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The energy spectrum of high-energy neutrinos reported by the IceCube Collaboration shows a dip
between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter with the
cosmic neutrino background through an∼MeVmediator. Taking the density matrix approach, we develop a
formalism to study the propagation of PeV neutrinos in the presence of the new neutrino interaction. If the
interaction is flavored such as the gauged Lμ − Lτ model we consider, the resonant collision may not
suppress the PeV neutrino flux completely. The new force mediator may also contribute to the number of
effectively massless degrees of freedom in the early Universe and change the diffusion time of neutrinos
from the supernova core. Astrophysical observations such as big bang nucleosynthesis and supernova
cooling provide an interesting test for the explanation.
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I. INTRODUCTION

The IceCube experiment has recently reported the
observation of neutrinos in the energy range of TeV–
PeV [1–4], which provides the first evidence for extra-
terrestrial high-energy neutrinos. An interesting feature of
the observed spectrum is a null detection of high-energy
neutrinos in the energy range of 400–800 TeV. Although at
present statistics have not been sufficient enough to confirm
the existence of the dip in the spectrum, there have been
investigations whether it can be explained by some new
physics [5–16]. One possibility is that the high-energy
neutrinos may scatter with the cosmic neutrino background
(CνB) and lose their energy, resulting in the diplike feature
in the spectrum [9,11–13,15,17].
This scenario has several interesting implications. To

suppress the neutrino flux in the range of 400–800 TeV as
indicated by the IceCube observation, the scattering cross
section between the high-energy and CνB neutrinos must
be significantly large, which can be achieved by the
Breit-Wigner resonance. Since the resonance mass mR is
close to the center-of-mass energy, it can be estimated as
mR ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mνEν
p

∼Oð1Þ MeV, where neutrino energy Eν ∼
PeV and neutrino mass mν ∼ 0.01 eV. Therefore, it pre-
dicts a new interaction in the neutrino sector with a force
mediator much lighter than the weak scale. Because the
resonant cross section is sensitive to Eν and mν, the
IceCube neutrino spectrum may contain rich information
about neutrino mass and redshift of the source [11,12].
From the perspective of particle physics model building,

it is quite challenging to extend the lepton sector of the
Standard Model (SM) with an additional interaction. For
example, if the light mediator couples to the three gen-
erations of leptons universally, there are strong constraints on

the interaction strength from such as electron beam-dump
experiments [18] and rare decays of mesons [19]. Therefore,
it is reasonable to consider models in which the new
interaction is not flavor blind. In this case, it is important
to treat the propagation of the high-energy neutrinos prop-
erly, in order to calculate the neutrino flux at IceCube. In this
paper, we use the density matrix approach to study propa-
gation of PeV neutrinos from the source to the IceCube
detector in the presence of a new flavored neutrino self-
interaction. To illustrate our main point, we consider an
extension of the SM with a gauged Lμ − Lτ [20–28]. This
model has several attractive features: it is gauge anomaly-
free; it explains the nearly maximum mixing angle between
the second and third generations; the model also evades
severe constraints from electron beam-dump experiments.
We also study cosmological and astrophysical implica-

tions of the model. Since the mediator mass is close to the
temperature of the big bang nucleosynthesis (BBN) era, the
presence of themediator in the earlyUniverse can potentially
contribute to the number of effectively massless degrees
of freedom. In addition, the light mediator may also be
produced in the core of supernovae. The frequent collision
between neutrinos mediated by the new force may signifi-
cantly reduce the neutrinomean free path, which slows down
the supernova cooling process. We show that both BBN and
supernova constraints are sensitive to the parameter region of
the model explaining the dip of the IceCube PeV neutrino
spectrum. Our result can be generalized to other models with
an Oð1Þ MeV force carrier coupled to SM neutrinos.
The rest of the paper is organized as follows. In the next

section, we discuss the generic features of the gauged
Lμ − Lτ model and its experimental constraints. In Sec. III,
we derive the Boltzmann equation governing the evolution
of the neutrino density matrix. Then, we discuss cosmo-
logical and astrophysical implications in Sec. IV. Section V
is devoted to summarizing our results. In the Appendix, we
present the derivation of the resonant scattering rate.
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II. PARTICLE PHYSICS MODEL

We assume SM leptons have a new interaction with the
following Lagrangian

L0
int ¼ −g0Z0

μ

X
l;l0

½L̄lγ
μQll0Ll0 þ l̄Rγ

μQll0l0
R�; ð1Þ

where g0 is the coupling constant, Z0
μ is the new gauge

boson, Ll denotes the lepton doublet, lR denotes the lepton
singlet, and the charge matrix is Qll0 ¼ diagð0; 1;−1Þ in
the interaction basis l ¼ ðe; μ; τÞ. We furthermore assume
that the gauge boson mass is mZ0 ∼MeV.
There are several experimental constraints on this model.

The existence of the lightZ0 opens up newdecay channels for
W and Z bosons such as three-body decays Wþ → μþνZ0.
These new processes change W=Z-boson decay branching
ratios by ΔΓ=Γ ¼ 3g02=16π2 in the limit of mZ0 ≪ mW=Z

[29]. To achieve ∼1% precision of measured W=Z-boson
decay branching ratios [30], we estimate g0 < 0.7.
One of the most stringent constraints on g0 is from the

precise measurement of the muon anomalous magnetic
moment aμ ¼ ðg − 2Þ=2. The leading contribution from Z0

exchange to aμ can be evaluated as [20,27,31]

ΔaZ0
μ ¼ g02

8π2

Z
1

0

dx
2m2

μx2ð1 − xÞ
x2m2

μ þ ð1 − xÞm2
Z0
: ð2Þ

In fact, several experiments have reported the measured
value deviates from the SM prediction at the level of
Δaexpμ ¼ ð42.6� 16.5Þ × 10−10 [32,33]. While the had-
ronic uncertainty is still in debate, we require ΔaZ0

