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Within a nonlinear chiral Lagrangian framework, the underlying mixings among quark-antiquark, four-
quark and glue components of f0ð1500Þ and f0ð1710Þ are studied in a global picture that includes all
isosinglet scalar mesons below 2 GeV. The quark components are introduced in the Lagrangian in terms of
two separate nonets (a quark-antiquark nonet and a four-quark nonet) which can mix with each other and
with a scalar glueball. An iterative Monte Carlo simulation is developed to study the 14 free parameters of
the Lagrangian by a simultaneous fit to more than 20 experimental data and constraints on the mass
spectrum, decay widths, and decay ratios of the isosinglet scalars below 2 GeV. Moreover, constraints on
the mass spectrum and decay widths of isodoublet and isovector scalars below 2 GeVas well as pion-pion
scattering amplitude are also taken into account. In the leading order of the model and within the overall
experimental uncertainties, the ranges of variation of the model parameters are determined. This leads to a
set of points in the 14-dimensional parameter space at which the overall disagreement with experiment is no
larger than the overall experimental uncertainties. The insights gained in this global picture, due to the
complexities of the mixings as well as the experimental uncertainties, are mainly qualitative but are
relatively robust, and reveal that the lowest scalar glueball hides between f0ð1500Þ and f0ð1710Þ, resulting
in a considerable mixing with various quark components of these two states. The overall current
experimental and theoretical uncertainties do not allow us to pin down the exact glue components of
isosinglet states; nevertheless it is shown that the f0ð1500Þ and f0ð1710Þ have the highest glue component.
While this global study does not allow precision predictions for each individual state, it provides useful
“family” correlations among the isosinglet states that are found insightful in probing the substructure
of scalars, in general, and the isosinglets, in particular. Specifically, a close correlation between the
substructure of isosinglets below and above 1 GeV is observed. It is shown that as the simulations
approach the limit where the f0ð500Þ and f0ð980Þ become the two isosinglet members of an ideally mixed
two-quark two-antiquark nonet (which is widely believed to be a good approximation), the f0ð1500Þ
develops a large glue component. The overall estimate of the scalar glueball mass is found to be
1.58� 0.18 GeV.
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I. INTRODUCTION

Developing a complete theory for low-energy QCD has
been a great challenge for the theoretical particle physics
and despite all the progress made over the past several
decades the issue continues to linger in the field [1]. Among
many challenges, the fascinating phenomenon of bound
states formed out of gluons (glueballs) awaits both exper-
imental verification and a model independent theoretical
prediction. In the meantime, the quest for identifying which
of the existing isosinglet scalar mesons are likely to have
mixing with scalar glueball(s) continues. But this identi-
fication is quite nontrivial since it gets closely tied up with
the issue of QCD vacuum and the breakdown of chiral
symmetry via formation of quark-antiquarks, four-quarks

and gluonic condensates, and as a result, has rendered the
achievement of this objective rather beyond the immediate
reach of the present state of the knowledge of low-energy
QCD. Despite all the existing complications, the phenom-
enology of the mixing patterns among quark-antiquarks,
four-quarks and glue components provides an insightful
window into the world of scalar mesons in general, and the
gluonic bound states, in particular.
Lattice QCD [2–54] provides a fundamental approach

to understanding nonperturbative QCD. In the quenched
approximation, the glueball spectrum has been investigated
in [4] in which it is found that the lowest lying scalar
glueball has a mass of 1730 (50)(80) MeV. It is then
important to know whether the unquenching effects are
small or large. Also, in order to verify whether the lattice
predictions for glueballs actually coincide with observed
hadrons, the mixing of pure glue with quark states will
inevitably come into play, and that naturally makes the
study more complicated. Nevertheless, a great amount of
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progress has been made on scalar mesons in lattice QCD
[40–50]. Other fundamental approaches to the study of
glueballs include the Bethe-Salpeter equation [55], AdS
and holography [56] and light-front approach [57].
To study the scalar glueball spectrum, various exper-

imental data on scalar mesons, particularly those above
1 GeV, are crucial. In addition to the mass spectrum and
decay properties given in PDG [1], several decay ratios are
provided by the WA102 Collaboration [58]. Moreover,
recent data by LHCb [59,60] on decays of B̄0 and B̄0

s to
J=ψπþπ− has provided important probes of the isosinglet
states. In a recent report by BES III [61] the overlap of
f0ð1500Þ and f0ð1710Þ with a scalar glueball is studied in
the partial wave analysis of J=ψ → γηη. It is also suggested
[62,63] that the production mechanism of heavy isosinglet
states in such B decays is a useful source of information for
identification of the scalar glueball.
Unlike the light pseudoscalars, understanding the prop-

erties of scalar mesons (particularly, their quark substruc-
ture) is known to be quite nontrivial and has become a
serious puzzle for low-energy QCD. Below 1 GeV, these
states are [1]: The two isosinglets f0ð500Þ [or sigma (σ)
meson] and f0ð980Þ, the isodoublet K�

0ð800Þ [or kappa (κ)
meson] and the isotriplet a0ð980Þ. It is known that a simple
qq̄ picture does not explain the properties of these mesons.
The MIT bag model of Jaffe [64] provides a foundation for
understanding these states based on a four-quark descrip-
tion and has inspired numerous investigations. Other
models that investigate the nature of scalar mesons include
the KK̄ molecule [65], unitarized quark model [66–68],
QCD sum rules [69], and chiral Lagrangians [70–75] as
well as many others [76–120]. Above 1 GeV, the scalar
states are [1] the three isosinglet states f0ð1370Þ, f0ð1500Þ
and f0ð1710Þ; the isodoublet K�

0ð1430Þ; and the isotriplet
a0ð1450Þ. These states are generally believed to be closer
to quark-antiquark states with two of them, f0ð1500Þ and
f0ð1710Þ, strongly mixing with glue.
An indispensable complication in understanding the

physics of scalar glueballs is their mixing with isosinglet
scalar mesons and that prevents their study from being
“standalone.” This naturally brings into the discussion the
already messy situation of light scalar mesons within a
region where no complete theoretical framework currently
exists. Fortunately, the established principles of low-energy
QCD [chiral symmetry and mechanisms of its breakdown,
Uð1ÞA anomaly, large Nc approximation, …] have pro-
vided reliable guidelines in exploring this region and have
become the underlying platform upon which different low-
energy QCD frameworks are built. Chiral perturbation
theory (ChPT) [121] has provided a systematic approach
to the physics of strongly interacting pions and has led to
many important developments. However, the effectiveness
of ChPT is near the threshold where the pion momenta are
small, and faces new challenges at higher energies where
the strong influence of other resonances such as the rho

meson, the sigma meson, etc. start to become the “800
pound gorillas in the room.” Attempts have been made to
extend the domain of ChPT to include the effects of
resonances [122–142], which are manifested indirectly
through low-energy constants at order Op4 [142].
Since the objective of this work is to explore the

properties of scalar mesons, it is natural to keep the scalar
fields explicitly in the Lagrangian instead of integrating
them out. We work within a nonlinear chiral Lagrangian
framework that includes scalar fields below and above
1 GeV. In this approach, various low-energy processes
including various scattering and decays have been success-
fully studied [143–152]. The scattering amplitudes can be
reasonably well approximated by the contact terms describ-
ing the interaction of pseudoscalars together with tree level
diagrams representing the contribution of intermediate
resonances up to slightly above the energy region of
interest. It is observed that even though the contribution
of the individual diagrams may be large and violate the
expected unitarity bounds, they balance each other in such
a way that the unitarity bounds are respected. The details
also involve additional effects such as regularization of the
pole diagrams by inclusion of imaginary parts (determined
by fits to experimental data) which can be interpreted as the
decay width of the resonances and hence are subleading in
the 1=Nc expansion. Another subleading effect is inclusion
of four-quark scalar mesons which is one of the focuses of
the present work and is described in the next section in
more detail.
There is considerable evidence that the scalars below

1 GeV are not simple quark-antiquark states and perhaps
are closer to a four-quark picture (either of molecular types
or of tetraquark types or a combination of the two) whereas
those above 1 GeV are closer to the conventional p-wave
quark-antiquark states. At the same time, more refined
analysis shows that the situation with such four-quark
versus quark-antiquark states is not that clear cut and both
sets of states have some distortions from those pure pictures.
It is therefore natural to ask whether such distortions are
generated by an underlying mixing among scalar states
below and above 1 GeV. There seems to be a clear
evidence for a mixing scenario as was pointed out in
[149] for the isodoublets K�

0ð800Þ and K�
0ð1430Þ, as well

as isotriplets a0ð980Þ and a0ð1450Þ, and further extended to
the more complicated cases of isosinglets f0ð500Þ, f0ð980Þ,
f0ð1370Þ, f0ð1500Þ and f0ð1710Þ in Refs. [150,152]. The
complications of dealing with isosinglet scalar states are
due to their underlying mixings; the two isosinglet states
within each scalar meson nonet not only can mix with each
other as well as with the isosinglets of the other nonet,
they also can, in addition, mix with one (or more) scalar
glueball(s). This leads, at the very least, to a 5 × 5 mixing as
opposed to the 2 × 2 cases for isodoublets and isotriplets.
Other investigators have studied different aspects of scalar
meson mixings [153–155].
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Finally, we point out that the investigations of the scalar
mesons in the nonlinear chiral Lagrangian framework of
[143–152], which are the basis of this study, have resulted
in an overall coherent picture for the light scalar mesons.
Particularly the substructures of the scalar mesons below
and above 1 GeV have shown close correlations which can
be best understood by probing their underlying mixings. It
is found that the scalars below 1 GeV are closer to four-
quark states and those above 1 GeV are closer to quark-
antiquark states. This has been a robust outcome of these
studies. In addition, the results for the underlying mixing
patterns and substructures of scalar mesons obtained in the
nonlinear chiral Lagrangians of [143–152] are in a close
agreement with similar results found within the context of
the linear sigma model [156–171] which gives added
confidence and further motivates the present work.
In this article, we extend the previous works on isosinglet

mixing of Ref. [152] by performing a simultaneous fit to
the mass and decay properties of isosinglet states. As
we shall see this will involve exploring the 14-dimensional
parameter space of the model using an iterative
Monte Carlo simulation of the available experimental data.
This will result in determining the range of variation of
the 14 model parameters, which will subsequently be used
to explore the quark and glue substructure of isosinglet
scalars. In Sec. II, we give a brief review of the model
followed by our strategy for determining the model
parameters in Sec. III, and the numerical results (for global
simulation I) in Sec. IV. We then give a discussion of the
sensitivity of the results on the experimental inputs in
Sec. V, followed by the properties of scalar glueball in VI.
We end by giving a summary and discussion of the results
in Sec. VII.

