. IV while the last section is devoted to
our conclusions. In Appendix A we write explicitly the
matrices appearing in Secs. III A–III C. In Appendix B we
show the types of integrals which arise from the boxes
considered. The scalarmass spectra andmass eigenstates are
summarized inAppendixC;while thematrix elements in the
vacuum insertion approximation are given in Appendix D.
Finally, in Appendix E we give four examples of the
amplitudes that have been calculated in this paper: the
case of the exchange of Yþ

1 and a Goldstone boson Gþ
V in

Appendix E 1, the exchange of a Y−
1 and a W− in

Appendix E 2, and that of the exchange of two charged
vector bosons is shown in Appendix E 3. In Sec. E 4 we
show that the penguinlike diagrams are negligible, at least
with the values of VU;D

L;R used in this paper.

II. THE MODEL

In the 331HL model [8] the left-handed quark fields are
chosen to form two antitriplets Q0

mL ¼ ðD0
m − U0

mJ0mÞTL ∼

ð3�;−1=3Þ with m ¼ 1, 2 and we define D0
1 ¼ d0, D0

2 ¼ s0;
U0

1 ¼ u0, U0
2 ¼ c0; and a triplet Q0

3L ¼ ðt0b0J3ÞTL ∼ ð3; 2=3Þ
and the right-handed ones are in singlets: U0

αR ∼ ð1; 2=3Þ,
D0

αR ∼ ð1;−1=3Þ, α ¼ 1, 2, 3, where D0
α ¼ d0, s0, b0,

U0
α ¼ u0, c0, t0, and in the exotic sector: J0mR∼

ð1;−4=3Þ, and J3R ∼ ð1; 5=3Þ. Below we will use
J3 ≡ J. The numbers between parentheses mean the trans-
formation properties under SUð3ÞL and Uð1ÞX, respec-
tively. We have omitted the SUð3ÞC factor because all
quarks are triplets of SUð3ÞC. Lepton generations are all in
triplets ΨL ¼ ðνllElÞTL ∼ ð3; 0Þ and right-handed charged
lepton fields lR ∼ ð1;−1Þ and ElR ∼ ð1;þ1Þ. In the scalar
sector we have three triplets: η ¼ ðη0η−1 ηþ2 ÞT ∼ ð3; 0Þ,
ρ¼ ðρþρ0ρþþÞT∼ð3;1Þ, χ ¼ ðχ−χ−−χ0ÞT ∼ ð3;−1Þ. Only
the three scalar triplets are needed to break the gauge
symmetries and generate all the fermion masses. The model
has, besides the photon,W�

μ and Zμ, an extra neutral vector
boson, Z0

μ, and single and doubly charged bileptons,
generically denoted by V�

μ and U��
μ when they are vectors,

and Y�
1;2 and Y��, when they are scalars.

A. Yukawa interactions

The Yukawa interactions in the quark sector are given by

−Lq
Y ¼ Q̄0

mL½GmαU0
αRρ

� þ ~GmαD0
αRη

��
þ Q̄0

3L½F3αU0
αRηþ ~F3αD0

αRρ�
þ Q̄0

mLG
0
mnJnRχ� þ Q̄0

3LgJJRχ þ H:c:; ð1Þ

where we omitted the sum in m, n ¼ 1, 2, and α ¼ 1, 2, 3,
U0

αR ¼ ðu0c0t0ÞR and D0
αR ¼ ðd0s0b0ÞR. Gmα, ~Gmα, F3α, ~F3α

are the coupling constants whose values were obtained in
Ref. [11] and are reproduced in Appendix A. The 2 × 2
matrix G0

mn and gJ are all free Yukawa couplings which
determine the mass of the exotic quarks once vχ is fixed.
The mass matrix of the quarks with electric charge −4=3,
J1, J2, is diagonalized by an orthogonal matrix and

�
J1
J2

�
¼

�
cos θ sin θ

− sin θ cos θ

��
j1
j2

�
; ð2Þ

where θ is a new mixing angle in the model and j1;2 are
mass eigenstates.
From Eq. (1), we obtain the interactions involving quarks

and charged scalars are

−LS¼ j̄L½ ~K1G−
Vþ ~K2Y−

2 �DRþD̄L½K2Y
þ
2 þK1G

þ
V �jR

þJ̄ L½ ~K3G
þþ
U þ ~K4Yþþ�DRþD̄L½K4Y−−þK3G−−

U �J R

þD̄L½K5G−
WþK6Y−

1 �URþŪL½ ~K6Y
þ
1 þ ~K5G

þ
W �DRþH:c:;

ð3Þ

where jL ¼ ðJ1 J2 0ÞL and J L;R ¼ ð0 0 JÞL;R, UT
L;R ¼

ðu c tÞL;R and DT
L;R ¼ ðd s bÞL;R are quarks mass
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eigenstates. The symmetry eigenstates (primed fields) are
related with the mass eigenstates (unprimed fields) by
unitary transformations D0

L;R ¼ VD†
L;RDL;R and similarly for

the u-type quarks. The matrices Ka, ~Ka, a ¼ 1;…; 6
appearing in (3) are defined in Eqs. (A2) and (A3) in
Appendix A. We write the vertices in terms of the
symmetry eigenstates J1;2 but the decomposition in
Eq. (2) has been considered. Our calculations are per-
formed in the Feynman–’t Hooft gauge. Thus, in Eq. (3),
GV;U;W denote the would-be Goldstone bosons related to
V�, U�� and W�, respectively.
Analogously, the interaction of quarks and neutral scalar

can be written as

−LS0 ¼ D̄LKD
h DRh0 þ iD̄LKD

ADRA0 þ H:c: ð4Þ

The matrices KD
h and KD

A in (4) are shown in Eq. (A4) and
are defined as KU ¼ VU

LZ
UVU†

R and KD ¼ VD
LZ

DVD†
R . We

have arranged, for simplicity, the interactions in matrix
form (in the quark mass eigenstates basis):

ZU ¼

0
B@

G11ρ
0 G12ρ

0 G13ρ
0

G21ρ
0 G22ρ

0 G23ρ
0

F31η
0 F32η

0 F33η
0

1
CA;

ZD ¼

0
B@

~G11η
0 ~G12η

0 ~G13η
0

~G21η
0 ~G22η

0 ~G23η
0

~F31ρ
0 ~F32ρ

0 ~F33ρ
0

1
CA; ð5Þ

where η0 and ρ0 are still symmetry eigenstates, they are
written as x0 ¼ ð1= ffiffiffi

2
p Þðvx þ Rex0 þ iImx0Þ, x ¼ η, ρ, χ.