μ to be
less than Δaexpμ , which gives rise to g0 ≲ 5 × 10−4.
The measurements of neutrino-electron interactions also

put stringent constraints on the model. Although the Z0
boson does not couple to electrons directly in our model, it
contributes to neutrino-electron scattering through photon-
Z0 mixing radiatively induced by vacuum polarization with
μ and τ in the loop. Reference [34] analyzed data from
the Borexino (solar neutrino) [35] and GEMMA (reactor
neutrino) [36] experiments to put a constraint on the gauge
coupling constant gB−L of a gauged B − L model, which is
flavor blind. To apply their result to our model, we first
relax the Borexino constraint on gB−L by a factor of
ð1=0.66Þ1=4, because the Z0 boson couples only to νμ
and ντ, but not νe, which accounts for about 34% of the
total solar neutrino flux [30]. We then impose the scaled
upper bound on

ffiffiffiffiffiffiffiffi
ϵeg0

p
, where e is the electric charge of

the electron, and ϵ is the photon-Z0 mixing parameter.
We calculate the mixing parameter ϵ as

ϵ ¼ −
eg0

2π2

Z
1

0

dxxð1 − xÞ ln
�
m2

τ − xð1 − xÞq2
m2

μ − xð1 − xÞq2
�
; ð3Þ

where mμ and mτ are the masses of μ and τ, respectively.
We take a typical value of momentum transfer in

neutrino-electron scattering, q2 ¼ −1 MeV2. Note the
choice of q2 does not change ϵ as long as jq2j ≪ m2

μ.
We find that the constraint from the Borexino experiment
is more stringent than that from the muon anomalous
magnetic moment in the light Z0-boson region of
mZ0 ≲ 10 MeV. Since the GEMMA experiment looks
for reactor ν̄e’s before they oscillate (the distance from
the reactor is 13.9 m), it is not applicable to our model
because Z0 does not couple to νe.
The realization of the observed neutrino masses and

mixing angles in the gauged Lν − Lτ model has been
discussed in the literature [23–28]. In this paper, we assume
that neutrino masses are quasidegenerate, which can be
achieved with a proper choice of the symmetry breaking
pattern [27]. In this case, we can translate the cosmological
limit

P
imνi < 0.25 eV [37–39] to an upper bound on the

individual neutrino mass mν < 0.083 eV. On the other
hand, the observed atmospheric neutrino mass isffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p ≃ 0.049 eV [30], which leads to a lower bound
on mν ∼ 0.035 eV for a degenerate neutrino mass spec-
trum. Since the dip of the PeV neutrino spectrum at
IceCube is in the energy range of 4 × 102 ≲ Eν ≲ 8 ×
102 TeV [3,4] and the resonance condition for neutrino
scattering is m2

Z0 ≃ 2Eνmν, we obtain a preferred range of
Z0 mass 5 MeV≲mZ0 ≲ 10 MeV. If scattering occurs at a
high redshift, we can shift this mass range by a factor offfiffiffiffiffiffiffiffiffiffiffi
1þ z

p
accordingly.

III. NEUTRINO PROPAGATION

We first estimate the coherence length of PeV neutrinos
as follows [40–42]. For any two of the neutrino mass
eigenstates composing a flavor state, the velocity difference
of their wave packets is jvi − vjj≃ jΔm2

ijj=2E2
ν, where

Δm2
ij ≡m2

νi −m2
νj . After they travel distance L, the wave

packets are ∼LjΔm2
ijj=2E2

ν apart. If LjΔm2
ijj=2E2

ν is larger
than the uncertainty in their spatial location, the wave
packets do not overlap and lose coherence.1 Therefore, the
coherence length can be estimated as [41]

Lcoh;ij ≃ 4πE2
ν

jΔm2
ijj
σx; ð4Þ

where σx is the spatial uncertainty of PeV neutrinos.
Assuming that IceCube PeV neutrinos are produced by
decays of high-energy pions, we expect the spatial uncer-
tainty of PeV neutrinos is of the order of the distance that
the pion travels before it decays; i.e., σx ≃mπτπ=ð4EνÞ
[41], where mπ=ð4EνÞ is the Lorentz contraction factor,
and the pion lifetime and mass in the rest frame are
τπ≃2.6×10−8 s, and mπ≃140MeV, respectively. Taking

1In this case, the density matrix defined in Eq. (5) is diagonal
in the mass basis.
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Eν ¼ 1 PeV and jΔm2
ijj ¼ 10−3 eV2, we can estimate the

spatial uncertainty σx ≃ 2.7 × 10−5 cm and the coherence
length Lcoh;ij ≃ 100 Gpc. Therefore, if PeV neutrinos are
produced by decays of free pions, the coherent length can
be larger than the particle horizon size of the Universe
∼14 Gpc. However, the environmental effects of the PeV
neutrino source, such as collisions of the parent particle
with particles in medium and the presence of magnetic
fields, may shorten the coherence length significantly
[41,43,44]. Furthermore, even if the coherent oscillation
is maintained during the propagation, it may not
be detected due to uncertainties of source distance and
limitations of detector resolution. In our analysis, we first
assume that PeV neutrinos are coherent and derive the
probability matrix in the presence of the new interaction,
and then take time averaging over the oscillatory terms to
include the possible decoherence effects. Therefore, the
formalism we will develop below is valid even if PeV
neutrinos have a coherent length shorter than the propa-
gation distance.
To describe propagation of the PeV neutrinos from the

source to the IceCube detector, we consider evolution of the
following density matrix

F ll0 ð~k; tÞ ∝ ha†lð~kÞal0 ð~kÞi; ð5Þ

where alð~kÞ is an annihilation operator of νl with

momentum ~k. We normalize the density matrix such
that the number density is given by nlðtÞ ¼R
d3~k=ð2πÞ3F llð~k; tÞ. The evolution equation of the den-

sity matrix can be derived from nonequilibrium field
theory [45–47],

∂
∂tF ð~k;tÞ−H~k

∂
∂~kF ð~k;tÞ¼−i½Hð~kÞ;F ð~k;tÞ�þC½F �; ð6Þ

where H is the Hubble expansion rate, ½·; ·� denotes the

commutator, Hð~kÞ is the Hamiltonian, and C½F � represents
the collision term. The Hamiltonian is

Hð~kÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM�

νMν

q
≃ωðkÞþΔM�

νMν=ð2ωðkÞÞ; ð7Þ

where k ¼ j~kj, ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

ν

p
, m2

ν ¼ trðM�
νMνÞ=3,

and ΔM�
νMν ¼ M�

νMν −m2
ν. Since mass-squared

differences are small, we have jΔm2
ijj ≪ ωðkÞ2.

