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Chiral nonet mixing in 7K scattering
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The underlying mixing of quark components of scalar mesons is probed in zK scattering within a
generalized linear sigma model that contains two scalar meson nonets and two pseudoscalar meson nonets
(a quark-antiquark and a four-quark). In the leading order of this model, all free parameters have been
previously fixed using the mass spectra and several low-energy parameters known from experiment and
consistent predictions have been made. As in other predictions of the model, in the present work the
isospins 1 = 1/2, 3/2 and J = 0 projection of the zK scattering amplitude (as well as phase shifts) are
computed and compared with experiment. In the / = 1/2 channel, it is shown that within the uncertainties
of the model parameters a good agreement with experimental data up to an energy of about 1 GeV is
obtained, whereas in the I = 3/2 channel there is a better agreement with experiment which extends to
about 1.4 GeV. The effect of final state interactions of zK in the I = 1/2 channel is approximated by the
K-matrix method and the poles of the unitarized scattering amplitude are found. It is shown that the
model predicts a light and broad kappa resonance with a mass and decay width of 670-770 MeV and
640-750 MeV consistent with other prior works. Moreover, the scattering lengths in the I = 1/2, 3/2 are
also computed and shown to qualitatively agree with experiment. The overall predictions presented here
further support previous findings that the scalar mesons below and above 1 GeV have substantial
underlying mixings and that those below 1 GeV have dominant four-quark substructures while those above
1 GeV are closer to conventional P-wave quark-antiquark states.
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I. INTRODUCTION

Scalar mesons are progressively gaining attention for
their important roles in low-energy QCD. They induce
spontaneous chiral symmetry breaking and, therefore,
probe the QCD vacuum, and they also appear as inter-
mediate states in Goldstone boson interactions away from
threshold (such as in 7z, zK and 77 scatterings) in a range
of energy that is too low for a perturbative QCD study and
too high in the context of chiral perturbation theory.
Moreover, the scalar mesons have connections to important
issues in QCD such as violation of isospin, diquarks and
glueballs. A general discussion of the experimental sit-
uation on light scalars is given in Ref. [1].

Understanding the physical properties of scalars (par-
ticularly their quark substructure) is known to be quite
complicated. Many investigators have tackled different
challenging aspects of scalar mesons from different angles
(see Refs. [2—-87]). The lowest-lying scalars (below 1 GeV)
have a mass spectrum that is much lighter than expected
and is also inverted. This immediately rules out a naive
simple quark-antiquark substructure for these states, a
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picture that is known to work reasonably well for other
spins such as vectors and pseudoscalars. A fundamental
framework for understanding the lowest-lying scalars was
first proposed by Jaffe in the MIT bag model [2], in which a
four-quark (i.e. two quarks and two antiquarks) substruc-
ture is considered. This picture provides an explanation for
the light and inverted mass spectrum of the scalars below
1 GeV. Scalars above 1 GeV are expected to be closer to
quark-antiquark states, but they too have some peculiar
properties that make their identification with pure quark-
antiquark states rather questionable. Then it is natural to
wonder whether the complexities of the scalars below
and above 1 GeV have some underlying connections and
whether a global study of these states that includes possible
underlying mixings can be useful. This global treatment
defines the philosophy of the framework developed in [64]
(and references therein) upon which the present work is
built.

In the global study of Ref. [64], a generalized linear
sigma model which is formulated in terms of two scalar
nonets and two pseudoscalar nonets (a two- and a four-
quark nonet) and the underlying mixings among the scalars
and among pseudoscalars is studied. It is shown that a
simple picture for scalar states below 2 GeV seems to
emerge which automatically leads to light scalars that are
dominantly of two quark-two antiquark nature and light
conventional pseudoscalars that are, as expected from
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established phenomenology, dominantly of quark-antiquark
nature. The free parameters of the leading order of the model
are completely determined by fitting to various low-energy
data. After these parameters are determined several predic-
tions of the model are studied in follow up works, including
the prediction of 7z scattering amplitude in [59] which, after
unitarizing the amplitude using the K-matrix method, gives a
reasonable agreement with data up to around 1 GeV. In the
work of [59], the poles of the K-matrix unitarized amplitude
are determined and used to calculate the physical masses and
decay widths of the isosinglet scalar mesons. The first pole
corresponded to the light and broad sigma meson with mass
and decay width:

m[f,] = 477 + 8 MeV,
T[f,] = 398 4 107 MeV. (1)

This prediction is consistent with the work of Caprini,
Colangelo and Leutwyler [16] based on the Roy equation,
for isoscalar S-wave, in which they find:

M, = 44173° MeV,
I, = 54473° MeV. (2)

The second pole found in [59] resembled the f((980):

m[fs] = 1100 + 10 MeV,
T[f,] = 199 & 15 MeV. (3)

The K-matrix seems to capture the effect of final-state
interactions of pions, which manifest themselves as shifts
in the mass and decay width of sigma meson from their
Lagrangian values to their physical values (given above),
and can be a useful tool for investigating light and broad
scalar mesons. The main advantages of the K-matrix are the
fact that it enforces exact unitarity and does not introduce
any additional parameters. As such, it acts as a useful
mapping of the model predictions to the appropriate
experimental data. The next natural state to investigate is
the kappa meson which is probed in I =1/2, J =0, zK
scattering amplitude, and will be studied in the present
work. Since all the parameters of the generalized linear
sigma model of Ref. [64] have been previously fixed (in its
leading order), the analysis of the zK scattering in the
present investigation will be a prediction and will further
test the model and the underlying mixing patterns predicted
in [64].

The zK scattering has been an active topic of both
experimental [88,89] as well as theoretical [90-118]
investigation in low-energy QCD. The theoretical analyses
include the chiral perturbation theory [90-98], the lattice
QCD [99-103], the Roy-Steiner representation [104—105],
as well as many investigations [106—118] that tackle
different aspects of this process and its connections to
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various issues in low-energy QCD. Particularly, the proper-
ties of scalar resonances in the zK channel (the well
established K{(1430) as well as the status of kappa meson)
have led to interesting studies in the field [119-125].

Our main motivation for the study of zK scattering in the
present work is to extract information about scalar mesons
in general, and their underlying mixings, in particular.
Specifically, we present a detailed analysis of the prediction
of the generalized linear sigma model of Ref. [64] for
I=1/2,3/2 and J = 0 projection of the zK scattering
amplitude (and phase shifts). Using K-matrix unitarization
of the scattering amplitude we compare the predictions of
the model with experimental data and analyze the poles of
the scattering amplitude. We also compute the scattering
lengths in the I = 1/2, 3/2 channels and compare with
other studies.

After defining our set up and notation in Sec. II, for
orientation we start with a general discussion of the
experimental data on zK scattering amplitude in Sec. III
in which we explore the simplest mathematical structures
for the bare amplitude that, when unitarized with the
K-matrix method, can fit the data. To examine the effect
of underlying mixing among scalar mesons, we first give in
Sec. IV the prediction of the single nonet SU(3) linear
sigma model for the 7K scattering amplitude, and then after
a short review of the generalized linear sigma model in
Sec. V give its predictions for the scattering amplitudes and
scattering lengths in Sec. VI. We conclude with a summary
of the results in Sec. VIL

II. BASIC SET UP AND NOTATION

The generic Feynman diagrams for this scattering are
displayed in Fig. 1. In the single (double) nonet model there
are two (four) isosinglet scalars and one (two) isodoublet
scalar(s) contributing to these diagrams. For simplicity we
ignore the vector meson contributions, but do not expect the
results to change much based on comparison with prior
work by some of the authors within a nonlinear chiral
Lagrangian framework [112], in which it was shown that
while the effects of p and K* are not individually negligible,
their total effect is balanced by the vector contact con-
tribution (see Fig. 3 of [112]).

The I = 3/2 amplitude can be easily calculated from

Ai(s.t,u) = A(z* (p1)K* (p2) = 77 (p3)K* (pa)). (4)
which results in

ny

n 2
3 ~ VK yvaK}/f-mT
Ad(s, ) = =yl + Y P NI (s)
“ i=1 ml%l —u Jz:l: m}j -t

where in the single (double) nonet model 7, is two (four)
and n, is one (two), and the couplings are defined by the
Lagrangian density
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FIG. 1. Feynman diagrams representing the 7K scattering. The parameters n; and n, represent the number of isosinglet and isodoublet
scalars respectively, which in the single (double) nonet model are equal to two (four) and one (two).
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\/_ \/j which results in

The I = 1/2, J = 0 scattering amplitude is needed in order

to investigate the properties of the x and K{(1430) 72 72

resonances in the direct channels. The tree level amplitude A (s, t,u) )/,,K + = Z LIS Z Kk

involves k and Kj(1430) exchanges in the s and u channels,

Jfj exchanges in the 7 channel as well as a four point contact V¢ KKY fnn

term. The relevant tree level invariant amplitude may be + Z - _/ P (8)
written as =1 m, i

The J = 0 partial wave amplitude is obtained from

| 1
Ty —%)/ dcos0P(cos O)AL(s. 1) ?)

with p(s) = q/(87+/s) where ¢ is the center of mass momentum g = /(s — (m, + mg)?)(s — (m, — mg)?)/(2:/5).
Performing the partial wave projection we find the “bare” I = 1/2, 3/2, J = 0 amplitudes

}'lf

n, 2 2
5 _P) |, @ Yk e A 4q
Ty =5 {—2yﬂk+3zl:m2_s 4q2§ Veax 05— +—2q2§lyfj,<,<yfj,m1n L) a0
i= K; . =