In terms of the mass eigenstates these fields are written as
Rex0 ¼ P

i Uxih0i and Imx0 ¼ P
iVxiA0

i . In Ref. [11] it
was shown that, if Uρ1 ¼ 0.42, this scalar has the same
couplings with the top and b-quark as in the SM. Hence we
assume that h01 is the neutral scalar with mass about
125 GeV (here denoted h01) and in Eq. (4) we have assumed
ρ0 ≈Uρ1h01, where the other fields are considered heavy for
the sake of simplicity.
The respective vertices are obtained as usual by sepa-

rating the constants in iL and represented in Figs. 1 and 2.
The generic vertex is written as in Fig. 3.

FIG. 1. Vertices of quarks and charged scalars. Here Ji, i ¼ 1, 2 denotes the symmetry eigenstates in Eq. (2).
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B. Fermion-vector boson interactions

The interactions between vector bosons V−
μ , U−−

μ , Z0
μ

with quarks are

LVB ¼ gffiffiffi
2

p ½LV þ LU þ LZ0 �; ð6Þ

where

LV ¼ D̄iγ
μPLðVD

L ÞimJmVþ
μ þ J̄mγμPLðVD

L Þ�imDiV−
μ ;

LU ¼ −½D̄iγ
μPLðVD

L Þi3JU−−
μ þ J̄γμPLðVD

L Þ�i3DiUþþ
μ �;

ð7Þ
and the matrix VD

L is shown in Eq. (A6). In LV we have to
sum over i ¼ 1, 2, 3;m ¼ 1, 2, in LU we sum over i ¼ 1, 2,
3. As before, UT

L;R ¼ ðuctÞL;R, DT
L;R ¼ ðdsbÞL;R and PL ¼

ð1 − γ5Þ=2 and PR ¼ ð1þ γ5Þ=2 are the chiral projectors.
The interactions of Z0 to quarks are given by the

Lagrangian

LZ0 ¼
X

q¼U;D

½q̄LγμKq
LqL þ q̄RγμK

q
RqR�Z0

μ; ð8Þ

where we have defined

Kq
L ¼ Vq

LY
q
LV

q†
L ; Kq

R ¼ Vq
RY

q
RV

q†
R ; q ¼ U;D; ð9Þ

with

YU
L ¼ YD

L ¼ −
1

2
ffiffiffi
3

p
hðxÞ diag½−2ð1 − 2xÞ;−2ð1 − 2xÞ; 1�;

ð10Þ
and

YU
R ¼ −

4xffiffiffi
3

p
hðxÞ 13×3; YD

R ¼ 2xffiffiffi
3

p
hðxÞ 13×3: ð11Þ

Here hðxÞ≡ ð1 − 4xÞ1=2, x ¼ sin2θW .
Using the numerical values of the VU;D

L;R matrices given in
(A6), (A7), (10) and (11), in (9) we obtain for the Kq

L
matrices appearing in (8):

KU
L ≈

1ffiffiffi
2

p
cos θW

0
B@

1.04793 0.08905 0.00004

0.08905 −1.12718 10−6

0.00004 10−6 −1.13088

1
CA;

KD
L ≈

1ffiffiffi
2

p
cos θW

0
B@

1.05154 0.00140 0.00826

0.00140 −1.13082 5 × 10−6

0.00826 5 × 10−6 −1.13078

1
CA:

ð12Þ

Since YU;D
R are proportional to the identity matrix, there are

no FCNCs in the right-handed currents coupled to the Z0,
and using the matrices above, we obtain KU

R ≈ 1.56813×3
and KD

R ≈ −0.78413×3. At this stage all quarks are already
mass eigenstates (unprimed fields). The interactions of the
right-handed quarks with Z0 conserve the flavor, however,
there are diagrams with two Z0 in which one of them has
right-handed vertices and the second left-handed ones. We
note finally that KD;U

L are not unitary matrices.
The respective vertices are given in Figs. 4 and 5. The

generic vertex is shown in Fig. 7.

III. EFFECTIVE HAMILTONIAN

The new particle content in the 331HL model implies
hundreds of box diagrams and, at first, our main task will be
to sort them in an irreducible way.
The vertices derived from Eqs. (3) and (4) are written in

terms of the mass eigenstates and some matrices. We see
from Figs. 1 and 2 that there is a pattern which prevails
about all the interactions and can be summarized as in
Fig. 3. The Ka, ~Ka matrices will denote the matrices given
in Eqs. (A2)–(A4), and are linked with the respective
charged or neutral scalar, generically denoted by Sa.
The next step is to find a general expression also for

quark-gauge boson interactions. As before, from Eq. (6),
we extract Figs. 4 and 5, and the results are shown in Fig. 7.
The matrix V denotes the matrices VD

L or KD
L , in Eqs. (A6)

and (12), whenever VB is a charged vector boson or the Z0,

FIG. 2. Vertices of quarks and neutral scalars.

FIG. 3. The generic vertices to quarks and scalars.
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respectively. The remaining terms due to KD
R will be

explicitly written in Eq. (20).
Hence, there are only two different generic vertices and

their respective conjugates for all new interactions of
331HL. The laborious task of setting up a lot of new
diagrams now reduces to figuring out five independent
diagrams, namely:

(i) those with two scalars denoted by SaSb, where Sa;b
run over all the (pseudo)scalars, neutral or charged
[see Fig. 8(a)];

(ii) diagrams with one vector boson VB ¼ V�
μ , U��

μ , Z0
and one scalar Sa, denoted by VBS [see Fig. 8(b)];

(iii) with two vector bosons [see Fig. 9];
(iv) with one photon, γ, and one neutral (pseudo)scalar

or Z0 [see Fig. 10(b)].
We must remark that once the scalar or gauge boson are
defined, the quarks in the internal lines are also fixed. For

example, if Sa ¼ Sb ¼ Yþ
2 the quarks will be qi;l ¼ J1, J2,

if Sa ¼ Sb ¼ h0 then qi;l ¼ Di;l, and so on.
We are interested in the effective interactions contribut-

ing to the mass difference of the pseudoscalar mesons K
and Bd;s. Therefore, after obtaining the amplitudes from our
four kinds of diagrams we must sum over all the matrices:

HΔF¼2
eff ¼−

�X
SaSb

MSaSb þ
X
VB;S

MVBSþ
X
VB

MVBþMγ

�
;

ð13Þ

where Mγ denote the box diagrams involving one photon
and one Z0 or one photon and one (pseudo)scalar. The
minus sign arises from the usual relation Heff ¼ −Leff.
Before providing the results we need to clarify some

assumptions. First, once we are dealing with heavy degrees
of freedom, the four-momenta for all external particles can
be consider to be zero [25]. Second, diagrams obtained by
those in Figs. 8 and 9 where the boson and quark lines are
interchanged also do exist. We can show that the effective
Hamiltonian derived from Figs. 8(a) and 9 is the same for
the two sorts of diagrams, i.e., the action of rotating the
internal lines does not change the final result to the

FIG. 4. Vertices of quarks and gauge bosons. Here Ji, i ¼ 1, 2 denotes the symmetry eigenstates in Eq. (2).