We write the collision term as

C½F � ¼ −
Γsð~k; tÞ

2
fF ð~k; tÞ;Rg; ð8Þ

and the total scattering rate is given by

Γsð~k; tÞ ¼ 9ζð3ÞT3
νðtÞ

1

mν

ΓZ0

mZ0
δ½k −m2

Z0=ð2mνÞ�; ð9Þ

where ζðsÞ is the Riemann zeta function. We present the
derivation of Eq. (9) in the Appendix.
Taking redshift z and incoming momentum ~k0 as time

and momentum coordinates instead of cosmic time t and

physical momentum ~k, respectively, we obtain the density
matrix evolution of PeV neutrinos,

−
∂
∂z eF ð~k0; zÞ ¼ −i½ΔeHð~k0; zÞ; eF ð~k0; zÞ�

−
~Γsð~k0; zÞ

2
feF ð~k0; zÞ;Rg ð10Þ

where

eF ¼ F ð~k; tÞ; ΔeH ¼ ΔM�
νMν

2k0ð1þ zÞ2HðzÞ ;

~Γs ¼ ~τsðzÞδ
�
1þ z −

m2
Z0

2mνk0

�
; ð11Þ

and the optical depth ~τsðzÞ is

~τsðzÞ ¼ 18ζð3ÞT3
ν;0ð1þ zÞ3 1

HðzÞm2
Z0

ΓZ0

mZ0
: ð12Þ

Integrating both sides of Eq. (10) from zi to zf, we obtain
a formal solution for eF ,

eF ð~k0; zfÞ ¼ ePð~k0; zf; ziÞeF ð~k0; ziÞePð~k0; zf; ziÞ† ð13Þ

with the nonunitary matrix

ePð~k0; z0; zÞ
¼ P

�
exp

�
−i

Z
z

z0
dz00½eHð~k0; z00Þ− ieΓsð~k0; z00ÞR=2�

��
;

ð14Þ

where P is the propagation order operator defined such that
PfQðzÞQ0ðz0Þg ¼ QðzÞQ0ðz0Þ for z < z0 and Q0ðz0ÞQðzÞ
for z0 < z. Substituting Eq. (11) into Eq. (14), we obtain

ePð~k0; z0; zÞ
¼ eUð~k0; z0; zsðk0ÞÞeT sðzsðk0Þ; z0; zÞeUð~k0; zsðk0Þ; zÞ; ð15Þ

where
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eUð~k0; z0; zÞ ¼ exp

�
−i

ΔM�
νMν

2k0
eLðz0; zÞ� with

eLðz0; zÞ ¼ Z
z

z0

dz00

ð1þ z00Þ2Hðz00Þ ; ð16Þ

eT sðz00; z0; zÞ ¼
�
exp ð−eτsðz00ÞR=2Þ ðz0 < z00 < zÞ
1 ðotherwiseÞ ;

zsðk0Þ ¼ m2
Z0=ð2mνk0Þ − 1: ð17Þ

Letting U denote the unitary matrix that relates the mass
basis νi to a basis of interest νl ¼ P

iUliνi, the density
matrix at z ¼ zf can be written as

eF ll0 ðzfÞ¼
X
l0s;i0s

Uli3U
�
l5i3

eT s;l5l3ðzs;zf;ziÞUl3i1U
�
l1i1

× eF l1l2ðziÞUl2i2U
�
l4i2

eT s;l6l4ðzs;zf;ziÞUl6i4U
�
l0i4

×exp

�
−i

Δm2
i1i2

2k0
eLðzs;ziÞ

�

×exp

�
−i

Δm2
i3i4

2k0
eLðzf;zsÞ

�
: ð18Þ

For PeV neutrinos, the oscillation length Losc;ij ¼
4πk0=jΔm2

ijj is 8 × 10−8ðk0=PeVÞðeV2=jΔm2
ijjÞ pc, while

the propagation length ~Lðz0; zÞ is on the order of 1=H0 ¼
3 × 103 Mpc=h as long as z0 and z − z0 are on the order
of unity. This implies that we can take the period average
of the exponential terms, which gives rise to
hexp½−iΔm2

ij
eL=ð2k0Þ�i≃ δij. With this approximation,

we obtain the density matrix as

eF ll0 ðzfÞ¼
X
l0s;i0s

Uli2U
�
l5i2

eT s;l5l3ðzs;zf;ziÞUl3i1U
�
l1i1

× eF l1l2ðziÞUl2i1U
�
l4i1

eT s;l6l4ðzs;zf;ziÞUl6i2U
�
l0i2

:

ð19Þ
For PeV neutrino detection, it is useful to take the
interaction basis. Here, the unitary matrix is called the
Maki-Nakagawa-Sakata (MNS) matrix [48] that is often
parametrized by

UMNS ¼

2
64
1 0 0

0 c23 s23
0 −s23 c23

3
75
2
64

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

3
75

×

2
64

c12 s12 0

−s12 c12 0

0 0 0

3
75diagð1;eiα21=2;eiα31=2Þ; ð20Þ

with cij and sij denoting cosðθijÞ and sinðθijÞ, respectively.
In the interaction basis, the interaction matrix is diagonal,

eT sðz00;z0;zÞ¼
�
diagð1;e−~τsðz00Þ=2;e−~τsðz00Þ=2Þ ðz0 <z00 <zÞ
1 ðotherwiseÞ :

