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We find a class of analytic solutions in open bosonic string field theory, parametrized by the chiral copy of
higher spin algebra in AdS;. The solutions are expressed in terms of the generating function for the products
of Bell polynomials in derivatives of bosonic space-time coordinates X" (z) of the open string, the form of
which is determined in this work. The products of these polynomials form a natural operator algebra
realizations of w,, (area-preserving diffeomorphisms), enveloping algebra of SU(2) and higher spin algebra in
AdS;. The class of string field theory solutions found can, in turn, be interpreted as the “enveloping of
enveloping,” or the enveloping of AdS; higher spin algebra. We also discuss the extensions of this class of
solutions to superstring theory and their relations to higher spin algebras in higher space-time dimensions.
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I. INTRODUCTION

It is well known that the equations of motion of Witten’s
cubic string field theory [1,2]

QU + Uxl =0 (1)

resemble Vasiliev’s equations in the unfolding formalism in
higher spin theories [3]

AW + WA*xW =0 (2)

(flatness condition for connection in infinite-dimensional
higher spin algebras) that determine the interactions of the
higher spin gauge fields in this formalism, along with
equations for other master fields, containing higher spin
Weyl tensors and auxiliary fields (see also e.g. [4—6] for the
works/reviews on this remarkable formalism). Higher spin
holography strongly hints, however, that this resemblance
may be much more than just a formal similarity. The
generalized 1-form W of (2) contains all the higher spin
gauge field components in anti—de Sitter (AdS) spaces
which, by holography principle, are related to various
multi-index composite operators in the dual CFTs. Any
of these CFTs, in turn, must be a low-energy limit of string
theory in AdS,, |, with the CFT , correlators reproduced by
the world sheet correlation functions of the vertex operators
in AdS string theory, with the space-time fields polarized
along the boundary of the AdS space. On the other hand, the
second-quantized string field U, satisfying the equation (1)
is nothing but the expansion containing an infinite number of
modes determined by these vertex operators. Both string
fields and higher spin gauge fields in Eqgs. (1)—(2) are known
to be complicated objects to work with. Despite the fact that
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the higher spin theories in AdS spaces can circumvent the
restrictions imposed by Coleman-Mandula’s theorem,
describing the gauge-invariant higher spin interactions is
a highly nontrivial problem since the gauge symmetry in
these theories must be sufficiently powerful in order to
eliminate unphysical degrees of freedom. The restrictions
imposed by such a gauge symmetry make the construction
of the interaction vertices in higher spin theories a notori-
ously complicated problem. While there was some progress
in classification of the higher spin 3-vertices over recent
years, the structure of the higher-order interactions (such as
quartic interactions, presumably related to conformal blocks
in dual CFTs) still remains obscure. The structure of these
interactions is, however, crucial for our understanding of
higher spin extensions of the holography principle and
nonsupersymmetric formulation of AdS/CFT.

At the same time, the string field theory still remains our
best hope to advance towards background-independent
formulation of string dynamics. This, in turn, holds the keys
to understanding string theories in curved backgrounds, such
as AdS. Such string theories are also crucially relevant
to holography and gauge-string correspondence; however,
little is known about them beyond the semiclassical limit.

Analytic solutions in string field theory appear to be one
of the most crucial ingredients in order to approach such
string theories in the string field theory (SFT) formalism,
using the concept of background independence. To illustrate
this, suppose a string field ¥, is a solution of the equation (1).
Then the form of (1) is invariant under the shift

U - U =0+, (3)

with the simultaneous shift of the Becchi-Rouet-Stora-
Tyutin (BRST) charge Q — Q, so that 0 = 0* =0 and
the new nilpotent charge Q is defined according to

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.92.106008
http://dx.doi.org/10.1103/PhysRevD.92.106008
http://dx.doi.org/10.1103/PhysRevD.92.106008
http://dx.doi.org/10.1103/PhysRevD.92.106008

DIMITRI POLYAKOV
QU = QU + Uyx U + U, (4)

for any W. Then the new BRST charge O defines the new
cohomology, different from that of the original charge Q,
corresponding to string theory in a new background, depend-
ing on the structure of V. The advantage of this approach is
that, in principle, it allows one to explore the string theory in
new geometrical backgrounds (e.g. in a curved geometry,
such as AdS) while technically using the operator products
of the old string theory (say, in originally flat background)
for the vertex operators in the new BRST cohomology,

defined by Q This formalism is potentially more powerful
than the first-quantized formalism, which is background
dependent and where the vertex operator description is
essentially limited to the flat space-time and semiclassical
limit of curved backgrounds. Unfortunately, however, the
major obstacle is that identifying analytic solutions of the
equation (1) is hard because of the complexity of the star
product in (1). For this reason, there are not many known
examples of analytic solutions having a clear physical
interpretation. One of the most fascinating and well-known
solutions, describing the nonperturbative tachyonic vacuum
in string theory is of course the class of the Schnabl’s
solutions [7], later generalized in a number of important
papers, in particular, such as [8—12] which were discovered
several years ago and in particular used to prove Sen’s
conjecture [13-14]. Since that remarkable paper by
Schnable [7] there were many other interesting works
describing the related SFT solutions, both in cubic theory
and in Berkovits SFT theory [10-12] and [15-18] such as
algebraic SFT solutions, the analytic solutions describing
various nonperturbative processes such as D-brane trans-
lations. Despite that, classes of the SFT solutions, relevant
to particular geometric backgrounds in string theory, in
particular those that would allow us to advance towards
consistent formulation of string theories in different space-
time geometries, still mostly remain beyond our reach. One
reason for this is that the star product in the equation (1) is hard
to work with in practice [ 1-2,15], and [ 19-28]. In general, this
productis quite different from the conventional Moyal product
or the product in the Vasiliev’s equations (2), although for
certain restricted classes of string fields the star product of (1)
can be mapped to the Moyal product [29-31]. In general,
however, the star product involves the global conformal
transformations

e = (1) )

1+iz

that map the string fields living on separate world sheets
to N wedges of a single disc. The behavior of generic string
fields (containing all sorts of off-shell nonprimary
operators) under such global conformal transformations easily
wobbles out of control beyond any low-level truncation,
making it hard to evaluate the star product by straightforward
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computation of the correlators in open string field theory
(OSFT). There are very few known exceptions to that, such
as the wedge states or the special degenerate case of W
constrained to primaries and their derivatives. However,
such fields form too small a subset in the space of all the
operators. The known SFT solutions constrained to this
subset do exist. However, with the exception of the Schnabl-
related class of solutions, they are typically irrelevant to
nonperturbative background deformations (see the discus-
sion in the next section). At the same time, there exists a
sufficiently large class of the operators (far larger than the
class of the primary fields) which behaves in a rather
compact and controllable way under (5), forming a closed
subset of operators under the global conformal transforma-
tions. Typically, these operators have the form

N
N
TW) — E E Aﬁvl?..NkB(N””-B(N") (6)
=1 NIN;..N,

with the sum taken over the partitions of total conformal
dimension N of T™) and with BV (09X, 9?X, ..., 0ViX)
being the Bell polynomials of rank N; in the world sheet
derivatives of string or superstring space-time coordinates or
the ghost fields (we review the basic properties of these
objects in the next section). The structure of the correlators
of the operators of the form (6), analyzed in this work, as
well as their transformation properties under (5), makes them
natural candidates to test for the analytic solutions of (1).
At the same time, it turns out that the structure constants of
higher spin algebras in AdS can be realized in terms of the
operator product expansion (OPE) structure constants of
the operators of the type (6). This makes a natural guess that
the SFT solutions of the form (6) describe backgrounds with
nonperturbative higher spin configurations stemming from
full interacting (to all orders) higher spin theory in AdS.
More precisely, this means the following. Suppose that
somehow we manage to take a glimpse into full consistently
interacting higher spin theory and the higher spin inter-
actions to all orders. Of course the Lagrangian of such a
theory would be immensely complex, with all due restric-
tions imposed by the gauge invariance, with nonlocalities
etc. One would also expect issues with unitarity as well, at
least in backgrounds other than AdS. Assume, however, that
we managed to identify such a higher spin action and to
solve the equations of motion, i.e. to find the higher spin
configuration minimizing this action. From the string theory
point of view, such a background would correspond to a
certain conformal fixed point, with vanishing f-functions of
higher spin vertex operators. An attempt to compute such /-
functions straightforwardly would be hopeless, since that
would require summing up contributions from all orders of
the string perturbation theory. However, instead of comput-
ing the p-function, one can try to find an analytic solution