FIG. 5. Interaction vertex of quarks and Z0.

FIG. 6. Interaction vertices of Z and photon, where gDV ¼ − 1
2
þ 2

3
s2W and gDA ¼ − 1

2
.

FIG. 7. The generic vertices of quarks and vector bosons.
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amplitude and we have a 2 factor in our final result.
Although the same is not true for those in Fig. 8(b), we will
anticipate a consequence for vacuum insertion and give
only the terms that will not be zero.
Moreover, we will use the following notation:

½γμPζ�jk½γνPξ�jk¼½D̄jðp3ÞγμPζDkðp4Þ�½D̄jðp2ÞγμPξDkðp1Þ�;
½Pζ�jk½Pξ�jk¼½D̄jðp3ÞPζDkðp4Þ�½D̄jðp2ÞPξDkðp1Þ�;

ζ;ξ¼L;R: ð14Þ

For the case of neutral kaons we have k ¼ 1 and j ¼ 2; Bs
are obtained when k ¼ 2, j ¼ 3, and Bd when k ¼ 1, j ¼ 3.
See Figs. 8–10 for the momenta assignment.

A. Boxes with two scalar bosons

The first set of boxes are those in Fig. 8(a), in which two
charged or neutral scalars, denoted by SaSb and two
quarks, denoted qi and ql, are involved. For fixed scalar
indices, a, b, this large number of amplitudes are summa-
rized as follows:

iMSaSb ¼ 2
X
i;l

fðIμνSaSbÞil½D̄jðp3ÞγμfðKaÞjlðKbÞ�klPL þ ð ~KaÞ�ljð ~KbÞlkPRgDkðp4Þ�½D̄jðp2ÞγνfðKbÞjiðKaÞ�kiPL

þ ð ~KbÞ�ijð ~KaÞikPRgDkðp1Þ� þmimlðISaSbÞil½ūðp3ÞfðKaÞjlð ~KbÞlkPR

þ ð ~KaÞ�ljðKbÞ�klPLgvðp4Þ�½v̄ðp2ÞfðKbÞjið ~KaÞikPR þ ð ~KbÞ�ijðKaÞ�kiPLguðp1Þ�g; ð15Þ

where Ka, ~Ka are the matrices related to the scalar boson
Sa and run over the matrices shown in Eqs. (A2) and (A3).
The indices j, k relate to K, Bd or Bs mesons, according to
the convention discussed below Eq. (14). On the other
hand, i, l run over exotic or usual internal quarks.

We can rewrite Eq. (15) by defining

Xab;jlkm ¼ ðKaÞjlðKbÞ�km;
~Xab;jlkm ¼ ð ~KaÞjlð ~KbÞ�km;
Yab;jlkm ¼ ðKaÞjlð ~KbÞkm; ð16Þ

and the notation in Eq. (14) is now manifest:

iMSaSb ¼2
X
i;l

fðIμνSaSbÞilðXab;jlkl½γμPL�jkþ ~Xba;lklj½γμPR�jkÞ

×ðXba;jiki½γνPL�jkþ ~Xab;ijik½γνPR�jkÞ
þmimlðISaSbÞilðYab;jllk½PR�jkþY�

ba;kllj½PL�jkÞ
×ðYba;jiik½PR�jkþY�

ab;kiij½PL�jkÞg; ð17Þ

where ðIμνSaSb
Þil and ðISaSbÞil denote the integrals

FIG. 8. The general diagrams with (a) two scalars SaSb and (b) with one vector boson and one scalar VBS.

FIG. 9. The general diagram with vector bosons, VB.
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ðIμνSaSbÞil¼
Z

d4k
ð2πÞ4

kμkν

ðk2−m2
i Þðk2−m2

l Þðk2−m2
Sa
Þðk2−m2

Sb
Þ;

ðISaSbÞil¼
Z

d4k
ð2πÞ4

1

ðk2−m2
i Þðk2−m2

l Þðk2−m2
Sa
Þðk2−m2

Sb
Þ:

ð18Þ

If in Eq. (17), Sa ¼ h0 and Sb ¼ A0 we have an overall
minus sign. We recall that the complete amplitude for two
scalars (physical or Goldstone, charged or neutral) and two

quarks (known or exotic) will be obtained by summing
over SaSb.
The integrals written in Eq. (18) define new Inami-Lim

functions [26] and the complete results, after the integra-
tions being performed, are presented in Appendix B.

B. Boxes with one vector boson and one (pseudo)scalar

When vector and scalar bosons are in the box, see
Fig. 8(b), the amplitude is written as

iMVBSa
¼ g2

X
i;l

f2ðIμνVBSa
ÞilðVÞjiðVÞ�kl½γμPL�jkfXaa;jlki½γνPL�jk þ ~Xaa;iklj½γνPR�jkg

þmimlðIVBSaÞilXaa;jlki½γμPL�jk½γμPL�jk þ gμνðIμνVBSa
Þil ~Xaa;iklj½PR�jk½PL�jkg: ð19Þ

The matrix V depends on the vector boson in the box and the integral IμνVBSa is defined according to (18) by replacing one of
the scalar masses for one of the vector bosons. There is a 2 factor that takes into account MVBSa ¼ MSaVB. Again, if
VB ¼ Z0 and Sa ¼ A0 we have an overall minus sign. We note that there is no sum in VB and Sa.

C. Boxes with two heavy vector bosons

Here for massive vector bosons we consider Z0
μ, V�

μ and U��
μ . The typical box is shown in Fig. 9. For two fixed vector

bosons we have

iMVB ¼ 2g4
X
i;l

ðIμνVBÞilðVÞjlðVÞ�klðVÞjiðVÞ�ki½γμPL�jk½γνPL�jk

þ g4ðIμνZ0 ÞjkðKD
L Þ2jkðKD

R ÞkkðKD
R Þjjð½γμPL�jk½γνPR�jk þ ½γμPR�jk½γνPL�jkÞ ð20Þ

and again ðIμνVBÞil is defined as in (18) with the vector
masses instead of the scalar masses. The matrix V will be,
for example, VD

L when one V�
μ or U��

μ appears in the box.
When VB ¼ Z0 the matrix V must be only KD

L, since we
have already included the constant right-handed part of the
vertex. The matrix KD

R is proportional to the unit matrix, as
shown in Sec. II B. As before, we have included a 2 factor
for the rotated diagram.