ð21Þ

The elements of the probability matrix are

Pll0 ¼ jhνlðzfÞjνl0 ðziÞij2 ¼ eF llð~k0; zfÞ
for eF l1l2ð~k0; ziÞ ¼ δl1l0δl2l0 ; ð22Þ

where we do not sum over l or l0. We can write Pll0

explicitly as

Pll0 ¼
X
l0s;i0s

Uli2U
�
l1i2

eT s;l1l1ðzs; zf; ziÞ

×Ul1i1U
�
l0i1

Ul0i1U
�
l2i1

eT s;l2l2ðzs; zf; ziÞ
×Ul2i2U

�
li2
: ð23Þ

To evaluate P numerically, we take the following values for
the MNS matrix parameters (normal hierarchy) [30]:
sin2ðθ12Þ ¼ 0.308, sin2ðθ23Þ¼ 0.437, sin2ðθ13Þ ¼ 0.0234,
and δ=π ¼ 1.39. Combining Eqs. (21) and (23), we obtain

P ≃
2
64
0.30 0.13 0.12

0.13 0.06 0.05

0.12 0.05 0.04

3
75

þ e−~τsðzsÞ=2

2
64

0.07 −0.05 −0.03
−0.05 0.03 0.02

−0.03 0.02 0.01

3
75

þ e−~τsðzsÞ

2
64
0.18 0.15 0.12

0.15 0.29 0.31

0.12 0.31 0.35

3
75; ð24Þ

for zs ≥ 0.
With the probability matrix given in Eq. (24), we check

several extreme cases. In the absence of scattering, i.e.,
~τsðzsÞ ¼ 0, the flavor composition of PeV neutrinos at the
IceCube detector is completely determined by the initial
condition and oscillations. From Eq. (24), we can see thatP

l0ðlÞPll0 ¼ 1, where l0ðlÞ ¼ e, μ, τ. This is expected
because without scattering, the total probability for finding
neutrinos in different flavors is conserved.
In the limit of ~τsðzsÞ ≫ 1, one might think that νμ and ντ

would be completely depleted in the neutrino flux reaching
the IceCube detector because of collisions mediated by
the Z0. However, this is not the case. Even though the last
two terms of Eq. (24) vanish, the first one does not depend
on ~τsðzsÞ at all. Therefore, the probability for finding νμ
and ντ does not vanish. In general, for a model with flavor-
dependent neutrino interactions, the CνB cannot com-
pletely absorb each flavor of high-energy neutrinos.
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To check whether the Lμ − Lτ model can produce the dip
in the energy spectrum of high-energy neutrinos observed
by the IceCube, we consider two possible sources for the
high-energy neutrinos. If they originate from pp collisions,
the initial flavor compositions in the neutrino flux are
ðϕνe ;ϕνμ ;ϕντÞ ¼ ðϕν̄e ;ϕν̄μ ;ϕν̄τÞ ≃ ð1; 2; 0Þ. Applying the
probability matrix of Eq. (24) with ~τsðzsÞ ≫ 1, we obtain
the final flavor composition (0.56,0.25,0.22), and the total
survival rate is 1=3. For a pγ source, the initial flavor
compositions are (1,1,0) and (0,1,0) for neutrinos and
antineutrinos, respectively. At the detector, they become
(0.43,0.19,0.17) with a 2=5 survival rate and (0.13,0.06,
0.05) with a 1=4 survival rate, respectively.
To examine the favored parameter region for the

Lμ − Lτ model, we use Eq. (12) and take mZ0 ¼ 8 MeV,
mν ¼ 0.05 eV, and k0 ¼ 600 TeV. The Hubble expansion
rate is HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

p
, where H0 ¼

100h km=s=Mpc, ΩM ¼ 0.32, ΩΛ ¼ 0.68, and h ¼ 0.67
[38]. We find the redshift at which the collision occurs is
zs ≃ 0.07, and the optical depth is

~τs ≃ 1

�
g0

1.7 × 10−4

�
2

: ð25Þ

We see that the required value g0 for the model to explain
the dip is below the constraint from the muon g − 2

measurement, g0 ≲ 5 × 10−4. It is interesting to note that
the model can explain the dip in the neutrino spectrum and
the discrepancy in the muon anomalous magnetic moment.
If we take g0 ¼ 5 × 10−4 as preferred by Δaexpμ , the optical
depth is ~τs ≃ 8.7, which is more than enough to suppress
the neutrino flux in the 400–800 TeV energy range at the
IceCube detector [13]. However, as we will show later, this
parameter region is strongly disfavored by the constraint
from supernova cooling.
Our result can be easily generalized to the case in which

the neutrino interaction is flavor blind. After replacingR ¼
diagð0; 1; 1Þ by diag(1,1,1), we can write the probability
matrix as

