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We propose a unified mass matrix model for quarks and leptons, in which 16 observables of mass ratios
and mixings of the quarks and neutrinos are described by using no family-number-dependent parameters
except for the charged lepton masses and only six family-number-independent free parameters. The model
is constructed by extending the so-called “Yukawaon” model to a seesaw-type model. As a result, once the
six parameters are fixed by the quark mixing and the mass ratios of quarks and neutrinos, no free
parameters are left in the lepton mixing matrix. The results are in excellent agreement with the neutrino
mixing data. We predict δlCP ¼ −68° for the leptonic CP violating phase and hmi≃ 21 meV for the
effective Majorana neutrino mass.
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I. INTRODUCTION

It is a big concern in flavor physics to investigate the
origin of the observed hierarchical structures of masses and
mixings of quarks and leptons. In the present paper, we
attempt to describe the quark and neutrino mass matrices in
terms of the charged lepton masses as only family-number-
dependent parameters with the help of the smallest number
of possible family-number-independent parameters. We
report in this paper that such an ambitious attempt has
succeeded, and what is more surprising, the number of
family-number-independent free parameters of the model is
only six for 16 observables. It should be noted that even in
the latest Yukawaon model [1] we needed ten family-
number-independent parameters. The success suggests that
hierarchical structures in all the quark and lepton mass
matrices are caused by one common origin. This result will
bring new light to help us understand the origin of flavors.
In the so-called Yukawaon model [2], the Yukawa

coupling constants are considered to be effective coupling
constants Yeff

f which are given by vacuum expectation
values (VEVs) of scalars (“Yukawaons”) Yf with 3 × 3
components for each flavor f:

ðYeff
f Þij ¼ ðyf=ΛÞhYfiij ðf ¼ u; d; ν; eÞ; ð1Þ

where Λ is an energy scale of the effective theory. Although
the Yukawaon model is a kind of flavon model [3], all the
flavons in the Yukawaon model are expressed by 3 × 3
components. The Yukawaon model is based on the basic
concepts that (i) the fundamental flavor basis is a basis in
which charged lepton mass matrix Me is diagonal and
(ii) fundamental parameters in the quarks and leptons are

ð ffiffiffiffiffiffi
me

p
; ffiffiffiffiffiffimμ
p ;

ffiffiffiffiffiffi
mτ

p Þ [not ðme;mμ; mτÞ]. These concepts
have been motivated by a phenomenological success of
the charged lepton mass relation [4] me þmμ þmτ ¼
ð2=3Þð ffiffiffiffiffiffi

me
p þ ffiffiffiffiffiffimμ

p þ ffiffiffiffiffiffi
mτ

p Þ2.

II. VEV RELATIONS

At first, we propose a model in the present paper, in
which VEVs of the Yukawaons Yf (would-be Dirac mass
matrices) take a universal seesaw form as given by

hŶfiij ¼ kfhΦ0fiiαhðSfÞ−1iαβhΦ̄T
0fiβj ðf ¼ u; d; ν; eÞ;

ð2Þ

where VEVs of the fields Φ0f, Sf, Φ0, Pf, and so on are
defined by

hΦ0fiiα ¼ ð1=ΛÞhΦ0iikhP̄fikα; ð3Þ

hPui ¼ vPdiagðeiϕ1 ; eiϕ2 ; eiϕ3Þ; hPdi ¼ vP1;

hPνi ¼ vP1; hPei ¼ vP1; ð4Þ

hΦ0i ¼ v0diagðz1; z2; z3Þ ∝ diagð ffiffiffiffiffiffi
me

p
;
ffiffiffiffiffiffi
mμ

p
;
ffiffiffiffiffiffi
mτ

p Þ; ð5Þ

hSfi ¼ vSfð1þ bfeiβfX3Þ: ð6Þ

Here ðme1; me2; me3Þ≡ ðme;mν; mτÞ. 1 and X3 are defined
by

1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; X3 ¼

1

3

0
B@

1 1 1

1 1 1

1 1 1

1
CA: ð7Þ

Here, we have assumed Uð3Þ × Uð3Þ0 family symmetries,
and indexes i; j; � � � and α; β; � � � denote those of U(3)
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and Uð3Þ0, respectively. The VEV form of Sf, Eq. (6),
breaks the symmetry Uð3Þ0 into a discrete symmetry S3.
The factor S−1f in Eq. (2) comes from a seesaw scenario
discussed in detail in Sec. III. In particular, Uð3Þ0 plays an
essential role in considering a family gauge boson model
[5], in which masses of family gauge bosons Ai