Examples of the amplitudes in Eqs. (17), (19) and (20)
are shown in Appendix E for some selected cases.

D. Boxes with photon

The vertices in this kind of diagram are the usual ones,
see Figs. 6 and 10. Most of the bilinear are canceled out by
symmetry after vacuum insertion. Moreover, some terms

FIG. 10. The diagrams with photons (a) and scalars and (b) with Z0.
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are negligible because they are proportional to the ratio
mimj

m4
331

, withmi;j the mass of a d-type quark andm331 the mass

of Z0 or h0, A0. The amplitude is

iMγ ¼ MγZ0 þMγh −MγA; ð21Þ

where

MγZ0 ¼ 4g4s2W
9

ðIμνγZ0 ÞjkðKD
L Þ2jk½γμPL�jk½γνPL�jk;

Mγh ¼
g2s2W
9

fgμνðIμνγhÞjk½ðKD
h ÞjkPR þ ðKD

h Þ�kjPL�jk½ðKD
h ÞjkPR þ ðKD

h Þ�kjPL�jkg;

MγA ¼ g2s2W
9

fgμνðIμνγAÞjk½ðKD
A ÞjkPR þ ðKD

A Þ�kjPL�jk½ðKD
A ÞjkPR þ ðKD

A Þ�kjPL�jkg: ð22Þ

Here sW ≡ sin θW and the indices j, k are fixed depending
of the meson considered. With the matrices in Eq. (A4) and
the input parameters in (28) below, there is a negative
interference between Mγh and MγA, hence it is much
smaller than MγZ0 .

E. Boxes with one Z

In the SM limit of 331HL the Z boson preserves flavors
[11]. Despite this feature, we can also have a few box
diagrams with scalars or Z0, just as the previous case. The
amplitude is

iMZ ¼ MZZ0 þMZh −MZA; ð23Þ

where

MZZ0 ¼ g4

c2W
f1ðs2WÞðIμνZZ0 ÞjkðKD

L Þ2jk½γμPL�jk½γνPL�jk;

MZh ¼ 2
g2

c2W
f2ðs2WÞgμνðIμνZhÞjkðKD

h ÞjkðKD
h Þ�kj½PR�jk½PL�jk;

MZA ¼ 2
g2

c2W
f2ðs2WÞgμνðIμνZAÞjkðKD

A ÞjkðKD
A Þ�kj½PR�jk½PL�jk

ð24Þ

with

f1ðs2WÞ ¼
�
1 −

1

3
s2W

�
2

þ
�
1 −

2

3
s2W

�
;

f2ðs2WÞ ¼
�
1 −

1

3
s2W

�
2

; ð25Þ

and we are already considering the rotated diagram.

IV. MASS DIFFERENCE IN THE
PSEUDOSCALAR MESONS

We assume that the boxes involving only the SM
particles are well known. Then, the main purpose of this
paper is to verify in which realistic scenario the extra

contributions coming from the new 331HL particles fulfill
the requirement

ΔmMjfull331 − ΔmMjtree331 − ΔmMjSM
¼ ΔmMjboxes331 < 10−15; 10−13; 10−11 GeV; ð26Þ

for M ¼ K, Bd, Bs, respectively. The conditions above are
enough to put a lower limit on the mass of the extra
particles in the model. We will consider the amplitude
M0 → M̄0 (where M0 ¼ DkD̄j) arising such that, as usual,

ΔmM ¼ 2RehM̄0jHΔF¼2
eff jM0i; ð27Þ

where HΔF¼2
eff is the full effective Hamiltonian given

by (13).
In order to obtain our final results we must be supported

by some hints [11] and choose possible values to the
remaining free parameters:

mJ ¼ gJ
vχffiffiffi
2

p ; a7 ¼ a8 ¼ a9 ¼ 2; mh0 ¼ 125 GeV;

gJ ¼ 3.07 vρ ¼ 54 GeV; vη ¼ 240 GeV;

Uη1 ¼ 0.1; Uρ1 ¼ 0.42; ð28Þ

where vρ, vη are the vacuum expectation values for the
scalars ρ, η, respectively, and we have assumed mj1 ≈mj2 .
Appendix C introduces the constants a7, a8, a9 from the
scalar potential.UρðηÞ1 are matrix elements of the projection
over the 125 GeV Higgs scalar of Reρ0 and Reη0,
respectively (In the case of m331 these matrices would
be parametrized by general orthogonal matrices.) As we
said below Eq. (4), the choice of Uρ1 ¼ 0.42 means that ρ0

has the largest projection on the 125 GeV SM-like Higgs.
We note that due to the relation between the mass

and symmetry eigenstate of quarks J1;2 in Eq. (2) the
amplitudes involving two j1;2 are proportional to
cos2θ2sin2θðm2

j1
−m2

j2
Þ. Hence, there is a GIM-like mecha-

nism in that sector and, under the conditions above, these
contributions are negligible so that they do not impose
strong constraints on the masses of j1 and j2.
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The gauge boson masses depend on vχ and the scalar
ones depend mainly on vχ and on the trilinear f in the scalar
potential that we have chosen equals 150 TeV. The mass
dependence on these constants in the scalar sector is also
presented in Appendix C. Furthermore, on the gauge
bosons we have

m2
U ≈

g2

4
ðv2ρ þ v2χÞ; m2

V ≈
g2

4
ðv2η þ v2χÞ; ð29Þ

and

m2
Z0 ≈

g2

2c2W

ð1 − s2WÞð4 − v̄WÞ þ s4Wð4 − v̄2WÞ
1 − 4s2W

v2χ ; ð30Þ

where v̄W ≈
ffiffiffiffiffiffiffiffiffi
v2ρþv2η

p
vχ

. We have shown these masses as
functions of vχ in Figs. 13 and 14 and, from Eq. (30),
vχ must be greater than 67.3 GeV. Once we have performed

the sum in Eq. (13) and put it in Eq. (27), theΔmM could be
obtained by using the matrix elements in Appendix D.
The final results are plotted in Figs. 15–17. The

respective upper limit in Eq. (26) to the three neutral
mesons is reached, simultaneously, under the condition
vχ > 820 GeV, which is depicted by the vertical red line.
Converted to the masses, we have (in TeV)

mU > 0.27; mV > 0.28; mZ0 > 2.4;

mY1
> 20.1; mY2

> 4.7;

mYþþ > 19.7; mA0 > 20.2:; ð31Þ

We do not have to be concerned about negative values in
Fig. 15, since the conditions (26) take into account only the
boxes. Our purpose is to find just an example in which the
one-loop corrections are more suppressed than the tree level
amplitudes and also suppressed with respect to the one-
loop SM. However, the results are obtained using the
matrices VU;D

L;R from Ref. [11], reproduced in Appendix A.
These matrices are not unique and a distinct set could
provide, at the same time, the correct quark masses and the
Cabibbo-Kobayashi-Maskawa (CKM), which would imply
another range of parameter and, finally, a different position
to the vertical red line in Figs. 15–17.
There are still some loop diagrams of the same order as

the boxes, see Figs. 12. Nevertheless, these diagrams will
be negligible and a result is presented in Appendix E 4.