/i
i p(s) @) 1 s, B, +1 1 & 4q2
Ty =—= -2 — 1 : — In{1+—]], 11
V= e Y R (5 ) 4 > timtgeetn (145 (i
|
in which Equations (10) and (11) are the “Ansatz” equations in
1 2 2 2 2 4 2Y (2 2 this work. . .
B, = 2_612 [(m;c,.) —mg — My + 2\/(’"” +q°)(mx +q )} , Of course, the “bare” amplitude diverges at the “bare”

isodoublet masses and should be regularized in some
(12) fashion, for example by adding imaginary parts in the
and the Mandelstam variables are expressed in terms of ¢ denominator of the propagators, or by other methods. In the

and 0 prior work on the prediction of this model for the zz
t = —24%(1 - cos ), scattering amplitude and investigation of the unitarity

corrections due to the final state interactions of pions,
u=m2+ m%( — 2\/ (m2 + qz)(m% + q%) — 2¢? cos 6. the rather simple K-matrix method was used. This method

has the advantage of unitarizing the amplitude without
(13) introducing any new parameters, and therefore directly
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FIG.2. Thereal partoftheJ = 0,7 = 1/2 (left) and I = 3/2 (right), zK scattering amplitudes extracted from the experimental data of

Ref. [89].

maps the Lagrangian parameters onto the scattering data.
This is particularly useful from the standpoint of global
study of scalar mesons below and above 1 GeV where
different mixing patterns in the Lagrangian are studied and
any additional arbitrary parameters that may be introduced
in the process of the unitarization can smear the probe of
these important constants. Since the present study is
conducted within the same global picture, it is important
for us to treat the unitarization procedure in the same way.
Hence, we employ the K-matrix unitarization in this work
as well. Having fixed all the parameters in the global
picture of Ref. [64], and using K-matrix method, we have
no free parameters to fit for and therefore no flexibilities in
comparing our prediction for the scattering amplitude with
the experimental data. The K-matrix unitarized amplitude is
defined in terms of the “bare” amplitude by

1
1 TéB
T3 =
0 B
1 -1iTj

(14)

This is what we take as our physical amplitude and
compare with the experimental data. B
The physical masses (/m;) and decay widths (I';) are
determined from the poles in the unitarized amplitude.
Solving for the roots (z;) of the denominator of (14)
1 ~
1—iT? =0 = z; = in? — il (15)
In general, some of the poles may not be physical (for
example, being below the threshold).

III. GENERAL TREATMENT OF zK SCATTERING
DATA USING THE K-MATRIX

For orientation, in this section we study the 7K scattering
data using the K-matrix method and explore the math-
ematical structures for the bare amplitude that can fit the
data and the resulting physical parameters that can be
consequently inferred. The experimental data on zK

scattering amplitude in / =1/2, J =0 channel and in
I =3/2, J = 0 channel are extracted from the phase shift
data of Ref. [89] and given in Fig. 2. For the case of
I=1/2, J=0, we see that the data vanishes around
1.3 GeV followed by a dip around 1.45 GeV and beyond
that the data steadily increases (due to lack of data beyond
1.6 GeV it is not clear whether the real part of the amplitude
approaches zero in this region but this seems to be a
plausible possibility). Therefore, if the K-matrix unitariza-
tion is to provide a reasonable description of data, the
physical amplitude must vanishes around 1.3 GeV (and
possibly somewhere above 1.6 GeV). We note that the
K-matrix unitarized amplitude vanishes at points where the
bare amplitude either vanishes or has a pole, i.e.
T%B -0= T(%) -0,

T > 0o = T} — 0. (16)
This means that in order to describe the data using the
K-matrix, the bare amplitude should either diverge or
vanish around 1.3 GeV (and possibly around 1.6 GeV).
These general guidelines help examining the possible
structures for the bare amplitude.

The simplest mathematical structure for the bare ampli-
tude that fits 7 = 1/2, J = 0 data consists of a constant
background and a pole

(17)

Substituting the “bare” amplitude into Eq. (14) the physical
amplitude is obtained. We then fit the real part of the
physical amplitude to the data displayed in Fig. 2 and find
that for the free parameters c,~ 64, ¢ ~65 GeV? and
m = 1.33 GeV) we get a good description of data up to
about 1.6 GeV (Fig. 3). In this case, the bare amplitude
vanishes around 1.3 GeV which agrees with the intuitive
understanding of data using property (16). The pole in the
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FIG. 3. Fit of the K-matrix unitarized simple toy structure (17)
to experimental data.

bare amplitude yields the first vanishing point in the
unitarized amplitude. In addition, the interference of the
background and the pole results in vanishing of the bare
amplitude around 1.6 GeV, which in turn leads to a
vanishing point in the unitarizd amplitude around 1.6 GeV.

Moreover, we examine the pole(s) of the physical
amplitude by solving for the complex roots of the denom-
inator of the K-matrix unitarized amplidue (15) and find the
physical mass and decay width,

I =313 MeV, (18)

which are clearly the mass and total decay width of
K{(1430) with experimental values [1]

m[K;(1430)] = 1424 £ 50 MeV
T[K;(1430)] = 270 + 80 MeV. (19)

The simple structure (17) accomplishes two important
objectives: (a) it fits the experimental data on the real part
of I =1/2,J = 0 up to about 1.6 GeV, and (b) the poles of
the physical amplitude give the mass and the decay width of
K{(1430) showing that the / = 1/2 and J = 0 channel is
dominated by the effect of this resonance. However, there
are two objectives that have not been met: (i) when the
same fitted parameters are used to compute the I = 3/2,
J =0, the result is far from experimental data (Fig. 4), and
(i) the kappa meson is left undetected. To gain additional
insight from the experimental data we have examined more
involved mathematical structures. These include adding u-
and t-channel type contributions [see Egs. (5), (10)], as well
as the second pole (perhaps coming from a second scalar
nonet). We find that all such structures again fit the real part
of I =1/2, J =0 well, but still are not able to simulta-
neously fit the I =3/2, J =0 amplitude, leaving issue
(i) above unresolved. Regarding detection of kappa meson
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FIG. 4. The I =3/2, J =0, zK scattering amplitude (solid
line) obtained with the same fitted parameters of Fig. 3 is
compared with experimental data.

(issue (ii) above), we find that the interplay of background
and resonance(s) play a very important role in detecting
kappa. Among all the test structures that we have used to fit
the real part of the I = 1/2, J = 0 amplitude, only those
that include the #-channel contributions yield two physical
poles, one of which is always the K{;(1430) and the second
one results in a mass around 665 MeV and a decay width
around 350 MeV which is close to the kappa meson’s
property.

In summary, we saw in this section that fitting to
experimental data in a given channel (such as the
I=1/2, J=0 channel) is easily achievable with a
mathematical structure as simple as a constant background
and a pole. We also saw that although such structures are
not unique, they all detect the K(1430) in a very close
agreement with experiment. The nontrivial aspects which
are not easily achievable with arbitrary structures are:
simultaneously describing both the / = 1/2 and 1 = 3/2
channels as well as detecting the kappa meson. We will see
that the generalized linear sigma model employed in the
present work, when applied below 1 GeV, is able to achieve
both objectives (i) and (ii).

IV. zK SCATTERING IN SINGLE NONET
LINEAR SIGMA MODEL

In order to study the effects of underlying two- and
four-quark mixings of scalar mesons in zK scattering we
compare the predictions of the generalized linear sigma
model (double nonet) with that obtained within single
nonet linear sigma model in [71]. In this section we briefly
present the single nonet results. The three flavor linear
sigma model is constructed from the 3 x 3 chiral field,

M =S+ ig, (20)

where S = ST represents a scalar nonet and ¢ = ¢
a pseudoscalar nonet. Under a chiral transformation
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qr > Urqr, qr = Ugrqr of the fundamental left- and
right-handed light quark fields, M transforms as

M — U MU}, (21)

The Lagrangian density has the general structure

1
L= =3 Te(@,M0,M") = Vo(M) = Vsp. (22)

where V| is an arbitrary function of the independent
SU(3), x SU(3)g x U(1)y invariants,

I, = Tr(MM"), I,
I3 = Tr((MMT)?3),

= Tr(MM'MM?"),
1, = 6(detM + detM™), (23)

of which only 7, is not invariant under U(1),. The
symmetry breaker V¢p has the minimal form

Vsp = —2(A;S] + 4,83 + A3S3). (24)
with vacuum values satisfying

(S5) = a.0. (25)

The one-point vertices (pseudoscalar decay constants) are
related to these parameters by

F,,:al—l—az, FK:al—l—a3, (26)
where in the isotopic spin invariant limit,
Al == A2, a; = . (27)

We also need the minimum condition

ov
— ) =0. 28
(%) 2
The formula for the mass of the 7’ also involves the quantity
A
Va=(——). 29
o= (5 (29)

Many of the three-point and four-point vertices may be
obtained by, respectively, 2 times and 3 times differentiat-
ing the above-mentioned generating equations [71]. The
five parameters, A, Az, o, a3 and V, are determined by
using the following five experimental inputs:

m, = 137 MeV, mg = 495 MeV,
m, = 547 MeV, my = 958 MeV,
F, =131 MeV. (30)

Masses of pseudoscalars are completely determined based
on the underlying chiral symmetry together with the choice
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of symmetry breakers (both U(1), and SU(3); x SU(3)g —
SU(2) isospin). The scalar masses on the other hand are not
all predicted; in the most general case only the mass of
isodoublet kappa meson is predicted, whereas if the renor-
malizability is imposed the isovector mass and one of the
isosinglet masses are determined. It is found in [71] that it is
necessary not to impose the renomalizability condition in
order to be able to fit to the zz scattering amplitude. In the
nonrenormalizable case, the “bare” scalar masses mparg(0),
mpare(fo) and mparp(ag) (ie. the Lagrangian masses
which are different from the physical masses derived from
the poles of the appropriate unitarized scattering amplitudes)
and the scalar mixing angle @, are found from fits to various
low-energy data in [71]. With the same set of parameters, the
I=1/2,J =0, zK scattering amplitude is obtained using
our “ansatz” equation (10). The required coupling constants
are computed from the “generating equations” that express
the symmetry of the Lagrangian (22) (an algorithm that
facilitates such rather tedious computations is presented
in [60]),

W _ otv
Vink = Z<a¢%¥a¢%>o,
Vfian = \[Z<<M¢;‘2ja¢2> (R)f41-
e =V (G B D

where the “bare” couplings and the rotation matrices
(R and Rj) are given in Appendix A. Here f; = ¢ and
f2 = f0(980).