describing the shift Q — QHs from the flat background to
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the one involving the nonperturbative higher spin configu-
ration in AdS. To make a parallel to Schnabl’s solution for
nonperturbative tachyonic background note that, from the
on-shell string theory point of view, this solution describes
the minimum of the tachyon potential stemming from the
tachyon’s f-function, computed to all orders of the string
perturbation theory. Given the SFT solution for nonpertur-

bative higher spin background, the cohomology of QHS
would then describe the physical properties of such a
background. At the first glance, the structure of such a
solution must be enormously complicated. Nevertheless, try
to imagine its possible structure. The complete fully inter-
acting higher spin theory in AdS,, no matter how compli-
cated its Lanrangian might be, is largely determined by two
objects: structure constants of the higher spin algebras in
AdS and conformal blocks in the dual CFT ;_;. Moreover, as
we argue in the next section, as far as the cubic SFT is
concerned, for a substantially large class of solutions the
structure constants of the higher spin algebra (more pre-
cisely, the enveloping of this algebra) alone constitute
sufficient information to control the solutions we are looking
for. Thus, if one is able to find a class of SFT solutions
determined by the structure constants of the HS algebra, this
already would be a strong signal that it describes the higher
spin background we are interested in. The rest of this paper
is organized as follows. In Sec. II we discuss, as a warm-up
example, a set of simple SFT solutions that involves the
primary fields only and describes the perturbative back-
ground deformations. Remarkably, one particular example
of these solutions is given by the discrete states in ¢ = 1
model where both the structure constants of the AdS; higher
spin algebra appear and the vertex operators are described in
terms of products of the Bell polynomials of the type (4).
In Sec. Il we develop the OPE formalism for the Bell
polynomials of string fields, evaluating their structure con-
stants. We find that these structure constants can be obtained
from the simple generating function G(x,y) of two varia-
bles, the series expansion of which is determined by
coefficients related to AdS; structure constants. Next, we
propose an ansatz of the form (6) solving (1). The solution is
given by the certain composite function F(G) satisfying
certain defining relations derived in this paper and structur-
ally can be thought of as an enveloping of the higher spin
algebra. In the concluding section we discuss the physical
implications of our results and the generalizations relating
analytic OSFT solutions to higher spin algebras in higher
dimensional AdS spaces.

II. STRUCTURE CONSTANTS, HIGHER SPINS
AND SFT SOLUTIONS: A WARM-UP
EXAMPLE

One particularly simple and almost obvious example of a
class of string fields solving (1) can be constructed as
follows.
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Let V;(z, p)(i = 1, ...) be the set of all physical vertex
operators in string theory in the cohomology of the original
BRST charge Q (primary fields of ghost number 1 and
conformal dimension 0) and A'(p) are the corresponding
space-time fields (where p is the momentum in space-time
and we suppress the space-time indices for brevity). Then

the string field
\I/() — Z/{l Vi

is the solution of (1) provided that the zero f-function
conditions

(7)

Bi =0 (8)
are imposed on the space-time fields in the leading order of
the perturbation theory. This statement is easy to check.
Indeed, the on-shell invariance conditions on V; imply
{0.4V;} = LA* = 0 where L is some differential operator
(e.g. a Laplacian plus the square of mass) acting on A'.
Next, since the operators are the dimension zero primaries,
they are invariant under the transformations (5) and there-
fore the star product can be computed simply by using

3
NAT S <Hfzo\1/(0)>

n=1

= Cy AW (9)

i.j.k

where Cj(p. p,) are the structure constants in front of the
simple pole in the OPE of the vertex operators:

Vi(z1,p1)V (22, 2)

1
~(Z1—Zz)"Cijk(p1,pz)Vk<§(Z1+Zz),p1+pz>~ (10)

Substituting (7) and (9) into SFT equations of motion (1)
then leads to the constraints on A’ space-time fields,

LAT+ Ci a2k =0, (11)
which are nothing but 3, = 0 equation (8) in the leading
order. Note that the SFT solution (7) is entirely fixed by the
leading order contribution to the p-function (which is
completely determined by the three-point correlation func-
tions of the vertex operators) and does not depend on the
higher-order corrections (related to the higher-point corre-
lators). The higher-order corrections to the f-function only
appear on the deformation (4) of the BRST charge related
to the solution (7) which, in this case, simply reduces to
Q - Q= Q0+ Y. 4;V'. The four-point functions of the V;
vertex operators will then determine the solution of Eq. (1)
with Q replaced by Q This, in turn, will lead to the further

shift of Q in the next order, etc., so the whole procedure can
be performed order by order. The physical meaning of these
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deformations is also quite clear: they define, order by order,
the perturbative changes of the background caused by the
RG flows from the original conformal point (corresponding
to flat background) to the new fixed point (corresponding to
a certain solution of the low-energy effective equations of
motion). Physically, far more interesting is of course the
case when the operators entering (7) are no longer the
primaries of any fixed conformal dimensions and are off
shell, but still solve (1) with the constraints of the type (11).
Then A describes the background which is beyond the reach
of the conventional string perturbation theory while the
C-constants describe the new two-dimensional CFT related
to this nonperturbative background change. This is pre-
cisely the type of the higher spin related SFT solution we
will be looking for. The instructive point here (which
follows from the above discussion) is that, if we start with
the SFT equation (1) with the unperturbed BRST charge of
the bosonic theory

0= ]{dz{cT — bcoc}
= ]{dz{—;caXmaX’” + bcac} + ¢Tiiouville (12)

the higher spin solution we are searching for should not
depend on higher-point correlators or the conformal blocks,
but only on the structure constants of the higher spin

algebra. The Liouville stress tensor is given by Ty ouvile =

—3(9p)* —
time dimensions. In the rest of the paper, we ignore the
Liouville term in Q since the SFT solutions considered
in our work do not depend on ¢ except for the example
related to the ¢ =1 model (see below). In the Ilatter
case, however, the operators depend trivially on the
Liouville model (the Liouville field only appears in the
exponential dressing, needed to ensure the correct
conformal dimension of the operators and has no effect
on the OPE structure constants and the star product in
the zero limit Liouville two-dimensional cosmological
constant, considered here).

The final remark we make before moving further regards
the appearance of the higher spin algebra in the SFT
solution of type (7) at the perturbative level, as well as the
appearance of the Bell polynomials as the operators
realizing this algebra. Consider the noncritical open one-
dimensional bosonic string theory (also known as the ¢ = 1
model). It is well known that this string theory does not
contain a photon in the massless spectrum; however, due to
the SU(2) symmetry at the self-dual point, it does contain
the SU(2) multiplet of the discrete states which are physical
at integer or half-integer momentum values only and
become massless upon the Liouville dressing. To obtain
the vertex operators for these states, consider the SU(2)
algebra generated by

D52 where D is the number of space-
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Tﬂ: = fdzeiixﬁ

To :\%ax (13)

where X is a single target space coordinate and the dressed
BRST-invariant highest weight vector

v, = / dzeHI=1)0)V2 (14)

where ¢ is the Liouville field and / is the integer or half
integer. The SU(2) multiplet of the operators is then
obtained by repeatedly acting on V,; with the lowering
operator 7_ of SU(2):

U”m:Tl__mVl—ZSmﬁl. (15)

The dressed Uy, operators are the physical operators
(massless states) of the ¢ = 1 model and are the world
sheet integrals of primary fields of dimension one (equiv-
alently, the primaries of dimension O at the unintegrated
b — ¢ ghost number 1 picture).

Manifest expressions for the Uy, vertex operators are
complicated; however, their structure constants have been
deduced by [32-33] by using symmetry arguments. One
has

Ull|m1 (Z) U12|m2(w)
~(z=w) ' C(l by, L5 |my my,my) f(1y, ) Uy, ey (16)

where the SU(2) Clebsch-Gordan coefficients are fixed by
the symmetry while the function of Casimir eigenvalues
f(l1,1,) is nontrivial and was deduced to be given by
[32-33]

VI F 521 + 21, = 2)!
V205120 = )12 - D)1

Remarkably, these structure constants coincide (up to a
simple field redefinition) exactly with those of w,, wedge,
defining the asymptotic symmetries of the higher spin
algebra in AdS; in a certain basis, computed in a rather
different context [34]. Thus the primaries (15) are con-
nected to a vertex operator realization of AdS; higher spin
algebra. The related OSFT solution is then constructed
similarly to the previous one. It is given simply by

[l ) = (17)

v=> iy, (18)
Lm
with the constants A/ satisfying the f-function condition
I3|m m m
Sy A Ak = 0 (19)
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I3|m3

1ymy |Lyms = C(ll, 12, l3 |m1, my, m3)f(ll, 12) are the
AdS; higher spin algebra’s structure constants. As pre-

viously, this solution describes the perturbative back-
ground’s change

where S

Q—0=0+)> A"Uy,. (20)
I.m

The higher-order contributions to the S-function then will
appear in the SFT solutions with Q replaced with 0 etc.
Our particular goal is, roughly speaking, to find the off-
shell analogues of the string field (18) solving the SFT
equation of motion (1), with A-constants satisfying the
constraints related to the structures of the higher spin
algebras.