FIG. 11. The penguin diagrams. These contributions are also negligible by ðΔMMÞpenguin < 10−18 GeV.

FIG. 12. The loop corrections to the propagator of neutral
scalars and Z0.
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FIG. 13 (color online). The gauge boson masses as a function of vχ . The vertical red line is a constraint from K0 − K̄0.

FIG. 15 (color online). The contributions from box diagrams in the 331HLmodel to themass difference of theK0 as a function of vχ . The
vertical red line at vχ ¼ 820 GeV corresponds to a lower limit in order to obtain the experimental limit 10−15 GeV to Δm in K0 − K̄0.

FIG. 14 (color online). The scalar masses as a function of vχ . The vertical red line is a constraint from K0 − K̄0.
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V. CONCLUSIONS

Almost all the extensions of the ESM have plenty of new
free parameters. One important issue is to obtain the
SUð2Þ ⊗ Uð1Þ limit of a given extended model. This
(trivial) limit occurs in the 3-3-1 models in the setting of
infinite mass of the extra particles i.e., when jvχ j → ∞, the
SUð3ÞL ⊗ Uð1Þ and the SUð2ÞL ⊗ Uð1ÞY theories are
equivalent. However, in Ref. [27] was discovered another
(nontrivial) SUð2Þ ⊗ Uð1Þ scenario to these models in
such a way that there is no dependence on the VEV vχ and
the values of the vη ≈ 54 GeV and vρ ≈ 240 GeV are fixed.
It was in this context that in Ref. [11] numerical values of

the VU;D
L;R matrices were obtained by fitting the quark masses

and the CKM entries. As we said before they are not unique
and it is possible to obtain other values for them giving the
correct inputs. Hence, we would like to stress that our
results depend on this nontrivial SM limit of the model and
on the numerical values obtained in [11] which assume that
the sextet is not important to generate the lepton masses.
Some authors follow the inverse way, accepting the Z0 mass
as an input and considering experimental data, say CP
violation and rare decays, in order to obtain the allowed
values of the entries of VU;D

L;R [14].
In Eq. (28) we have used gJ ¼ 3.07 such that mJ >

1.78 TeV for the mass of the exotic quark with electric
charge of 5=3jej. The lower limit of 800 GeV for the mass
of this sort of quarks is obtained by experiment [28]

FIG. 16 (color online). The contributions to the mass difference of the B0
d as a function of vχ . The vertical red line corresponds to a

lower limit in order to obtain the experimental limit experimental limit 10−15 GeV to Δm in K0 − K̄0.

FIG. 17 (color online). The contributions to the mass difference in Bs − B̄s as a function of vχ . The vertical red line corresponds to the
experimental limit 10−15 GeV from Δm in K0 − K̄0.
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assuming that they decay as T → Wþt and then t → Wþb.
However, in the m331 and 331HL models, the J-quark
decays as J → tVþ, bUþþ. We note that in the former case
the signature is two jets or missing energy, while in the
latter case, the signature is two leptons with the same sign,
Uþþ → lþl0þ. Similarly, a top quark with −4=3 decaying
as T → bW− was ruled out by CDF [29]. In the present
model nonetheless quarks with charge −4=3, denoted by
j1;2, decay as j1;2 → tU−−, bV−. In conclusion, the
experimental lower limit does not apply, at least in a
straightforward way, to our case.
Experimental searches for W0 have also been performed

searching for W0 → tb → lνlbb implying that MW0 >
1.84 TeV [30]. The singly charged extra vector field in
m331 and 331HL models decays, for instance, as
V− → j1;2b̄. Concerning the searching for Z0, we note that
this vector boson also has decays that are different from
other models with this sort of neutral boson. Furthermore,
the neutral (pseudo)scalars may interfere positively or
negatively and have to be considered.
Although there are more than three hundred new box

diagrams (with respect to their number in the SM) for
meson mixing in the framework of 331HL model, we have
classified them in four types. After setting up the remaining
free parameters according to recent works [11,31], we left
the box contributions to ΔmM depending by a single VEV,
namely vχ. The results plotted in Figs. 15–17 show that
there is a lower bound vχ > 820 GeV which implies a
corresponding limit to the masses of all new particles, as
presented in Eq. (31). We have shown, therefore, that the
effective interaction provided by 331HL can be suppressed
compared to the SM prediction.
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APPENDIX A: MATRICES

In the 331HL, there are several matrices in the flavor
space. In this Appendix we write them explicitly and also
show the numerical values using the parameters that give
the quark masses and the CKM matrix obtained
in Ref. [11].
From Eq. (1) the Yukawa interactions between quarks

and charged scalar in Eq. (3) involve the matrices from (A2)
to (A3). Defining

N1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvχ j2
jvηj2

r ≈
jvηj
jvχ j

; N2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvηj2
jvχ j2

r ≈ 1;

N3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvχ j2
jvρj2

r ≈
jvρj
jvχ j

; N4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvρj2
jvχ j2

r ≈ 1;