II. BRIEF REVIEW OF THE MODEL

Since the lightest scalars [f0ð500Þ, K�
0ð800Þ, f0ð980Þ

and a0ð980Þ] do not form a pure quark-antiquark nonet,
the interesting question is whether the next-to-lying set
of scalars [f0ð1370Þ, K�

0ð1430Þ, a0ð1450Þ, f0ð1500Þ,
f0ð1710Þ] are the right candidates for such a nonet. In
fact, it is speculated that there is a quark-antiquark scalar
meson nonet above 1 GeV with the K�

0ð1430Þ and the
a0ð1450Þ its likely members. However, a close look at the
properties of these two states raises some serious questions
for this assignment. For example, in a qq̄ nonet, the
isotriplet is expected to be lighter than the isodoublet,
but for these two states [1]:

m½a0ð1450Þ� ¼ 1474� 19 MeV;

m½K�
0ð1430Þ� ¼ 1425� 50 MeV; ð1Þ

which are comparable at best. Also their decay ratios given
in PDG [1] do not follow a pattern expected from an SU(3)
symmetry [149] (given in parenthesis):

Γ½a0ð1450Þ�
Γ½K�

0ð1430Þ�
¼ 0.98� 0.34 ð1.51Þ;

Γ½a0ð1450Þ → KK̄�
Γ½a0ð1450Þ → πη� ¼ 0.88� 0.23 ð0.55Þ;

Γ½a0ð1450Þ → πη0�
Γ½a0ð1450Þ → πη� ¼ 0.35� 0.16 ð0.16Þ: ð2Þ

These deviations suggest that these states are likely to have
small deviations from pure quark-antiquark states. The next
natural question is whether these deviations are the result of
underlying mixings with a four-quark nonet below 1 GeV.
This question was taken up in Ref. [149] in which it was
shown how a simple global picture for the scalar mesons
below and above 1 GeV can originate from a mixing
between a four-quark nonet N below 1 GeV and a quark-
antiquark nonet N0 above 1 GeV. It is shown in [149] that
allowing these two nonets to slightly mix leads to a natural
explanation for the deviations in mass [Eq. (1)] and decay
properties [Eq. (2)]. The theoretical framework used in
[149] is a nonlinear chiral Lagrangian in which the mass
terms for the isodoublet and isotriplet states can be written
in terms of the two scalar meson nonets

LI¼1=2;1
mass ¼ −aTrðNNÞ − bTrðNNMÞ − a0 TrðN0N0Þ

− b0 TrðN0N0MÞ; ð3Þ

where M ¼ diagð1; 1; xÞ with x being the ratio of the
strange to nonstrange quark masses, and a, b, a0 and b0 are
the free parameters determined by the “bare” (unmixed)
masses of I ¼ 1=2 and I ¼ 1 scalars

m2½a0� ¼ 2ðaþ bÞ; m2½a00� ¼ 2ða0 þ b0Þ;
m2½K0� ¼ 2aþ ð1þ xÞb; m2½K0

0� ¼ 2a0 þ ð1þ xÞb0;
ð4Þ

where the subscript “0” denotes the bare masses. The
model of [149] assumes that the light four-quark nonet N is
lower in mass than the quark-antiquark nonet N0. Taking
into account the fact that in a conventional quark-antiquark
nonet the isodoublet (that has one strange quark) is lighter
than the isotriplet (that does not have an strange quark),
and together with the fact that in a four-quark nonet this
spectrum is reversed (i.e. the isodoublet has one strange
quark and therefore is lighter than the isotriplet with two
strange quarks), we expect

m2½K0� < m2½a0� ≤ m2½a00� < m2½K0
0�: ð5Þ

This mass ordering is our indirect connection to the quark
content of N and N0. The leading mixing of these two
nonets is described by
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LI¼1=2;1
mix ¼ −γTrðNN0Þ; ð6Þ

where, with a detailed numerical analysis, it is shown in
[149] that for 0.51 < γ < 0.62 GeV2, it is possible to
describe the physical masses such that the bare masses
uphold the expected ordering of (5). Specifically, using the
fact that when two states with bare masses MI < MII

slightly mix, the resulting physical masses ( ~MI < ~MII)
split away from the two bare masses (i.e. ~MI < MI <
MII < ~MII), and that the amount of splitting is inversely
proportional to the bare mass difference M2

II −M2
I . Hence,

the two bare isotriplet states [which are closer to each other
according to (5)] split more than the two isodoublet states,
and consequently, the physical isovector state a0ð1450Þ
becomes heavier than the isodoublet state K�

0ð1430Þ in
agreement with the observed experimental values in (1).
The light isovector and isodoublet states are the a0ð980Þ
and the K�

0ð800Þ. With the physical masses m½a0ð980Þ� ¼
0.9835 GeV, m½K�

0ð800Þ� ¼ 0.875 GeV, m½a0ð1450Þ� ¼
1.455 GeV and m½K�

0ð1430Þ� ¼ 1.435 GeV, the best val-
ues of mixing parameter γ and the bare masses are found
in [149]

m½a0� ¼ m½a00� ¼ 1.24 GeV; m½K0� ¼ 1.06 GeV;

m½K0
0� ¼ 1.31 GeV; γ ¼ 0.58 GeV2: ð7Þ

The decay properties of the isodoublet and isotriplet states
are also studied in [149]. The Lagrangian for the coupling
of the two nonets N and N0 to two-pseudoscalar particles
are then studied and its unknown parameters are found by
comparing with available experimental data on relevant
decay widths. The work of Ref. [149] shows that the I ¼ 1
states are close to maximal mixing [i.e. a0ð980Þ and
a0ð1450Þ are approximately made of 50% quark-antiquark
and 50% four-quark components], and the I ¼ 1=2 states
have a similar structure with K�

0ð800Þ made of approx-
imately 74% of four-quark and 26% quark-antiquark, and
the reverse structure for the K�

0ð1430Þ.
The interaction Lagrangian density for the I ¼ 1=2, 1

scalars is developed in [149]

LI¼1=2;1
int ¼ AϵabcϵdefNd

a∂μϕ
e
b∂μϕ

f
c þ CTrðN∂μϕÞTrð∂μϕÞ

þ A0ϵabcϵdefN0d
a ∂μϕ

e
b∂μϕ

f
c

þ C0TrðN0∂μϕÞTrð∂μϕÞ; ð8Þ

where A, C, A0 and C0 are the a priori unknown parameters
fixed by experimental inputs on mass and decay properties
of I ¼ 1=2 and I ¼ 1 states below and above 1 GeV. It is
found in [149] that

A ¼ 1.19� 0.16 GeV−1; A0 ¼ −3.37� 0.16 GeV−1;

C ¼ 1.05� 0.49 GeV−1; C0 ¼ −6.87� 0.50 GeV−1:

ð9Þ

The case of I ¼ 0 states in this mixing mechanism is
considerably more complicated due to their mixing with
scalar glueball(s). The mixing model of Ref. [149] was
further extended to include I ¼ 0 states in Refs. [150–152].
The general mass terms for I ¼ 0 states and a scalar
glueball G can be written as

LI¼0
mass ¼ LI¼1=2;1

mass − cTrðNÞTrðNÞ − dTrðNÞTrðNMÞ

− c0TrðN0ÞTrðN0Þ − d0TrðN0ÞTrðN0MÞ − 1

2
m2

GG
2:

ð10Þ

It is easy to see that the role of terms involving c and d
parameters is to induce “internal” mixing between the two
I ¼ 0 flavor combinations [ðN1

1 þ N2
2Þ=

ffiffiffi
2

p
and N3

3] of
nonet N (a similar role is played by terms involving c0 and
d0 in nonet N0). Parameters c, d, c0 and d0 do not contribute
to the mass spectrum of the I ¼ 1=2 and I ¼ 1 states. The
last term represents the glueball mass term (justifications
for identifying field G with an scalar glueball are discussed
in detail in Sec. VI). It is seen that part of the mass
Lagrangian for isosinglet states is constrained by the mass
term for isodoublets and isotriplets, i.e. the term LI¼1=2;1

mass

discussed in Eq. (3) with its parameters determined in
Eqs. (4) and (7).
The mixing between N and N0, and the mixing of

these two nonets with the scalar glueball G, can be written
as

LI¼0
mix ¼ LI¼1=2;1

mix − ρTrðNÞTrðN0Þ− eGTrðNÞ− fGTrðN0Þ;
ð11Þ

where the first term is given in (6) with γ from (7). The
second term on the right-hand side does not contribute to
the I ¼ 1=2, 1 mixing, and terms with unknown cou-
plings e and f describe mixing with the scalar glueball G
(also not contributing to I ¼ 1=2, 1 cases). As a result,
the five isosinglets below 2 GeV become a mixture of
five different flavor combinations, and their masses can
be organized as

LI¼0
mass þ LI¼0

mix ¼ −
1

2
~F0M2F0 ¼ −

1

2
~FM2

diagF; ð12Þ
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with

F0 ¼

0
BBBBBB@

N3
3

ðN1
1 þ N2

2Þ=
ffiffiffi
2

p

N03
3

ðN01
1 þ N02

2 Þ=
ffiffiffi
2

p

G

1
CCCCCCA

¼

0
BBBBBB@

fNS0
fS0
f0S0
f0NS0

G

1
CCCCCCA

∝

0
BBBBBB@

ū d̄ ud

ðd̄ s̄ dsþ s̄ ū suÞ= ffiffiffi
2

p

ss̄

ðuūþ dd̄Þ= ffiffiffi
2

p

αsGμνGμν

1
CCCCCCA
; ð13Þ

where the superscripts NS and S respectively represent the nonstrange and strange combinations. F contains the
physical fields

F ¼

0
BBBBBB@

f0ð500Þ
f0ð980Þ
f0ð1370Þ
f0ð1500Þ
f0ð1710Þ

1
CCCCCCA

¼ K−1F0; ð14Þ

where K−1 is the transformation matrix. The mass squared matrix is

M2 ¼

2
666666664

2m2½K0�−m2½a0� þ 2ðcþdxÞ ffiffiffi
2

p ½2cþð1þ xÞd� γþ ρ
ffiffiffi
2

p
ρ effiffiffi

2
p ½2cþð1þ xÞd� m2½a0�þ 4ðcþdÞ ffiffiffi

2
p

ρ γþ 2ρ
ffiffiffi
2

p
e

γþ ρ
ffiffiffi
2

p
ρ 2m2½K0

0�−m2½a00�þ 2ðc0 þd0xÞ ffiffiffi
2

p ½2c0 þ ð1þ xÞd0� fffiffiffi
2

p
ρ γþ 2ρ

ffiffiffi
2

p ½2c0 þ ð1þ xÞd0� m2½a00� þ 4ðc0 þd0Þ ffiffiffi
2

p
f

e
ffiffiffi
2

p
e f

ffiffiffi
2

p
f m2

G

3
777777775
;

ð15Þ

in which the value of the unmixed I ¼ 1=2, 1 masses, and
the mixing parameter γ are substituted in from (7). There
are eight unknown parameters in (15): c, d, c0, d0, mG, ρ, e
and f.
The scalar-pseudoscalar-pseudoscalar interaction takes

the general form

LI¼0
int ¼ LI¼1=2;1

int þ BTrðNÞTrð∂μϕ∂μϕÞ
þDTrðNÞTrð∂μϕÞTrð∂μϕÞ
þ B0TrðN0ÞTrð∂μϕ∂μϕÞ
þD0TrðN0ÞTrð∂μϕÞTrð∂μϕÞ þ EGTrð∂μϕ∂μϕÞ
þ FGTrð∂μϕÞTrð∂μϕÞ; ð16Þ

where B and D are unknown coupling constants describing
the coupling of the four-quark nonet N to the pseudosca-
lars. Similarly, B0 and D0 are couplings of N0 to the
pseudoscalars. E and F describe the coupling of the scalar
glueball to the pseudoscalar mesons. The term LI¼1=2;1

int is
the interaction Lagrangian for I ¼ 1=2, 1 states given in
Ref. [74]. For decay width computation we recast the
interaction Lagrangian (16) in terms of physical fields and
physical couplings

−Lint ¼
1ffiffiffi
2

p γiππFi∂μπ · ∂μπ þ 1ffiffiffi
2

p γiKKFi∂μK̄∂μK

þ γiηηFi∂μη∂μηþ γiηη0Fi∂μη∂μη
0 þ γiη0η0Fi∂μη

0∂μη
0;

ð17Þ

where γiss0 is the physical coupling of the ith scalar
[i ¼ 1…5; see Eq. (14)] to pseudoscalars s and s0 given by

γiss0 ¼
X
j

ðγss0KÞji; ð18Þ

withK defined in (14) and γss0 ¼diagðγNSss0 ;γSss0 ;γ0Sss0 ;γ0NSss0 ;γ
G
ss0 Þ

in which the diagonal elements are the couplings of the
pseudoscalars s and s0 to the fNS0 , fS0 , f

0S
0 , f

0NS
0 [defined in

(13)] and the scalar glueball G, respectively. The diagonal
elements for all decay channels ss0 are listed in Ref. [150].