For that, it is first instructive to investigate the manifest
form of the operators (note that in [32-33] the structure
constants were computed from the symmetry arguments,
without pointing out the explicit form of the operators).
Taking the highest weight vector V; (14) and applying
T_ using the OPE

e—iXﬁ(Z)e(i1X+(l—1)w)ﬁ(w)

_ Z(Z _w)k—QIB(_’?ﬁX - pliI=DX+(1=1)p)V2 (W) (21)

k=0
we obtain
21- i(l— - .
Uy = T_V, = 7{ dw: B (0-DX0-00V2 (),
(22)

Here B%) = B(”)(aZ f,...,0%f) are the rank n normalized

Bell polynomials in the derivatives of f, defined according to
B0 f. ... 91f) = B (x1. ...x,) | =t prr ke

= ZBMk(xlv "'xn—k-H) (23)
k=1

Ujpp =2! 7{ dw: e<i(l—2)x+(l—1)<ﬂ)\/§(

This operator is given by the exponent multiplied by the quadratic combination of the Bell polynomials with ranks B

-1 p2-3)
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where B, (xy,...x, 1) are the normalized partial Bell
polynomials defined according to

>

Bn|k(xl, ...xn_k+1> = ' '
PloeePnokr Pri--Pn—k+1-

Xy P2 Xp—k+1 Pn—k+1
X | = e\l T/ ———
2! (n—k+1)!

(24)

with the sum taking over all the combinations of non-negative
pj satisfying

n—k+1
> pi=k
=1

n—k+1

Z jpj =n
j=1

[note that the standard Bell polynomials P") are related to the
normalized ones as P") = n!B™ similarly for the partial
Bell polynomials]. To calculate the next vertex operator,
U2 = T_Uy;_, oneneeds to pointout, apart from the OPE
(21), the OPE between Bell polynomials of the X-derivatives
and the exponents of X as well. Using the definitions
(23)—(25), it is straightforward to deduce the identity

(25)

B (2)eP (w)

a.

n B r —aﬂ+ 1 . .
= kZ:;(Z —w)* k!r((_aﬁ 1 zk) : B&X k)(z)eﬂ (w),

(26)

where a and # are some numbers and I is the Euler’s gamma
function. Note that this is the double point OPE (sufficient
for our purposes), i.e. accounting only for the contractions

between B((;Q and X (w), but not for the expansions of any of
them around some fixed point (such as z, w or a midpoint).
Using (21) and (26), it is then straightforward to obtain

—ivaX—ivax (B(—zzl\;g()z) E(w). (27)

(21-k;)

’

Jj = 1,2 with k; + k, being the length 2 partition of 2> = 4 with 1 < k;, <2 x 2 — 1 = 3. Itis straightforward to continue
this sequence of transformations by 7_ to identify the manifest expressions for all the vertex operators. For arbitrary

Ujj—m (1 £ m < 1) we obtain

Ulom = m!fdwe(i(l_m>x+(l_l>¢)ﬁ Z (—1)”<k1 ..... k) g2I=k1) p(2i=k)
m?|ky...k

B(2l_k'")

—iV2X T =iv2X T —iV2X (28)

m
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with the sum taken over all the ordered length m partitions
of m> =k, +---+k, with 1 <k; <.... <k, <2m-1
and with the parity z(k, ..., k,,) of each partition defined
as follows. Consider a particular partition of m?: k; <
ky.... < k,,. By permutation we call any exchange between
two neighboring elements of the partition with one unit that
does not break the order of the partition, e.g.

{ki <. kis <ki<ki 1 <ki,<..
—){kl S"'ki—l S(kli])

<k}

S (kipF1) <k <. <k b

(29)

Then z(ky, ..., k,,) for any length m partition of m? is the
minimum number of permutations needed to obtain the
partition m? = k; + - - - + k,, from the reference partition
m?>=1+3+5+---+(2m—1). Note that, possibly up
to an overall sign change of U, any partition can be
chosen as a reference partition. One particular lesson that
we learn from (28) is that combinations of the objects of the

YPE D (n, m} Nyt By, 1oy BU) form a basis for
the operator realization of the higher spin algebra. As we
see below, this is not incidental, as the products of the Bell
polynomials naturally realize w, and envelopings of
SU(2). In general, they are not primary fields, except
for some very special choices of the a,,, ,, coefficients in
the summation over the partitions (18). [Strictly speaking,
the products of Bell polynomials in (18)—(19) are the
primaries only for m = [; otherwise they must be dressed
with the exponents]. Two important numbers characterizing
these objects are N and k (total conformal dimension and
the partition length).

infty n )
G(H(B Z ZN' Z hkl N
N=n  Nlk,...
IO
n=0 N=n

where >y stands for the summation over ordered
length n partitions of N(O <k <k,... <k,) and the
sigma factor

G(kl’--wkn):‘Ikl!---CIk,,! (34)
is the product of the multiplicities of the elements k; of the

partition. [Note that each s, elements k; entering the

partition give rise to the single factor of ¢, ! in the o

denominator in (33).] We are looking for the ansatz SFT
solution in the form (35), that is,

U = G(H(B)), (35)

hBa..,
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The ansatz for the solution in D-dimensional string field
theory that we propose is the following. Define the
generating function for the Bell polynomials:

(30)

where P are the standard (non-normalized) Bell poly-

nomials in the derivatives of aX, and h, are some
coefficients, defining the associate characteristic function

Hx)=Y" hl';’;” .

n

(31)

This function is convenient to use in order to perform
various operations with H(B), e.g. the derivative function
H'(B) can be obtained by differentiating H(x) over x and

then replacmg — B( 2 in the expansion series obtained

by differentiatlon Next define another characteristic

function

(32)

B Z‘” gnx"
n=0 n

Then the composite function G(H(B)) generates the
products of Bell polynomial operators according to the
Faa de Bruno formula (which is easy to check by simple
straightforward computation):

. BY

naX k)

ky) —
B(a)—()ﬁ l(kl,..

hy—n BN ax) (33)

|
and our goal is to determine the coefficients 4, and g, (more
precisely, the defining constraints on these coefficients
imposed by the SFT equations of motion). @ is some
parameter which a priori is not fixed; however, we see
below that the star product for W is drastically simplified if
the tachyonlike constraint o> = —2 is imposed on @ and it is
precisely this simplification that ultimately makes it possible
to formulate the SFT solutions in terms of the functional
relations for G(H). As is clear from (33)—(35), the SFT
ansatz that we propose is given by the series in the partial
Bell polynomials of the Bell polynomials in the target space
fields. An essential property of these objects is that their
operator algebra realizes the enveloping of SU(2) with the
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enveloping parameter related to a”. In particular, a simple
pole in the OPE of these objects leads to classical w,, algebra
of area-preserving diffeomorphisms, while the complete
OPE generates the full enveloping (the explicit OPE
structure is given below). This is where the connection with
the higher spin algebra enters the game. To prepare for the
analysis of (1) using the ansatz (33)—(35), in the next section
we analyze the conformal transformation properties, oper-
ator products and the correlators of the vertex operators
involving the Bell polynomials and their products.