P ≃ e−~τsðzsÞ

2
64
0.55 0.24 0.21

0.24 0.38 0.38

0.21 0.38 0.41

3
75: ð26Þ

In this case, all flavor compositions in the neutrino flux will
be suppressed if τsðzsÞ ≫ 1.
In Fig. 1, we illustrate the event spectrum of the model,

together with the experimental data. As shown in [3], the
IceCube data can be fitted by a power law as E2ϕðEÞ ¼
1.5 × 10−8 ðE=100 TeVÞ−0.3 GeVcm−2 s−1 sr−1. We multi-
ply the best-fit signal spectrum by the probability matrices
given in Eqs. (24) and (26), respectively, to get the spectra
for the flavored and flavor-blind interactions. We take
mZ0 ¼ 10 MeV and mν ¼ 0.05 eV so that the resonant
scattering occurs near the detector (zs ¼ 0) for neutrinos

with measured energy k0 ¼ 1 PeV and at the source
(zs ¼ 1.5) for those with k0 ¼ 400 TeV. We can see that
in our flavored model the collision with CνB neutrinos does
not deplete PeV neutrinos completely in the energy range of
resonances. Within the current data set, the expected number
of events is just two. Therefore, a small suppression factor
can reduce the expected number of events below the Poisson
limit, one. Our result may be tested with better statistics in
the accumulated data set in the near future.
There is one caveat in the above analysis. In deriving the

collision term in Eq. (8), we have neglected the inverse
scattering process and implicitly assumed that PeV neu-
trinos do not reach the detector after scattering. Therefore,
our current analysis does not capture the regeneration
effect [12]; i.e., elastic scattering also leads to a pileup
of neutrinos at lower energy. Although the full Boltzmann
equation contains the regeneration term as shown in
Eq. (A3) (Appendix), it is difficult to solve. Since the
propagation length is a factor of ∼1010 larger than the
oscillating length, tracking each oscillation cycle over
propagation in the numerical calculation is highly chal-
lenging. In our analysis, we have neglected the regeneration
term and solved the Boltzmann equation analytically. In our
model, we expect that the regeneration effect increases the
event number in the low-energy range, while leaving the
high-energy spectrum unchanged as in the case of [12].
Therefore, both the flavor and regeneration effects could be
important in determining the final signal spectrum for the
Lμ − Lτ model. On the other hand, if the force mediator
also couples to other states and scattering is inelastic, our
analysis is applicable directly because the regeneration
effect is absent in this case.

FIG. 1 (color online). Expected number of PeV neutrino events
at the IceCube detector for the SM (solid), the flavored Lμ − Lτ

model (dotted), and a model in which neutrinos have a new
flavor-blind interaction (dashed), together with experimental data
[3]. For the Lμ − Lτ model, we assume that PeV neutrinos
originate from pp collisions. Because of the coherent effect in
PeV neutrino propagation, the neutrino flux does not vanish near
the resonance for the flavored model. In our analysis, we have
neglected the regeneration effect [12].
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IV. COSMOLOGICAL AND ASTROPHYSICAL
IMPLICATIONS

In this section, we study cosmological and astrophysical
implications if neutrinos interact with a new ∼MeV force
carrier. We take the Lμ − Lτ model as an example, and our
analysis can be generalized to other models.

A. ΔNeff constraints

In the early Universe, Z0 bosons can be produced in the
SM thermal bath by inverse decay and pair annihilation of
leptons. The rate of inverse decay can be estimated as
Γinv ∼ g02mZ0 ×mZ0=T, where mZ0=T is the time dilation
factor. The rate for pair annihilation is Γann ∼ g04T. At early
stages when the temperature is high, the pair annihilation
process dominates the production of Z0 in the thermal bath.
But inverse decay becomes more important when T≲
100 GeVð10−4=g0ÞðmZ0=10 MeVÞ. When the temperature
drops below mZ0, the number density of Z0 becomes
suppressed by the Boltzmann factor. Since the Z0 mass
is close to the temperature when BBN starts, it may
contribute to the effective number of neutrinos Neff .
The mediator Z0 may change Neff in two ways. If Z0 is

still relativistic during BBN, it contributes to Neff directly.
In this case, ΔNeff ¼ 3 × 4=7≃ 1.7, which is strongly
disfavored by observations of light nuclei abundances
[49,50] and cosmic microwave background anisotropies
[37–39]. Since mZ0 ∼ 10 MeV in the model we consider,
the direct contribution to Neff at T ¼ 0.1–1 MeV is
negligible because of the Boltzmann suppression factor.
However, even in this case, Z0 may still contribution to Neff
in an indirect way. When Z0 becomes nonrelativistic, it
transfers its entropy to νμ and ντ and increases their
temperature relative to the temperature of νe after neutrinos
decouple from the SM thermal bath at Tν;dec ¼ 1.5 MeV.
To study this subtle effect, we take the following steps. We
assume all neutrinos and antineutrinos have the same
temperature Tν;dec ¼ 1.5 MeV when they decouple from
the SM thermal bath. After decoupling, the νμ, ντ, and Z0

form a thermal bath, which evolves independently from νe
and the photon. Then, we follow the phase space distri-
bution functions of νμ, ντ, and Z0 from Tν;dec ¼ 1.5 MeV to
T ¼ 0.1 MeV, and derive a lower bound on mZ0 by
demanding ΔNeff < 0.7 at T ¼ 0.1 MeV.
Since both inverse decay and pair annihilation processes

respect CP, the relevant phase space distribution functions
(per spin degrees of freedom) are given by

fνμ ¼ fν̄μ ¼ fντ ¼ fν̄τ ¼
1

ek=T
0−ξ þ 1

;

fZ0 ¼ 1

e
ffiffiffiffiffiffiffiffiffiffiffi
k2þm2

Z0
p

=T0−ξ0 − 1

; ð27Þ

where T 0 denotes the temperature of νν, ντ and Z0 after they
decouple from the SM thermal bath, ξ and ξ0 are the

chemical potentials per unit temperature for the neutrinos
and Z0 bosons, respectively.
To evaluate T 0, ξ and ξ0, we impose the following three

conditions.
(i) ξ0 ¼ 2ξ, because the inverse decay process is in the

thermal equilibrium.
(ii) The entropy per comoving volume is conserved,

ðsνμ þ sν̄μ þ sντ þ sν̄τ þ sZ0 Þa3 ¼ constant; ð28Þ

where a is the scale factor.
(iii) The third condition depends on whether the pair

annihilation process is in chemical equilibrium when
the number density of Z0 becomes negligible. We
estimate the equilibrium condition requires g0 ≳ 10−5.
In this case, ξ0 ¼ ξ. Combining with the first con-
dition, we have ξ0 ¼ ξ ¼ 0. If not, we instead use the
conservation condition of the comoving number
density