III. STRATEGY FOR DETERMINING THE
MODEL PARAMETERS

There are 14 unknown parameters in the I ¼ 0 part of
the Lagrangian density that we need to determine by
incorporating appropriate experimental data on the mass
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spectrum as well as the appropriate decay widths and decay
ratios. These can be divided into a six-dimensional parameter
space (B, D, B0, D0, E and F) that only affects the scalar-
pseudoscalar-pseudoscalar coupling constants and an eight-
dimensional parameter space (c, d, c0, d0, mG, ρ, e and f),
which both directly enter into the 5 × 5massmatrix, and also
indirectly enter into the calculation of decaywidths anddecay
ratios through the rotationmatrixK that rotates the bare bases
into the physical bases. As a result, determining these two
groups of parameters independently of each other is only an
approximation; a general approach requires a simultaneous
14-parameter fit. In works of Refs. [150–152], as a prelimi-
nary study, these two parameter spaces were studied in
separate fits in some detail. Herewe generalize those findings
by performing simultaneous fits using an iterative
Monte Carlo algorithm developed by the authors [172].
This general method of dealing with this parameter space
is considerably more complicated than those presented in

[150–152]. An added complication in this analysis is the lack
of established experimental data on some of the properties
of scalar mesons. To minimize the effect of unestablished
experimental data, different sets of target experimental
quantities are considered. The target quantities displayed
in Table I are in three groups of masses, partial decay
widths and several decay ratios reported by the WA102
Collaboration [58], altogether forming 23 target quantities.
Some of these quantities are not firmly established: The
partial decay widths of f0ð1370Þ to ππ and KK̄ are reported
in [173] but are not used in any averaging by PDG. Also, in
the analysis of the WA102 Collaboration [58] the masses of
f0ð1370Þ, f0ð1500Þ and f0ð1710Þ are fixed to the values
displayed in Table I and are not the same as those given in
PDG [1] or in Refs. [173,174] [for example, the mass of
f0ð1370Þ given byPDG is in the broad range of 1.2–1.5GeV,
to be comparedwith the fixed value of 1.312GeV selected by
the WA102 Collaboration or 1.300� 0.015 GeV reported

TABLE I. Target quantities used to explore the 14 parameters of the Lagrangian in global simulations I and II.
In global simulation I (II) the decay channels of f0ð1370Þ are excluded (included). The short notations for
the quantities are defined in column 1.

Short notation Quantity Target value [Ref.]

m1 m½f0ð500Þ� 400–550 MeV [1]
m2 m½f0ð980Þ� 990� 20 MeV [1]
m3 m½f0ð1370Þ� 1312 MeV [58]
m4 m½f0ð1500Þ� 1502 MeV [58]
m5 m½f0ð1710Þ� 1727 MeV [58]

Γ3
ππ
KK

Γ½f0ð1370Þ→ππ�
Γ½f0ð1370Þ→KK̄�

2.17� 0.9 [58]

Γ3
ηη
KK

Γ½f0ð1370Þ→ηη�
Γ½f0ð1370Þ→KK̄�

0.35� 0.30 [58]

Γ4
ππ
ηη

Γ½f0ð1500Þ→ππ�
Γ½f0ð1500Þ→ηη� 5.56� 0.93 [58]

Γ4
KK
ππ

Γ½f0ð1500Þ→KK̄�
Γ½f0ð1500Þ→ππ�

0.33� 0.07 [58]

Γ4
ηη0
ηη

Γ½f0ð1500Þ→ηη0 �
Γ½f0ð1500Þ→ηη� 0.53� 0.23 [58]

Γ5
ππ
KK

Γ½f0ð1710Þ→ππ�
Γ½f0ð1710Þ→KK̄�

0.20� 0.03 [58]

Γ5
ηη
KK

Γ½f0ð1710Þ→ηη�
Γ½f0ð1710Þ→KK̄�

0.48� 0.19 [58]

Γ1
ππ Γ½f0ð500Þ → ππ� 400–700 MeV [1]

Γ2
ππ Γ½f0ð980Þ → ππ� 40–100 MeV [1]

Γ3
ππ Γ½f0ð1370Þ → ππ� ð0.26� 0.09Þ × ð230� 15Þ MeV [173]

Γ3
KK Γ½f0ð1370Þ → KK̄� ð0.35� 0.13Þ × ð230� 15Þ MeV [173]

Γ4
ππ Γ½f0ð1500Þ → ππ� ð0.349� 0.023Þ × ð109� 7Þ MeV [1]

Γ4
KK Γ½f0ð1500Þ → KK̄� ð0.086� 0.010Þ × ð109� 7Þ MeV [1]

Γ4
ηη Γ½f0ð1500Þ → ηη� ð0.051� 0.009Þ × ð109� 7Þ MeV [1]

Γ4
ηη0 Γ½f0ð1500Þ → ηη0� ð0.019� 0.008Þ × ð109� 7Þ MeV [1]

Γ5
ππ Γ½f0ð1710Þ → ππ� ð0.12� 0.11Þ × ð220� 40Þ MeV [174]

Γ5
KK Γ½f0ð1710Þ → KK̄� ð0.36� 0.12Þ × ð220� 40Þ MeV [174]

Γ5
ηη Γ½f0ð1710Þ → ηη� ð0.22� 0.12Þ × ð220� 40Þ MeV [174]
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in Ref. [173]]. In our analysis we have been mindful of these
variations and have minimized the uncertainties of our
predictions that stem from such inputs, by considering three
different simulations, each of which emphasizes a particular
version of such inputs. In our global simulation I, we target
the inputs of Table I with the exception of the two partial
decay widths of f0ð1370Þ (i.e. in global simulation I, we
target 21 out of the 23 quantities given in that table). In our
global simulation II,we includeall the23quantities displayed
in Table I [in this case since the WA102 data forms a
significant part of the experimental inputs, we use the mass
of f0ð1370Þ of the WA102 Collaboration which is not too
different from that of [173]]. In global simulation III, we use
the target quantities displayed in Table II in which we have
excluded the decay ratios of WA102 collaboration [58] and
in addition the mass of f0ð1370Þ, f0ð1500Þ and f0ð1710Þ
are respectively taken from [173], PDG [1] and [174].
Our objective is to explore the underlying mixings

among various two-quark, four-quark and glue components
in order to achieve a global understanding of all I ¼ 0
scalar states below 2 GeV. This objective is sometimes at
the expense of individual accuracies, at least at the present
approximation of the model. Therefore, we aim to deter-
mine the 14 Lagrangian parameters such that we get a
reasonable overall agreement with all target inputs of
Tables I and II. In defining our numerical strategy we
highlight three important points: (a) the experimental target
quantities are of three different types (masses, decay widths
and decay ratios); (b) since we are seeking a global
understanding of isosinglet scalar mesons it is crucial for
us to give the same importance to each targeted datum
regardless of whether they are of the same type or of
different types; and (c) because there are sometimes

different reported experimental data for the same quantity
(such as the cases discussed above), the role of a central
value in a reported experimental data becomes less pro-
nounced, and as a result, all points within a given
experimental range become equally viable. Either of points
(a) or (b) rule out the use of conventional χ2 fits. Instead,
we guide our numerical work by defining a function χ

χðp1…p14Þ ¼
XNexp

q

i¼1

����
q̂expi − qtheoi ðp1…p14Þ

q̂expi

����; ð19Þ

where qexpi ¼ q̂expi � Δqexpi are our target experimental
quantities (i ¼ 1…Nexp

q ), which are also theoretically
calculated by the model qtheoi as a function of the 14 model
parameters p1…p8 ¼ c, d, c0, d0, mG, ρ, e, f and
p9…p14 ¼ B, D, B0, D0, E and F [for quantities with a
reported experimental interval of the form qexpi ¼ qexpi;min →
qexpi;max, we consider the target value to be the center of the
interval q̂expi ¼ ðqexpi;min þ qexpi;maxÞ=2 and the uncertainty to be
half the interval Δqexpi ¼ ðqexpi;max − qexpi;minÞ=2]. Clearly, in
the limit of χ → 0 the model predictions for target quan-
tities approach the central values of their corresponding
experimental data. This limit, even if achievable, is not
of much physical significance due to the point (c) above.
Therefore, we do not misguide our computations by
imposing this artificial limit. To guide our computation
we note that the overall experimental target quantities can
be measured by

χexp ¼
XNexp

q

i¼1

����
Δqexpi

q̂expi

����: ð20Þ

TABLE II. Target quantities used in global simulation III.

Short notation Quantity Target value [Ref.]

m1 m½f0ð500Þ� 400–550 MeV [1]
m2 m½f0ð980Þ� 990� 20 MeV [1]
m3 m½f0ð1370Þ� 1300� 15 MeV [173]
m4 m½f0ð1500Þ� 1505� 6 MeV [1]
m5 m½f0ð1710Þ� 1690� 20 MeV [174]

Γ1
ππ Γ½f0ð500Þ → ππ� 400–700 MeV [1]

Γ2
ππ Γ½f0ð980Þ → ππ� 40–100 MeV [1]

Γ3
ππ Γ½f0ð1370Þ → ππ� ð0.26� 0.09Þ × ð230� 15Þ MeV [173]

Γ3
KK Γ½f0ð1370Þ → KK̄� ð0.35� 0.13Þ × ð230� 15Þ MeV [173]

Γ4
ππ Γ½f0ð1500Þ → ππ� ð0.349� 0.023Þ × ð109� 7Þ MeV [1]

Γ4
KK Γ½f0ð1500Þ → KK̄� ð0.086� 0.010Þ × ð109� 7Þ MeV [1]

Γ4
ηη Γ½f0ð1500Þ → ηη� ð0.051� 0.009Þ × ð109� 7Þ MeV [1]

Γ4
ηη0 Γ½f0ð1500Þ → ηη0� ð0.019� 0.008Þ × ð109� 7Þ MeV [1]

Γ5
ππ Γ½f0ð1710Þ → ππ� ð0.12� 0.11Þ × ð220� 40Þ MeV [174]

Γ5
KK Γ½f0ð1710Þ → KK̄� ð0.36� 0.12Þ × ð220� 40Þ MeV [174]

Γ5
ηη Γ½f0ð1710Þ → ηη� ð0.22� 0.12Þ × ð220� 40Þ MeV [174]
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Therefore, to address point (c), we impose the condition

χ ≤ χexp; ð21Þ
and filter out simulations that do not satisfy this condition.
Unlike the condition χ → 0 that results in finding a “best
point” in a given simulation, the final product of imposing
condition (21) is a set of acceptable points (each point is in
the 14-dimensional parameter space of the model).1 Once a
parameter set is found, the physical quantities of interest
(such as, but not limited to, all the input quantities, the
quark and glue components of the isosinglet scalars,
glueball mass, coupling constant, etc.) are then determined
at each point in the set and this process in turn results in a
set of values for each quantity.
Specifically, our guiding function contains three parts

χðp1…p14Þ ¼ χmðp1…p8Þ þ χΓðp1…p14Þ
þ χðΓ=ΓÞðp1…p14Þ; ð22Þ

where the three terms on the right refer to mass, decay
width and decay ratio, defined by

χmðp1…p8Þ ¼
X5
i¼1

����
m̂exp

i −mtheo
i ðp1…p8Þ
m̂exp

i

����;

χΓðp1…p14Þ ¼
X5
i¼1

X
α

����
ðΓ̂i

αÞexp − ðΓi
αÞtheoðp1…p14Þ

ðΓ̂i
αÞexp

����;

χðΓ=ΓÞðp1…p14Þ

¼
X5
i¼1

X
α

X
β

����
ðΓ̂i

α=βÞexp − ðΓi
α=βÞtheoðp1…p14Þ

ðΓ̂i
α=βÞexp

����; ð23Þ

with short notations

Γi
α ¼ Γ½fi → α�;

Γi
α=β ¼

Γ½fi → α�
Γ½fi → β� ; ð24Þ

where i ¼ 1…5 correspond to the five isosinglet scalars
in ascending order [Eq. (14)], α and β are the two-body
decay channels and in this work take values 1…4 which
respectively correspond to the decay channels ππ, KK̄, ηη
and ηη0.