III. CFT PROPERTIES OF SFT ANSATZ

The first important building block in our construction of
the SFT solution is the analysis of the conformal field
theory properties of operators constructed out of products
of the Bell polynomials in the target space fields. The first
step is to determine the transformation laws for the
operators in the sum (33). We start from the infinitesimal
transformation of a single Bell polynomial. First, we need
to evaluate the operator product of the stress tensor with

Bé";{ . This can be done by using the identity

02X (z) = n1B\") neX. (36)

Then one can deduce the infinitesimal conformal trans-

(n)

formation of Ba)_( with the generator
a

1
j{ dze()T(2) = -1 f{ dze(2)0X,,0X"(z)  (37)
by using the identity

" (S.e aX ) + 6. (overlap)
(38)

5.(91e%X) =n!(5.B

with &, (overlap) accounting for the contribution in which

one of the &Xs of T is contracted with B") and another with

the exponent. Using the manifest expression for Bf,f),

81’1 ml L (OPryr )™
=y S (9
L nlpi...ps Pk r ks
where w = @X and the sum is taken over the ordered
partitions
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=

!
k= m;

=
1 <k<n; 1<I<k
PL<pr<..<p (40)

it is straightforward to establish the OPE:

0X,,(2)BY (w) = —a, Z(z —w) 1B (w) + regular.
K=

(41)

Using the OPE (41) it is straightforward to compute the

overlap transformation and to deduce the OPE between the
(n)

stress-energy tensor and By, with the result given by

T(2)BY) () = (z—w)~ OBY () + n(z —w) 2B (w)

n+1
1
—I—Z:(z—w)"“1 <n+1+a2—§(a2+2)k>
x BUF D (). (42)
Note that the coefficients in front of B(" k+1)( ) do not

depend on k when a satisfies the tachyonlike condition
a? = —2. This drastically simplifies the problem to determine
the behavior of B under the global conformal transforma-
tions in the SFT equations, the infinitesimal form of which is
defined by the OPE (42). Using the OPEs (41)—(42), it is now
straightforward to deduce the OPE of 7'(z) with the product of
any number ¢ of the Bell polynomials of the target space
fields, which will be the main building block for the SFT
solutions that we are looking for. It is convenient to introduce
the notation:

SICAC
j=1
N=> n; (43)

We have

g ntl

1 n n

T(z)R =33 (z—w)h! (nj +lta?— (e + 2)kj> byt

j=1 k=2

. 4l k41 k1

Z z— kl_km(R —nl_ri::)B(n,_ It )B[(//nm_ mt )

I.m=1;l<m
+ Nz = w) 2Ry (w) + (2 = w) " ORY " (w) (44)
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where n;...ny|;

stands for the set of ¢ — I indices with n; excluded, similarly for n,...n

PHYSICAL REVIEW D 92, 106008 (2015)

gl1.m- Given the OPE (44) it is

straightforward to obtain the infinitesimal transformation law for cRZ,‘"'""

We have
q ”/Jrlak 1
Se(cRy ™) (w) = Z < nj+1+a®—=(a® +2)k; |cRy " ""Bl,,"’ f)
=1 kaz 2
—_ a2 ’ ﬂCRnl"'n‘lll-mB(n/_k/Jr])B(”m_km+]>
1mST<m (k;+ k,, — 1)! N—nj—n,, Bw v
+ (N = 1)0eRy " (w) + €d(cRy ") (w). (45)

Now we have to establish transformation law for

cRX,‘"'n‘I under z — f(z), necessary to compute the corre-
lators in the string field theory equations of motion. This
can be deduced from two conditions: first, the global
transformation should reproduce (45) for f(z) =z +e.
Second, the form of the global transformation must be
preserved under the composition. As is well known, in the
case of the simplest nonprimary field, such as the stress-
energy tensor, this leads to the appearance of the
Schwarzian derivative of f(z) which is in fact the degree
2 Bell polynomial in log(f’(z)):

(@) =25 (~loer). o)

This is not a coincidence since for a large class of
nonprimaries in CFT the higher degree Bell polynomials
|

n; 1

ny...n, df N-1 n, i

Ry 0= () RV - Y
J=1 k=

kj+1) 4 1

x cRy By P
I m

l.m:1;1<m(

ny.. ‘lm (nl kl+1) (nm_km+l)
X CRN n— B B[// .

For our purposes, we need to compute the values of the
Bell polynomials in the transformation law (48) for the
functions /(z) = —1 (in the kinetic term of the SFT action)
and gof3(z) at z = 0 where f3 defined in (5) map the string
world sheets of the cubic theory to the wedges of the disc and

1-z2
Z)=1 49
oz) = iT— (49)
further maps this disc to the half plane, so that
90f1(0) =0
9of3(0) =3
9of3(0) = =V/3. (50)

|

correspond to the higher derivative extensions of the
Schwarzian derivative in conformal transformations.
Note that the Bell polynomials of the logarithms of
functions defining global conformal transformation satisfy
the following composition identity:

50 (1og 51060 )

= ZB” Y (log(f(9)))B™ (log(¢/ (x))). ~ (47)

making them natural objects present in global conformal
transformations. The global conformal transformations of
the Bell polynomials, consistent with the infinitesimal
transformations (45), are deduced to be given by

() (o 2, ()
dF\ N—ki—k+1 d
g(@) T B (~ee(F))

(48)

|

For that, we use the fact that if {a,, } are the coefficients in the
series expansion of any function f(x ) > %5 [assume
£(0) = 0], then &/ = 1 4 3"% B (qa,, ..., a,)x". From
now on, to abbreviate things, we restrict ourselves to the case
a* = =2, relevant to our SFT solution. We start from
B™ (klog(I'(z))) where, in particular, x = 1 — n; in the first
group of terms in (48) and k = —a? = 2 in the second. Then

B (klog(I'(2))) = z"B™ (2k, =2k, ...(=1)"2(n — 1) k).

(51)
The Bell polynomial on the right-hand side is then identified

with the nth expansion coefficient of the exponent of
—2klog z, i.e. of z72*. Therefore
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(1 -2k)z™"

B (klog(I' =" 52

(clog(l'(D) = E =gy B2
Next, we need the values of the Bell polynomials
B“”(log%(;)) with  f(z) =gofi(z) at z=0.

Straightforward calculation gives the result

B (K log dj;(z)> o = B
Z

(.. Pr.. (53)

)

0=

with

for gof3(z),

po=w(Smr 0 426 -1 (59

PHYSICAL REVIEW D 92, 106008 (2015)
for gof3(z) and

p=x(30r 50 2 -1t (59

for gof3(z). Accordingly, these Bell polynomials are iden-
tified with the expansion series of

for gof3, gof and gof3 respectively. Accordingly, the values
of the Bell polynomials are given by

d etlk=
B™(xlog( —gofi(2) ) )| = ),
dz =0 k.lm|k+I+m=n

d e
BW( klog| — gof3 = E
<K % <dz 90f2(Z)> ) S0 T em=n

(3k=)-2)

(k=) - (1 =361 —$x)0(1 - 2x)

kil'm! T(1—-3k—kI(1—1c—O0(1 =2k —m)
i(5(k=1)+%) (1 =361 =101 - 2k)
kilm! T(1-3k—k)(1 =3 —=DI(1 =2k —m)

7

1-36)0(1 =10 (1 - 2)

d eiﬂ
BW( klog| — gof3 = E
<K ° (dZ gOf3 (Z>> > =0 k,l,m|k+I+m=n

with the sums taken over the unordered partitions of
n = k + [ 4+ m. These relations altogether fully determine
the transformation properties of our string field ansatz,
including the star product.

The final step to make before actually computing the SFT
correlators is to point out the operator product rules involving
the Bell polynomial operators and their blocks. We will do
this in the next section, in particular by deriving an analogue
of the generalized Wick’s theorem for the Bell polynomial
operators and pointing out the relevance of their correlators in
the structure constants of the higher spin algebra.

IV. BELL POLYNOMIAL OPERATORS:
OPERATOR PRODUCTS AND CORRELATORS

The most crucial building block in our computations
involves the OPE rules for the operators of the SFT

5

=33

n=0 m=0

QU
Dl
‘%1/\
><1

kK m!

I(1-3x—k(1—ic=HI(1 =2k —m) (58)

I
ansatz (33)-(35) which we establish in this section.
Ultimately, it turns out that it is precisely the structure
of these OPE rules which makes it possible to work out the
SFT solution and, moreover, to relate it to the higher spin
algebra.