Using the inputs (30) together with the result of best fit to
the 7z scattering amplitude of Ref. [71], the bare I = 1/2,
J =0, znK scattering amplitude is computed from Eq. (10)
and the K-matrix unitarized according to (14). The result is
plotted in Fig. 5 and compared with experimental data
extracted from [89]. Despite the success of SU(3), the
single nonet linear sigma model in describing zz scattering
up to about 1.2 GeV, we see that simultaneous description
of the 7K amplitude is not good. This can be attributed to
the absence of the second strange scalar K(j(1430) in the
single nonet model, where as we saw in Sec. III, this
resonance seems to dominate the zK scattering data in
I =1/2, J =0 channel. In the single nonet model of
Ref. [71], with parameters that give a good description of
I = J =0, zx scattering data up to 1.2 GeV, there is only a
pole in the I =1/2, J =0, zK scattering amplitude at
0.9 GeV and, therefore, it is understandable why the zK
description is not good within the single nonet approach
(which is different than the / = J = 0, zz amplitude where
the two isosinglet states of the single nonet model match

113002-6
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FIG.5. Realpartofthel = 1/2,J = 0, nK scattering amplitude
predicted by the single nonet linear sigma model of Ref. [71] (solid
line) is compared with experimental data extracted from [89].

well with the two points where the experimental data for the
amplitude vanishes; see Fig. 8 of [71]). In the generalized
linear sigma model (double nonet model) there are two
I = 1/2 strange mesons, and that, at least in principle, may
make the description of the #K amplitude more feasible.

V. BRIEF REVIEW OF THE GENERALIZED
LINEAR SIGMA MODEL

In this section we give a brief review of the generalized
linear sigma model of [64] and references therein. The
model is constructed in terms of the 3 x 3 matrix chiral
nonet fields,

M =S+ig¢, M =5 +id, (32)
where M and M’ transform in the same way under chiral
SU(@3) transformations but transform differently under
U(1), transformation properties. M describes the “bare”
quark-antiquark scalar and pseudoscalar nonet fields while
M’ describes “bare" scalar and pseudoscalar fields con-
taining two quarks and two antiquarks. The exact sub-
structure of M’ is not probed by the model and in general
can be a linear combination of a diquark-antidiquark and a
molecular structure. The model distinguishes M from M’
through the U(1), transformation.

The Lagrangian density has the general structure

1 1 .
£ == Te(8,M0,M") ~ - Tr(9,M'0,M")
—Vo(M, M) = Vs, (33)

where Vo(M,M') stands for a function made from
SU(3), x SU(3)g (but not necessarily U(1),) invariants
formed out of M and M’. In principle, there is an infinite
number of such terms. Even if we only consider the
renormalizable terms, there are still 21 terms that can be
written down for V. To keep the calculations in this model
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tractable, it is practical to define an approximation scheme
that allows limiting the number of terms at each level of
calculation, and systematically improving the results there-
after. Such a scheme was defined in [67], in terms of the
number of the quark and antiquark in each term. The
leading choice of terms corresponding to eight or fewer
underlying quark plus antiquark lines at each effective
vertex reads

Vo =—c,Tr(MM") + c§Tr(MMTMM™)
+ dyTr(M'M™) + €5 (e MGMIM'$ + H.c.)

N n detM e )lnTr(MM”-) 2
c — - — .
S Getm TV aYe)

(34)

All the terms except the last two (which mock up the axial
anomaly) have been chosen to also possess the U(1),
invariance. A possible term [Tr(MM")]? is neglected for
simplicity because it violates the OZI rule. The symmetry
breaking term which models the QCD mass term takes the
form

Vg = —2Tr(AS), (35)

where A = diag(A;, A,,A3) are proportional to the three
light quark masses. The model allows for two-quark
condensates, @, = (S9) as well as four-quark condensates
. = (8'9). Here we assume [72] isotopic spin symmetry so
A] = A2 and

By = s # Ps. (36)

a) = ay # as,

We also need the “minimum’” conditions,

G+ (G =0 (G -0 o)
There are twelve parameters describing the Lagrangian and
the vacuum. These include the six coupling constants given
in Eq. (34), the two quark mass parameters (A; = A,, A3)
and the four vacuum parameters (a; = a,, as, B = B2, f3)-
The four minimum equations reduce the number of needed
input parameters to eight.

Five of these eight are supplied by the following masses
together with the pion decay constant:

m[ay(980)] = 980 + 20 MeV,
m[ay(1450)] = 1474 + 19 MeV,
m[z(1300)] = 1300 & 100 MeV,
m, = 137 MeV,
F, = 131 MeV. (38)
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Because m[z(1300)] has such a large uncertainty, we will, as
previously, examine predictions depending on the choice of
this mass within its experimental range. The sixth input will
be taken as the light “quark mass ratio” A /A, which will be
varied over an appropriate range. The remaining two inputs
(to be traded with c¢5 and y) are taken from the masses of the
pseudoscalar mesons [64]. However, c3 and y; affect the i
system only and are not needed in the present study. Given
these inputs a number of predictions are made in [64]. At the
level of the quadratic terms in the Lagrangian, we predict all
the remaining masses and decay constants as well as the
angles describing the mixing between each of (z, 7’), (K, K'),
(ag, ap), (k, ') multiplets and each of the 4 x 4 isosinglet
mixing matrices (each formally described by six angles).
Consequently, all 12 parameters of the model (at the
present order of approximation) are evaluated by the
method discussed above using four minimum equations
and eight experimental inputs. The uncertainties of the
experimental inputs result in uncertainties on the twelve
model parameters which in turn result in uncertainties on
physical quantities that are computed in this model. In the
work of Ref. [64] all rotation matrices describing the
underlying mixing among two- and four-quark components
for each spin and isospin states are computed. For the study
of 7K scattering, we need the following rotation matrices,

fi fa
Ko(800) 1 _ _I[S?] -
|:K(*)(1430):| = L« S/? ’ 5 =Ly 7. . (39)
Sa fa

where L;! and L;! are the rotation matrices for / = 1/2
and I = 0 scalars, respectively; f;, i = 1..4 are four of the
physical isosinglet scalars below 2 GeV (in this model f
and f, are clearly identified with f(500) and f(980) and
|

PHYSICAL REVIEW D 92, 113002 (2015)

the two heavier states resemble two of the heavier isosinglet
scalars above 1 GeV); and

Si+53
fo=- 2 x nit,
V2
fp =153 o s5,
S/l S/2
fe :%ocnsﬁi,

(40)

where the nonstrange (n) and strange (s) quark content
for each basis state has been listed at the end of each line
above. For pseudoscalars,

U:<(1133o7o)> } R [:H ’
. 3
[;fﬁ:o))} = R¥ [53}

where R;! and Ry! are the rotation matrices for / = 1 and
I = 1/2 pseudoscalars, respectively.

fa=153 «nni,

(41)

VI. GENERALIZED LINEAR SIGMA MODEL
PREDICTION OF nK SCATTERING
AMPLITUDE

The Feynman diagrams for this scattering are given in
Fig. 1 and include a four-point contact term, contribution
of isodoublet scalars in the s- and u-channels, as well as
contribution of isosinglet scalars in the z-channel. It is
shown in [78] that the total contribution of vectors are
negligible compared to other contributions. The part of
potential relevant to this investigation is given in Eq. (6) in
which the coupling constants are

4 _ *v B %
TeK = <87z+8ﬂ‘8K+8K‘> n A;D<a(¢2)@(¢é)a(¢?)a(¢é)>(Rﬂ)Al(Rzr)Bl(RK)CI(RK)DU
1 s
e = $<af,.aﬂ+aﬁ—> ,;Kaf, AR >(L°)ﬁ(R”>A1<R”>Bl’

v

o*v
VrKK = fz<afjaz<+az<—>

=2y o g, Lo RO (R

>’V >’V
o = (oo ) ~ S\ R e

AB,C

where A, B, C, and D can take values of 1 and 2 (with 1
referring to nonet M and 2 referring to nonet M’) and I is
a placeholder for a, b, ¢ and d that represent the four bases
in Eq. (40). Ly, L., Ry, Rg, R, are the rotation matrices
defined in previous Sec. V. The bare coupling constants are
all given in Appendix B. We also show in Appendix C

(42)

how the present framework recovers the current algebra
result.
A. Comparison of I = 1/2 channel with experiment

For comparison with experiment it is convenient to focus
on the real part of the partial wave scattering amplitude in
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FIG. 6. Real partofthe / = 1/2,J = 0, zK scattering amplitude. The bare amplitude (left) contains zeros (circles) and poles (squares)

at which the unitarized amplitude (right) vanishes.

Eq. (14). For typical values of the parameters we find the
behavior of the bare amplitude (10) illustrated in Fig. 6 (left).
As we discussed in (16) zeros that occur in the un]ltanzed
amplitude either result from a zero or a pole in T2 For
comparison, the same Fig. 6 shows both the “bare” amph-
tude (left) and the unitarized amplitude (right) in which
circles and squares, respectively, show locations of zeros and
poles in the “bare” amplitude. We compare the model
predictions for the scattering amplitude with the correspond-
ing experimental data. Although we do not expect the
predictions to be accurate above around 1 GeV, nevertheless,
we first plot the predicted amplitude up to 1.6 GeV in Fig. 7.
We see that the amplitude is reasonably well predicted up to
around 900 MeV. Above this region, the model requires
inclusion of additional effects in the global analysis of
Ref. [64] which have been, for simplicity, neglected at the
present level. The additional effects include higher order
terms in the chiral invariant part of the potential, inclusion of
higher order explicit SU(3) symmetry breaking, and inclu-
sion of scalar and pseudoscalar glueballs (which do not
directly affect the present channel but indirectly can have

0577 ST
0.4t ‘ : |
0.3 %
0.2f : 4
e 0.1F :
T 0 :
[
017 :
—02 s =12 Gev | |2
—0.3 | —m[r(1300)] = 1.3 GeV
L wemr(1300)] = 1.4 GeV :,E
345‘- e [xperiment g () §§ ]
706 08 1 12 14 16

Vs (GeV)

noticeable effects through modification of the properties of
isosinglets as well as some shifts in the Lagrangian param-
eters and couplings). The figures show the variation of
the amplitude with respect to the main uncertainties in the
predictions that stem from two of the experimental inputs
used to determine the parameters [64]. These are (a) the
values of the SU(3) symmetry breaking parameter Az/A;,
and (b) choices of the only roughly known “heavy pion”
mass m[I1(1300)]. Similar to the case of zz scattering
amplitude studied in [59], we see that, without using any
new parameters, the mixing mechanism of [64] predicts the
scattering amplitude in reasonable qualitative agreement
with the low-energy experimental data up to around
900 MeV. This provides further support for the validity of
this mixing mechanism. The predicted amplitude in the low-
energy region is given in Fig. 8. Moreover, the model
prediction for the zK phase shift is compared with data in
Fig. 9 showing a close agreement up to slightly above 1 GeV.