j are given
by a VEV of ðΦ0Þiα, so that the model can avoid a severe
constraint from the observed K0-K̄0 mixing.
In this model, a VEV form which explicitly breaks U(3)

family symmetry is only the form hΦ0i, Eq. (5). In this
paper, we do not discuss the origin of the values ðz1; z2; z3Þ
given by Eq. (5), which is a basic assumption in the
Yukawaon model.
A neutrino mass matrix is assumed, by adopting the

conventional seesaw mechanism, as

ðMMajorana
ν Þij ¼ hŶνiikhȲ−1

R iklhŶT
ν ilj: ð8Þ

Here, the following VEV structure of the YR (the Majorana
mass matrix of the right-handed neutrinos νR) is assumed,
according to the previous Yukawaon model [1]:

hȲRiij ¼ kR
1

Λ

�
ðhΦ̄0iikhŶuikj þ hŶT

uiikhΦ̄0ikjÞ

þ ξR
Λ
hŶT

e iikhĒiklhŶeilj
�
; ð9Þ

where hEi ¼ vE1. Here, the last term (ξR term) has been
introduced in order to give a reasonable value for a neutrino
mass squared difference ratio Rν ¼ ðm2

ν2 −m2
ν1Þ=

ðm2
ν3 −m2

ν2Þ. Exactly speaking, three terms
ĒikðŶeÞklðŶeÞkj, ðŶT

e ÞikĒklðŶeÞlj, and ðŶT
e ÞikðŶT

e ÞklĒlj

are possible as the ξR term. However, since we have
considered hEi ¼ vE1, we have denoted only one term
of the three terms in Eq. (9) for convenience.
Since we deal with mass ratios and mixings only, the

common coefficients kf, vSf, and so on do not affect the
numerical results, so that hereafter we omit such coeffi-
cients even if those have dimensions.
Let us state some remarks on our new Yukawaon model

in order:
(a) The VEV form (5) is a fundamental postulation in

the Yukawaon model. We assume that the VEV form
of Φ0 is diagonal in the flavor basis in which hSfi
takes a form “unit matrix plus democratic matrix.”
We do not ask the origin of the values of zi for the
moment.

(b) The structures of the quark and Dirac neutrino mass
matrices hŶfi are essentially determined by the
parameters bfeiβf . Since we take a superpotential

WS ¼ μ1STr½SeSν� þ μ2STr½Se�Tr½Sν�; ð10Þ
which leads to hSei ¼ vS1 and hSνi ¼ vS1, we
obtain be ¼ bν ¼ 0 in the lepton sector, so that

hŶei and hŶνi are given by a common form
hΦ0ihΦ0i. (However, this does not mean that Ŷe
and Ŷν are the same flavon.) Of course, here, we
assume R charges, RðSνÞ þ RðSeÞ ¼ 2.

(c) VEV relations are derived from the supersymmetric
vacuum conditions. The possible combinations
among those flavons are selected by R charges in
the SUSY scenario. See, for instance, Ref. [6]. For
example, the forms (4) are derived superpotential
terms

WPq ¼ ð1=ΛÞðλ1PqTr½PuP̄uPdP̄d�
þλ2PqTr½PuP̄u�Tr½PdP̄d�Þ;

WPl ¼ ð1=ΛÞðλ1PlTr½PνP̄νPeP̄e�
þλ2PlTr½PνP̄ν�Tr½PeP̄e�Þ; ð11Þ

which lead to VEV relations hPfihP̄fi ¼ v2P1
(f ¼ u; d; ν; e). We regard the VEV form (4) as
one of the special solutions in the general relation
hPfihP̄fi ¼ v2P1. [Here, we have taken R charge
relations RðPuÞþRðPdÞ¼1 and RðPνÞþRðPeÞ¼1.]

(d) The parameters ϕi (i ¼ 1, 2, 3) in Eq. (4) look like
typical family-number-dependent parameters. How-
ever, in the previous Yukawaon model [1], we have
proposed a mechanism that the parameters ϕi
can always be expressed in terms of the charged
lepton mass parameters mei with the help of two
family-number-independent parameters. The reason
is as follows: when we put ðϕ1;ϕ2;ϕ3Þ ¼
ðϕ0 þ ~ϕ1;ϕ0 þ ~ϕ2;ϕ0Þ, the phase values ð ~ϕ1; ~ϕ2Þ
are observables in fitting of the Cabibbo-Kobayashi-
Maskawa (CKM) [7] mixing parameters, but ϕ0 is
not observable. Therefore, we can always relate the
values ðϕ1;ϕ2;ϕ3Þ to the values ðme;mμ; mτÞ by
adjusting ϕ0. Therefore, for convenience, we count
the parameters ð ~ϕ1; ~ϕ2Þ as family-number-indepen-
dent parameters. (For details, see Ref. [1].)