We stan from the simplest OPE between B( >( )

and Bﬁ _ ( ). This does not turn out to be an easy OPE

to compute. The manifest expressions (23)—(24) for the
Bell polynomials do not appear to be very helpful.
Nevertheless, there are some observations to simplify the
computation. First of all, the OPE has to preserve the
conformal transformation structure (48) of the Bell poly-
nomial operators. This suggests that the OPE must have the
structure

(59)
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(again, for the brevity we consider the double point OPE here, just as explained above). In other words, the Bell polynomial
structure (48) of the operators is preserved by (59). The next helpful hint comes from the identity (36) relating the Bell

operators to the derivatives of the exponents and from analyzing the correlator

1
CONIM!

This correlator can be computed in two equivalent ways:
one either starts with applying the OPE (26) of the Bell
polynomials with the exponents and then contracting the
remaining derivatives of X between themselves in each of
the OPE terms; or, alternatively, starting with the OPE (59)
between the Bell polynomials, containing the unknown
A-constants and then contracting the remaining derivatives
of X in each of the operators with the opposite exponent.
Comparison of these two expressions identifies the re-
markably simple OPE structure:

BB (w)
= (B ()BLY (w): B (@B )z (1)

i.e. the OPE coefficients are simply given by the two-point
correlators of the lower rank polynomials:

M)y = Ay = (2= W)™ (B (2B (). (62)

The last step is to compute the two-point correlators and
somehow this again does not turn out to be an elementary
exercise. Straightforward calculation using the manifest
expression (24) for the Bell polynomials and the Wick’s
theorem leads to a complicated sum over partitions which
does not seem to be realistic to evaluate and does not look
illuminating or useful for our purposes. Instead, we start
from the identity

B

— Lo
n aX

a

+aoXB\""). (63)

><¢\_/

Inserting this identity in the correlator (62) and using the
OPE (59) we obtain the recursion relation

N
_,

n+m-—1
An|m:_T n— l|m_7§:/1n 17+ (64)
=1

This recursion relation can be simplified by repeating the
above procedure and inserting the identity (63) into the
correlator (B")B("=1)) obtaining the similar recursion
relation for 4,,,_; and subtracting it from (64). Then the
recursion becomes

VM < X (z7)e

o)) = (o =)0

(1 -ap)
NIMIT(1-af-M —N)

n(ﬂn|m - A’n|m—1) = _(n +m— 1)/1n—1|m

+ (I’l +m _2_aﬁ)l}1—l|m—l (65)
with the obvious physical constraints
Aok = Akjo = Sox- (66)

To solve this recursion, define the generating function
x y) = Zﬂrﬂm-xnym’ (67)
m,n

multiply the recursion (65) by x"y” and sum over m and n.
This leads to the first order partial differential equation for

Fi(x,):
(1=Y)(1 +X)0F; + y(1 = V)O,F, + @pyF =0 (68)
with the boundary conditions

F;(x,0) = F;(0.y) = L. (69)

This equation is not hard to solve. Defining

& =1log(1+x),
G(x,y)

the equation simplifies according to

n = log(y)
= log F(x,y) (70)

aﬁ y
e_r]

:G(&n) +0,G(&n) - =0 (71)

and is equivalent to the characteristic ordinary differential
equation system

de _dn_ |
ds ds
dG @By
— = 72
ds 1—e™ (72)
so the general solution is
Glen) =t - +h [ (13)
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Substituting G(0,7) = 0 then fixes H to be

H(& - 1) = aplog(1 - ) (74)
so the solution is
(1+x)(1 —y)>‘aﬁ
F,(x, Y A AT S
ﬂ(xy> ( (1+x—y)
1
ﬁn|m = maﬁa'fﬂ(x’y”x,y:o- (75)

(: BB s () BUW B (W) [yt

a

e S

q
partitions[a;; ;] i=1 j=

1

with the constraints

~.
Il
=

>

Il
-

[
&
~.
I
o

NS
S

I
N@}

~.

< L
-
I
= -
=
I
=

s;=N (77)

M= 5
3

Il
M-

i=1

~.
Il
—_

where the notations are as follows. We have introduced the
exchange numbers a;; indicating how much of the total
conformal dimension n; of the B!")(z)-operator in the
product of the Bell polynomials on the left at z is
contributed to its interaction with the operator B("/)(w)
in the product of the Bell polynomials at w on the right,
according to the OPE structure (59). Similarly, the ex-
change number f3;; indicates the reduction in the conformal
dimension of B"J)(w) on the right as a result of its
interaction to B")(z) on the left. Altogether, this corre-
sponds to the order of (z —w)~% /i term in the OPE of
these two operators entering the left and right chains,
contributing to the overall correlator. Thus rj—numbers,
forming the length ¢ partition of N (as opposed to the
length p partition of N, formed by 7;) indicate the total loss

PHYSICAL REVIEW D 92, 106008 (2015)

This solution, describing the correlator of two Bell poly-
nomial operators is related to the higher spin algebra in
AdS; and determines the parameter y of the enveloping
T(u) of SU(2) [32-33] and [35].

Next, using the OPE (64) and (75), it is straightforward
to identify the world sheet correlators of the products of the
Bell operators in terms of the 4,,, -numbers, relevant to wg,
and to the SU(2) enveloping generators, as well as to our
SFT ansatz (33)—(35). The result is given by

M:m|+-~+mq

(47, (kﬁl o(anelBi) !) o <ﬁ a(apk\ﬁkp)z> B <H o(s) !) T e

k=1 =1

[
of conformal dimension of the complete operator on the left-
hand side at z due to the interaction with the single
polynomial B") (w) on the right. Similarly, the s;-numbers,
forming the length p partition of M (as opposed to the length
q partition of M formed by m;), indicate the total loss of
conformal dimension of the complete operator on the
right-hand side at w due to the interaction with the single
polynomial B")(z) on the left. Next, o(a|B,)(j =
1,...,p) indicates the multiplicity of the array of the
exchange numbers a; |f;; in p arrays of the length ¢ each:
{aji|Bijs .. ajylBy;} (G=1,...p), similarly to (34).
Finally, o(s;) counts multiplicities of the s-numbers defined
above [again, similarly to (34)]. As before, all the partitions
are considered ordered. While the sum (76) involving the
products of the exchange numbers, summed over the
partitions, looks tedious, there are some significant simpli-
fications in important cases, when the partitions are summed
over.

In fact, we are particularly interested in objects of
the type (43) with the partitions summed over, as, e.g. in
(33)—(35). Let us again start with the simplest possible
warm-up example of summing over the partitions—with all
the partition elements summed over uniformly, that is, with
the sum being a Bell polynomial of Bell polynomials.
Namely, consider the elementary example of a toy string
field given by

and let us calculate the simplest SFT correlator
(¥(1)¥(0)). To calculate this correlator, the expression
(76) must be further summed over the partitions according
to the definition (78) of the toy W. Take the product (76),
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defining the correlator (B")....B")(1)BU™) .. .B(m)(0))
and let us begin with the summation over partitions
in the second operator at 0. Consider the first row in the
product (76)

q

~ > @

-1
a,]\ﬂj, (HG alBrr) > (79)
partitions(ny,s;) j=1
with the sum taken over the partitions of n; and s, into the
exchange number sets. This row completely describes the
interaction of B with the array of the Bell polynomials at
w with M being the total conformal dimension of the array.
Let us calculate the effect of the partition summation (78)
for this row. Now, in addition to the summation over the
above partitions, sum over all the partitions of M with
lengths 1 < ¢ < M and uniform weights for each gq.
It is then straightforward to check that the result will be
given by the series expansion coefficient of the following

simple generating function:

a,,\/;,, (HU aiilfrr) >
partitions(ny,s,) j= 1

L o 1
oylsy! 0r0; (1 Fy(x, Y)>|x’y0‘ (50)

The same procedure can be repeated for the remaining

q -1

p — 1 rows parametrized by (n;,s;),j = 1,...p, leading
to the
N Oy ‘8‘(7“) ..0 ”8”(—”))
nilsyl...n,ls ), o(n|s)]!...[o(n,]s,)]!

Finally, let us sum over the partitions for the first string field
at 1. For the fixed values of N and M the result is

1
e (=)
“MIN! [p——

so the two-point function of the toy string field (78) is

—sovor Ll @)

y
F/l x,y=0

x,y=0

_ Z+w
Uy o (DT (2) = (2= W) (Napr = N1 p2) Ty ot (—)

N1+N2

+
n=2

Although we have not computed the y,, coefficients in this
paper explicitly, such a computation does not look like a
conceptual challenge and the result must be anyway
determined by combinations of the A-numbers (75)
stemming from the two-point correlators of the Bell

PHYSICAL REVIEW D 92, 106008 (2015)

(T(1)W(0)) = & T,

y=1. (82)

The objects of the type (78) are of interest to us both
because they are relevant to our SFT ansarz and, at the same
time, form an operator algebra realization of w, and SU(2)
envelopings. Namely, instead of the string field U (78)
consider the field

xpNI,,:zp: > <f[[a(n,.)]—'>3<m>....3<nq> (83)