IV. RESULTS FOR SIMULATION I

In this section we focus on the target inputs given in
Table I [with the exception of the two partial decay widths
of f0ð1370Þ]. We first study the global simulation to

determine the first global set and then we impose additional
constraints on the global set and study its two main subsets.
In next section, we give a comparison of the results
obtained in this section with those obtained when all target
inputs of Table I [including the partial decay widths of
f0ð1370Þ] are taken into account, as well as when target
inputs of Table II are used.

A. Global picture: Determining set SI
In global fit I, we exclude the partial decay widths of

f0ð1370Þ from our target experimental data of Table I. This
means that the guiding function for this simulation (χI) is
computed from (22)

χIðp1…p14Þ ¼ χI;mðp1…p8Þ þ χI;Γðp1…p14Þ
þ χI;ðΓ=ΓÞðp1…p14Þ; ð25Þ

in which χI;m, χI;Γ and χI;ðΓ=ΓÞ are obtained from (23), with
the condition that in χI;Γ the decay widths of f0ð1370Þ have
been excluded (i.e. i ≠ 3). The χI;m and χI;ðΓ=ΓÞ are those
given in (23) and include all data for these two quantities
given in Table I. We use Monte Carlo simulation over the
14d parameter space and search for points p ¼ ðp1…p14Þ
for which

χIðpÞ ≤ χexpI ; ð26Þ
subject to the constraint

Γ3
ππþKKþηη ¼ Γ½f0ð1370Þ → ðππ þ KK þ ηηÞ�

< 500 MeV: ð27Þ
In this case χexpI ¼ 7.3 (note that in computing χexpI the
central values of the experimental inputs m1, Γ1

ππ and Γ2
ππ

are considered, and that it receives no contribution fromm3,
m4 and m5 that have fixed target values). This leads to a set
of points

SI ¼ fpjp ∈ R14∶χIðpÞ ≤ χexpI &Γ3
ππþKKþηη < 500 MeVg:

ð28Þ
Initially, the computation starts by generating random

numbers for each of the 14 parameters over relatively broad
intervals. It is then found that enforcing Eq. (26) results in
effectively limiting the range of variation of each of these
parameters into tighter regions. This is shown in Fig. 1 in
which we see the finite range of variation of each of these
parameters. Moreover, it is found that not all values of each
parameter over its finite range of variation is acceptable
(i.e. the ranges of variation are not continuous). This is due
to the fact that the complicated guiding function χI is a
jagged function of the 14 parameters over their ranges of
variation, within which, there are points that do not satisfy
condition (26).
Figures 2–4 give the 21 input quantities used in the

global Monte Carlo simulation I. After set SI is determined,

1In other words, although we aim at a set of “bull’s-eyes”
(central values of different experimental inputs), the criterion (21)
allows deviations from these bull’s-eyes by measuring the overall
success (the global agreement between the model predictions and
the central experimental values).
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these 21 quantities are then computed over SI (i.e. at every
point in this set). Also shown are the averages (triangles)
and standard deviations around the averages (error bars).
The objective of the global fit I is to determine the set SI
such that the overall discrepancies between theory and

experiment are no larger than the overall experimental
uncertainties. As a result, some of the 21 quantities end up
within their experimental ranges and some outside. For
example, in the case of masses shown in Fig. 2, even
though they span (or get very close to) the target values, we
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FIG. 2. Isosinglet scalar masses obtained in the global
Monte Carlo simulation I (squares) over the 14 Lagrangian
parameters [set SI defined in (28)] are compared with their
experimental target ranges given in Table I (solid circles). The
results are obtained by solely requiring that the overall discrep-
ancy between model predictions and experiment be no more than
the overall experimental uncertainties. While simulations cover
the acceptable values of all target masses, their ranges of variation
are considerably wider than the experimental uncertainties. This
suggests that additional filtering conditions (similar to those
discussed in the subsequent subsections) are needed to further
limit these ranges.
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see that the sensitivity of simulations decreases in ascend-
ing order of mass. This is roughly understandable since the
contribution of each of these masses to χexpI;m is inversely
proportional to the mass and directly proportional to the
experimental uncertainty [see Eq. (22)]; hence a heavier
state such as the f0ð1710Þ with a larger mass and smaller
experimental mass uncertainty contributes much less to χexpI;m

than the much lighter and less certain f0ð500Þ. This leads
to more smearing of simulations around m½f0ð1710Þ�
compared to that around m½f0ð500Þ�. The same property
is observed for the decay widths (Fig. 3) and decay
ratios (Fig. 4).
The smearing effects are not an artifact of the designed

computational algorithm. In fact they show that the
algorithm is performing the computation correctly because
of the following important point. The χ method that we
use in aiming for the central values of the experimental
quantities assigns the same weight (i.e. gives the same
importance) to all target quantities involved (i.e. the
masses, the decay widths and the decay ratios displayed
in Table I). Compared to the conventional χ2 method, the χ
method (first introduced in [152]) implements a democratic
treatment of all target quantities regardless of their type
or uncertainty. However, when it comes to implementing
the criterion (26) in order to allow deviations from central
values, the experimental quantities that are larger may
naturally get overshadowed by smaller target quantities.
This highlights the tension between the global description
and the local precision and that the inevitable price to pay
for the former is to somewhat sacrifice the latter. The value
of the (less precise) global simulation is that it is based
on fewer assumptions and that it explores family relations,
but obviously since there are no “free lunches,” it loses
individual precisions. Nevertheless, it forms a reliable first
step in understanding a complicated system such as the
isosinglet scalars that have tremendous underlying mixings.

Starting with a global simulation controls the overall ranges
of model parameters and paves the way for zooming in
on each individual state by imposing further refining
conditions.
The results for the decay widths and decay ratios are

shown in Figs. 3 and 4 and we see that the simulation
averages and standard deviations generally overlap with
the experimental inputs. Note that for the decay width of
f0ð500Þ to two pions (the first subgraph) two computations
are given. The bare decay width of f0ð500Þ to two pions
[the simulation points (squares) and their average/standard
deviation (triangle/error bar)] in which the effects of the
final-state interactions of pions are not accounted for. These
effects are known to be important for a broad state such as
f0ð500Þ and have been calculated in this nonlinear chiral
Lagrangian framework in the description of ππ scattering in
[75] in which it is shown that the physical decay width is
considerably larger than the bare one. Using our simulation
data in setSI, togetherwith themethodology of [75], we have
added the effects of the final-state interactions of pions to
this decay width and plotted the average (diamond) and the
standard deviation (error bar) of the result in the same figure
which then overlaps with the target range of 400–700 MeV
[1]. (Further details on the numerical values of the physical
quantities of interest in simulation I are given in Table XI
of Appendix B.)
The global simulation aims to reconcile the model

parameters with the overall experimental inputs on the
mass spectrum and decay properties, and results in a large
set of points in SI. The quark and glue components of each
of the five isosinglet scalars are computed over the global
set SI and presented in Fig. 5. While these points lead to
predictions for the quark and glue components that spread
over a wide range, some qualitative and average observa-
tions can be made. With the exception of f0ð1370Þwhich is
seen to exhibit significant quark-antiquark components
[175], for the other four states the global simulations
clearly show that there is a significant underlying mixing
among the two-quark, four-quark and glue components that
form the scalar mesons. Since our focus in this paper is on
the substructure of f0ð1500Þ and f0ð1710Þ (particularly
their glue content) we have organized the result of the
global simulations for all isosinglet states in such a way
that correlations with the glue content of f0ð1500Þ can be
traced. In Fig. 5, for each of the isosinglet states, the
correlation between their five components and the glue
component of f0ð1500Þ [which is broken into four intervals
0%–25% (☆), 25%–50% (×), 50%–75% (⋄) and 75%–
100% (○)] is shown. For each component, the raw data
(dots) are also shown together with their averages and
standard deviations; the four series of dots for each
component from left to right correspond to simulations
that have resulted in the glue component of f0ð1500Þ in the
four ranges of 0%–25%, 25%–50%, etc. The average and
standard deviation for each series of dots are given to their
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given in Table I.

FARIBORZ, AZIZI, and ASRAR PHYSICAL REVIEW D 92, 113003 (2015)

113003-10



right. Although each four groups of dots for each compo-
nent span a wide range, the averages and standard devia-
tions are stable for most of the components. Exceptions are
the four-quark components of f0ð1500Þ and f0ð1710Þ that
are in a seesaw relationship with the glue components of
these two states. Also the glue components of f0ð1500Þ and
f0ð1710Þ are in a seesaw relationship, which is the most
clear signal for the large glue component of these two scalar
mesons in this global simulation. Note that this observation
is merely the direct result of confronting the model with the
experimental inputs and without any additional conditions
imposed. Beyond the fact that the raw simulation data show
that the glue is almost exclusively shared between f0ð1500Þ
and f0ð1710Þ, it is nontrivial to gain further detailed insight
into the glue percentages of each of these two states at this
level of global computation. For convenience the sums of
the two two-quark and the two four-quark components are
also displayed on the right in Fig. 5.
Several comments are in order: Both the f0ð500Þ and

the f0ð980Þ have a low glue component, but a significant
mixture of two- and four-quark components. The four-
quark component of f0ð500Þ is dominant consistent with
the expected four-quark nature of this scalar meson
suggested in the MIT bag model [64] and elsewhere.

The content of f0ð980Þ is rather reversed. However, since
the range of variation of the two- and four-quark compo-
nents of the f0ð500Þ and the f0ð980Þ are wide, further
evaluation of this raw simulation is needed and will be
considered next. The f0ð1370Þ has the most stable content
with dominant two-quark components; in this case the
ranges of simulations are much narrower than the other four
states [for a detail study of f0ð1370Þ within this framework
see [175]]. Lack of a significant glue component for
f0ð500Þ, f0ð980Þ and f0ð1370Þ leaves the main competi-
tion for this component between f0ð1500Þ and f0ð1710Þ.
In order to identify which of these two are the main glue
holders, we need to further analyze the raw data and impose
several additional conditions on the data and try to see if
we can filter out some of the raw data. These will be done in
the following subsections. The overall averages are given
in Table III and show that the f0ð1500Þ has the dominant
glue average followed by that of f0ð1710Þ. However,
due to the overlapping distribution of simulations around
these two glue averages it becomes a challenging problem
to pinpoint exactly which of these two states has the
dominant glue.
Before we end this subsection, for convenience, we

further dissect the results of this global simulation by
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FIG. 5. Correlation diagrams for the quark and glue components of the isosinglet scalars obtained in the global Monte Carlo
simulation I over the 14 Lagrangian parameters. In the left figure, from left to right the five components are respectively nonstrange four-
quark, strange four-quark, strange quark-antiquark, nonstrange quark-antiquark and glue. In the right figure, for convenience of
comparison, the sums of the two four-quark components and the sum of the two quark-antiquark components are shown. The correlation
between each component and the glue content of f0ð1500Þ is shown in the following manner: The overall simulations for each
component are divided into four groups [four vertical lines of dots, where each dot is a computed component at a point in set SI of
definition (28)]; the vertical lines of dots from left to right correspond to simulations for which the glue content of f0ð1500Þ is in the
ranges 0%–25%, 25%–50%, 50%–75% and 75%–100%, respectively [see the glue content of f0ð1500Þ for a definition of these
four groups]. Next to each vertical line of dots the averages (symbols) and one standard deviation around the averages (error bars)
are also shown. In both figures, for convenience, the 50% lines are plotted as well (dashed lines). The ranges of variation reflect the
χI < χexpI condition defined in (26).
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presenting the components in histograms. This is shown
in Fig. 6 where the distribution of components of each
isosinglet state at points in SI is given over a five-interval
division. Consistent with the above observations, the
f0ð1500Þ shows the maximum distribution over the large
glue intervals (80%–100%) followed by the glue of
f0ð1710Þ. It is also seen that the four-quark components
of f0ð500Þ and f0ð980Þ are large with a considerable
mixing with their two-quark components. Again the
f0ð1370Þ appears to be the most clear cut case with
dominant quark-antiquark components.