(e) In the previous model [1], we have discussed the
VEV form PfΦ0SfΦ0Pf with Sf ¼ 1þ afeiαfX3

(not Φ0S−1f Φ0), in which we have taken the cases
that ðαu ¼ 0; Pu ≠ 1Þ and ðαd ≠ 0; Pd ¼ 1Þ. The
result comes from a rule that all VEV matrices of
flavons satisfy hĀi ¼ hAi except for hP̄i ¼ hPi�
with ϕi ≠ 0. However, in the present model, the
corresponding VEV form is P̄fΦ0SfΦ̄0Pf, not
P̄fΦ0SfΦ0Pf, so that we cannot obtain a similar
result as in Ref. [1]. Therefore, in the present paper,
the relations ðβu ¼ 0; Pu ≠ 1Þ and ðβd ≠ 0; Pd ¼ 1Þ
are only assumptions. This is a task for the future.

Finally, we summarize the parameters in the present
model. We have only six free parameters bu, bd, βd,
ð ~ϕ1; ~ϕ2Þ, ξR for 16 observable quantities [four quark mass
ratios, two neutrino mass ratios, four CKM mixing param-
eters and four plus two Pontecorvo-Maki-Nakagawa-Sakata
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(PMNS) [8] mixing parameters]. [Hereafter, for conven-
ience, we denote ð ~ϕ1; ~ϕ2Þ as ðϕ1;ϕ2Þ simply.] Note that the
number of parameters is surprisingly small. The parameter
bu gives the up-quark mass ratiosmu=mc andmc=mt, so that
we have one prediction. The parameters bd and βd are fixed
by the observed down-quark mass rations. Therefore, four
parameters in the CKMmixing matrix are described only by
two parameters ðϕ1;ϕ2Þ. The parameter ξR adjusts the
neutrino mass ratio Rν. If the value ξR is fixed, four plus
two lepton mixing parameters are predicted with no free
parameters. However, since the neutrino mass ratio has not
been so precisely measured at present, we will give
predictions of two neutrino mass ratios and four PMNS
mixing parameters (and with two Majorana phase) by
adjusting one parameter ξR as a practical matter. (See Fig. 2.)

III. SEESAW-TYPE MASS MATRIX MODEL

Let us discuss the origin of the VEV structure in Eq. (2).
The mass matrix model given in Eq. (2) is a sort of seesaw-
type mass matrix model for all the flavors. The form (2) has
been suggested by a block diagonalization of a 6 × 6 mass
matrix term in a universal seesaw model given by

ð f̄iL F̄α
L Þ
� ð0Þij hΦ0fiiβ
hΦ̄T

0fiαj −hSfiαβ
��

fRj
FRβ

�
: ð12Þ

Here fLðRÞ and FLðRÞ are, respectively, left-handed (right-
handed) light and heavy fermion fields. Exactly speaking,
we have to read f̄L in Eq. (13) as f̄LHu=d=Λ. However, for
convenience, we have denoted those as f̄L simply. The
mass matrix model with the heavy fermion mass matrix
MF ¼ −Sf with the form (6) is known as the so-called
“democratic seesaw” model [9]. The authors in Ref. [9]
have considered that the observed top quark mass enhance-
ment originates in a condition detMF ¼ 0 in the seesaw
mass matrix (12). In the seesaw approximation form (2),
the condition detMF → 0 gives m3 → ∞ for one of the
mass eigenvalues ðm1; m2; m3Þ. However, they found that
the exact diagonalization of 6 × 6 mass matrix (12)
gives m3 ∼ Λweak, for one of the mass eigenvalues
ðm1; m2; m3; m4; m5; m6Þ, where Λweak is a breaking scale
of the electroweak symmetry. The reason is quite simple:
The matrix (6) with f ¼ u takes Su ¼ diagð1; 1; 0Þ in the
limit of bu → −1 (i.e. det Su → 0), so that the seesaw
suppression affects only the first and second generations of
up-quarks, so that the third generation quark t takes mass of
the order of Λweak without the seesaw suppression.
Furthermore, the model can give mu ∼md ∼me insensi-
tively to the values of the parameters bu and bd as seen in
Sec. IV later. In spite of such a successful description of
quark masses and mixing, the authors in Ref. [9] failed to
give reasonable neutrino masses and mixing. On the other
hand, the Yukawaon model have succeeded in giving not
only reasonable quark mass ratios and mixing but also