(it is easy to see that the toy string field W is given by
U=>%, Wy ). This field is characterized by the num-
bers N and p, with the first being its total conformal
dimension and the second indicating the maximum length
of the “words” made out of Bell polynomial “letters,”
contained in the string field “sentence” Wy ,. Let us

compute the OPE of two sentences Wy, (z) and

Wy, (p,(w) around the midpoint 3(z+w). Clearly, the

conformal transformation properties of the Bell polyno-
mials imply that the Bell polynomial structure must be
preserved under such an operator product. It is also
clear, from the OPE structure (61) and (76) for the Bell
polynomials that the terms (sentences)of the order
(z—=w)™™(N > 0) would consist of words of conformal
dimension N; + N, — N and lengths up to p; + p,. For
N =1 this sends a strong hint towards the emergence of
we and of SU(2) envelopings for higher-order N values.
Indeed, straightforward calculation, using (61) and the
recurrence relation (63) leads to the following midpoint
OPE simple pole

\IlNl P (Z)\IJNZ\PZ (Z)

B Z+w
= (z=w) " (N2p1 = N1p2) VN Nyt py 4y (‘ )

2
(84)
and the general OPE structure
2
z+w
“Yn N17P1|N2 Pz)‘I’N +Ny—n|p+p> (T) (85)

|
polynomials. So we recognize classical w,, at the simple
pole and the enveloping 7'(u) of SU(2) at the higher-order
singularities with the p-parameter related to the A-numbers.
Note that this is the midpoint OPE. If, for example, one
needs to compute the OPE around the w-point, the
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right-hand side of (85) must be shifted from 1 (z + w) to w
by the appropriate series expansion in é (z —w). This way,
the full enveloping algebra will appear, for example, in
commutators of the charges § dz¥ .

Now consider a more general example of a string field,
relevant to our ansatz. Consider again a generating function
of the normalized Bell polynomials

- hn n
= Z—!Bé;%

n=0

H(B)

DD HTIDS > ;

N=0 M=0 n=0 m=0 Nl|py...p, Mlq; ...

N

x ] 1_[’1 aij|pji (HO' aiilPrr)

partitions[a;;.f;;] i=1 j=1

with the constraints

> a;=ry;

ij:Zs,»:N (87)

with the multiplicity o-factors, exchange numbers and r,
s-numbers defined as before. By direct comparison, it is
straightforward to realize that the lengthy expression on the
right-hand side of (86)—(87) is just a series expansion of the
relatively simple generating composite function, that is, it
can be cast as simply as

(U(1)0(0)) = G(H(Fy(x.y));
H(F;(x, ) |=y=1 (88)

where the function of two variables G(x, y) is related to the
function G(x) with the single argument according to

~ _ 9m9n m.n

Glx,y) = 3 I oy (59)
m,n

where g, are the expansion coefficients of G. It is
instructive to generalize this two-point correlator to the

PHYSICAL REVIEW D 92, 106008 (2015)
and the string field given by

¥ = GoH(B)
where
G(x) = In
n=0 n!

with some fixed coefficients /,, and g,. Using the OPE rules
and the formalism developed above, the calculation of the
two-point function gives

iy by, hy,

'cn qm'l_L,[ o(pi))lfe(q;))!
) (HU k| Prn) > <H0 51) ) B (86)

I
case of two different string fields, that is, for the case of
string fields of the type (84) with the different H-functions,
but with the same G-function. The calculation, completely
similar to the above, gives

U, = GoH,(B)
U, = GoH,(B)
(U (1)W5(0)) = G(H,(F(x.y));
H2<F/1(x’y)))|x=y=1' (90)

The next step in the computation of the SFT correlators
relevant to the equations of motion in SFT is to determine
how the global conformal transformations by /(z) and
gi(z) = gofi(z) act on the string fields of the type (84).
Using the transformations (48)—(58), it is not difficult to
deduce that, under any of these conformal transformations
[denoted by f(z) for brevity] the string field (84) trans-
forms as

U= G(H(B)) - fU

ZZaf (k,n)

nlk

— 1)0H(B) + 0} ' H(B)]

) k+Il=n—1

Z > *HO'HB,(k.1|n) (91)

m,n=1;m<n k,l=1;m<n

with the differentiation rules for G and H explained above
(31)—(32) and with the coefficients a; and 3 related to the

conformal transformations by 1(z) = —1 and gof3(z) (5),
(49) according to
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1T(2n—-1)
e (k. n) = KT(2n— k)
Aoy (ko) = : (_g>n_k > o 5( =5 (L= )P 1_%(1 e
e k\ 3 wbelatBiemko1 alble! T(1=3(1-n)—a)l'(1 =5(1=n)=b)I'(1=2(1-n)-c)
=L (- % e(leb)20=c (1 =3(1=n)I(1 =(1 = n)I(1 =2(1 - n)
3 n)=—\—=
REHO k\3) oS @bl T(I=3(1-n)-al(-{(1-n)-pI(1-2(1-n)-c)
o om =L (8) oBa-b0—c  [(1=3(1 = n))I(1 = (1 = n))D(1=2(1 - n))
HE K\3) b, abled T —3(I—n)—a)(1-1(1—n) - b)'(1-2(1—n)—c)
(92)
and
)_ 2 2\ n—k=1+1 1"(_3)
VS -0\ 3 (=1 —k—1)
ﬁgoﬁ(z) ”) = 1 <_ §> o e%[(a_mz_c 7 F(_%)I:(%)F(_:)))
THE k+i-1\ 3 wreare s @bl D=l ({-b)I(-3-0)
1 8\ n—k—l+1 (%(a—b)+352) n—c r'(-Hrdr-3
Prorsia (ko lin) =1 1<_3> : ble! (-] ( ;)I(S)b(r )3
) +i= a,b,cla+b+c=k+1-2 ab:c: (_§ - [l) (§ - ) (_ - C)
.= 1 <8> n—k=1+1 e(§la=b)-25) n—c L(-HrEr-3) (93)
Of’; T 7 1 >y 7
Py k+1-1\3 abclatbTamkil2 able!  T(=%-a)l(

Furthermore, our notations in (91) are defined as follows.
Consider a function of the normalized Bell polynomials

f(BhBZ? ) = Zn>0anl<7,n)
f(B) given by the formal series in auxiliary argument B
f(B)=>,-0f«B". Consider a transformation f(B) —
9(B) where g(B) =>_,9,B" can be obtained from f by
differentiation over B, integration, multiplication(s) by B
and/or their combination. Then the formal series for g(B)
define the new associate generating function of the nor-

= anan],n) by

and the associate function

malized Bell polynomials ¢(By,...,B,)

identifying B" — Bg).

This fully determines the transformations of the SFT
string field ansatz under the conformal transformations
mapping the world sheets to the wedges of the single disc
and then to the single half plane. The next step is to point
out the action of the BRST charge on the string field ansatz.
This too can be reduced to the transformations of the ansatz
functions G and H. Since the only SFT correlator involving
the BRST charge is <QW¥|U>»> = (QW¥(0)Io¥(0)) and
both ¥ and /oW are proportional to ¢, the only terms in the
commutator with the BRST charge (12) contributing to this
correlator are those proportional to dcc and 9*cc, while
all the terms in QW containing higher derivatives of

the c-ghost do not contribute to the correlator since 0" cc ~

B Voce with o being the bosonized c-ghost. Such terms
do not contribute to the two-point correlators since the Bell
polynomials in the derivatives of the bosonized c-ghost

BV cannot fully contract to the c-ghost of the opposite
string field for n > 2. Using the OPE (61)-(62) and (75) it
is straightforward to show that for the string field W
(33)—(35) the relevant terms in the BRST transformation
are given by

QV=0QcG(H(B))=
—|—%82ccBaéG

Jdcc(BOgG(H(B))—G(H(B)))
(H(B))

= 0c(BOY — ) —|—%8ch8§‘11 (94)

with the notations explained above. With all the above
identities it is now straightforward to calculate the SFT
correlators. The three-point correlator is then computed
to give

<g1°G(H(B))(0)g,°G(H(B))(0)g30G(H(B))(0)>
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Here

my o mp  mj

SIS D SIS S S VDS

ny,1y,n3=0 my,my,m3=0 q,45,q3=0 k; =0 k=0 k3=0 N,R,T=0 N|n, ...

gq +]gq +1gq +1
X {Whmlhmzh h .h qlhrl"'hrqz e
q+1
-1 -1
x H o <lau.l‘ﬂl.y’ '“ﬂay.q2+l‘ﬂq2+l.y) (A&u.] ‘ﬂ].u’ o
p=1
— 1 1 —1/~(1 ~(1 — 2 2
x o1 (s\V, ...sfh)ﬂ)o 1\, ...sfhll)o (s, "‘S511)+1
) o1, .50