Next, we examine the poles of the K-matrix unitarized
amplitude. In the case of zz scattering [59] the first pole
clearly captured the properties of light and broad sigma and

0.5
0.4}
0.3}
0.2} ‘ ]
—me 0.1 “ . |
= 0
~_0.1r ]
-0.2700 m[r(1300)] = 1.2 GeV g
—0.3 | —m[(1300)] = 1.3 GeV § 1
04 e L s
0556 08 1 12 14 16
Vs (GeV)

FIG.7. Comparison of the generalized linear sigma model predictions for the real part of the I = 1/2,J = 0, zK scattering amplitude
with experimental data extracted from [89]. The predictions agree with data up to about 900 MeV range.
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FIG. 8. Comparison of the generalized linear sigma model predictions in the low-energy region for the real part of the / = 1/2,J =0,
7K scattering amplitude with experimental data extracted from [89]. The predictions agree with data up to about 900 MeV range.
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FIG. 9. Comparison of the generalized linear sigma model predictions for the phase shift in the / = 1/2, J =0 channel with
experimental data of [89]. The predictions agree with data up to slightly above 1 GeV.

the second pole resembled the f,(980). For interpretation  pole positions by solving for the complex roots of the
of the physical resonances it is conventional to look at the ~ denominator of the K-matrix unitarized amplitude Eq. (14),

pole positions in the complex plane of the analytically ip
. . > . . T2
continued expression for 7. We examine these physical D(s) = 1-iT =0, (43)
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FIG. 10. Plots of F(s,.s;) [defined in (45)] for m[z(1300)] = 1.4 GeV and A3/A; = 30. The first (second) row shows the location of
Kk (k) pole. In each row, the three subplots from left to right, respectively, represent the three-dimensional plot of F and its projections

onto F — s, and F — s; planes.

with (T%))B given by Eq. (10). We search for solutions,
U 4 isgﬂ = ﬁzf - irhjl:j of this equation, where /n;
and T ; are interpreted as the physical mass and decay width
of the j-th resonance. A first natural attempt would be to
simultaneously solve the two equations:

s0) =g

ReD(s,,s;) =0,
ImD(s,,s;) = 0. (44)

However, this approach turns out to be rather tedious to be
implemented. A more efficient numerical approach, that
was first presented in [59], is to consider the positive
function

f(sr’si) = |RC(D(S,,,SI'))| + |Im(D(Srvsi))|’ (45)

which allows determination of poles by searching for
the zeros of this function. Figure 10 shows the three-
dimensional plot of F(s,,s;) in the neighborhood of the
two isodoublet poles that the model predicts (x; and «5),
and Fig. 11 gives the contour plot of this function over the
complex s plane for values of m[z(1300)] = 1.4 GeV and
As3/A; = 30. We further solve for the exact location of
the first and the second poles which consequently yield the
physical masses and the decay widths. These are displayed

in Figs. 12 and 13 versus m([I1(1300)] for several values of
As/A;. Tt is evident that the model predicts a light and
broad isodoublet scalar meson in the K channel in
complete parallel to its prediction of a light and broad
sigma in the 7z channel. It is seen that the mass of x meson
[or K§5(800) in the PDG listing [1]] is predicted to be in the
range of 670-770 MeV and its decay width in the range
of 640-750 MeV. This provides further support for the
generalized linear sigma model [64] and the global picture
of scalar and pseudoscalar mesons below and above 1 GeV.
The mass of the second isodoublet state also receives
considerable unitarity corrections, but since the states above
1 GeV require additional effects that have been ignored
here for simplicity, we do not further analyze it here. For
comparison, the “bare” masses are given in Fig. 14.

B. Pole expansion

In this subsection we highlight an interesting property
of the unitarization methodology applied in this work.
Organizing the bare amplitude in terms of the poles and a
remaining background,
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where

1 <& 447
— KkVpaIn (14+—), (47
T2 ; Sl ( i m?y) 7

T/;} = 37/%[71'1(’ (48)

we can show that the K-matrix unitarized amplitude has a
similar mathematical structure (in the complex plane) and
can be written as a sum of complex poles and a constant
complex background,

7B n i
2 K
Ty=—L o ~T,+ l
— lB ~ gy ~5 ~
1 —iT? i1 My, — s — i L

(49)
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FIG. 15. Comparing the K-matrix unitarized I = 1/2, J =0,
7K scattering amplitude with the expansion (49) for A3 /A; = 20
and m[z(1300)] = 1.2.

which shows that the functional form of the K-matrix
unitarized amplitde resembles the bare amplitude in which
the bare masses are replaced by the physical poles in the
complex s plane. The real part of the I =1/2, J=0
scattering amplitude obtained from the expansion (49) is
verified numerically in Fig. 15.

Moreover, the bare decay width and mass of kappas
satisfy

IOFS (50)

mKiFKi 2 s=m,%i
which is again in parallel with the physical decay width and
mass of kappas,

This relationship is numerically tested for two values of
A;/A, over the range of m[z(1300)] in Fig. 16.

C. I =3/2 results

We saw in Sec. IIl that the I =1/2, J=0, zK
scattering amplitude can be fitted with various mathemati-
cal structures some of which as simple as a constant
background and a pole. The same can be said about the

=3/2, J =0 amplitude which can be independently
fitted. However, despite the success of these fits separately
for each channel, we saw that it is nontrivial to fit both at
the same time. In this section we present the prediction
of the generalized linear sigma model for the / =3/2
channel with the same parameters used in the 7 =1/2
case. Figure 17 compares these predictions for different
values of A;/A; and m[x(1300)] with experimental
data, showing a close agreement up to about 1 GeV

PHYSICAL REVIEW D 92, 113002 (2015)
0.03

Ay

A—IQO

0.02

0.01
O“_‘

0.02

0.015) 4, ~
0.01
0.005

0402 125 13 135 14 12 125 13 135 14
m[r(1300)](GeV) m[r(1300)](GeV)

— T} ==l — [T =il

FIG. 16. Comparison of ﬁ%,f i, (dot-dashed line) with |Tﬂ|
(solid line).

(and slightly thereafter). We interpret the simultaneous
agreement of the model predictions for both the 7 = 1/2
and the I = 3/2 channels (up to 1 GeV) as further support
for the generalized linear sigma framework of Ref. [64].

D. Scattering lengths

Although the present framework is not specifically
designed to probe the near threshold dynamics, we examine
its predictions for the scattering lengths to further test the
model. Expanding the S-wave scattering amplitude near the
threshold, the scattering lengths are commonly defined [94]

\/5< ¢, 4
l’lei a1+7b1+7c1+‘.. ,
0 2 0 mzzz 0 m;t[ 0

for ¢ — 0, s = (my +mg)?, (52)

where the partial wave amplitude 718 is related to our 748
defined in (9),

(1B _ﬁTIB
0 - 2 0
1

= P Al .
n _ldcosﬁ o(cosO)A! (s, t,u) (53)

Therefore,

s q'
=l Bt ). oo
b4 p 4

s = (my +mg)> (54)

In the units of (pion scattering wavelength)?*!, the
S-wave scattering lengths are then computed as follows:
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2 1

al = m lim—1t8 = m_ lim—TIB,

0 q—>0\/§ 0 q—»OL]

3 2 524B 3 1 92T!B
bé:ﬁlim— b — % i — 2,
2! q—>0\/§ 8q 2! q—0qg 8q
o = ey 2Tz 1O (55)
07 41 g=0/s Ot 4l g=0q Og*

In the present framework, these coefficients are not
expected to be very accurate since the model is designed
to give a global understanding of scalar and pseudoscalar
mesons below and above 1 GeV and hence it spans a wide
range of energy as opposed to zoom in on the near-
threshold region. Nevertheless, we have computed the
scattering lengths computed in this model and presented
the results in Figs. 18-20. In Fig. 18 we see that the model
prediction for ag does not overlap with the experimental

data and only js of the same order of magnitude. The
situation with a;, is slightly better (Fig. 19) where the model
prediction barely touches the experimental range. For other
scattering lengths (b)) and c}) there are no experimental data
to compare our predictions with, nevertheless we have
presented them in Figs. 18 and 19. It is interesting to see
how different contributions to the scattering length (some
of which large) conspire to result in a magnitude that is not
too far from experiment. This is shown in Fig. 20 where we
see that for the case of aj the large four-point contribution
is balanced by other contributions (particularly, by x, in the
s channel). This is, of course, a known feature of the linear
sigma model where such local cancellations are enforced
by the underlying chiral symmetry.

It is easy to see that the effect of the unitarizarion is
negligible. Expanding the unitarized amplitude near the
threshold,

0.287— ; -
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1
FIG. 18. zK scattering lengths computed with the bare scattering amplitude Tf)B.
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2 4
b0+q C0+ >
my

7[

q(’+zq+4q+ )

1+q* (a0+;,2[q +m—iq +--

Therefore,

(ao)szzw

Co - 3(a0)2b0m,,,

1
A—3 = 30 using bare scattering amplitude TéB.

which shows that the effects of the unitarity corrections on
the scattering lengths in this framework, are either iden-
tically zero or are of third order.