ðnνμ þ nν̄μ þ nντ þ nν̄τ þ 2nZ0 Þa3 ¼ constant: ð29Þ

We will discuss both cases.
With the distribution functions given in Eq. (27), we can

write the entropy densities as

sνμ ¼ sν̄μ ¼ sντ ¼ sν̄τ ¼
Z

4πk2dk
ð2πÞ3

�
4k
3T 0 − ξ

�
fν; ð30Þ

sZ0 ¼ 3

Z
4πk2dk
ð2πÞ3

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Z0

q
T 0 þ k2

3T 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Z0

q − ξ0

3
75fZ0 :

ð31Þ

In the case of ξ0 ¼ ξ ¼ 0, we use the entropy conserva-
tion condition Eq. (28) to determine the temperature, T 0, at
T ¼ 0.1 MeV for a given mZ0 . As we know, in the standard
case, all neutrino species have the same temperature
0.1 × ð4=11Þ1=3 MeV when T ¼ 0.1 MeV. In our case,
the νe evolves as before, but both νμ and ντ should have a
higher temperature than 0.1 × ð4=11Þ1=3 because they
inherit the energy density of the Z0 boson. To evaluate
the energy densities of the νμ, ντ and Z0, we use

ρνμ ¼ ρν̄μ ¼ ρντ ¼ ρν̄τ ¼
Z

4πk2dk
ð2πÞ3 kfν;

ρZ0 ¼ 3

Z
4πk2dk
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Z0

q
fZ0 : ð32Þ

We find that ρZ0 is negligible at T ¼ 0.1 MeV for
mZ0 ≳ 1 MeV. Using the standard definition,

AYUKI KAMADA and HAI-BO YU PHYSICAL REVIEW D 92, 113004 (2015)

113004-6



ργ þ ρνe þ ρν̄e þ ρνμ þ ρν̄μ þ ρντ þ ρν̄τ

¼ ργ

�
1þ 7

8

�
4

11

�
4=3

ðΔNeff þ 3Þ
�
; ð33Þ

we calculateΔNeff . Since the presence of the Z0 boson does
not change the thermal history of γ and νe, the following
relation is still valid in our model

ργ þ ρνe þ ρν̄e ¼ ργ

�
1þ 7

8

�
4

11

�
4=3

�
: ð34Þ

WedemandΔNeff defined in Eq. (33) to be less than 0.7, and
derive a lower bound mZ0 ≳ 5.3 MeVðTν;dec=1.5 MeVÞ
shown in Fig. 2. We note that ΔNeff drops significantly for
larger mZ0. For example, ΔNeff is 0.1 for mZ0≳
10 MeVðTν;dec=1.5 MeVÞ. This is because the energy den-
sity carried by the Z0 boson is suppressed by the Boltzmann
factor ∼ expð−mZ0=Tν;decÞ.
If the rate of pair annihilation and creation becomes less

than the Hubble expansion rate when the Z0 boson becomes
nonrelativistic, T 0, ξ, and ξ0 can be determined by solving
Eqs. (28) and (29) simultaneously with the initial condition

ξ ¼ ξ0 ¼ 0 at Tν;dec ¼ 1.5 MeV, where the number den-
sities are given by

nνμ ¼ nν̄μ ¼ nντ ¼ nν̄τ ¼
Z

4πk2dk
ð2πÞ3 fν;

nZ0 ¼ 3

Z
4πk2dk
ð2πÞ3 fZ0 : ð35Þ

Following a similar procedure, we obtain mZ0 ≳
5.3 MeVðTν;dec=1.5 MeVÞ for ΔNeff < 0.7, which is sim-
ilar to the lower bound for the case of ξ0 ¼ ξ. Therefore, our
lower bound on mZ0 shown in Fig. 2 changes only a few
percent even in the small coupling region.

B. Supernova cooling and neutrino bursts

The presence of a new MeV force carrier between
neutrinos also has interesting implications for the physics
of supernova neutrinos. We first briefly summarize the
basic picture in the standard case; see Refs. [51,52] for
review and references therein. The core-collapse supernova
forms a proto-neutron star in its core. Its size and temper-
ature are R ∼ 10 km and T ∼ 30 MeV, respectively. In the
core, nuclear reactions and electron pair annihilations
produce large numbers of neutrinos. These neutrinos reach
thermal equilibrium with nuclear matter and cannot escape
from the core due to its high density. As density and
temperature decrease with distance from the core, the mean
free path of neutrinos becomes longer. Above some radius
(called the neutrino sphere), they start streaming freely.
The radius and temperature of the νμ and ντ sphere are
roughly R ∼ 15 km and T ∼ 8 MeV, respectively. The νe
sphere has a larger size and lower temperature since they
can interact with circumstellar media more strongly
through the charged current. The diffusion time can be
estimated as τdiff ¼ λ=cðR=λÞ2, where λ is the neutrino
mean free path, and c is the speed of light. If neutrinos have
only the SM weak interaction, we can estimate τdiff ∼ 10 s,
which is consistent with observed duration of the neutrino
burst from SN1987A [53,54].
If neutrinos have new interactions, the standard picture

of supernova neutrinos changes. For the Lμ − Lτ model
we consider, the Z0 mediator can be produced inside the
core if its mass is comparable to or less than the core
temperature. The travel distance before it decays is only
cτZ0 ∼ 10−9 kmðg0=10−4Þ−2ðT=10 MeVÞð10 MeV=mZ0 Þ2,
which is much smaller than the core radius. Therefore, the
produced Z0 boson will reach thermal equilibrium with
neutrinos and other particles in the core. These reactions
may prevent νν and ντ from streaming freely, and change
their diffusion time. We evaluate the diffusion time in the
following way. The number density of νμ and ντ increases
as Z0 decays, _nν ∼ 1=2hΓZ0 inZ0 , where hΓZ0 i is the total
decay width of Z0 averaged with its phase space distribu-
tion. Meanwhile, nν decreases through the inverse decay.