B. Imposing constraints on the global set SI
In the previous subsection, we determined the global set

SI that contains a large set of points in the 14d parameter
space of the model at which the model generally overlaps
with the target inputs of Table I [excluding the two decay

widths of f0ð1370Þ]. This global set also allowed us to
make average predictions for the substructure of isosinglet
states. In this subsection we further explore these sub-
structures by imposing several additional constraints on set
SI that result in filtering out some of the points in that set.
We noted in Fig. 2 that the masses of f0ð1500Þ and

f0ð1710Þ have a wide range in global set SI. Even though
the physical target masses are nearly included in this set, a
large part of the set is far from the physical masses and we
filter them out here. As stated before, WA102 [58] has set
the masses of f0ð1370Þ, f0ð1500Þ and f0ð1710Þ to fixed
values which are not exactly recovered in the global set SI,
but we are able to get close to them within about 5% error
[the mass ranges reported in other sources [1,174] have
uncertainties, particularly f0ð1370Þ is reported in PDG [1]
with a large mass uncertainty in the range of 1.2–1.5 GeV].
We define subset SI1 such that the mass of f0ð1710Þ is
within 5% of its value fixed in the WA102 Collaboration
report [since the predicted masses are sorted in ascending
order, imposing a limit on the f0ð1710Þ mass naturally
brings the mass of f0ð1500Þ near its target value]:

SI1 ¼ fpjp ∈ SI∶m½f0ð1710Þ� ¼ 1727� 86 MeVg: ð29Þ

Selected sample points in subset (29) are given in Table VIII
in Appendix A. The resulting averages (and standard devia-
tions) for the masses, decay widths and decay ratios are
computed over subset SI1 and plotted in Fig. 7. The close
overlaps with the target input values of Table I are evident.
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FIG. 6. Histograms for quark and glue components of the isosinglet scalars obtained in the global Monte Carlo simulation I over the 14
Lagrangian parameters. Each histogram gives the percentage of the global simulation I (i.e. percentage of points in SI) over the five-
interval breakdown of each component (0%–20%, 20%–40%, etc.). For example, we see that respectively 29%, 24%, 16%, 21% and
10% of simulations have resulted in the ūd̄ud component of f0ð500Þ in the ranges 0%–20%, 20%–40%, etc. Clearly, f0ð500Þ and
f0ð980Þ have considerable mixing of two- and four-quark components with negligible glue; the f0ð1370Þ is dominantly a two-quark
state; f0ð1500Þ contains the highest glue component followed by the glue component of f0ð1710Þ.

TABLE III. The percentages of components averaged over set
SI [definition (28)] obtained in global Monte Carlo simulation I.

ūd̄ud
d̄ s̄ dsþs̄ ū suffiffi

2
p

ss̄
uūþdd̄ffiffi

2
p

G
Total

four-quark
Total

two-quark

f0ð500Þ 42 22 15 18 3 64 33
f0ð980Þ 22 13 27 30 8 35 57
f0ð1370Þ 8 6 49 33 4 14 82
f0ð1500Þ 10 23 3 4 60 33 7
f0ð1710Þ 18 36 6 15 25 54 21
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We then compute the quark and glue components of
isosinglet states over subset SI1 and the results are presented
in Fig. 8. We see that imposing the mass condition does not
significantly change the qualitative description of the iso-
singlet states. The f0ð500Þ and f0ð980Þ have a substantial
two- and four-quark mixing, the f0ð1370Þ remains a pre-
dominantly quark-antiquark state, and the f0ð1500Þ and
f0ð1710Þ remain the main glue holders and in this case the
glue is almost equally shared between these two states. For
each of the five isosinglet scalar states, the percentages of
their quark and glue components, averaged over subset SI1,
are given in Table IV.
The global picture considered in this work has its

downside and upside. The downside, first and foremost,
is the fact that dealing with all scalar states below 2 GeV
at the same time, expectedly, results in exceeding

complications. Second, we lose precision on individual
states in order to determine a set of parameters that give a
collective description of all states in an overall agreement
with experiment. The upside, however, is that the global
picture allows establishing underlying correlations (or
family relations) among different states which can then
be used to probe fuzzy situations such as exploring the
glue content of f0ð1500Þ and f0ð1710Þ. For example, the
expectations that f0ð500Þ and f0ð980Þ do not have sig-
nificant glue contents (which seems to be supported by
most, if not all, independent investigations), can be used
as a filter to be imposed on set SI. Figure 5 shows the
correlation among the glue of f0ð980Þ and those of
f0ð1500Þ and f0ð1710Þ. If we turn off the glue of
f0ð500Þ and f0ð980Þ (i.e. symbols “☆” and “×”), then
the f0ð1500Þ becomes the state with main glue component
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FIG. 8. Quark and glue components of the isosinglet scalars computed over the subset SI1 [defined in (29)]. In the left figure, from
left to right the five components are respectively nonstrange four-quark, strange four-quark, strange quark-antiquark, nonstrange
quark-antiquark and glue. In the right figure, the sum of the two four-quark components and the sum of the two quark-antiquark
components are shown. For convenience, the 50% lines are also shown (dashed lines).

0.40

0.55

0.70

0.85

0.8

0.9

1.0

1.1

1.40

1.45

1.50

1.55

1.5

1.6

1.7

1.8

1.71

1.76

1.81

m
5

m
4

m
3

m
2

m
1

0
100

300

500

700

40

60

80

100

25

35

45

7

9

11

13

15

3

5

7

9

1

2

3

0

20

40

60

30

70

110

140

10

30

50

70

90

Γ2
ππ Γ4

ππ
Γ4

KK

Γ5
ηη

Γ4
ηη Γ4

ηη’ Γ5
ππ Γ5

KK

Γ1
ππΓ1

ππ

1

2

3

4

4

5

6

7

8

0.0

0.2

0.4

0.6

0.7

0.25

0.35

0.45

0.2

0.4

0.6

0.8

0.15

0.20

0.25

0.1

0.3

0.5

0.7

Γ3
ππ/KK

Γ3
ηη/KK

Γ4
ππ/ηη Γ4

KK/ππ Γ4
ηη’/ηη

Γ5
ηη/KK

Γ5
ππ/KK

FIG. 7. Model predictions [averages (triangles) and standard deviations (error bars)] for masses (left), decay widths (middle) and
decay ratios (right) compared with corresponding inputs of Table I (solid circles and error bars). The predictions are made over the
subset SI1 defined in (29).

PROXIMITY OF f0ð1500Þ AND f0ð1710Þ TO … PHYSICAL REVIEW D 92, 113003 (2015)

113003-13



followed by f0ð1710Þ. We further tap into correlations
between the substructure of the f0ð500Þ and f0ð980Þ on the
one hand, and the f0ð1500Þ and f0ð1710Þ on the other.
Specifically, we filter the global set SI so that the f0ð500Þ
and f0ð980Þ approach the picture given by the MIT bag
model [64] in which the lowest-lying scalar meson nonet is
an ideally mixed two-quark two-antiquark nonet, in which

f0ð500Þ ∝ ūd̄ud;

f0ð980Þ ∝
d̄s̄dsþ s̄ūsuffiffiffi

2
p : ð30Þ

Since our model includes various mixings among isosing-
lets, we cannot exactly get to this limit; however, we
can approach it by imposing the condition that the first
component of f0ð500Þ and the second component of
f0ð980Þ, defined in (13), are each greater than 0.50; i.e.
we filter the global set SI with the condition

ðK−1
11 Þ2 > 0.50;

ðK−1
22 Þ2 > 0.50: ð31Þ

This condition defines the second subset:

SI2 ¼ fpjp ∈ SI∶ðK−1
11 Þ2 > 0.50& ðK−1

22 Þ2 > 0.50g: ð32Þ

We find that this condition retains only a limited number
of points in set SI. The quark and glue components are then
computed at these points and the result is given in Fig. 9.
It is evident from both figures that approaching an ideally
mixed four-quark limit for lowest-lying scalars is consistent
with a dominant glue component in f0ð1500Þ. For each
of the five isosinglet scalar states, the percentages of their
quark and glue components, averaged over subset SI2, are
given in Table V.
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FIG. 9. Quark and glue components of the isosinglet scalars computed over the subset SI2 [defined in (32)] are shown on the left.
The Monte Carlo simulation is directed to approach a limit where f0ð500Þ and f0ð980Þ get close to their ideal mixing in a four-quark
scalar meson nonet [see (31)]. For comparison, on the right, the sums of the two four-quark components and the sum of the two quark-
antiquark components are given. For convenience, the 50% lines are also shown (dashed lines).

TABLE IV. The percentages of components averaged over subset SI1 defined in (29).

ūd̄ud d̄s̄dsþs̄ūsuffiffi
2

p ss̄ uūþdd̄ffiffi
2

p G Total four-quark Total two-quark

f0ð500Þ 58 9 17 16 0 67 33
f0ð980Þ 12 22 20 40 6 34 60
f0ð1370Þ 15 2 54 22 7 17 76
f0ð1500Þ 9 41 4 3 43 50 7
f0ð1710Þ 6 26 5 19 44 32 24
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V. SENSITIVITY TO THE EXPERIMENTAL
INPUTS: FITS II AND III

The results of the global simulation we presented in the
previous section were based on targeting the experimental
inputs given in Table I [with the exception of the two decay
widths of f0ð1370Þ]. Since the experiment is not firmly
established on some of these inputs, as we discussed in
Sec. III, we have not based our entire analysis on only one
set of target experimental inputs. In this section we present
the main results we obtain in global simulation II [in which
all target experimental inputs of Table I, including the
two decay widths of f0ð1370Þ are taken into account] as
well as global fit III (in which the target experimental
inputs of Table II are used).
In global fit II, we target all 23 experimental data of

Table I. This means that the guiding function for this
strategy (χII) is computed from (22)

χIIðp1…p14Þ ¼ χII;mðp1…p8Þ þ χII;Γðp1…p14Þ
þ χII;ðΓ=ΓÞðp1…p14Þ; ð33Þ

in which χII;m, χII;Γ and χII;ðΓ=ΓÞ are obtained from (23), with
all data of Table I. We perform Monte Carlo simulation
over the 14d parameter space and search for points
p ¼ ðp1…p14Þ for which

χIIðpÞ ≤ χexpII : ð34Þ
In this case χexpII ¼ 8.2. This leads to set II:

SII ¼ fpjp ∈ R14∶χIIðpÞ ≤ χexpII g: ð35Þ
We also explore two subsets of SII. Imposing constraints on
the mass of f0ð1710Þ results in subset 1:

SII1¼fpjp∈SII∶m½f0ð1710Þ�¼1727�86MeVg: ð36Þ

Selected sample points in subset (36) are given in Table IX
in Appendix A. Approaching the ideal mixing limit (31)
leads to subset 2:

SII2¼fpjp∈SII∶ðK−1
11 Þ2>0.50&ðK−1

22 Þ2>0.50g: ð37Þ

In global fit III, we target the experimental data of
Table II. The guiding function for this case (χIII) is
computed from (22),

χIIIðp1…p14Þ ¼ χIII;mðp1…p8Þ þ χIII;Γðp1…p14Þ; ð38Þ

in which χIII;m and χIII;Γ are obtained from (23), with all
data of Table II. Monte Carlo simulation over the 14d
parameter space and searches for points p ¼ ðp1…p14Þ
for which

χIIIðpÞ ≤ χexpIII ; ð39Þ

with χexpIII ¼ 5.6, results in set III:

SIII ¼ fpjp ∈ R14∶χIIIðpÞ ≤ χexpIII g: ð40Þ

Parallel to the cases related to set II, we consider two
subsets:

SIII1¼fpjp∈SIII∶m½f0ð1710Þ�¼1690�20MeVg: ð41Þ

Selected sample points in subset (41) are given in Table X
in Appendix A. The ideal mixing limit (31) leads to
subset 2:

SIII2¼fpjp∈SIII∶ðK−1
11 Þ2>0.50 & ðK−1

22 Þ2>0.50g: ð42Þ

The details of Monte Carlo simulations II and III are
similar to the details presented in Sec. IVand we skip them
here (detailed numerical values of the physical quantities
obtained in these two numerical simulations are respec-
tively given in Tables XII and XIII of Appendix B). A
comparison of the results for the substructure of the
isosinglet states is given in Fig. 10: The left figure
compares the three global simulations; the middle figure
compares the results for the three subsets I1, II1 and III1
[obtained by imposing a constraint on the mass of
f0ð1710Þ]; and the right figure shows a comparison of
the results obtained for the three subsets I2, II2 and III2
(obtained in the limit of ideal mixing for the light scalar
meson nonet). We see that the results are qualitatively
stable with some moderate variations. The f0ð500Þ,
f0ð980Þ and f0ð1370Þ have low glue components; the first
two have a considerable mixing of two- and four-quark
components; and f0ð1370Þ is dominantly quark-antiquark.
f0ð1500Þ and f0ð1710Þ have a substantial glue component,
but the percentage of their glue is rather sensitive to the
way it is probed.

TABLE V. The percentages of components averaged over subset SI2 defined in (32).

ūd̄ud
d̄s̄dsþs̄ūsuffiffi

2
p ss̄

uūþdd̄ffiffi
2

p G Total four-quark Total two-quark

f0ð500Þ 64 13 16 5 2 77 21
f0ð980Þ 10 64 15 6 5 74 21
f0ð1370Þ 20 8 45 24 3 28 69
f0ð1500Þ 2 5 5 7 81 7 12
f0ð1710Þ 4 10 19 58 9 14 77
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To make a more quantitative comparison, we use
Eq. (19) and compute the double-averaged χ over all data
points in a set and over all target experimental quantities:

¯̄χ ¼ 1

NpN
exp
q

XNp

j¼1

XNexp
q

i¼1

����
q̂expi − qtheoi ðpjÞ

q̂expi

����; ð43Þ

where pj is a point in a given set/subset, Np and Nq are the
number of points in a set/subset and the number of target
quantities, respectively. We then compare this with the
average of experimental target quantities for each case
computed using the definition (20):

χ̄exp ¼ χexp

Nexp
q

: ð44Þ

The results are given in Table VI. The closest (on average)
that the model can get to the central values of the target
experimental inputs is in simulation III, followed by
simulations I and II. The only difference between simu-
lations I and II is that the two partial decay widths of
f0ð1370Þ are excluded in I and included in II (also included
in III). The difference between simulations II and III is that
theWA102 data are included in II and excluded in III. Since
the model agrees less with experiment in simulation II, we
conclude that the two partial decay widths of f0ð1370Þ
[173] and WA102 data [58] are not quite compatible,
and that the present model agrees slightly better with the
data in [173].

VI. THE SCALAR GLUEBALL

The scalar field “G,” introduced in Sec. II, was identified
with a scalar glueball. In this section we give more
discussion on this field and retrospectively justify its
identification with the scalar glueball. We give more details
on its phenomenological properties probed in the simu-
lations of previous sections.
In the present framework, the connections to the “micro-

scopic” world of quarks and gluons are made indirectly via
the transformation properties, mixing patterns, mass spectra
and decay properties. Since our approach is motivated by
the global description and family relations among scalar
mesons, it is natural for us to introduce the “matter fields”
in terms of two scalar nonets (a four-quark scalar nonet N
and a two-quark scalar nonet N0) so that we can then study
the family interactions between these two nonets and have
global relations among model parameters, such as, for
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FIG. 10. Comparison of the predictions for the total four-quark, total quark-antiquark and glue of the isosinglet scalars obtained over
the three global sets SI, SII and SIII [defined in (28), (35) and (40)] (left); the three subsets SI1, SII1 and SIII1 [defined in (29), (36) and
(41)] (middle); and the three subsets SI2, SII2 and SIII2 [defined in (32), (37) and (42)] (right). Triangles, diamonds and circles are
respectively related to simulations I, II and III. The error bars show standard deviation around the average. Overall the results are not
very sensitive to the variation of the experimental inputs. For convenience, the 50% lines are also shown (dashed lines).

TABLE VI. A quantitative comparison of different numerical
simulations. The averaged percent experimental uncertainties
[first column; computed from Eq. (44)] are compared with the
double-averaged percent deviation of the model predictions from
central experimental values [second, third and fourth columns;
computed from Eq. (43)]. The comparison is made over the three
global sets SI, SII and SIII [defined in (28), (35) and (40)]; the
three subsets SI1, SII1 and SIII1 [defined in (29), (36) and (41)];
and the three subsets SI2, SII2 and SIII2 [defined in (32), (37)
and (42)].

Simulation χ̄exp ¯̄χ (global set) ¯̄χ (subset 1) ¯̄χ (subset 2)

I 35 19 17 25
II 36 29 25 29
III 35 17 15 16
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example, among various scalar-pseudoscalar-pseudoscalar
coupling constants that get expressed in terms of the
coupling constants that describe the interaction of
the two nonets in I ¼ 1=2 and 1 channels, as well as in
the more complex case of the I ¼ 0 channel (see
Appendix B of [150]). Therefore, the scalar matter fields,
i.e. the substructures that are made out of quarks [compo-
nents 1 to 4 of F0 in relation (13)] are all contained within
these two scalar nonets and their properties in the
Lagrangian are dictated by the flavor SU(3) transformation
and its breakdown. One of the advantages of these nonet
templates is that they “confine” the matter fields within the
N andN0. Consequently, once the Lagrangian is formulated
with these global templates for matter fields (and assuming
that there are no other composite matter fields of sub-
structures more complex than quark-antiquark and four
quarks, such as six quarks, eight quarks, etc.) any other
SU(3)-singlet scalar field floating in the model cannot be
identified with the matter fields because it leads to over-
counting. As such, scalar field G must be identified with an
“other-than-quark-composite” field and one possibility is to
identify it with a pure glueball field. Since we do not have
direct access into its internal substructure, we use the
external characteristics of field G to see if it fits the profile
of an scalar glueball. First and foremost, isolating the
matter fields into nonets N and N0 all scalar states below
2 GeV are accounted for. Then if G is to represent a scalar
glueball, it is necessary that it couples to these matter fields
as an SU(3) singlet. Of course, this, by itself, is not
sufficient. Second, when the model is confronted with
experiment and the model parameters are explored (the
results obtained in previous sections), and consequently
various bare and physical quantities are computed, we see
that there are clear indications that further support the
identification of G with a scalar glueball. These are:
(a) In most investigations of f0ð500Þ and f0ð980Þ in the

literature, it is found that they do not contain a
considerable glue component. In our investigation

too, we found that f0ð500Þ and f0ð980Þ [and
f0ð1370Þ] have low G components (see Fig. 5).

(b) In simulations of the previous sections, the mass of the
scalar field G is typically distributed over the range
1.3–1.9 GeV, overlapping with the range of mass for
the lightest scalar glueball found in lattice QCD.
Figure 11 shows the histograms for mass of field G
in the three global sets. Also, in the three subsets 1,
and in the three subsets 2 the masses are almost in the
same range. Figure 12 compares mG computed over
the three global sets, the three subsets 1, and the three
subsets 2 (the averages related to simulations I, II and
III are shown with triangles, diamonds and circles,
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FIG. 11. Histograms for mG over the three global sets SI, SII and SIII [see definitions (28), (35) and (40)]. The superimposed curves
are skew Gaussian fits and the displayed numbers give the location of the peaks together with the square root of the variances.
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FIG. 12 (color online). The results of numerical simulations for
mG (scalar glueball mass) over the three global sets SI, SII and SIII
[defined in (28), (35) and (40)] (left); the three subsets SI1, SII1
and SIII1 [defined in (29), (36) and (41)] (middle); and the three
subsets SI2, SII2 and SIII2 [defined in (32), (37) and (42)] (right).
Triangles, diamonds and circles are respectively related to
simulations I, II and III. The error bars show standard deviation
around the average. The shaded band shows the intersection of all
estimates that result in the overall prediction of the scalar glueball
mass in the range 1.55–1.61 GeV. The experimental mass of the
f0ð1500Þ and f0ð1710Þ are also given [1] and clearly entrap the
scalar glueball mass.
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respectively, and the standard deviations are shown
by error bars). We see that most averages are between
the masses of f0ð1500Þ and f0ð1710Þ. Also shown is
the intersection of all simulations (shaded band) in the
range of 1.55–1.61 GeV, which is the most overlapped
range for the scalar glueball mass in the present order
of this framework (in Sec. VII, we will estimate the
theoretical uncertainty due to neglecting the next
set of corrections, and determine our overall estimate
for mG).

(c) The present effective Lagrangian framework, formu-
lated in terms of meson fields, does not directly probe
the coupling of glueball(s) to quarks. However, since
in this approach the effective couplings of G to
pseudoscalar-pseudoscalar channels are computed, it
becomes indirectly possible to probe the coupling ofG
to quarks. The couplings of G to channels ππ, KK̄, ηη,
ηη0 and η0η0 in our simulations are given in Fig. 13. We
see that the glueball coupling to the KK̄ channel is
stronger than to the ππ channel which seems consis-
tent with the “chiral suppression” investigated in
[176]. Moreover, it is seen that the coupling of G to
channels involving η0 shows considerable enhance-
ment. Since glue dynamics plays an essential role in
understanding the physics of η0, the larger coupling
of G to channels involving η0 is consistent with the
identification of scalar field G with scalar glueball.

(d) At the present leading order of this framework, the
glueball mixing with quarkonia is SU(3) symmetric
and, in principle, can only distinguish the two-quark
from the four-quark states but not among u, d and s. In
this limit, the number of simulations that result in a
larger coupling of G to the quark-antiquark nonet N0
has an edge over those that give a larger coupling
of G to the four-quark nonet N. Figure 14 shows the
percentages of simulations for which jf=ej > 1 [see

Eq. (11)]. For example, we see that in global sets I, II
and III, respectively 45%, 52% and 59% of simula-
tions have jf=ej > 1. Since the glueball mass typically
spreads over the range of 1.3–1.9, one would expect
that the glueball couples stronger to quark-antiquark
nonet N0 than to the four-quark nonet N.