VII. SUMMARY AND DISCUSSION

In this work we further examined the generalized linear
sigma model of Ref. [64] for scalar and pseudoscalar mesons
below and above 1 GeV designed to capture the global
relations among all these states. In this framework, the
underlying connections are based on mixings among two-
and four-quark components which play a fundamental role in
understanding the properties of scalar mesons. The frame-

(57) work has been previously applied to various low-energy
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processes and its free parameters (in the leading order) have
been determined [64]. With the same fixed parameters, and
without introducing any new ones, the model prediction for
the I = 1/2,J = 0, zK scattering amplitude was calculated
and then unitarized by the simple method of the K-matrix. It
was shown that up to around 1 GeV the model prediction
agrees with the available experimental data. We then exam-
ined the two poles of the unitarized scattering amplitude in
this channel. The first pole corresponds to a light and broad
kappa meson with a mass around 670-770 MeV and the
decay width in the range of 640-750 MeV. This is consistent
with a similar prediction in the zz channel for a light and
broad sigma meson, and provides further support for the
generalized linear sigma model employed in this work. The
phase shift was computed and shown to have a better
agreement with experiment up to slightly above 1 GeV.
With the same set of parameters, the scattering amplitude in
the I =3/2, J =0 channel was examined and shown to
agree with experiment to about 1.4 GeV. Moreover, the J = 0
and I = 1/2 and I = 3/2 scattering lengths were computed
and shown that they are of the same order of magnitude as
the experimental data in the / = 1/2 channel and closer to
experiment in the / = 3/2 channel.

The generalized linear sigma model prediction for the
kappa pole computed here is quite consistent with other
findings in the literature [124,125] (this is similar to the
case of the sigma pole computed in this framework in [59]
that is consistent with the work of [16]). Overall, the
present study provides further support for the global picture
of scalar and pseudoscalar mesons below and above 1 GeV
[64] in which it is found that the scalars below 1 GeV are
closer to four-quark states and scalars above 1 GeV are
closer to the conventional quark-antiquark states (and the
reverse situation for the pseudoscalars).

ACKNOWLEDGMENTS

A.H.F. wishes to thank the Physics Department of
Shiraz University, where this work was initiated, for its
hospitality in the summer of 2012 and J. Schechter for
many helpful discussions.

APPENDIX A: COUPLING CONSTANTS IN THE
SINGLET-NONET MODEL

The rotation matrices are

4 _ 1
° ¢! Vi T2 9
n | =RyO)| 3| = |5 5 The||d|
/ 3 by by 3
n #3 FE G #3
(A1)

with a,,=(cos6, —\/Esin9p)/\/§, b,=(sinf, +\/§cos€p)/
V/3, where 0, is the pseudoscalar (octet-singlet) mixing
angle. Similarly,
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1 1
al s s 0 Sl
o | =R(0)[B]|=| B bS]
fo 53 j—% % a, S3
(A2)
with  a, = (cos@;, —/2sin8,)/\/3, b, = (sinf +

V2 cos 0,)/ /3 where 6, is the scalar (octet-singlet) mixing
angle. The coupling constants are

4) 1

Yrk = F.Fy [miarg (k) — mg — mz + asmg \gg (o)
b4
+ b%mlzsARE(fO) - \/Easbs(szARE(J)
- szARE(fO))]v
Vink = F_K (m2BARE(K) - m%)’
1

Yorr = F_as (m%ARE(O-) - mizf)’

1
Vforn = F_bs(szARE(fO) - mlzt)’

V4

1
KK = cos O, +2v/25sin 6, )(m% — m? . (0)),
YoKK \/§FK( ) (m 8are(0))
y (2v2 cos O, — sin6,) (m3 s (fo) — m%)
fokK = \/— Fr s)\MgARe\J 0 k)

(A3)

APPENDIX B: “BARE” THREE- AND
FOUR-POINT COUPLING CONSTANTS

O’V ) »
<5fu0(¢?)18(¢§)1>_2‘5"4(2“1 3)  (Bl)

<5fb oD a<¢3>1> ~4cj(a —2m)  (B)
<8 ¢3> > = —Aci(m —2m)  (B3)
(o7 ¢3)1> N 5
(oo aar) =2V .
<a ¢3>> 2v2e4 (B6)
<a<s%>la?;%v>la<¢é>l> ~ o (B7)
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<a<s§>za?;%v>la<¢;>l> = (B8)
< 9(s3),0 > (B9)
<a< 51,0 > = (B10)
< (¢2>18<¢3> 1> - (BI1)

APPENDIX C: RECOVERING CURRENT
ALGEBRA LIMIT

In this appendix we show how the known current algebra
result for this scattering is obtained from the present model.
The four-quark fields are decoupled in the limit d,, ¢ — 0
and y; — 1, in which

PHYSICAL REVIEW D 92, 113002 (2015)

mi: = =2c, + 405(01%%'0,
mi = mg = =2¢, + 12¢4ay,
my, = —=2¢, + 12¢4a3,
ml = —2c, +4 S
my = 2 +Aci(af = ayaz + a3) >0,
mi = =2c¢, +4ci(a} + aja3 + a3),
F,[ = 2(1],
16 8
my, +m,:—4cz—l—|—4 %
a a3
,C.L. 16c;  8c;
+4cjas — _Tf a% . (C1)

Note that the above masses are expressed in terms of the
Lagrangian parameters (in the chiral invariant part) together
with the vacuum expectation values of the scalar fields,
which are in turn related to the explicit symmetry-breaking
term through the minimum equations, and ensure, for
example, that the m, and mg can be expressed in terms
of the current quark masses and quark condensates, as
expected from current algebra (and hence approach zero in
the chiral limit (C.L.) as indicated above). From the above
equations we can solve for the five model parameters:

F,
a =—,
)
m3 +2m?% —3m?2 m% + 2m?
a3:F” .fl 5 fz 5 ”C_')L‘F” fl 5 .fZ,
12(m3, — my) 12my,
1 cL. 1
szz(mf]—3m) 1 ?
6 8¢
R}, 2}, = ) (o — -+ 3wy =2 . FRlo 2 ) onf, — i, 4+ 3(= T =)
i 96(5m2 + 4m2 —9m2) 96(5m?, + 4mf2) ’
mi —m2cp m3
f x C.L. Mty
G=Tom R “
Also, we have
23, 2y, ] 2 2\CL 2
ms :E(mfl —m,,)—l—i(—mf] +3mz) >ms . (C3)

We expect to recover the current algebra result when the scalars are decoupled as a result of becoming very heavy, i.e. in the

limit my = my, = m, = m, = m — co. In this limit,

lima3 :7,
lim ey = "
moee 2 T 4
-1 cL—1 16¢3 8¢
. ) _ 2 2 V83 3
Jim c3 = 96F(m o = 2m) = 96F< ol a%)’
2
. o m
’iglgoc4 =5p (C4)

T
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The physical vertices (in the limit of d,,e§ — 0 and
y1 — 1) become
},(4) = 4cf,
Yfian = 4cgan,
Yfyar = 0,
YfKK = def(2a) — a3),

Y. KK = —4\/56’2(0‘1 - 2a3),

VknKk = 4C2a3’ (CS)
which together with (C4),
4 = 2(m — miz) c.1.2m?
F; Fy’
m? — m2cL.m?
yflﬂ}‘[ szr - F% ?
Yfonn 0,
m? — m2cL.m?
VKK F72t F}z{ g
e = V2(m? —m2) cL. V2m?
f2KK Fzzz F;Zz ’
2 2 2
m°—mszCL m
KTT F,2, Fzzz

Each individual decay amplitude inherits the scalar mass
dependency via the physical vertices and propagators. The
four-point amplitude will have the scalar mass dependency

My, =&+ &EmP. (C7)
The isosinglet scalar contribution has the general structure
My =7 aal kK X (propagator), (C8)
with
YfzaV KK = Po + pim* + pym?*,

1 1 z 1
propagator = 2 =T + O(m") . (C9)
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Thus,
Jim My = py —zp; + prm?. (C10)
Similarly for the x contribution,
3 1 1 1
M =72 | —= , Cl1
K Vink 2m2 +y, 2m2+y2:| ( )
with
Veak = S0 + & m* + &ym?*,
1 Iy 1
= — -4+ 0(— Cl2
Thus,
, 3 1 2
llka.Zél — Eyl —Eyz 52+52m . (C13)
Now putting everything together, we expect
lim M,y = Mca., (C14)

which implies that the following two sum rules must be
upheld:

3 1
Sotpi—zp+ 0 — <2y1 —2)’2>5z =Mca.,
S +pr+6,=0. (C15)

We find that the second sum rule is identically upheld, and
the first one gives

—4m2(3cos@ + 1) + (3cosO + 5)s
4F2
cL (3cosO+5)s

e (C16)

Mca =

in agreement with Eq. (3.2) of Ref. [78].

[1] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38,
090001 (2014).

[2] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).

[3] S. Weinberg, Phys. Rev. Lett. 110, 261601 (2013).

[4] R. T. Kleiv, T. G. Steele, A. Zhang, and 1. Blokland, Phys.
Rev. D 87, 125018 (2013); D. Harnett, R. T. Kleiv, K.
Moats, and T. G. Steele, Nucl. Phys. A850, 110 (2011); J.
Zhang, H.Y. Jin, Z. F. Zhang, T. G. Steele, and D. H. Lu,

113002-18


http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.15.267
http://dx.doi.org/10.1103/PhysRevLett.110.261601
http://dx.doi.org/10.1103/PhysRevD.87.125018
http://dx.doi.org/10.1103/PhysRevD.87.125018
http://dx.doi.org/10.1016/j.nuclphysa.2010.12.005

CHIRAL NONET MIXING IN zK SCATTERING

Phys. Rev. D 79, 114033 (2009); Fang Shi, T. G. Steele, V.
Elias, K. B. Sprague, Ying Xue, and A. H. Fariborz, Nucl.
Phys. A671, 416 (2000); V. Elias, A. H. Fariborz, Fang
Shi, and T. G. Steele, Nucl. Phys. A633, 279 (1998).