+ permutations(g; oW, g,oW, g30¥)

where the exchange numbers are defined similarly to the
previous case, as well as the o~ '-factors, defined by
products of array multiplicities in the relevant partitions.
Next, the s, S-numbers are similar to the r, s-numbers
defined previously and are related to conformal dimension
losses of string field components due to interactions with
partition elements (individual Bell polynomials) in com-
ponents of two opposite string fields. Altogether, these
numbers satisfy the following constraints:

g+l q5+1
Zaif + Z&U =n(i=1,....,q.+1)
J=1 J=1
@1 +1 g+l
Zﬁzj + Zﬁij =r(i=1..,0+1)
Jj=1 Jj=1
q+1 qr+1
Zy,]+2y,, (i=1,..q5+1) (97)
and
q1+1
a;=sVG=1...q+1)
i-1
q+1
Yoa;=5"G=1qs+1)
i=1
qx+1
Zai-i = sﬁz)(j =1,..,q+1)
i=1
@+l
Y By=50=1 g+ 1)
i=1
q3+1
Zy,-j = s5-3>(j =1,...q,+1)
i=1
qr+1
Y= =1 g+ 1) (98)

i=1
and furthermore

-1
ﬂay.q3+l‘ﬂq3+].u) H o (
v=1
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N+my—ky R+my—ky T+m3—ks

ZZZZZ

‘11 erl Tlll

@+l qi+1 g3+1 qi+1 g3+1 gr+1

’ tqz x H H H H H H ﬂa’l/l‘ﬂllll alz/z‘ﬂ/ztzﬂa,w\ﬂjzlz

=1 ji=1 ip=1 j,=1 iz=1 j3=I
(12+1

)

a1 lp @ g5411Pgy+10

Yol (37,52 e8P, s )

g3+ q:+1

)((q2_|_ 1)‘((]3 4 ) ) 1+1((q3 + 1) ) 2 HION+T) — N1+m1—k1(\/g)N+R+T+m1—k1+m2—k2+m3—k3}

(96)
[
q1+1 gr+1 q3+1
N—|—m1—k1 = Zni: ZS§1)+Z§§1>
i=1 j=1 j=1
q2+1 q;+1 qz+1
R+ m, — Z rp= Z Z §§2)
j=1
q3+1 q,+1
T ms - ZI—ZS +Z (99)

In other words, the exchange numbers that form the OPE
structure of the Bell polynomial products can be visualized
as “partitions of partitions” of the conformal dimensions of
the string field components.

This constitutes 7', the first out of four terms contrib-
uting to the three-point correlator. The remaining three can
be obtained from 7| by a few simple replacements/
manipulations. That is, 7', is obtained from 7' by replacing
one of three a coefficients in (96) by the p-coefficient,
a(ky,ny) = p(ky, I|ny), with k;, I; being summed over
from O to k; + [ = n; inserting an extra h-coefficient in
the sum according to h,, h,,, h,,, — h,, h,,, h,, h,,, replac-
ing the difference m; —k; - m; +my — kl — 11 and
finally replacing g; +1 — ¢; + 2 in the upper limits in
the products over j; and j, in (96)—(99), as well as in the
relevant g-coefficient [the first among three in (96)] and in
the relevant ¢~'-factors, increasing their number of argu-
ments by one unit—and finally, permuting over the con-
formal transformations by g, ¢g», g3, as in T;. Thus the
T,-contribution has the aaa-structure, while T, carries the
paa-structure. Similarly, to obtain 7’5 out of 7', one further
replaces the second a-coefficient by the p-coefficient,
alky, ny) = P(ky, LL|n,), inserts an extra h-coefficient in
the product, i, ...h,,, = hyy,, ... 1y, ", and further replaces
mz—k2—>m2+m5—k2—lz and qZ+1—>CI2+2
according to the prescriptions explained above. This,
upon the permutation over the conformal transformations,
similar to the above, gives the T5-contribution with
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the ppa-structure. The final contribution, 74, having the  Nevertheless, it is straightforward to check that, just as in
ppp-structure, is obtained similarly from 75 by replacing  the elementary warm-up example demonstrated previously,
the last remaining a with $ and performing the manipulations ~ the complicated sum given by (96)—(99) can be converted
identical to those described above. The overall expression for ~ successfully into the generating composite function and
the three-point correlator thus looks complex enough.  identified with its series expansion. Namely, we obtain

K,(G

K3(G(H(

H(F,)))

LY|UrT>> = <Lg1°G(H(B))(0)g,°G(H(B))(0)g3°G(H(B))(0)> =

K;( (100)

4
=1

J

ny ny N

Z Z Z Z Z Z ZZZ{ a, (ky,ny)ay, (ky,no)ay, (ks,nz) +ay (ky,ny)ag, (ky,ny)ay, (ks, n3)
5=

2
Z01,=013,—0k; =0k, —0i;—0 0—1 R—1
+0‘g2<k1,"1)0‘gl(kz,nz)%3(k37n3>+“g2(k17n1)ag3(k2,"2)%1(k3,n3)+0‘gg(k17n1)0‘gz(k2,”2)agl(k3,"3)
+ay, (ky.ny)ay, (ky.ny)ay, (ks n3) YO HF,(x.9)], 508 H(F,(x.9))|, 2308 HF,(x.3))],, 3
X G'(9CH (F(x,y))),,= 3G (OfH(F 1(x,9))) . y—23G (P H(F3(x,9))) /3 (101)

oo oo kit+li=n; ny n3 ki+lL—-1 ky k3

ZZZ Z ZZ Z ZZﬂgl ky, Ly |ny)(ay, (ka, np)ay, (k3 ns) + ay, (ka, np)ay, (k3. n3))

=01,=013=0 k1.[;=0 ky=0k;—
x G”(ﬁQH (Fy(x,))) Ix,y:ﬁG'(aRH (Fr(x ) y=2v3

X G (0 H(F;(x,9)))]y—ya(05 H(Fy(x.9))], - 508 H(F,(x.3))],.,
X O H(F;(x.3) |y —ay50F, HF, (6. 3) o y3) + By (kr L ) ag,<kz,nz> , (ks m3)

+ay, (ko ma)ay, (k3. n3))G"(0CH (F(x.)))],, 253G (ORH(F,(x.3)))| ., 3G (O°H (F3(x, )l -5
X (O H(F,(6,0)) o030, HFA(%3) |y 508 HF:(6,9))] ¢y 308 HE(5,9))] - 5)

+ By, (ki Li|ny) (@, (kys na)ay, (ks nz) + ay, (ky, ny)ay, (k3. n3))

x G'(0%H (F;(x,)))|,,— 3G (ORH(F;(x, ), 3G (°H(F3(x, )| y—2v3

x (O H(F(x.3))|, o 508 H(F (2. 9))] o 302 HF, (x.9)) ]y 308 HF1(x.9),yo05)  (102)

)
(

ky+l=n, ky+l=n, ny ki+h—=1ky+bhL—-1 k3

UED3 3D I SEEED DD OB b 9 DCACR TN SIS

=0k, <l kyly=0iky <l ky—

+ By, (k1,1 |”1)/7’g1 (ky,, r|ny)) e, (k3. ”3) "(OCH (F;(x,9))|, y=y3G" (ORH(F;(x, ), y—2v3

X GO H(F (%, )|y 3 (0 HF (5, 9)) .y 50, H(F2(6 )]y 3OF HF (5, 9)) s

x O H(F3(%.9))]ymaym) O HF (6, 9)) |, ym s + (B, Uy 1m0 By, (Koo Lo |ma)

+ By, (kis L) By, (kay s Lo na))ay, (k3. n3) G" (02 H(F(x, ¥))) =23 G (ORH(F1(x, y)))| =3

X G (OSH(F(x, 9)))| =3 (08, HF (2, 9))\, s 508, HF (3, 9)) ,y o 5OF H(F (5, 9)), 3

x 0 H(F2(6 ) yym) 08 H(F2 (6, 9)) ]y gz + By, (ki L1y, (s o)

+ By, (kis L)y, (kas s Lo na))ay, (ks, n3) G" (O2H(F;(x, )|, o 3G (ORH (F4(x, )= /3

X G'(OSH(F (%, )] ymaya (08 H(F2(5, ),y 303 H(F3 (6, 9) e 302 HF,(5,9)) ] oy

x 0 H(F2(x, )| yoy3) 05, H(F2(5, )]y oav3 (103)

106008-16



SOLUTIONS IN BOSONIC STRING FIELD THEORY AND ...