In summary, although the present framework is not
meant to directly connect to the microscopic world of
quarks and gluons, and therefore it cannot be proved
(microscopically) that G is a scalar glueball, nevertheless,
phenomenological arguments presented here clearly agree
with its identification as a scalar glueball.
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FIG. 13. The magnitude of the coupling of G to pseudoscalar-pseudoscalar channels (jγGss0 j in GeV−1) over the three global sets SI, SII
and SIII [defined in (28), (35) and (40)] (left). Triangles, diamonds and circles are respectively related to simulations I, II and III. The
error bars show standard deviation around the average. FieldG couples stronger to KK̄ than to ππ and its coupling to channels including
η0 increases significantly.
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FIG. 14. Comparing the glueball coupling to quark-antiquark
nonet N0 over its coupling to four-quark nonet N. Histograms
show the percentages of simulations that resulted in jf=ej > 1
[see Eq. (11)] for the three global sets SI, SII and SIII [defined
in (28), (35) and (40)] (left); the three subsets SI1, SII1 and SIII1
[defined in (29), (36) and (41)] (middle); and the three subsets
SI2, SII2 and SIII2 [defined in (32), (37) and (42)] (right). Overall
the simulations favor jf=ej > 1.
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VII. SUMMARY AND DISCUSSION

The issue of the substructure of f0ð1500Þ and
f0ð1710Þ, particularly their glue content, was the main
focus of the present work. We showed, both within the
three global sets [(28), (35) and (40)] and within the three
subsets 1 [(29), (36) and (41)] and the three subsets 2
[(32), (37) and (42)], that glue is almost entirely absorbed
by f0ð1500Þ and f0ð1710Þ (overall, more than 75% of an
effective scalar glueball field was absorbed by these two
states). However, identifying the percentages of glue in
either state can be an excruciatingly difficult task, mainly
due to unestablished experimental data on properties of
some of the isosinglet scalars, many with large uncer-
tainties (and at times conflicting). The strategy of this
work in extracting the glue contents (within the existing
experimental uncertainties) has been to establish a global
framework for all isosinglets, isodoublets and isotriplet
scalars below 2 GeV and derive underlying mixing
patterns and family relations as a means to probe the
contents of all scalar states in general, and the glue
component of f0ð1500Þ and f0ð1710Þ, in particular. This
strategy is of course a “double-edged sword”: On the one
hand, the entanglement of all scalars together (not only
the isosinglets but also the isodoublets and isotriplets)
results in added complications and new stumbling blocks
that would otherwise be absent in an isolated study. On
the other hand, an important benefit is that the family
relations developed in this process make it possible to
impose some of the known (or widely believed) features
of some of the scalars to extract information on others.
Specifically, we applied a nonlinear chiral Lagrangian

model that includes a quark-antiquark and a four-quark
nonet of scalar mesons and a scalar glueball. This model
has already been applied to various low-energy scattering
and decays and has resulted in a coherent picture for the
low-energy data [74,75,147,149]. Using an iterative
Monte Carlo method, we probed the 14 free parameters
of the model by fitting to more than 20 experimental inputs
on isosinglet scalars below 2 GeV together with constraints
from isodoublets and isotriplet properties. We determined
three global sets of points SI, SII and SIII [Eqs. (28), (35)
and (40)] in the 14-dimensional parameter space that gave
an overall agreement with experimental data on all iso-
singlet states. In probing the glue component of the
f0ð1500Þ and f0ð1710Þ, after determining the global sets,
we first computed the quark and glue components of all
isosinglet states below 2 GeV, and then studied family
relations among them. Without any additional assumptions,
the average components over the three global sets showed
that f0ð1500Þ and f0ð1710Þ are almost exclusively the
main glue holders. Even though in most of our numerical
simulations f0ð1500Þ dominated the glue contents, the
accuracy of our model (at its present order) does not allow
us to confidently favor f0ð1500Þ versus f0ð1710Þ (a
discussion of the accuracy of the prseent order of the

model, together with an order of magnitude estimate of the
size of next set of corrections, is given below).
We then further imposed additional constraints on the

mass of f0ð1710Þ on the three global sets to control
the resulting physical masses. This resulted in the three
subsets 1 [i.e. SI1, SII1 and SIII1; Eqs. (29), (36) and (41),
respectively] which we used to reevaluate the quark and
glue components, but qualitatively the results remained
consistent with those obtained with the three global sets.
The glueball mass was also estimated in this limit in the
range 1.55–1.61 GeV.
We exploited the underlying correlations among iso-

singlet states as a means to further probe the substructure of
f0ð1500Þ and f0ð1710Þ. Imposing the anticipated charac-
teristics of f0ð500Þ and f0ð980Þ, that they do not contain
large glue contents (which is generally observed in the
literature to be the case), favors f0ð1500Þ as the state with a
major glue content. We also further examined a limit in
which the lightest isosinglets f0ð500Þ and f0ð980Þ get
close to their ideally four-quark mixing limit. This led to the
three subsets 2 [i.e. SI2, SII2 and SIII2; Eqs. (32), (37) and
(42), respectively]. In this limit, again f0ð1500Þ was
favored to contain the dominant glue component (which
was approximately estimated above 70%).
We end by giving an estimate of the theoretical uncer-

tainty due to neglecting (for simplicity) the higher order
corrections. The foundation of this analysis has been the
mixings of a bare (unmixed) light four-quark nonet N with
a heavier bare quark-antiquark nonet N0 and a scalar
glueball G. The Lagrangian discussed in Sec. II is devel-
oped based on chiral symmetry and its breakdown and the
transformation properties of the effective meson fields are
understood from the basic transformation properties of the
schematic quark fields. The schematic quark configurations
imply a certain mass ordering expected for each bare nonet.
In the quark-antiquark scalar nonet, we expect

m½f0NS0 � ≈ m½a00� < m½K0
0� < m½f0S0 � ð45Þ

where f0NS0 , a00, K
0
0, and f0S0 belong to N0 and have quark

substructures

f0NS0 ∶nn̄

a00∶nn̄

K0
0∶ns̄

f0S0 ∶ss̄: ð46Þ

Moreover, assuming schematic quarks (which is the basis
of the underlying flavor symmetry of the Lagrangian)
and solely based on counting the strange and nonstrange
quarks, we (roughly) expect
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m½f0NS0 � ≈ m½a00�
m½K0

0� −m½a00� ≈ m½f0S0 � −m½K0
0� ð47Þ

which only measures the number of strange quarks in
each state.
Similarly, we expect a mass ordering among the mem-

bers of four-quark nonet N (which is inverted compared to
that of quark-antiquark nonet N0):

m½fNS0 � < m½K0� < m½a0� ≈ m½fS0 � ð48Þ

where fNS0 , a0, K0 and fS0 belong to N and have quark
substructures

fNS0 ∶n̄n̄nn

K0∶n̄s̄nn

a0∶n̄s̄ns

fS0∶n̄s̄ns: ð49Þ

Again assuming a “schematic spectroscopy” and counting
the strange and nonstrange quarks, we (roughly) expect

m½K0� −m½fNS0 � ≈ m½a0� −m½K0�
m½a0� ≈ m½fS0 � ð50Þ

In the study of the I ¼ 1=2; 1within this mixing framework
[149], the bare masses of m½K0�, m½a0�, m½K0

0� and m½a00�
are determined [see Eq. (7)]. These are also plotted in
Fig. 15 together with the I ¼ 0 bare masses which are
computed in two different ways: (i) from numerical
simulation of this analysis (triangles, diamonds and circles)
and (ii) from relations (47) and (50) (stars) expected from
the corresponding schematic quark configurations (46) and
(49). Since our simulations did not target the bare masses

and instead targeted the physical masses, decay widths and
decay ratios, we interpret the difference between these two
sets of calculations of I ¼ 0 bare masses as a measure of the
theoretical uncertainty of our work (due to neglecting
higher order terms in this Lagrangian). Using (47) and
(50), the four masses shown by stars in Fig. 15 are (in GeV)

m�
1 ¼ 0.88; m�

2 ¼ 1.24;

m�
3 ¼ 1.38; m�

4 ¼ 1.24: ð51Þ

The average theoretical uncertainty (averaged over the four
stared masses as well as the three sets of simulations) can be
estimated as

Δ̄ ¼ 1

12

X
j

X4
i¼1

jm̄j½F0;i� −m�
i j

m�
i

≈ 11% ð52Þ

where F0 is defined in (13), and m̄j represents the averaged
mass over the three subsets 1 [i.e. SI1, SII1, SIII1 defined in
Eqs. (29), (36) and (41), respectively].
In the leading order of the model we found that the

favored range of glueball mass is 1.55–1.61 GeV.
Therefore, including the 11% theoretical uncertainty, our
overall estimate for the glueball mass is 1.58� 0.18 GeV
and is compared with several lattice QCD estimates in
Table VII. We expect that the higher order corrections such
as the higher order SU(3) symmetry breaking terms will
reduce this uncertainty. These corrections have been
formally identified and their effects on the mass matrices
of I ¼ 1=2, 1, 0 have been worked out in [150]; however,
their determination from fits to available data will require a
considerable extension of the parameter space of the model,
and the leading order results presented here pave the way
for investigating the larger parameter space. We intend to
pursue these extensions in future works.
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m [K0]
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m [K0]

fNS
0 fS

0 f S
0 f NS

0

FIG. 15 (color online). The bare masses of the members of the four-quark scalar meson nonet N and the quark-antiquark scalar meson
nonetN0 in the present model. The masses of the four isosinglet scalars fNS0 , fS0 , f

0S
0 and f0NS0 are computed over the three subsets SI1, SII1

and SIII1 [defined in (29), (36) and (41)]. Triangles, diamonds and circles respectively represent the averages in simulations I, II and III
and the error bars represent the standard deviations around the averages. The stars represent the isosinglet scalar masses computed from
the relations (47) and (50). The masses of the I ¼ 1=2, 1 members of the two nonets are also shown.
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APPENDIX A: SAMPLE POINTS IN SET SI

In this appendix we have given sample points in the three
subsets SI1, SII1 and SIII1 [defined in (29), (36) and (41)].
These subsets result in the isosinglet physical masses that
are closer to their target values. It is interesting to note that
although the Lagrangian parameters spread over a range of
correlated values (even changing sign), the physical param-
eter mG given in the three tables (similar to the physical

parameters given in the next appendix) varies over a
physical range.

APPENDIX B: PHYSICAL QUANTITIES

In this appendix we have given the numerical values for
the physical quantities computed over the three global sets
SI, SII and SIII [defined in (28), (35) and (40)]; the three
subsets SI1, SII1 and SIII1 [defined in (29), (36) and (41)];
and the three subsets SI2, SII2 and SIII2 [defined in (32), (37)
and (42)].