[5] M. Wagner, C. Alexandrou, J. O. Daldrop, M. D. Brida, M.
Gravina, L. Scorzato, C. Urbach, and C. Wiese, Acta Phys.
Pol. B Proc. Suppl. 6, 847 (2013); C. Alexandrou, J. O.
Daldrop, M. Dalla Brida, M. Gravina, L. Scorzato, C.
Urbach, and M. Wagner, J. High Energy Phys. 04 (2013)
137; T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M.
Sekiguchi, and H. Wada, Eur. Phys. J. Web Conf. 3, 03010
(2010); C. McNeile, arXiv:0710.2470; C. McNeile and
C. Michael (UKQCD Collaboration), Phys. Rev. D 74,
014508 (2006); N. Mathur et al., arXiv:hep-ph/0607110;
A. Hart, C. McNeile, C. Michael, and J. Pickavance, Phys.
Rev. D 74, 114504 (2006); H. Wada (SCALAR Collabo-
ration), Nucl. Phys. B, Proc. Suppl. 129-130, 432 (2004);
T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M.
Sekiguchi, and H. Wada (SCALAR Collaboration), Phys.
Rev. D 70, 034504 (2004); N. Ishii, H. Suganuma, and H.
Matsufuru, Phys. Rev. D 66, 014507 (2002); X.-Y. Fang, P.
Hui, Q.-Z. Chen, and D. Schutte, Phys. Rev. D 65, 114505
(2002); M. G. Alford and R.L. Jaffe, Nucl. Phys. B578,
367 (2000); C. J. Morningstar and M. Peardon, Phys. Rev.
D 60, 034509 (1999); J. Sexton, A. Vaccarino, and D.
Weingarten, Phys. Rev. Lett. 75, 4563 (1995); G. S. Bali,
K. Schilling, A. Hulsebos, A.C. Irving, C. Michael, and
P. W. Stephenson, Phys. Lett. B 309, 378 (1993).

[6] I. Eshraim, S. Janowski, F. Giacosa, and D. H. Rischke,
Phys. Rev. D 87, 054036 (2013); F. Giacosa, Phys. Rev. D
74, 014028 (20006).

[7]1 J.R. Pelaez, Proc. Sci., CD12 (2013) 047; R. Garcia-
Martin, R. Kaminski, J. R. Pelaez, and J. Ruiz de Elvira
Phys. Rev. Lett. 107, 072001 (2011); J. R. Pelaez, Phys.
Rev. Lett. 97, 242002 (2006).

[8] G. ’t Hooft, G. Isidori, L. Maiani, A.D. Polosa, and V.
Riquer, Phys. Lett. B 662, 424 (2008).

[9] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Eur.
Phys. J. C 50, 609 (2007); arXiv:hep-ph/0604018.

[10] S. Narison, Phys. Rev. D 73, 114024 (2006).

[11] H. Y. Cheng, C. K. Chua, and K. C. Yang, Phys. Rev. D 73,
014017 (20006).

[12] Yu. Kalashnikova, A. Kudryavtsev, A.V. Nefediev, J.
Haidenbauer, and C. Hanhart, Phys. Rev. C 73,045203 (2006).

[13] E. van Beveren, J. Costa, F. Kleefeld, and G. Rupp, Phys.
Rev. D 74, 037501 (2006).

[14] M. Ablikim et al., Phys. Lett. B 633, 681 (2006).

[15] N. A. Tornqvist, arXiv:hep-ph/0606041.

[16] 1. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev.
Lett. 96, 132001 (2006).

[17] F.J. Yndurain, Phys. Lett. B 578, 99 (2004); 612, 245
(2005).

[18] T. Teshima, I. Kitamura, and N. Morisita, Nucl. Phys.
A759, 131 (2005).

[19] F. Giacosa, T. Gutsche, and A. Faessler, Phys. Rev. C 71,
025202 (2005).

[20] J. Vijande, A. Valcarce, F. Fernandez, and B. Silvestre-Brac,
Phys. Rev. D 72, 034025 (2005).

[21] T. V. Brito, F. S. Navarra, M. Nielsen, and M. E. Bracco,
Phys. Lett. B 608, 69 (2005).

PHYSICAL REVIEW D 92, 113002 (2015)

[22] F. Giacosa, Th. Gutsche, V.E. Lyubovitskij, and A.
Faessler, Phys. Lett. B 622, 277 (2005).

[23] T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M.
Sekiguchi, and H. Wada, Phys. Rev. D 70, 034504 (2004).

[24] T. Umekawa, K. Naito, M. Oka, and M. Takizawa, Phys.
Rev. C 70, 055205 (2004).

[25] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys.
Rev. Lett. 93, 212002 (2004).

[26] T. Teshima, I. Kitamura, and N. Morisita, J. Phys. G 30,
663 (2004).

[27] M. Napsuciale and S. Rodriguez, Phys. Rev. D 70, 094043
(2004).

[28] J. R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004).

[29] A. Ananthanarayan, I. Caprini, G. Colangelo, J. Gasser,
and H. Leutwyler, Phys. Lett. B 602, 218 (2004).

[30] E. M. Aitala et al., Phys. Rev. Lett. 89, 121801 (2002).

[31] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys.
B603, 125 (2001).

[32] M. Albaladejo and J. A. Oller, Phys. Rev. D 86, 034003
(2012); J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. D
59, 074001 (1999).

[33] N.N. Achasov, Phys. Usp. 41, 1149 (1998); N. N. Achasov
and G.N. Shestakov, Usp. Fiz. Nauk 168, 1257 (1998);
Phys. Usp. 41, 1149 (1998).

[34] K. Igi and K. Hikasa, Phys. Rev. D 59, 034005 (1999).

[35] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80,
3452 (1998).

[36] S. Ishida, M. Ishida, T. Ishida, K. Takamatsu, and T. Tsuru,
Prog. Theor. Phys. 98, 621 (1997); See also M. Ishida and
S. Ishida, arXiv:hep-ph/9712231.

[37] A.V. Anisovich and A. V. Sarantsev, Phys. Lett. B 413,
137 (1997).

[38] S. Ishida, M.Y. Ishida, H. Takahashi, T. Ishida, K.
Takamatsu, and T Tsuru, Prog. Theor. Phys. 95, 745
(1996).

[39] N. A. Tornqvist and M. Roos, Phys. Rev. Lett. 76, 1575
(1996).

[40] M. Svec, Phys. Rev. D 53, 2343 (1996).

[41] N. A. Tornqvist, Z. Phys. C 68, 647 (1995).

[42] G. Janssen, B. C. Pearce, K. Holinde, and J. Speth, Phys.
Rev. D 52, 2690 (1995).

[43] R. Delbourgo and M. D. Scadron, Mod. Phys. Lett. A 10,
251 (1995).

[44] N.N. Achasov and G. N. Shestakov, Phys. Rev. D 49, 5779
(1994); A summary of the recent work of the Novosibirsk
Group is given in, arXiv:0810.2601.

[45] R. Kaminski, L. LeSniak, and J. P. Maillet, Phys. Rev. D
50, 3145 (1994).

[46] N.N. Achasov and G. N. Shestakov, Phys. Rev. D 49, 5779
(1994).

[47] D. Morgan and M. Pennington, Phys. Rev. D 48, 1185
(1993).

[48] A. A. Bolokhov, A.N. Manashov, M. V. Polyakov, and
V. V. Vereshagin, Phys. Rev. D 48, 3090 (1993).

[49] J. Weinstein and N. Isgur, Phys. Rev. D 41, 2236 (1990).

[50] D. Aston et al., Nucl. Phys. B296, 493 (1988).

[51] E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond,
G. Rupp, and J. E. Ribeiro, Z. Phys. C 30, 615 (1986).

[52] E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond,
G. Rupp, and J. E. Ribeiro, Z. Phys. C 30, 615 (1986).