N5 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvρj2
jvηj2

r ; ðA1Þ

we have

~K1 ¼ N1

0
B@

~G11
~G12

~G13

~G21
~G22

~G23

0 0 0

1
CAðVD

R Þ†; K1 ¼ −
ffiffiffi
2

p

jvχ j
N2ðVD

L Þ

0
B@

mj1 0 0

0 mj2 0

0 0 0

1
CA;

~K2 ¼ N2

0
B@

~G11
~G12

~G13

~G21
~G22

~G23

0 0 0

1
CAðVD

R Þ†; K2 ¼
ffiffiffi
2

p

jvχ j
N1ðVD

L Þ

0
B@

mj1 0 0

0 mj2 0

0 0 0

1
CA:

~K3 ¼ N3

0
B@

0 0 0

0 0 0

~F31
~F32

~F33

1
CAðVD

R Þ†; K3 ¼ −N4

0
B@

0 0 ðVD
L Þ13

0 0 ðVD
L Þ23

0 0 ðVD
L Þ33

1
CA;

~K4 ¼ N4

0
B@

0 0 0

0 0 0

~F31
~F32

~F33

1
CAðVD

R Þ†; K4 ¼ N3

0
B@

0 0 ðVD
L Þ13

0 0 ðVD
L Þ23

0 0 ðVD
L Þ33

1
CA: ðA2Þ
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Defining λ ¼ jvρj
jvηj,

K5 ¼ N5ðVD
L Þ

0
B@

λG11 λG12 λG13

λG21 λG22 λG23

−F31 −F32 −F33

1
CAðVU

R Þ† ≈

0
B@

−0.003 0.001 −0.003
0.12 −0.053 0.143

−0.406 0.183 −0.498

1
CA;

K6 ¼ N5ðVD
L Þ

0
B@

G11 G12 G13

G21 G22 G23

λF31 λF32 λF33

1
CAðVU

R Þ† ≈

0
B@

0.013 −0.005 0.015

−0.534 0.234 −0.638
1.803 −0.813 2.214

1
CA;

~K5 ¼ −N5ðVU
L Þ

0
B@

~G11
~G12

~G13

~G21
~G22

~G23

λ ~F31 λ ~F32 λ ~F33

1
CAðVD

R Þ† ≈

0
B@

2 × 10−5 3 × 10−5 −8.9 × 10−6

6.9 × 10−5 3.3 × 10−4 −3.2 × 10−4

−2.4 × 10−5 −3.8 × 10−3 1.1 × 10−2

1
CA;

~K6 ¼ N5ðVU
L Þ

0
B@

−λ ~G11 −λ ~G12 −λ ~G13

−λ ~G21 −λ ~G22 −λ ~G23

~F31
~F32

~F33

1
CAðVD

R Þ† ≈

0
B@

1 × 10−4 2 × 10−4 −1 × 10−4

−5.9 × 10−6 −5.6 × 10−5 6 × 10−5

5.46 × 10−6 8.5 × 10−4 −2.4 × 10−3

1
CA: ðA3Þ

In the matrices above we have used G11 ¼ 1.08, G12 ¼ 2.97, G13 ¼ 0.09, G21 ¼ 0.0681, G22 ¼ 0.2169,
G23 ¼ 0.1 × 10−2, F31 ¼ 9 × 10−6, F32 ¼ 6 × 10−6, F33 ¼ 1.2 × 10−5, ~G11 ¼ 0.0119, ~G12 ¼ 6 × 10−5,
~G13 ¼ 2.3 × 10−5, ~G21 ¼ ð3.2 − 6.62Þ × 10−4, ~G22 ¼ 2.13 × 10−4, ~G23 ¼ 7 × 10−5, ~F31 ¼ 2.2 × 10−4,
~F32 ¼ 1.95 × 10−4, ~F33 ¼ 1.312 × 10−4. We emphasize that these parameters, as in any model with FCNC, may be
not unique and it is possible that there exist other sets of values with which the quark masses and the CKMmixing matrices
are obtained.
The matrices appearing in Eq. (4) are

KD
h ≈

0
B@

10−4Uρ1 − 10−6Uη1 10−4Uρ1 − 10−5Uη1 −10−4Uρ1 þ 10−5Uη1

10−6Uρ1 þ 10−4Uη1 10−5Uρ1 þ 10−3Uη1 −10−6Uρ1 þ 10−2Uη1

10−6Uρ1 − 10−5Uη1 10−6Uρ1 − 10−3Uη1 −10−6Uρ1 þ 0.011Uη1

1
CA;

KD
A ≈

0
B@

10−4Vρ1 − 10−6Vη1 10−4Vρ1 − 10−5Vη1 −10−4Vρ1 þ 10−5Vη1

10−6Vρ1 þ 10−4Vη1 10−5Vρ1 þ 10−3Vη1 −10−6Vρ1 þ 10−2Vη1

10−6Vρ1 − 10−5Vη1 10−6Vρ1 − 10−3Vη1 −10−6Vρ1 þ 0.011Vη1

1
CA; ðA4Þ

where

Vη1 ¼
1

jvηj
�

1

jvχ j2
þ 1

jvρj2
þ 1

jvηj2
�

−1=2
; Vρ1 ¼

1

jvρj
�

1

jvχ j2
þ 1

jvρj2
þ 1

jvηj2
�

−1=2
: ðA5Þ

The matrices in the vector boson-quark interactions in Eq. (6) are given by

VU
L ≈

0
B@

−0.00032 0.07163 −0.99743
0.00433 −0.99742 −0.07163
0.99999 0.00434 −0.00001

1
CA;

VD
L ≈

0
B@

0.00273 → 0.00562 ð0.03 → 0.03682Þ −ð0.99952 → 0.99953Þ
−ð0.19700 → 0.22293Þ −ð0.97436 → 0.97993Þ −0.03052
0.97483 → 0.98039 −ð0.19708 → 0.22291Þ −ð0.00415 → 0.00418Þ

1
CA: ðA6Þ

In the same way we obtain the VU;D
R matrices which will appear in the Yukawa interactions:
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VU
R ≈

0
B@

−0.45440 0.82278 −0.34139
0.13857 −0.31329 −0.93949
0.87996 0.47421 −0.02834

1
CA;

VD
R ≈

0
B@

−ð0.000178 → 0.000185Þ ð0.005968 → 0.005984Þ −0.999982
−ð0.32512 → 0.32559Þ −ð0.94549 → 0.94566Þ −ð0.00558 → 0.00560Þ
0.94551 → 0.94567 −ð0.32511 → 0.32558Þ −ð0.00211 − 0.00212Þ

1
CA: ðA7Þ

With these matrices the correct quark masses at the
Z-pole and the CKM matrix were obtained in Ref. [11].

APPENDIX B: INTEGRALS

The integrals defined in Eq. (18) vary according the
quarks and bosons in the internal lines. Thus, there are
integrals with one, two and three variables.
(1) One variable:

IμνA ðyBÞ ¼
Z

d4k
ð2πÞ4

kμkν

ðk2 −m2
AÞ2ðk2 −m2

BÞ2

¼ −
igμν

32π2m2
A

1 − y2B þ 2x ln yB
2ðyB − 1Þ3 ðB1Þ

IAðyBÞ ¼
Z

d4k
ð2πÞ4

1

ðk2 −m2
AÞ2ðk2 −m2

BÞ2

¼ i
16π2m4

A

2 − 2yB þ ð1þ yBÞ ln yB
ðyB − 1Þ3 ðB2Þ

with

yB ¼ m2
B

m2
A
: ðB3Þ

This sort of functions will appear, for example, in
diagrams with two quarks and two physical scalars.