FIG. 2 (color online). Summary of the parameter space of the
gauged Lμ − Lτ model. Experimental bounds on the model are
from the muon g − 2 measurement (red band) and the electron-
neutrino interaction measurement (brown) at the Borexino experi-
ment (Sec. II). In the case of the quasidegenerate neutrino mass
spectrum, lower and upper bounds (blue vertical dashed) on
neutrino masses indicate the range of gauge boson mass mZ0 ¼
5–10 MeV required to produce the IceCube dip via resonant
interaction with CνB neutrinos (Sec. II). The optical depth (green
dashed) of the IceCube neutrinos ~τs should be larger than unity
to reproduce the observed PeV neutrino spectrum (Sec. III).
Depending on the parameters, resonant scattering can occur at
different redshifts. Cosmological constraints require mZ0 ≳
5 MeV such that ΔNeff < 0.7 (gray vertical). For mZ0 in the
range of 5–10 MeV, the energy density carried by the Z0 boson
may still give sizable contributions toΔNeff , i.e.,ΔNeff ∼ 0.1–0.7
(Sec. IVA). The resonant interaction may change the diffusion
time of νμ and ντ (black). If τdiff is larger than ∼10 s, it may delay
supernova cooling (Sec. IV B).
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Therefore, we have _nν ¼ 1=2hΓZ0 inZ0 − hσviinvnνnν̄. Since
_nν ¼ 0 in equilibrium, the detailed balance tells us
hσviinv ¼ 1=2hΓZ0 ineqZ0=n

eq
ν n

eq
ν̄ , where n

eq’s are the number
densities when the particles are in thermal equilibrium as
given in Eq. (35). Therefore, we can evaluate the mean free
path for νμ and ντ as

λ ¼ c
ð1=2hΓZ0 ineqZ0=n

eq
ν Þ : ð36Þ

To estimate the mean free path in Eq. (36), we factorize the
thermally averaged total width as hΓZ0 i ¼ g02=ð12πÞmZ0fD
ðmZ0=TÞ, where

fD ¼ 48π
mZ0

nZ0

Z
Πð~kÞfZ0 ðkÞ

Z
Πð~pÞð1 − fνðpÞÞ

×
Z

Πð~p0Þð1 − fν̄ðp0ÞÞð2πÞ4δ4ðk − p − p0Þ ð37Þ

with Πð~kÞ ¼ d3~k=2ωð2πÞ3 as the phase space measure.
We evaluate fD numerically as shown in Fig. 3. Roughly
speaking, fD can be regarded as the time dilation fac-
tor fD ∼mZ0=T.
Using Eq. (36), we estimate the diffusion time for νμ

and ντ in the presence of Z0 as shown in Fig. 2 (solid
black), where we have taken the core size as 10 km and
temperature 8 MeV. For mZ0 ∼ 5–10 MeV and g0 > 10−5,
νμ and ντ may not contribute to the neutrino cooling of
the core, and the neutrino burst would last 3 times longer
than expected in the standard case. This appears to be
incompatible with the observed ∼10 s duration of the
neutrino burst of SN1987A, although we cannot draw a
concrete conclusion because uncertainties in supernova
modeling (e.g., nuclear equation of state), limited sta-
tistics of the observed events, and also uncertainties in

deriving our limit. On the other hand, cooling processes
through other invisible particles can compensate the
suppressed neutrino cooling in this model. For example,
QCD axions with mass of ∼meV [55–57] and hidden
photons with a mixing parameter of ∼10−10 [58,59] are
well-motivated candidates in charge of invisible cooling.
Running simulations with this model are warranted for
improving the limit and comparing it with observations in
detail.2

V. CONCLUSIONS

The IceCube experiment has observed high-energy
cosmic neutrinos for the first time. The observed neutrino
spectrum exhibits a dip around the sub-PeV energy scale,
which may indicate new physics beyond the SM of
particle physics. One possible explanation is that PeV
neutrinos may scatter with the CνB through a MeV
resonance and lose their energy before reaching the
IceCube detector. In this paper, we have developed a
formalism to trace the propagation of PeV neutrinos in the
presence of the new interaction. For the flavored inter-
action, we have shown that resonant scattering may not
suppress the PeV neutrino flux completely, which could
be tested in the near future.
We have also discussed astrophysical and cosmological

constraints on this type of model. The MeV mediator
could be produced in the core of supernova, and frequent
neutrino collisions induced by the mediator in the core
could trap neutrinos inside the core. In the early Universe,
the mediator could thermalize with the SM thermal bath
and contribute to the number of effectively massless
degrees of freedom. We have shown both the BBN
and supernova observations are sensitive to the favored
parameter region explaining the dip in the IceCube high-
energy neutrino spectrum.
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APPENDIX: DERIVATION OF THE
SCATTERING RATE

The collision term C½F � describes scattering between the
PeV neutrinos with CνB neutrinos, νðkÞ þ ν̄ðpÞ ↔ νðk0Þþ
ν̄ðp0Þ, which is given by

FIG. 3. Prefactor fD of the thermally averaged decay width,
hΓZ0 i ¼ g02=ð12πÞmZ0fDðmZ0=TÞ, as a function of the ratio of Z0
mass to temperature. By using this result, we evaluate the mean free
path of νμ and ντ in the supernova core [see Eqs. (36) and (37)].