TABLE VIII. Sample points in subset SI1 [defined in (29)],
χexpI ¼ 7.3.

c 0.3370 0.3952 0.0145 0.3622 0.0243
d −0.0150 −0.0254 0.0146 −0.0251 0.0201
c0 −0.1497 −0.1216 0.2715 0.1313 −0.1673
d0 0.0187 0.0160 −0.0240 −0.0236 0.0081
mG 1.6998 1.7407 1.4901 1.7345 1.6064
ρ −0.2097 −0.0441 0.0603 −0.2507 −0.5877
e −0.1074 −0.0460 −0.2558 0.0343 −0.2076
f 0.1214 0.2593 0.1499 0.3861 0.0062
B 0.5185 −0.0342 −0.2162 0.2433 0.2655
D −0.0955 0.2531 −0.6200 −0.6983 −0.6260
B0 −1.6051 −1.5578 −0.2952 −0.4635 −1.9995
D0 −1.6865 −1.6900 5.9564 −0.7670 0.7092
E −0.5866 −0.1665 −0.7889 0.2909 −0.3853
F −0.3537 2.2655 1.0031 −4.3858 0.3655
χ 3.0710 3.9327 3.9756 4.1966 4.5207

TABLE IX. Sample points in subset SII1 [defined in (36)],
χexpII ¼ 8.2.

c 0.2609 0.1456 −0.2117 0.1022 0.2636
d −0.0003 0.0075 0.0516 0.0155 −0.0178
c0 0.2433 0.0660 0.0025 −0.2672 0.1270
d0 −0.0231 −0.0186 0.0184 0.0126 −0.0185
mG 1.7445 1.5946 1.7237 1.5704 1.5855
ρ −0.2718 −0.1367 −0.3336 −0.0016 −0.4982
e 0.0492 −0.0488 0.0546 0.1009 0.1733
f −0.2221 −0.5522 −0.0988 −0.0395 −0.1686
B 0.0875 0.0538 0.6674 0.5891 0.3232
D −1.9439 −1.8003 −1.3296 −1.1793 −0.7720
B0 −0.7580 1.4509 −1.3466 −3.0306 −0.5641
D0 −0.8105 −1.8948 0.3781 −1.3564 2.4016
E −0.2582 1.4825 −0.1311 −0.5332 −0.1580
F −4.6696 2.9563 −0.3990 0.1563 −3.8550
χ 5.9322 6.0866 6.2091 6.7777 7.2839

TABLE X. Sample points in subset SIII1 [defined in (41)],
χexpIII ¼ 5.6.

c −0.1312 −0.1896 −0.1695 0.0465 0.0968
d 0.0258 0.0208 0.0385 0.0233 −0.0077
c0 −0.1023 0.2979 0.0637 −0.0504 0.1417
d0 0.0121 −0.0281 −0.0186 0.0160 −0.0122
mG 1.4885 1.3729 1.5075 1.6338 1.5627
ρ −0.4765 0.0389 0.1461 −0.3293 −0.5419
e 0.3334 −0.4492 0.1004 0.0662 0.1091
f 0.4258 0.2080 −0.1142 0.0527 0.1577
B −1.0804 −1.4822 0.4289 0.4434 0.3742
D −3.2734 −1.5545 −2.9775 −0.8613 1.4400
B0 −2.7836 0.2785 −0.3578 −1.4455 −0.5599
D0 −2.0592 −2.2582 −2.5229 −0.2597 −0.8833
E 1.6391 −2.5225 0.2925 0.1295 −0.4453
F 2.4595 −1.6122 −5.1189 0.2258 −1.1873
χ 1.9395 3.9535 4.1088 4.1678 5.3078

TABLE VII. Comparison of the glueball mass estimated in the
present framework with several predictions of lattice QCD.

Our overall estimate 1580� 180

Bali et al. [2] 1550� 50
Chen et al. [3] 1740� 71
Morningstar and Peardon [4] 1730� 50� 80
Vaccarino and Weingarten [5] 1648� 58
Close and Zhao [6] 1464� 47 and 1519� 41
Loan et al. [7] 1654� 83
Chen et al. [8] 1710� 50� 80
Gregory et al. [9] 1795� 60
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TABLE XI. Numerical results for the masses, decay ratios and decay widths computed in simulation I. The target
values are given in the second column together with the averages and standard deviations computed over the global
set SI [defined in (28)] (third column), the subset SI1 [defined in (29)] (fourth column), and subset SI2 [defined in
(32)] (fifth column). For the decay width of f0ð500Þ to two pions, both the bare decay width ðΓ1

ππÞ and the physical
decay width ð ~Γ1

ππÞ, in which the effects of the final-state interaction of pions are taken into account, are given. In the
second column, “N/A” denotes the quantities that have not been targeted in the simulation; nevertheless, their values
are computed as by-products. The short notations in the first column are defined in Table I. For comparison
convenience, the last seven target values are presented in the “central value � uncertainty” format (their original
reported values are given in Table I).

Short notation Target value Global set I Subset I1 Subset I2

m1 400–550 [1] 521� 114 598� 154 634� 167

m2 990� 20 [1] 966� 160 972� 90 1011� 146

m3 1312 [58] 1500� 92 1478� 53 1442� 33

m4 1502 [58] 1804� 258 1638� 100 1761� 264

m5 1727 [58] 2828� 633 1773� 30 2834� 729

Γ3
ππ
KK

2.17� 0.9 [58] 2.67� 1.39 2.30� 0.66 4.48� 2.80

Γ3
ηη
KK

0.35� 0.3 [58] 0.11þ0.14
−0.11 0.12þ0.18

−0.12 0.09þ0.15
−0.09

Γ4
ππ
ηη

5.56� 0.93 [58] 6.00� 1.14 5.56� 1.07 6.59� 0.88

Γ4
KK
ππ

0.33� 0.07 [58] 0.31� 0.07 0.34� 0.04 0.34� 0.03

Γ4
ηη0
ηη

0.53� 0.23 [58] 0.42� 0.12 0.36� 0.08 0.50� 0.09

Γ5
ππ
KK

0.20� 0.03 [58] 0.23� 0.04 0.19� 0.02 0.20� 0.02

Γ5
ηη
KK

0.48� 0.19 [58] 0.48� 0.06 0.41� 0.14 0.49� 0.01

Γ1
ππ 400–700 [1] 16þ21

−16 38þ41
−38 43þ45

−43

~Γ1
ππ N/A 482� 257 340� 293 288þ308

−288

Γ2
ππ 40–100 [1] 65� 23 68� 11 82� 30

Γ3
ππ N/A 243� 54 214� 45 222� 92

Γ3
KK N/A 109� 47 98� 28 73� 56

Γ4
ππ 38� 5 [1] 31� 4 32� 6 32� 4

Γ4
KK 9� 2 [1] 10� 1 11� 3 11� 2

Γ4
ηη 6� 1 [1] 5� 1 6� 2 5� 1

Γ4
ηη0 2.1� 1.0 [1] 2.1� 0.5 2.1� 0.5 2.5� 0.5

Γ5
ππ 26þ29

−26 [174] 21� 4 20� 3 18� 1

Γ5
KK 80� 40 [174] 94� 15 105� 18 86� 8

Γ5
ηη 48� 35 [174] 45� 7 42� 11 43� 4
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TABLE XII. Numerical results for the masses, decay ratios and decay widths computed in simulation II. The target
values are given in the second column together with the averages and standard deviations computed over the global
set SII [defined in (35)] (third column), the subset SII1 [defined in (36)] (fourth column), and subset SII2 [defined in
(37)] (fifth column). For the decay width of f0ð500Þ to two pions, both the bare decay width ðΓ1

ππÞ and the physical
decay width ð ~Γ1

ππÞ, in which the effects of the final-state interaction of pions are taken into account, are given. The
short notations in the first column are defined in Table I. For comparison convenience, the last nine target values are
presented in the “central value � uncertainty” format (their original reported values are given in Table I).

Short notation Target value Global set II Subset II1 Subset II2

m1 400–550 [1] 605� 138 551� 135 623� 174

m2 990� 20 [1] 1003� 187 1047� 196 972� 62

m3 1312 [58] 1502� 75 1492� 98 1436� 23

m4 1502 [58] 1729� 176 1616� 91 1580� 62

m5 1727 [58] 2620� 525 1772� 45 2328� 402

Γ3
ππ
KK

2.17� 0.9 [58] 1.75� 0.76 1.90� 1.27 2.11� 0.49

Γ3
ηη
KK

0.35� 0.3 [58] 0.13þ0.14
−0.13 0.18� 0.17 0.02� 0.02

Γ4
ππ
ηη

5.56� 0.93 [58] 6.05� 1.06 5.84� 0.85 5.86� 0.56

Γ4
KK
ππ

0.33� 0.07 [58] 0.32� 0.16 0.29� 0.04 0.32� 0.02

Γ4
ηη0
ηη

0.53� 0.23 [58] 0.41� 0.11 0.39� 0.10 0.44� 0.06

Γ5
ππ
KK

0.20� 0.03 [58] 0.23� 0.04 0.21� 0.02 0.22� 0.03

Γ5
ηη
KK

0.48� 0.19 [58] 0.48� 0.05 0.51� 0.05 0.47� 0.02

Γ1
ππ 400–700 [1] 38þ50

−38 48þ77
−48 54þ57

−54

~Γ1
ππ

N/A 308� 283 420� 294 306þ335
−306

Γ2
ππ 40–100 [1] 91� 46 116� 79 137� 73

Γ3
ππ 59� 25 [173] 170� 45 153� 55 171� 29

Γ3
KK 80� 35 [173] 113� 45 100� 43 83� 13

Γ4
ππ 38� 5 [1] 32� 4 35� 5 30� 2

Γ4
KK 9� 2 [1] 10� 3 10� 2 9� 1

Γ4
ηη 6� 1 [1] 5� 1 6� 1 5� 1

Γ4
ηη0 2.1� 1.0 [1] 2.2� 0.5 2.3� 0.4 2.2� 0.2

Γ5
ππ 26þ29

−26 [174] 22� 4 19� 2 23� 4

Γ5
KK 80� 40 [174] 99� 15 91� 10 101� 9

Γ5
ηη 48� 35 [174] 47� 6 47� 4 47� 3
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TABLE XIII. Numerical results for the masses, decay ratios and decay widths computed in simulation III. The
target values are given in the second column together with the averages and standard deviations computed over the
global set SIII [defined in (40)] (third column), the subset SIII1 [defined in (41)] (fourth column), and subset SIII2
[defined in (42)] (fifth column). For the decay width of f0ð500Þ to two pions, both the bare decay width ðΓ1

ππÞ and
the physical decay width ð ~Γ1

ππÞ, in which the effects of the final-state interaction of pions are taken into account, are
given. In the second column, “N/A” denotes the quantities that have not been targeted in the simulation;
nevertheless, their values are computed as by-products. The short notations in the first column are defined in
Table II. For comparison convenience, the last nine target values are presented in the “central value � uncertainty”
format (their original reported values are given in Table II).

Short notation Target value Global set III Subset III1 Subset III2

m1 400–550 [1] 626� 133 605� 131 686� 132

m2 990� 20 [1] 964� 166 937� 146 1015� 90

m3 1300� 15 [173] 1469� 55 1448� 54 1438� 17

m4 1505� 6 [1] 1645� 140 1574� 57 1632� 110

m5 1690� 20 [174] 2296� 422 1717� 61 2157� 183

Γ3
ππ
KK

N/A 1.51� 1.27 1.41� 0.88 1.99� 1.72

Γ3
ηη
KK

N/A 0.07þ0.15
−0.07 0.11þ0.16

−0.11 0.03� 0.03

Γ4
ππ
ηη

N/A 7.52� 1.74 7.51� 1.86 8.29� 1.23

Γ4
KK
ππ

N/A 0.26þ0.37
−0.26 0.24� 0.05 0.24� 0.01

Γ4
ηη0
ηη

N/A 0.43� 0.42 0.38� 0.07 0.44� 0.06

Γ5
ππ
KK

N/A 0.38� 0.33 0.31� 0.12 0.28� 0.09

Γ5
ηη
KK

N/A 0.69� 0.64 0.55� 0.24 0.55� 0.06

Γ1
ππ 400–700 [1] 62þ83

−62 53þ63
−53 68� 44

~Γ1
ππ

N/A 262þ275
−262 303� 270 153þ260

−153

Γ2
ππ 40–100 [1] 81� 35 71� 30 84� 30

Γ3
ππ 59� 25 [173] 136� 51 117� 51 133� 46

Γ3
KK 80� 35 [173] 121� 53 100� 41 97� 46

Γ4
ππ 38� 5 [1] 39� 4 40� 8 38� 1

Γ4
KK 9� 2 [1] 9� 1 9� 1 9� 1

Γ4
ηη 6� 1 [1] 5� 1 5� 1 5� 1

Γ4
ηη0 2.1� 1.0 [1] 2.2þ2.7

−2.2 2.1� 0.2 2.1� 0.1

Γ5
ππ 26þ29

−26 [174] 26� 3 27� 2 24� 8

Γ5
KK 80� 40 [174] 80� 29 103� 65 85� 7

Γ5
ηη 48� 35 [174] 48� 6 47� 8 47� 4
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