neutrino masses and mixing. However, the Yukawaon model
needs a lot of parameters. In the present paper, we have
applied this seesaw model to our Yukawaon model.
However, note that the 3 × 3 mass matrix between f̄L

and fR is absent in the form (12). If we assume the seesaw
mechanism plus the Yukawaon model,

ð f̄iL F̄α
L Þ
 ðŶfÞij ðΦ0fÞiβ

ðΦ̄T
0fÞαj −ðSfÞαβ

!�
fRj
FRβ

�
; ð13Þ

then we obtain a 3 × 3 mass matrix between f̄0L and f0R,

Mf ≃ Ŷf þ Φ0fS−1f Φ̄0f; ð14Þ

after the block diagonalization. (Here and hereafter, for
convenience, we sometimes omit the notations “h” and “i”
which denote VEV matrices.) However, note that, in
Eq. (14), the first term Ŷf is independent of the second
term Φ0fS−1f Φ̄0f. In order to obtain the relation (2), we
make the following two assumptions:
[Assumption 1] The VEV value Ŷf and the VEV value

MF ¼ −Sf take the same scale transformation (we denote
the scale transformation as a parameter ζf):

Mf ¼ ζfŶf þ ð1=ζfÞΦ0fS−1f Φ̄0f: ð15Þ

[Assumption 2] The VEV value Ŷf is taken so that Mf
takes a locally minimum value under the ζf transformation:

∂Mf

∂ζf ¼ Ŷf −
1

ζ2f
Φ0fS−1f Φ̄0f ¼ 0: ð16Þ

Then, we obtain

Ŷf ¼ ð1=ζ2fÞΦ0fS−1f Φ̄0f;

i:e: Mf ¼ ð2=ζfÞΦ0fS−1f Φ̄0f ¼ 2ζŶf: ð17Þ

In Ref. [9], the up-quark massesmui have been estimated
by diagonalizing 6 × 6 mass matrix (12) with the input
value bu ¼ −1 with βu ¼ 0. However, in this paper, for
convenience, we use the approximate expression (17),
although the seesaw approximation (17) is not valid for
bu ¼ −1. Therefore, instead of bu ¼ −1, the parameter
value bu is fixed by the observed value of the up-quark
mass ratio mc=mt. (We will obtain bu ¼ −1.011 as seen in
Sec. IV.) We use the relation (17) for Dirac masses of all
quarks and leptons. (Hereafter, we put simply ζf ¼ 1.)

IV. NUMERICAL PREDICTIONS

We summarize our mass matrices for the numerical
analysis as follows:
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Ŷu ¼ Φ0P̄uð1þ buX3Þ−1PuΦ̄0;

Ŷd ¼ Φ0ð1þ bdeiβdX3Þ−1Φ̄0; Ŷe ¼ Φ0Φ̄0; ð18Þ

MMajorana
ν ¼ ŶνȲ−1

R ŶT
ν ;

ȲR ¼ Φ̄0Ŷu þ ŶT
u Φ̄0 þ ξRŶ

T
e Ŷe;

Ŷν ¼ Φ0Φ̄0: ð19Þ

For convenience of numerical fitting, we redefine all
VEV matrices of flavons as dimensionless matrices, i.e.
P̄u ¼ diagðeiϕ1 ; eiϕ2 ; 1Þ, Φ0 ¼ diagðz1; z2; z3Þ, and so on.
For the input values mei, we use the values at μ ¼ mZ. For
the parameter ξR defined in ȲR, we redefine ξR=Λ as ξR.
The parameter value of bu can be determined from the

observed up-quark mass ratio mc=mt at μ ¼ mZ. We
determine bu ¼ −1.011, which leads to the up-quark mass
ratios

ru12 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
¼ 0.061; ru23 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
¼ 0.060;

ð20Þ
which are in good agreement with the observed up-quark
mass ratios at μ ¼ mZ [10], ru12 ¼ 0.045þ0.013