(2) Two variables:

IμνA ðxB; yCÞ ¼
Z

d4k
ð2πÞ4

kμkν

ðk2 −m2
AÞðk2 −m2

BÞðk2 −m2
CÞ2

¼ −
igμν

32π2m2
A

1

2ðyC − 1Þ2ðyC − xBÞ2ðxB − 1Þ ½yCðxB − 1Þ½ðyC − 1ÞðyC − xBÞ − ðyC þ ðyC − 2ÞxBÞ ln yC�

þ ðyC − 1Þ2x2B ln xB�;

IAðxB; yCÞ ¼
Z

d4k
ð2πÞ4

1

ðk2 −m2
AÞðk2 −m2

BÞðk2 −m2
CÞ2

¼ i
16π2m4

A

1

ðyC − 1Þ2ðyC − xBÞðxB − 1Þ ½ðy
2
C − xBÞðxB − 1Þ ln yC − ðyC − 1Þ½ðyC − xBÞðxB − 1Þ

þ ðyC − 1ÞxB ln xB��; ðB4Þ

with xB ¼ m2
B

m2
A
e yC ¼ m2

C
m2

A
.

(3) Three variables:
Finally, we have the most general integral. As we have assumed mj1 ¼ mj2 , only diagrams with usual quarks will

give rise to these sorts of functions. Nevertheless, the scalar functions IAðxB; xC; xDÞ will be suppressed by a
miml=m4

331 factor, wherem331 is the typical mass of some new 331HL particles, always heavier than any SM quarks:

IμνA ðxB; xC; xDÞ ¼
Z

d4k
ð2πÞ4

kμkν

ðk2 −m2
AÞðk2 −m2

BÞðk2 −m2
CÞðk2 −m2

DÞ
¼ −

igμν

32π2m2
A

1

fðxA; xB; xCÞ
½x2BðxC − 1ÞðxC − xDÞðxD − 1Þ ln xB

− x2CðxB − 1ÞðxB − xDÞðxD − 1Þ ln xC þ x2DðxB − 1ÞðxB − xCÞðxC − 1Þ ln xD�; ðB5Þ
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where we have defined

fðxA; xB; xCÞ ¼ 2ðxB − 1ÞðxB − xCÞðxC − 1ÞðxB − xDÞðxC − xDÞðxD − 1Þ; ðB6Þ
with xα ¼ m2

α

m2
A
, α ¼ B, C, D.

We can obtain the previous functions taking the limit

lim
xC→xD

IμνA ðxB; xC; xDÞ ¼ IμνA ðxB; yCÞ lim
xB→1

IμνA ðxB; yCÞ ¼ IμνA ðyCÞ: ðB7Þ

APPENDIX C: THE SCALAR SECTOR FOR THE 331HL MODEL

The most general scalar potential, invariant under CP transformations, for the scalars is

Vðχ; η; ρÞ ¼
X
i

μ2iϕ
†
iϕi þ

X3
i¼1

aiðϕ†
iϕiÞ2 þ

X6
m¼4

X3
i;j¼1
i>j

amðϕ†
iϕiÞðϕ†

jϕjÞ

þ
X9
n¼7

X3
i;j¼1
i>j

anðϕ†
iϕjÞðϕ†

jϕiÞ þ ðfϵijkχiρjηk þ H:c:Þ; ðC1Þ

where we have used ϕ1 ¼ χ, ϕ2 ¼ η and ϕ3 ¼ ρ, except in the trilinear term.
The mass spectra of the model has been obtained in Ref. [31]. Here we will summarize it. The doubly charged scalars

ρþþ, χþþ are related to the mass eigenstates as follows:

�
ρþþ

χþþ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvχ j2
jvρj2

r
0
B@ 1

jvχ j
jvρj e

−iθχ

− jvχ j
jvρj e

iθχ 1

1
CA
�
Gþþ

U

Yþþ

�
; ðC2Þ

and the masses are

m2
Gþþ

U
¼ 0; m2

Yþþ ¼ A

�
1

jvρj2
þ 1

jvχ j2
�
þ a8

2
ðjvχ j2 þ jvρj2Þ; ðC3Þ

where A ¼ jvχ jjvηjjvρjjfj=
ffiffiffi
2

p
.

The singly charged scalars carrying no lepton number ηþ1 , ρ
þ are related to the mass eigenstates as follows:

�
ηþ1
ρþ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvρj2
jvηj2

r
0
B@ 1

jvρj
jvηj

− jvρj
jvηj 1

1
CA
�
Gþ

W

Yþ
1

�
; ðC4Þ

with masses

m2
Gþ

W
¼ 0; m2

Yþ
1

¼ A

�
1

jvρj2
þ 1

jvηj2
�
þ a9

2
ðjvηj2 þ jvρj2Þ: ðC5Þ

In the singly charged scalars carrying lepton number ηþ2 , χ
þ we have

�
ηþ2
χþ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jvχ j2
jvηj2

r
0
B@ 1

jvχ j
jvηj e

iθχ

− jvχ j
jvηj e

−iθχ 1

1
CA
�
Gþ

V

Yþ
2

�
; ðC6Þ
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with masses

m2
Gþ

V
¼ 0;

m2
Yþ
2

¼ A

�
1

jvχ j2
þ 1

jvηj2
�
þ a7

2
ðjvηj2 þ jvχ j2Þ: ðC7Þ

Finally, in the neutral CP-odd scalars we have

0
BB@

I0η

I0ρ

I0χ

1
CCA ¼

0
BBBBB@

Na
jvχ j − Nbjvηjjvχ j

jvρjðjvηj2þjvχ j2Þ
Nc
jvηj

0 Nb
jvχ j

Nc
jvρj

− Na
jvηj − Nbjvηj2

jvρjðjvηj2þjvχ j2Þ
Nc
jvχ j

1
CCCCCA

0
BB@

G0
1

G0
2

A0

1
CCA; ðC8Þ

with the respective masses

m2
G0

1

¼ m2
G0

2

¼ 0;

m2
A0 ¼ A

�
1

jvχ j2
þ 1

jvρj2
þ 1

jvηj2
�
: ðC9Þ

Above, we have defined

Na ¼
�

1

jvχ j2
þ 1

jvηj2
�

−1=2
;

Nb ¼
�

1

jvχ j2
þ jvηj2
jvρj2ðjvηj2 þ jvχ j2Þ

�−1=2
;

Nc ¼
�

1

jvχ j2
þ 1

jvρj2
þ 1

jvηj2
�

−1=2
: ðC10Þ

For the CP-even scalars the mass matrix is real and
symmetric and we know that it can be diagonalized by an
orthogonal matrix. Therefore, X0

ψ ¼ P
iU

H
ψiH

0
i , where

ψ ¼ χ, η, ρ, i ¼ 1, 2, 3, H0
i are the mass eigenstates and

UH is an orthogonal matrix.
We observe that in the minimal 3-3-1 model with the

scalar sextet, there are four doubly charged scalars, six
singly charged scalars and five neutral scalars. Hence, the
mass matrices are diagonalized by 4 × 4, 6 × 6 and 5 × 5
orthogonal matrices, respectively. If the lepton number is
not explicitly violated in the potential, the singly charged
scalar mass matrix is the direct sum of two 3 × 3 blocks,
one in the η−1 , ρ

−, σ−2 sector and another in the η−2 , χ
−, σ−1 . It

means that our results do not apply, at least in a straightfor-
ward way, to that model.