113002-19


http://dx.doi.org/10.1103/PhysRevD.79.114033
http://dx.doi.org/10.1016/S0375-9474(99)00837-4
http://dx.doi.org/10.1016/S0375-9474(99)00837-4
http://dx.doi.org/10.1016/S0375-9474(98)00119-5
http://dx.doi.org/10.5506/APhysPolBSupp.6.847
http://dx.doi.org/10.5506/APhysPolBSupp.6.847
http://dx.doi.org/10.1007/JHEP04(2013)137
http://dx.doi.org/10.1007/JHEP04(2013)137
http://arXiv.org/abs/0710.2470
http://dx.doi.org/10.1103/PhysRevD.74.014508
http://dx.doi.org/10.1103/PhysRevD.74.014508
http://arXiv.org/abs/hep-ph/0607110
http://dx.doi.org/10.1103/PhysRevD.74.114504
http://dx.doi.org/10.1103/PhysRevD.74.114504
http://dx.doi.org/10.1016/S0920-5632(03)02605-7
http://dx.doi.org/10.1103/PhysRevD.70.034504
http://dx.doi.org/10.1103/PhysRevD.70.034504
http://dx.doi.org/10.1103/PhysRevD.66.014507
http://dx.doi.org/10.1103/PhysRevD.65.114505
http://dx.doi.org/10.1103/PhysRevD.65.114505
http://dx.doi.org/10.1016/S0550-3213(00)00155-3
http://dx.doi.org/10.1016/S0550-3213(00)00155-3
http://dx.doi.org/10.1103/PhysRevD.60.034509
http://dx.doi.org/10.1103/PhysRevD.60.034509
http://dx.doi.org/10.1103/PhysRevLett.75.4563
http://dx.doi.org/10.1016/0370-2693(93)90948-H
http://dx.doi.org/10.1103/PhysRevD.87.054036
http://dx.doi.org/10.1103/PhysRevD.74.014028
http://dx.doi.org/10.1103/PhysRevD.74.014028
http://dx.doi.org/10.1103/PhysRevLett.107.072001
http://dx.doi.org/10.1103/PhysRevLett.97.242002
http://dx.doi.org/10.1103/PhysRevLett.97.242002
http://dx.doi.org/10.1016/j.physletb.2008.03.036
http://dx.doi.org/10.1140/epjc/s10052-007-0219-5
http://dx.doi.org/10.1140/epjc/s10052-007-0219-5
http://arXiv.org/abs/hep-ph/0604018
http://dx.doi.org/10.1103/PhysRevD.73.114024
http://dx.doi.org/10.1103/PhysRevD.73.014017
http://dx.doi.org/10.1103/PhysRevD.73.014017
http://dx.doi.org/10.1103/PhysRevC.73.045203
http://dx.doi.org/10.1103/PhysRevD.74.037501
http://dx.doi.org/10.1103/PhysRevD.74.037501
http://dx.doi.org/10.1016/j.physletb.2005.12.062
http://arXiv.org/abs/hep-ph/0606041
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://dx.doi.org/10.1016/j.physletb.2003.10.037
http://dx.doi.org/10.1016/j.physletb.2005.03.014
http://dx.doi.org/10.1016/j.physletb.2005.03.014
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.024
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.024
http://dx.doi.org/10.1103/PhysRevC.71.025202
http://dx.doi.org/10.1103/PhysRevC.71.025202
http://dx.doi.org/10.1103/PhysRevD.72.034025
http://dx.doi.org/10.1016/j.physletb.2005.01.008
http://dx.doi.org/10.1016/j.physletb.2005.07.016
http://dx.doi.org/10.1103/PhysRevD.70.034504
http://dx.doi.org/10.1103/PhysRevC.70.055205
http://dx.doi.org/10.1103/PhysRevC.70.055205
http://dx.doi.org/10.1103/PhysRevLett.93.212002
http://dx.doi.org/10.1103/PhysRevLett.93.212002
http://dx.doi.org/10.1088/0954-3899/30/5/008
http://dx.doi.org/10.1088/0954-3899/30/5/008
http://dx.doi.org/10.1103/PhysRevD.70.094043
http://dx.doi.org/10.1103/PhysRevD.70.094043
http://dx.doi.org/10.1103/PhysRevLett.92.102001
http://dx.doi.org/10.1016/j.physletb.2004.10.005
http://dx.doi.org/10.1103/PhysRevLett.89.121801
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1103/PhysRevD.86.034003
http://dx.doi.org/10.1103/PhysRevD.86.034003
http://dx.doi.org/10.1103/PhysRevD.59.074001
http://dx.doi.org/10.1103/PhysRevD.59.074001
http://dx.doi.org/10.1070/PU1998v041n11ABEH000507
http://dx.doi.org/10.3367/UFNr.0168.199811g.1257
http://dx.doi.org/10.1070/PU1998v041n11ABEH000507
http://dx.doi.org/10.1103/PhysRevD.59.034005
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1143/PTP.98.621
http://arXiv.org/abs/hep-ph/9712231
http://dx.doi.org/10.1016/S0370-2693(97)01089-7
http://dx.doi.org/10.1016/S0370-2693(97)01089-7
http://dx.doi.org/10.1143/PTP.95.745
http://dx.doi.org/10.1143/PTP.95.745
http://dx.doi.org/10.1103/PhysRevLett.76.1575
http://dx.doi.org/10.1103/PhysRevLett.76.1575
http://dx.doi.org/10.1103/PhysRevD.53.2343
http://dx.doi.org/10.1007/BF01565264
http://dx.doi.org/10.1103/PhysRevD.52.2690
http://dx.doi.org/10.1103/PhysRevD.52.2690
http://dx.doi.org/10.1142/S0217732395000284
http://dx.doi.org/10.1142/S0217732395000284
http://dx.doi.org/10.1103/PhysRevD.49.5779
http://dx.doi.org/10.1103/PhysRevD.49.5779
http://arXiv.org/abs/0810.2601
http://dx.doi.org/10.1103/PhysRevD.50.3145
http://dx.doi.org/10.1103/PhysRevD.50.3145
http://dx.doi.org/10.1103/PhysRevD.49.5779
http://dx.doi.org/10.1103/PhysRevD.49.5779
http://dx.doi.org/10.1103/PhysRevD.48.1185
http://dx.doi.org/10.1103/PhysRevD.48.1185
http://dx.doi.org/10.1103/PhysRevD.48.3090
http://dx.doi.org/10.1103/PhysRevD.41.2236
http://dx.doi.org/10.1016/0550-3213(88)90028-4
http://dx.doi.org/10.1007/BF01571811
http://dx.doi.org/10.1007/BF01571811

AMIR H. FARIBORZ et al.

[53] E. Klempt and A. Zaitsev, Phys. Rep. 454, 1 (2007);
arXiv:0708.4016v1.

[54] M. Albaladejo, J. A. Oller, and L. Roca, Phys. Rev. D 82,
094019 (2010).

[55] S. Weinberg, Physica (Amsterdam) 96A, 327 (1979); J.
Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142
(1984); Nucl. Phys. B250, 465 (1985).

[56] A.H. Fariborz, R. Jora, J. Schechter, and M. N. Shahid,
Phys. Rev. D 83, 034018 (2011).

[57] A. H. Fariborz, R. Jora, J. Schechter, and M. N. Shahid,
Phys. Rev. D 84, 094024 (2011); arXiv:1108.3581.

[58] A.H. Fariborz, J. Schechter, S. Zarepour, and S.M.
Zebarjad, Phys. Rev. D 90, 033009 (2014).

[59] A.H. Fariborz, R. Jora, J. Schechter, and M. N. Shahid,
Phys. Rev. D 84, 113004 (2011); arXiv:1106.4538.

[60] A.H. Fariborz, Int. J. Mod. Phys. A 26, 2327 (2011).

[61] D. Black, A. H. Fariborz, R. Jora, N. W. Park, J. Schechter,
and M. N. Shahid, Mod. Phys. Lett. A 24, 2285 (2009).

[62] A.H. Fariborz, N. W. Park, J. Schechter, and M. N. Shahid,
Phys. Rev. D 80, 113001 (2009).

[63] D. Black, A. H. Fariborz, R. Jora, N. W. Park, J. Schechter,
and M. N. Shahid, Mod. Phys. Lett. A 24, 2285 (2009).

[64] A.H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 79,
074014 (2009).

[65] A.H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 77,
034006 (2008).

[66] A.H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 77,
094004 (2008).

[67] A.H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 76,
014011 (2007).

[68] A.H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 76,
114001 (2007).

[69] A.H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 72,
034001 (2005).

[70] A.H. Fariborz, R. Jora, and J. Schechter, Int. J. Mod. Phys.
A 20, 6178 (2005).

[71] D. Black, A.H. Fariborz, S. Moussa, S. Nasri, and J.
Schechter, Phys. Rev. D 64, 014031 (2001).

[72] J. Schechter and Y. Ueda, Phys. Rev. D 4, 733 (1971).

[73] A. Abdel-Rehim, D. Black, A.H. Fariborz, and J.
Schechter, Phys. Rev. D 67, 054001 (2003).

[74] D. Black, M. Harada, and J. Shechter, Phys. Rev. Lett. 88,
181603 (2002).

[75] D. Black, A. H. Fariborz, and J. Schechter, Phys. Rev. D
61, 074030 (2000).

[76] A.H. Fariborz and J. Schechter, Phys. Rev. D 60, 034002
(1999).

[77] D. Black, A.H. Fariborz, F. Sannino, and J. Schechter,
Phys. Rev. D 59, 074026 (1999).

[78] D. Black, A.H. Fariborz, F. Sannino, and J. Schechter,
Phys. Rev. D 58, 054012 (1998).

[79] M. Harada, F. Sannino, and J. Schechter, Phys. Rev. D 54,
1991 (1996).

[80] F. Sannino and J. Schechter, Phys. Rev. D 52, 96 (1995).

[81] D. Black, A. H. Fariborz, and J. Schechter, Phys. Rev. D
61, 074001 (2000).

[82] A.H. Fariborz, Int. J. Mod. Phys. A 19, 2095 (2004).

[83] A.H. Fariborz, Int. J. Mod. Phys. A 19, 5417 (2004).

[84] A.H. Fariborz, Phys. Rev. D 74, 054030 (2006).

PHYSICAL REVIEW D 92, 113002 (2015)

[85] M. Napsuciale and S. Rodriguez, Phys. Rev. D 70, 094043
(2004).

[86] T. Teshima, I. Kitamura, and N. Morisita, J. Phys. G 28,
1391 (2002); 30, 663 (2004).

[87] F. Close and N. Tornqvist, J. Phys. G. 28, R249 (2002).

[88] B. Adeva et al. (DIRAC Collaboration), Phys. Lett. B 735,
288 (2014).

[89] D. Aston et al., Nucl. Phys. B296, 493 (1988).

[90] V. Bernard, J. High Energy Phys. 06 (2014) 082.

[91] S. Descotes-Genon, Eur. Phys. J. C 52, 141 (2007).

[92] R. Kaiser and J. Schweizer, J. High Energy Phys. 06
(2006) 009.

[93] J. Schweizer, Phys. Lett. B 625, 217 (2005).

[94] J. Bijnens and P. Dhonte, and P. Talavera, J. High Energy
Phys. 05 (2004) 036.

[95] B. Ananthanarayan and P. Buettiker, Eur. Phys. J. C 19,

517 (2001).

[96] M. Jamin, J. A. Oller, and A. Pich, Nucl. Phys. B587, 331
(2000).

[97] A. Dobado and J.R. Pelaez, Phys. Rev. D 47, 4883
(1993).

[98] V. Bernard, N. Kaiser, and U. G. Meissner, Nucl. Phys.
B357, 129 (1991); 364, 283 (1991); Phys. Rev. D 43,
R2757 (1991).

[99] C.B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek,
Phys. Rev. D 86, 054508 (2012).

[100] Z. Fu, Phys. Rev. D 85, 074501 (2012).

[101] K. Sasaki, Prog. Theor. Phys. Suppl. 186, 187 (2010).

[102] J. Nagata, S. Muroya, and A. Nakamura, Phys. Rev. C 80,
045203 (2009).

[103] S.R. Beane, P.F. Bedaque, T.C. Luu, K. Orginos, E.
Pallante, A. Parrefio, and M. J. Savage, Phys. Rev. D 74,
114503 (2006).

[104] S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 48,
553 (2006).

[105] P. Buettiker, S. Descotes-Genon, and B. Moussallam, Eur.
Phys. J. C 33, 409 (2004).

[106] J.M. Flynn and J. Nieves, Phys. Rev. D 75, 074024
(2007).