−0.010 and
ru23 ¼ 0.060� 0.005. Here, we have used the value of
ru23 as an input value in determining bu because the light
quark masses have large errors. Although the predicted
value ru12 in Eq. (20) is somewhat large compared with the
observed value, we consider that this discrepancy is
acceptable, since the purpose of the present paper is to
give an overview of quark and lepton masses and mixings
with as few free parameters as possible.
For down-quark mass ratios, we take parameter values

bd ¼ −3.3522 and βd ¼ 17.7° which give down-quark
mass ratios

rd12 ≡md=ms ¼ 0.049; rd23 ≡ms=mb ¼ 0.027: ð21Þ
The observed down-quark mass ratios at μ ¼ mZ are a little
controversial: rd12 ¼ 0.053þ0.005

−0.003 and rd23 ¼ 0.019� 0.006
(Xing et al. [10]) and also rd12 ¼ 0.050� 0.010 and rd23 ¼
0.031� 0.004 (Fusaoka-Koide [11]). Our model cannot
give the observed values by Xing et al. Our best fit
parameter values are close to the values given in
Ref. [11]. The fittings of bd and βd have been done while
keeping in mind that they also lead to consistent CKM
mixings, since the CKMmixings also depend on bd and βd.
The explicit mass eigenvalues are as follows: ðmu;

mc;mtÞ¼ ð0.000398;0.1064;29.74Þm0 and ðmd;ms;mbÞ¼
ð0.000725;0.01467;0.5365Þm0, where m0 ¼ ðv0vP=ΛÞ2=
vS and vSu ¼ vSd ≡ vS, so that we can obtain a reasonable
md=mu ratio, md=mu ¼ 1.8, which well agrees with the
observed ratio [11] md=mu ¼ 2.01þ0.47

−0.46 . Though we obtain
ðme;mμ; mτÞ ¼ ð0.000263; 0.0555; 0.9442Þm0, the ratio
me=mu ∼ 0.66 is not in agreement with the observed value

ðme=muÞobs ∼ 0.38. We think that the common coefficient
m0 should be distinguished between ðm0Þquark and
ðm0Þlepton, and the difference is originated in the difference
of vSq ≡ vSðquarkÞ and vSl ≡ vSðleptonÞ in Eq. (6). It is
interesting that this discrepancy suggests
vSq ≃ vSl=

ffiffiffi
3

p
.

Next, let us try to fit CKM mixing parameters. Since the
parameters bu, bd, and βd have been fixed by the observed
quark mass rations, the CKMmixing matrix elements jVusj,
jVcbj, jVubj, and jVtdj are functions of the remaining two
free parameters ϕ1 and ϕ2. In Fig. 1, we draw contour
curves of the CKM mixing matrix elements in the (ϕ1, ϕ2)
parameter plane which are obtained from the observed
constraints of the CKM mixing matrix elements, taking
bu ¼ −1.011, and bd ¼ −3.3522, βd ¼ 17.7°. As shown in
Fig. 1, all the experimental constraints on CKM parameters
are satisfied by fine-tuning of the parameters ϕ1 and ϕ2 as
ðϕ1;ϕ2Þ ¼ ð−176.05°;−167.91°Þ, which predicts

jVusj ¼ 0.2257; jVcbj ¼ 0.03996;

jVubj ¼ 0.003701; jVtdj ¼ 0.009173;

δqCP ¼ 80.99: ð22Þ

Now let us present the result for the neutrino sector.
Substantial differences between the present and previous
papers appear in the parameter fitting of the PMNS lepton

FIG. 1 (color online). Contour curves in the (ϕ1, ϕ2) parameter
plane of the observed CKM mixing matrix elements of jVusj,
jVcbj, jVubj, and jVtdj. We draw the three contour curves, which
correspond to the center, upper, and lower values of the observed
constraints for each of the CKM mixing matrix elements, taking
bu ¼ −1.011, and bd ¼ −3.3522, βd ¼ 17.7°. We find that the
parameter set around ðϕ1;ϕ2Þ¼ ð−176.05°;−167.91°Þ indicated
by a star (⋆) is consistent with all the observed values.
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mixing. We have already fixed the five parameters bu, bd,
βd, ϕ1, and ϕ2 from the quark mass ratios and CKM
mixing. Therefore, the PMNS mixing parameters sin2 2θ12,
sin2 2θ23, sin2 2θ13; CP violating Dirac phase parameter
δlCP; and the neutrino mass squared difference ratio Rν ≡
Δm2