APPENDIX D: VACUUM INSERTION
APPROXIMATION

The final result to the mass difference of neutral mesons
depends on the expectation value of the product of two
bilinears as those shown in Eq. (14). Following [25], these
matrix elements can be given in vacuum insertion approxi-
mation by

hM̄0jðāγμPLqÞðāγμPLqÞjM0i ¼ 1

3
f2MmM; ðD1Þ

hM̄0jðāγμPRqÞðāγμPRqÞjM0i ¼ 1

3
f2MmM; ðD2Þ

hM̄0jðāγμPLqÞðāγμPRqÞjM0i¼1

6
f2M

m3
M

ðmqþmaÞ2
−
1

4
f2MmM;

ðD3Þ

hM̄0jðāγμPRqÞðāγμPLqÞjM0i¼1

6
f2M

m3
M

ðmqþmaÞ2
−
1

4
f2MmM;

ðD4Þ

hM̄0jðāPLqÞðāPLqÞjM0i ¼ 5

24
f2M

m3
M

ðmq þmaÞ2
; ðD5Þ

hM̄0jðāPRqÞðāPRqÞjM0i ¼ 5

24
f2M

m3
M

ðmq þmaÞ2
; ðD6Þ

hM̄0jðāPLqÞðāPRqÞjM0i ¼ 1

24
f2MmM −

1

4
f2M

m3
M

ðmq þmaÞ2
;

ðD7Þ

hM̄0jðāPRqÞðāPLqÞjM0i ¼ 1

24
f2MmM −

1

4
f2M

m3
M

ðmq þmaÞ2
:

ðD8Þ

APPENDIX E: EXAMPLES OF AMPLITUDES

As we explain in Sec. III, we have classified the
amplitudes according to the internal boson lines. First of
all we recall that the type of the bosons in the internal lines
fix the type of the quark in the internal lines. To write all
amplitudes explicitly is not appropriate for the sake of
space, hence we will show some of them in order to make
our calculations clearer.

1. Charged scalar Y2 and charged Goldstone boson GV

Here we present the amplitudes arisen when the singly
charged scalar Yþ

2 and the would-be Goldstone boson
related to the vector Vþ

μ , denoted by Gþ
V , are in a box

diagram. In this case the fermions in the internal lines are
those with charge −4=3, i.e., j1;2. We have assumed equal
masses for the exotic quarks j1, j2, i.e.mj1 ¼ mj2 ¼ m. All
contributions are summarized as follows:
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iMGVY2
¼

X2
l¼1

X2
i¼1

fIμνV ðxY2
; yj1Þ½ðK1ÞjlðK2Þ�klðK2ÞjiðK1Þ�ki½γμPL�jk½γνPL�jk

þ ðK1ÞjlðK2Þ�klð ~K2Þ�ijð ~K1Þik½γμPL�jk½γνPR�jk þ ð ~K1Þ�ljð ~K2ÞlkðK2ÞjiðK1Þ�ki½γμPR�jk½γνPL�jk
þ ð ~K1Þ�ljð ~K2Þlkð ~K2Þ�ijð ~K1Þik½γμPR�jk½γνPR�jk� þm2IVðxY2

; yj1Þ½ðK1Þjlð ~K2ÞlkðK2Þjið ~K1Þik½PR�jk½PR�jk
þ ðK1Þjlð ~K2Þlkð ~K2Þ�ijðK1Þ�ki½PR�jk½PL�jk þ ð ~K1Þ�ljðK2Þ�klðK2Þjið ~K1Þik½PL�jk½PR�jk
þ ð ~K1Þ�ljðK2Þ�klð ~K2Þ�ijðK1Þ�ki½PL�jk½PL�jk�g:

The matrices K1, ~K1, K2, ~K2 are given in Eq. (A3).

2. Charged scalar Y−
1 and W− boson

Next, we will show the amplitude when a singly charged scalar Y−
1 and a W− is exchanged in the box. In this case the

fermions in the internal lines are the SM u-type ones. Besides the CKM matrix, the matrices K6 and ~K6, given in Eq. (A3),
appear:

iMWY1
¼ g2

X3
i¼1

X3
l¼1

f2IμνY1
ðxi; xl; xWÞðVCKMÞjiðVCKMÞ�kl½γμPL�jk

× fðK6ÞjlðK6Þ�ki½γνPL�jk þ ð ~K6Þikð ~K6Þ�lj½γνPR�jkgg:

As we said in Appendix B, there are no terms proportional to IY1
ðxi; xl; xWÞ once they would be suppressed by amiml=m4

331

factor, where mi, ml are the masses of the U-quarks.

3. Two charged gauge bosons V−

Finally, the most common expression, appearing for instance with W bosons in the framework of SM:

iMV ¼ g4

2

X2
i¼1

X2
l¼1

IμνV ðyj1ÞðVD
L ÞjlðVD

L Þ�klðVD
L ÞjiðVD

L Þ�ki½γμPL�jk½γνPL�jk; ðE1Þ

where VD
L is given in Eq. (A6).

4. Penguin diagrams

We can still estimate how relevant the penguin diagrams shown in Fig. 11 are. From the matrices KD
h and KD

A , the
diagrams with neutral scalars will be negligible, just as their box diagrams were. At first, the same could not be said in the
case of the diagram in Fig. 11(a) which involves two Z0, once the ðND

Z0 Þij’s are not small. To estimate it we will neglect the
factors proportional to miml

m4

Z0
(i, l are D-quark indices), just as we have done throughout the paper. The remaining

contributions can be written as

iM10ðaÞ ¼ −
X
i;l

2βilg4

ð4πÞ2m2
Z0
½γμPL�jk½γμPL�jk

Z
1

0

Z
1−x

0

dxdy logΔ; ðE2Þ

whereΔ ¼ m2
i xþm2

l yþm2
Z0 ð1 − x − yÞ > 0 and βil ¼ ðKD

L ÞjkðKD
L ÞjiðKD

L ÞilðKD
L Þlk. In (E2) we have omitted the terms that

should be subtracted in the M̄S renormalization scheme. Finally, for aMZ0 of 2.4 TeV, we obtain ðΔMMÞp < 10−18 GeV for
all K, Bd;s mesons.
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