[107] E.-K. Guo, R.-G. Ping, P.-N. Shen, H.-C. Chiang, and B.-S.
Zou, Nucl. Phys. A773, 78 (2006).

[108] H. Q. Zheng, Nucl. Phys. A733, 235 (2004); Z. Y. Zhou
and H. Q. Zheng, Nucl. Phys. A775, 212 (2006).

[109] L. Li, B.-s. Zou, and G.-l. Li, Phys. Rev. D 67, 034025
(2003).

[110] A. Nehme and P. Talavera, Phys. Rev. D 65, 054023
(2002).

[111] P. Piwnicki, S. P. Klevansky, and P. Rehberg, Phys. Rev. C
58, 502 (1998).

[112] D. Black, A.H. Fariborz, J. Schechter, and F. Sannino,
Phys. Rev. D 58, 054012 (1998).

[113] B. Li, D. Gao, and M. Yan, Phys. Rev. D 58, 094031
(1998).

[114] S. Ishida, M. Ishida, T. Ishida, K. Takamatsu, and T. Tsuru,
Prog. Theor. Phys. 98, 621 (1997).

[115] M. 1. Krivoruchenko, Z. Phys. A 350, 343 (1995).

[116] T. Barnes, E. S. Swanson, and J. D. Weinstein, Phys. Rev.
D 46, 4868 (1992).

[117] J. D. Weinstein and N. Isgur, Phys. Rev. D 43, 95 (1991).

113002-20


http://dx.doi.org/10.1016/j.physrep.2007.07.006
http://arXiv.org/abs/0708.4016v1
http://dx.doi.org/10.1103/PhysRevD.82.094019
http://dx.doi.org/10.1103/PhysRevD.82.094019
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1103/PhysRevD.83.034018
http://dx.doi.org/10.1103/PhysRevD.84.094024
http://arXiv.org/abs/1108.3581
http://dx.doi.org/10.1103/PhysRevD.90.033009
http://dx.doi.org/10.1103/PhysRevD.84.113004
http://arXiv.org/abs/1106.4538
http://dx.doi.org/10.1142/S0217751X11053390
http://dx.doi.org/10.1142/S0217732309031533
http://dx.doi.org/10.1103/PhysRevD.80.113001
http://dx.doi.org/10.1142/S0217732309031533
http://dx.doi.org/10.1103/PhysRevD.79.074014
http://dx.doi.org/10.1103/PhysRevD.79.074014
http://dx.doi.org/10.1103/PhysRevD.77.034006
http://dx.doi.org/10.1103/PhysRevD.77.034006
http://dx.doi.org/10.1103/PhysRevD.77.094004
http://dx.doi.org/10.1103/PhysRevD.77.094004
http://dx.doi.org/10.1103/PhysRevD.76.014011
http://dx.doi.org/10.1103/PhysRevD.76.014011
http://dx.doi.org/10.1103/PhysRevD.76.114001
http://dx.doi.org/10.1103/PhysRevD.76.114001
http://dx.doi.org/10.1103/PhysRevD.72.034001
http://dx.doi.org/10.1103/PhysRevD.72.034001
http://dx.doi.org/10.1142/S0217751X05029204
http://dx.doi.org/10.1142/S0217751X05029204
http://dx.doi.org/10.1103/PhysRevD.64.014031
http://dx.doi.org/10.1103/PhysRevD.4.733
http://dx.doi.org/10.1103/PhysRevD.67.054001
http://dx.doi.org/10.1103/PhysRevLett.88.181603
http://dx.doi.org/10.1103/PhysRevLett.88.181603
http://dx.doi.org/10.1103/PhysRevD.61.074030
http://dx.doi.org/10.1103/PhysRevD.61.074030
http://dx.doi.org/10.1103/PhysRevD.60.034002
http://dx.doi.org/10.1103/PhysRevD.60.034002
http://dx.doi.org/10.1103/PhysRevD.59.074026
http://dx.doi.org/10.1103/PhysRevD.58.054012
http://dx.doi.org/10.1103/PhysRevD.54.1991
http://dx.doi.org/10.1103/PhysRevD.54.1991
http://dx.doi.org/10.1103/PhysRevD.52.96
http://dx.doi.org/10.1103/PhysRevD.61.074001
http://dx.doi.org/10.1103/PhysRevD.61.074001
http://dx.doi.org/10.1142/S0217751X04018695
http://dx.doi.org/10.1142/S0217751X04022657
http://dx.doi.org/10.1103/PhysRevD.74.054030
http://dx.doi.org/10.1103/PhysRevD.70.094043
http://dx.doi.org/10.1103/PhysRevD.70.094043
http://dx.doi.org/10.1088/0954-3899/28/6/318
http://dx.doi.org/10.1088/0954-3899/28/6/318
http://dx.doi.org/10.1088/0954-3899/30/5/008
http://dx.doi.org/10.1088/0954-3899/28/10/201
http://dx.doi.org/10.1016/j.physletb.2014.06.043
http://dx.doi.org/10.1016/j.physletb.2014.06.043
http://dx.doi.org/10.1016/0550-3213(88)90028-4
http://dx.doi.org/10.1007/JHEP06(2014)082
http://dx.doi.org/10.1140/epjc/s10052-007-0359-7
http://dx.doi.org/10.1088/1126-6708/2006/06/009
http://dx.doi.org/10.1088/1126-6708/2006/06/009
http://dx.doi.org/10.1016/j.physletb.2005.08.058
http://dx.doi.org/10.1088/1126-6708/2004/05/036
http://dx.doi.org/10.1088/1126-6708/2004/05/036
http://dx.doi.org/10.1007/s100520100629
http://dx.doi.org/10.1007/s100520100629
http://dx.doi.org/10.1016/S0550-3213(00)00479-X
http://dx.doi.org/10.1016/S0550-3213(00)00479-X
http://dx.doi.org/10.1103/PhysRevD.47.4883
http://dx.doi.org/10.1103/PhysRevD.47.4883
http://dx.doi.org/10.1016/0550-3213(91)90461-6
http://dx.doi.org/10.1016/0550-3213(91)90461-6
http://dx.doi.org/10.1016/0550-3213(91)90586-M
http://dx.doi.org/10.1103/PhysRevD.43.R2757
http://dx.doi.org/10.1103/PhysRevD.43.R2757
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://dx.doi.org/10.1103/PhysRevD.85.074501
http://dx.doi.org/10.1143/PTPS.186.187
http://dx.doi.org/10.1103/PhysRevC.80.045203
http://dx.doi.org/10.1103/PhysRevC.80.045203
http://dx.doi.org/10.1103/PhysRevD.74.114503
http://dx.doi.org/10.1103/PhysRevD.74.114503
http://dx.doi.org/10.1140/epjc/s10052-006-0036-2
http://dx.doi.org/10.1140/epjc/s10052-006-0036-2
http://dx.doi.org/10.1140/epjc/s2004-01591-1
http://dx.doi.org/10.1140/epjc/s2004-01591-1
http://dx.doi.org/10.1103/PhysRevD.75.074024
http://dx.doi.org/10.1103/PhysRevD.75.074024
http://dx.doi.org/10.1016/j.nuclphysa.2006.04.008
http://dx.doi.org/10.1016/j.nuclphysa.2003.12.021
http://dx.doi.org/10.1016/j.nuclphysa.2006.06.170
http://dx.doi.org/10.1103/PhysRevD.67.034025
http://dx.doi.org/10.1103/PhysRevD.67.034025
http://dx.doi.org/10.1103/PhysRevD.65.054023
http://dx.doi.org/10.1103/PhysRevD.65.054023
http://dx.doi.org/10.1103/PhysRevC.58.502
http://dx.doi.org/10.1103/PhysRevC.58.502
http://dx.doi.org/10.1103/PhysRevD.58.054012
http://dx.doi.org/10.1103/PhysRevD.58.094031
http://dx.doi.org/10.1103/PhysRevD.58.094031
http://dx.doi.org/10.1143/PTP.98.621
http://dx.doi.org/10.1007/BF01291191
http://dx.doi.org/10.1103/PhysRevD.46.4868
http://dx.doi.org/10.1103/PhysRevD.46.4868
http://dx.doi.org/10.1103/PhysRevD.43.95

CHIRAL NONET MIXING IN zK SCATTERING

[118] D. Lohse, J. W. Durso, K. Holinde, and J. Speth, Phys.
Lett. B 234, 235 (1990).

[119] S.N. Cherry and M. R. Pennington, Nucl. Phys. A688, 823
(2001).

[120] D.J. Wilson, J.J. Dudek, R.G. Edwards, and C.E.
Thomas, Phys. Rev. D 91, 054008 (2015).

[121] L. Li, B. Zou, and G. Li, Phys. Rev. D 67, 034025
(2003).

PHYSICAL REVIEW D 92, 113002 (2015)

[122] C.B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek,
Phys. Rev. D 86, 054508 (2012).

[123] J. Nebreda and J.R. Pelez, AIP Conf. Proc. 1343, 277
(2011).

[124] Z.Y. Zhou and H.Q. Zheng, Nucl. Phys. A775, 212
(2006).

[125] M. Jamin, J. Antonio Oller, and A. Pich, Nucl. Phys. B587,
331 (2000).

113002-21


http://dx.doi.org/10.1016/0370-2693(90)91920-7
http://dx.doi.org/10.1016/0370-2693(90)91920-7
http://dx.doi.org/10.1016/S0375-9474(00)00587-X
http://dx.doi.org/10.1016/S0375-9474(00)00587-X
http://dx.doi.org/10.1103/PhysRevD.91.054008
http://dx.doi.org/10.1103/PhysRevD.67.034025
http://dx.doi.org/10.1103/PhysRevD.67.034025
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://dx.doi.org/10.1063/1.3575001
http://dx.doi.org/10.1063/1.3575001
http://dx.doi.org/10.1016/j.nuclphysa.2006.06.170
http://dx.doi.org/10.1016/j.nuclphysa.2006.06.170
http://dx.doi.org/10.1016/S0550-3213(00)00479-X
http://dx.doi.org/10.1016/S0550-3213(00)00479-X