2The simulations are performed for QCD axions [58,60].
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C½F � ¼ −
1

2ωðkÞ
Z

dΠð~k0Þ
Z

dΠð~pÞ
Z

dΠð~p0Þð2πÞ4δ4ðkþ p − k0 − p0Þ

×
X
spins

1

2

X
b0s

½fF Tð~k; tÞ;Mb2b1†
F ð1 − F Tð~k0; tÞÞMb3b4

F gF T;b4b1ð~p; tÞð1 − F T;ð~p0; tÞÞb2b3

− f1 − F Tð~k; tÞ;Mb1b2
B F Tð~k0; tÞMb4b3†

B gð1 − F Tð~p; tÞÞb4b1F T;b2b3ð~p0; tÞ�; ðA1Þ

where Πð~kÞ ¼ d3~k=ð2ωðkÞð2πÞ3Þ is the phase space mea-
sure, f·; ·g denotes the anticommutator, MF;B are the
amplitude matrices for forward and backward scattering,
respectively, and F T is a sum of density matrices of PeV
neutrinos F and background neutrinos FB.
The collision term C½F � can be further simplified. Since

the phase space density of the PeV neutrinos is much less

than the quantum limit, F Tð~k; tÞ ≪ 1 for k ∼ PeV, we can
ignore the higher-order term of F 2 and the Pauli blocking
effect. In addition,we assume the distribution of background
neutrinos are flavor blind; i.e., FBðk⃗; tÞ ¼ fBðk⃗; tÞ ¼
1=½expðk=TνðtÞÞ þ 1� with TνðtÞ ¼ Tν;0ð1þ zÞ≃ 1.7 ×
10−4ð1þ zÞ eV and z parametrizing the redshift. With these
considerations, the collision term can be written as

C½F � ¼ −
1

2ωðkÞ
Z

dΠð~k0Þ
Z

dΠð~pÞ

×
Z

dΠð~p0Þð2πÞ4δ4ðkþ p − k0 − p0Þ

×
X
spins

1

2

X
b0s

½fF ð~k; tÞ;Mb2b1†
F Mb2b1

F gfBð~p; tÞ

− 2Mb1b2
B F ð~k0; tÞMb1b2†

B fBð~p0; tÞ
− 2Mb1b2

B Mb1b3†
B F b2b3ð~p0; tÞfBð~k0; tÞ�: ðA2Þ

In general, all s-, t-, and u-channel exchanges of Z0
contribute to neutrino scattering. Here, we focus on the
parameter region where the s-channel resonance has a
dominant contribution. For the model we consider, the
invariant amplitude matrices can be written as Mb0b

F;B ¼
MF;BOb0b, where MF ¼MðνðkÞþ ν̄ðpÞ→ νðk0Þþ ν̄ðp0ÞÞ,
MB ¼Mðνðk0Þþ ν̄ðp0Þ→ νðkÞþ ν̄ðpÞÞ, and Ob0b

l0l ¼Ql0b0

Qbl [see Eq. (1)]. Hence, we have the collision term as

C½F � ¼ −
1

2ωðkÞ
Z

dΠð~k0Þ
Z

dΠð~pÞ

×
Z

dΠð~p0Þð2πÞ4δ4ðkþ p − k0 − p0Þ

×
X
spins

1

2
½2jMFj2fF ð~k; tÞ;RgfBð~p; tÞ

− 2jMBj2RðTrðF ð~k0; tÞRÞfBð~p0; tÞ
þ TrðF̄ ð~p0; tÞRTÞfBð~k0; tÞÞ�; ðA3Þ

where R ¼ Q2 containing all information about flavor
structure of new neutrino interactions. For the Lν − Lτ

model, R ¼ diagð0; 1; 1Þ in the interaction basis. In
Eq. (A3), the first term in the square bracket corresponds
to the disappearance of neutrinos with energy k, while the
second one represents the regeneration effect due to
collisions between CνB neutrinos and those with energy
higher than k. The former can be simplified further as
discussed below, while the latter cannot. We drop the
second term in our calculation because of technical
challenges (see the discussion toward the end of Sec. III).
Noting the definition of scattering cross section

2ωðkÞ2ωðpÞσðνðkÞ þ ν̄ðpÞ → νðkÞ þ ν̄ðp0ÞÞvrel
¼

Z
dΠð~k0Þ

Z
dΠð~p0Þð2πÞ4δ4ðkþ p − k0 − p0Þ

×
X
spins

jMðνðkÞ þ ν̄ðpÞ → νðk0Þ þ ν̄ðp0ÞÞj2; ðA4Þ

we write the scattering rate Γsð~k; tÞ as

Γsð~k; tÞ ¼ 2

Z
d3 ~p
ð2πÞ3 fBð~p; tÞσðνðkÞ þ ν̄ðpÞ → νþ ν̄Þvrel:

ðA5Þ

The cross section for resonant scattering is given by the
Breit-Wigner formula

σR ¼ 4π
2J þ 1

ð2s1 þ 1Þð2s2 þ 1ÞBrinBrout

×
1

p2
cm

E2
cmΓ2

RðEcmÞ
ðE2

cm −m2
RÞ2 þ E2

cmΓ2
RðEcmÞ

; ðA6Þ

where s1 and s2 are the spins of initial particles, J is the spin
of the resonance, mR is its mass, ΓR is its decay width,
and Brin and Brout are decay branching ratios to initial and
final state particles, respectively. In the limit of mR ≫ ΓR,
Eq. (A6) can be written as

σR ≃ 16π2
2J þ 1

ð2s1 þ 1Þð2s2 þ 1ÞBrinBrout
ΓR

mR
δðE2

cm −m2
RÞ:

ðA7Þ

For the model we consider, s1 ¼ s2 ¼ 0, Brin ¼ Brout ¼
1=2, and we have
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σR ¼ 12π2
ΓZ0

mZ0
δðE2

cm −m2
Z0 Þ; ðA8Þ

where ΓZ0 ¼ g02mZ0=ð12πÞ is the Z0 decay width in the rest frame. Therefore, the total scattering rate is

Γsð~k; tÞ ¼ 9ζð3ÞT3
νðtÞ

1

mν

ΓZ0

mZ0
δ½k −m2

Z0=ð2mνÞ�; ðA9Þ

where ζðsÞ is the Riemann zeta function.
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