x (By, (kl, 11|"1)ﬂg2(k2, b|na)By, (k3. lz]n3) + By, (ki L) By, (ko o[na) By, (k3. 13]n3)
+ By, (ks L |no) By, (ks L ny) By, (ks I3 |ns) + By, (Ko, L |na) By, (ks Li|ny ) By, (ks 13 |ns)
+ By, (ks, 3|n3) By, (ks L ny) By, (kas L |no) + By, (ks I3|ns) By, (ki L ny ) By, (ko o |ns))
x G"(0CH(F;(x,y)))|, ,—y3G" (O*H(F1(x,9)))|, y=3G" (®H(F;(x,y)))|, =213

X (O, HF; (6 0) |y 30, H(F3(x.3)) o 5O H(F (2. 9)) s
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ki +1=n, ko+1=n, ns

>

=0k3 <3

K+l =1 ky+lo—1 ky+l3—1

>

S=1

K4 (G(H(F

=0iky <ly koo la=0sky <l k3.l5 R=1

X a?AH(Fﬂ(‘x’ y)>|x,y:\/§8]l<%H(Fﬂ(x7 y))'x,yZZﬁagH(Fﬁ(x’ y))lx.yZZﬁ)

G(02H) is obtained from G(H) by
replacing the argument H — 9%H and 0%H = gﬁ—%
finally G'(0%H) = T aQ Ty This concludes the computation
of the three-point SFT correlator for our solution ansatz.
The final step is to compute the kinetic term
<KLQU(0)|Iow(0)> wusing the operator products and
the identities derived above. According to the BRST
transformation identity (94) this correlator is determined
by two contributions: one proportional to the
ghost part (c(z)0cc(W)|,—gyy0 = (2 —w)? another to
(c(2)0*cc(W))|.—gaw—co = —2(z — w). Note that, since c,
dcc and 9*cc ghost fields have conformal dimensions —1,
—1 and O respectively, and since the conformal trans-
formation by /(z) takes O to infinity, it is straightforward
|

where, in our notations,
and

k
ay(k.n) Y _{Zo[G(H(F)))|G'(0F H(F)))]

~ Z\[0r,G(H(F))|G' (9, H(F,)|})of, H(F

(104)

|
to check that the matter part of the first contribution only
contains the terms with the conformal dimensions of the
string field components at z equal to those of the string
components at w; all the terms with unequal conformal
dimensions of operators at z and w vanish in the limit
w — oo. Similarly, the matter part of the second contribu-
tion [multiplied by the (c(z)0*cc(W))|,—g.p—0 ghost cor-
relator] only contains the terms with the conformal
dimensions of the operators at z equal to those of the
operators at w plus one.

Then, performing straightforward calculation of the
correlator, similar to those above, plugging into SFT
equations of motion (1) leads to the defining relation for
the G(H(F,)) function of our ansatz, given by

/1)|x:y:1

n=0 k=1 0=0
0o n k+1—-1
+>° ﬁ1 Ejﬂo H(F))|G" (0% H(F))]
n=0 k,l=1;k<
o GO HE )0k, (F,) 0, H

where the operations Z[f(x)|f>(x)] acting on functions
f1 and f, are defined as follows: if f(x) = >, a,,x™ and
fa(x) =>,a,x" are the series expansions for f, and f,
then Z;, maps them into the function (formal series)

[ ( )|f2 Za bn+k-x yn+k (106)

The tilde operations are again defined according to

G(H()) = x5 G(H(x)) - GH ()
H(x) —xdi;cH(x) — H(x) (107)

(Fﬁ)|x,y:1} = ZK/(G H(F

(105)

|
and the K-functions are defined by (101)—~(104). The
functional equation (105) is the main result of this paper
and constitutes the defining relation for the SFT ansatz. As
cumbersome as this relation is, it can be, e.g. solved order
by order by iterations and reduces the SFT equation (1) to
the identity which is essentially algebraic. In the case of
a* = =2 that we mostly have explored in this paper, one
particularly simple example for the generating functions
solving the defining relation (105) is given by

(108)
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0
W
leads to the generating function of the SU(2) enveloping
algebra T(y) with the parameter u defined by the F),
(elementary correlator of Bell polynomial operators).
The classical w,, algebra is then recovered in the simple
pole ~(z—w)~! of the OPE of G(H(B")(z))) and
G(H(B™(w))). In general, the defining relation (105)
appears to parametrize the class of SFT solutions, of which
(108) is an elementary example. Finding the explicit form
of this class of the solutions generalizing (108) appears to
be an important challenge and obviously does not seem to
be easy. However, it appears that this class is most naturally
expressible in terms of the series in the powers of the
generating function (108) for the products of the Bell
polynomial operators, relating it to the enveloping of the
enveloping of SU(2) (and more particularly, to the envel-
oping of w,,). Objects like these are known to be relevant to
the quantization of higher spin theories and to the multi-
particle realizations of the higher spin algebras [36]. The
crucial point about the SFT solutions, constrained to the
subspace of operators given by products of the Bell
polynomials, is that these objects
(a) behave in a controllable and consistent way in the SFT
star product computations
(b) and form a natural operator basis for the free-field
realization of the SU(2) envelopings and w,. In the
concluding section, we briefly discuss how the con-
struction, studied in this paper, can be generalized to
higher space-time dimensions.

Replacing x" — B~ according to our usual prescription

V. CONCLUSION AND DISCUSSION

In this paper we have considered the ansatz solution in
bosonic string field theory, given by formal series in partial
(incomplete) Bell polynomials of Bell polynomial operators
in the world sheet derivatives of the target space fields. These
objects form an operator algebra realization for the enveloping
of SU(2), including the w, algebra appearing at the simple
pole of the OPE. This, up to ideal factorization, is isomorphic
to a chiral copy of higher spin algebra in AdS5. The solution is
given in terms of the functional constraints on the generating
functions for the operators realizing this enveloping. These
constraints altogether are quite cumbersome and finding their
manifest solutions does not appear to be an easy challenge,
except for a relatively simple example (108).

Nevertheless, the constraints for the 4 and g-expansion
coefficients are essentially algebraic and in principle can be
analyzed order by order by iterations.

An important question is whether the construction,
considered in our work, can be extended to SFT solutions
involving higher dimensional enveloping/higher spin alge-
bras. A possible answer to that may come from superstring
generalization of the computation performed in this work
and switching on the f# — y system of the superconformal
ghosts. Just as the solution, considered in this paper, was in
a sense inspired by the bosonic ¢ = 1 model (an elementary
example pointing out the relevance of operator algebra

PHYSICAL REVIEW D 92, 106008 (2015)

involving Bell polynomial products to w,, and higher spin
algebra) one can use a supersymmetric ¢ =1 model
coupled to the f —y system as a toy model inspiration.
It is known that the interaction with the superconformal
ghosts enhances the SU(2) symmetry at the self-dual point
to SU(N) where N —2 is the maximal superconformal
ghost number (ghost cohomology rank) of the generators
[37]. One can hope that the manifest form of the vertex
operators in this model will prompt the form of the ansatz
we should be looking for, and the resulting solution will be
relevant to envelopings of SU(N) or their subalgebras,
related to isometries of AdS in different space-time
dimensions. The manifest form of the vertex operators in
this model would again involve the products of Bell
polynomials; however their structure will be far more

diverse. In the present paper the y = aX parameter of
the operators was fixed to be the same for all the string field
components (as it is the same for all the operators for the
bosonic discrete states and is equal to —i+/2X). Switching on
the higher superconformal ghost pictures in the ¢ = 1 model
would then result in the appearance of Bell polynomial
products with mixed y-parameters. While the naive number
of the parameters would be 1 N(N — 1) [total number of the
lowering operators of SU(N)], the actual number would be
less and of the order of N, since not all the lowering
operators, acting on tachyonic primaries, lead to physically
distinct states. The distinct states are basically generated by
the lowering operators of ghost numbers N — 2 carrying the
maximum momentum value in the X-direction, equal to
N — 1, and the total number of such generators is N — 1.
Thus one can hope that introducing extra y-parameters will
direct us towards the SFT solutions describing the higher
dimensional enveloping/higher spin algebras. It looks plau-
sible that the framework involving the Wess-Zumino-Witten-
type Berkovits string field theory may turn out to be a
convenient framework for this program along with cubic
superstring field theory with picture-changing insertions
[2,19,21,38]. Following this strategy, one can hope to find
the defining constraints for the generating functions, similar
to those considered in this paper. It would certainly be of
interest and of importance to study these constraints and to
identify some of their manifest solutions. This hopefully will
lead to new important insights regarding nonperturbative
higher spin configurations, as well as to deeper under-
standing of the underlying relations between SFT and higher
spin field theories, which appear to be crucial ingredients of
holography principle in general.
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