21=Δm2
32 turn out to be functions of the only remaining

parameter ξR. In Fig. 2, we draw the curves as functions of

ξR taking bu ¼ −1.011, bd ¼ −3.3522, βd ¼ 17.7°, and
ðϕ1;ϕ2Þ ¼ ð−176.05°;−167.91°Þ. As seen in Fig. 2, we
find that the predicted value of the sin2 2θ23 is almost
constant as sin2 2θ23 ≃ 1 and the value sin2 2θ12 is not so
sensitive to the parameter ξR as sin22θ12 ¼ 0.8–1.0. By
using the observed value of Rν as input, we determine the
value ξR ¼ 2039.6 in the unit of v2evE=vovuΛ, which gives
the predictions

sin22θ12 ¼ 0.8254; sin22θ23 ¼ 0; 9967;

sin22θ13 ¼ 0.1007; δlCP ¼ −68.1°;

Rν ¼ 0.03118: ð23Þ
These predictions are in good agreement with the observed
values [12] given in Table I.
Now, we predict neutrino masses with a normal hier-

archy, which are consistent with the observed oscillation
data, as

mν1 ≃ 0.038 eV; mν2 ≃ 0.039 eV;

mν3 ≃ 0.063 eV; ð24Þ

by using the input value [12] Δm2
32 ≃ 0.00244 eV2. We

also predict the effective Majorana neutrino mass [13] hmi
in the neutrinoless double beta decay as

hmi ¼ jmν1ðUe1Þ2 þmν2ðUe2Þ2 þmν3ðUe3Þ2j
≃ 21 × 10−3 eV: ð25Þ

The predictions of our model are listed in Table I. The
process for fitting parameters is summarized in Table II.

TABLE I. Predicted values vs observed values.

jVusj jVcbj jVubj jVtdj δqCPð°Þ ru12 ru23 rd12 rd23
Predicted 0.2257 0.03996 0.00370 0.00917 81.0 0.061 0.060 0.049 0.027
Observed 0.22536 0.0414 0.00355 0.00886 69.4 0.045 0.060 0.053 0.019

�0.00061 �0.0012 �0.00015 þ0.00033
−0.00032 �3.4 þ0.013

−0.010 �0.005 −0.003
þ0.005

þ0.006
−0.006

sin2 2θ12 sin2 2θ23 sin2 2θ13 Rνð10−2Þ δlCPð°Þ mν1 (eV) mν2 (eV) mν3 (eV) hmi (eV)
Predicted 0.8254 0.9967 0.1007 3.118 −68.1 0.038 0.039 0.063 0.021
Observed 0.846 0.999 0.093 3.09 no data no data no data no data < Oð10−1Þ

�0.021 −0.018
þ0.001 �0.008 �0.15

TABLE II. Process for fitting parameters.

Step Inputs Ninput Parameters Nparameter Predictions

1st mc=mt 1 bu 1 mu=mc
md=ms, ms=mb 2 ad, βd 2 md=mu

2rd jVusj, jVcbj 2 ðϕ1;ϕ2Þ 2 jVubj, jVtdj, δqCP
3rd Rν 1 ξR 1 sin2 2θ12, sin2 2θ23, sin2 2θ13, δlCP

2 Majorana phases, mν1
mν2

, mν2
mν3

Option Δm2
32 mν3 ðmν1; mν2; mν3Þ, hmiP

Ntotal 6 6

FIG. 2 (color online). ξR dependence of the lepton mixing
parameters sin2 2θ12, sin2 2θ23, sin2 2θ13, and the neutrino mass
squared difference ratio Rν. We draw curves of those as functions
of ξR for the case of bu ¼ −1.011 and ðϕ1;ϕ2Þ ¼
ð−176.05°;−167.91°Þ.
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V. CONCLUDING REMARKS

We have proposed a model which combines the
Yukawaon model [1] with the democratic seesaw sce-
nario [9], and have demonstrated that the observed
masses and mixings of quarks and neutrinos can be
described only by the observed charged lepton mass
values and six family-number-independent parameters.
The model provides an interesting picture that the
observed hierarchical structures of the masses and the
mixings of quarks and neutrinos are brought by a

common origin which comes from the charged lepton
mass spectrum ðme;mμ; mτÞ. The model also predicts
δlCP ¼ −68° for the leptonic CP violating Dirac phase,
which will be checked by neutrino oscillation experi-
ments in the near future. The prediction hmi≃ 21 meV is
also within the reach of neutrinoless double beta decay
experiments in the near future.
For a full table of our flavons together with their R

charges and full expressions of all the superpotential terms,
we will give them elsewhere.
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