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We find a class of analytic solutions in open bosonic string field theory, parametrized by the chiral copy of
higher spin algebra in AdS3. The solutions are expressed in terms of the generating function for the products
of Bell polynomials in derivatives of bosonic space-time coordinates XmðzÞ of the open string, the form of
which is determined in this work. The products of these polynomials form a natural operator algebra
realizations ofw∞ (area-preserving diffeomorphisms), enveloping algebra of SU(2) and higher spin algebra in
AdS3. The class of string field theory solutions found can, in turn, be interpreted as the “enveloping of
enveloping,” or the enveloping of AdS3 higher spin algebra. We also discuss the extensions of this class of
solutions to superstring theory and their relations to higher spin algebras in higher space-time dimensions.
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I. INTRODUCTION

It is well known that the equations of motion of Witten’s
cubic string field theory [1,2]

QΨþΨ⋆Ψ ¼ 0 ð1Þ
resemble Vasiliev’s equations in the unfolding formalism in
higher spin theories [3]

dW þW∧⋆W ¼ 0 ð2Þ
(flatness condition for connection in infinite-dimensional
higher spin algebras) that determine the interactions of the
higher spin gauge fields in this formalism, along with
equations for other master fields, containing higher spin
Weyl tensors and auxiliary fields (see also e.g. [4–6] for the
works/reviews on this remarkable formalism). Higher spin
holography strongly hints, however, that this resemblance
may be much more than just a formal similarity. The
generalized 1-form W of (2) contains all the higher spin
gauge field components in anti–de Sitter (AdS) spaces
which, by holography principle, are related to various
multi-index composite operators in the dual CFTs. Any
of these CFTs, in turn, must be a low-energy limit of string
theory in AdSdþ1, with the CFTd correlators reproduced by
the world sheet correlation functions of the vertex operators
in AdS string theory, with the space-time fields polarized
along the boundary of the AdS space. On the other hand, the
second-quantized string field Ψ, satisfying the equation (1)
is nothing but the expansion containing an infinite number of
modes determined by these vertex operators. Both string
fields and higher spin gauge fields in Eqs. (1)–(2) are known
to be complicated objects to work with. Despite the fact that

the higher spin theories in AdS spaces can circumvent the
restrictions imposed by Coleman-Mandula’s theorem,
describing the gauge-invariant higher spin interactions is
a highly nontrivial problem since the gauge symmetry in
these theories must be sufficiently powerful in order to
eliminate unphysical degrees of freedom. The restrictions
imposed by such a gauge symmetry make the construction
of the interaction vertices in higher spin theories a notori-
ously complicated problem. While there was some progress
in classification of the higher spin 3-vertices over recent
years, the structure of the higher-order interactions (such as
quartic interactions, presumably related to conformal blocks
in dual CFTs) still remains obscure. The structure of these
interactions is, however, crucial for our understanding of
higher spin extensions of the holography principle and
nonsupersymmetric formulation of AdS=CFT.
At the same time, the string field theory still remains our

best hope to advance towards background-independent
formulation of string dynamics. This, in turn, holds the keys
to understanding string theories in curved backgrounds, such
as AdS. Such string theories are also crucially relevant
to holography and gauge-string correspondence; however,
little is known about them beyond the semiclassical limit.
Analytic solutions in string field theory appear to be one

of the most crucial ingredients in order to approach such
string theories in the string field theory (SFT) formalism,
using the concept of background independence. To illustrate
this, suppose a string fieldΨ0 is a solution of the equation (1).
Then the form of (1) is invariant under the shift

Ψ → ~Ψ ¼ ΨþΨ0 ð3Þ

with the simultaneous shift of the Becchi-Rouet-Stora-
Tyutin (BRST) charge Q → ~Q, so that Q2 ¼ ~Q2 ¼ 0 and
the new nilpotent charge ~Q is defined according to
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~QΨ ¼ QΨþΨ0⋆ΨþΨ⋆Ψ0 ð4Þ

for any Ψ. Then the new BRST charge ~Q defines the new
cohomology, different from that of the original charge Q,
corresponding to string theory in a new background, depend-
ing on the structure ofΨ0. The advantage of this approach is
that, in principle, it allows one to explore the string theory in
new geometrical backgrounds (e.g. in a curved geometry,
such as AdS) while technically using the operator products
of the old string theory (say, in originally flat background)
for the vertex operators in the new BRST cohomology,
defined by ~Q. This formalism is potentially more powerful
than the first-quantized formalism, which is background
dependent and where the vertex operator description is
essentially limited to the flat space-time and semiclassical
limit of curved backgrounds. Unfortunately, however, the
major obstacle is that identifying analytic solutions of the
equation (1) is hard because of the complexity of the star
product in (1). For this reason, there are not many known
examples of analytic solutions having a clear physical
interpretation. One of the most fascinating and well-known
solutions, describing the nonperturbative tachyonic vacuum
in string theory is of course the class of the Schnabl’s
solutions [7], later generalized in a number of important
papers, in particular, such as [8–12] which were discovered
several years ago and in particular used to prove Sen’s
conjecture [13–14]. Since that remarkable paper by
Schnable [7] there were many other interesting works
describing the related SFT solutions, both in cubic theory
and in Berkovits SFT theory [10–12] and [15–18] such as
algebraic SFT solutions, the analytic solutions describing
various nonperturbative processes such as D-brane trans-
lations. Despite that, classes of the SFT solutions, relevant
to particular geometric backgrounds in string theory, in
particular those that would allow us to advance towards
consistent formulation of string theories in different space-
time geometries, still mostly remain beyond our reach. One
reason for this is that the star product in the equation (1) is hard
toworkwith in practice [1–2,15], and [19–28]. In general, this
product isquitedifferent fromtheconventionalMoyalproduct
or the product in the Vasiliev’s equations (2), although for
certain restricted classes of string fields the star product of (1)
can be mapped to the Moyal product [29–31]. In general,
however, the star product involves the global conformal
transformations

fNk ðzÞ ¼ e
2iπðk−1Þ

N

�
1 − iz
1þ iz

�2
N ð5Þ

that map the string fields living on separate world sheets
to N wedges of a single disc. The behavior of generic string
fields (containing all sorts of off-shell nonprimary
operators)under suchglobal conformal transformationseasily
wobbles out of control beyond any low-level truncation,
making it hard to evaluate the star product by straightforward

computation of the correlators in open string field theory
(OSFT). There are very few known exceptions to that, such
as the wedge states or the special degenerate case of Ψ
constrained to primaries and their derivatives. However,
such fields form too small a subset in the space of all the
operators. The known SFT solutions constrained to this
subset do exist. However, with the exception of the Schnabl-
related class of solutions, they are typically irrelevant to
nonperturbative background deformations (see the discus-
sion in the next section). At the same time, there exists a
sufficiently large class of the operators (far larger than the
class of the primary fields) which behaves in a rather
compact and controllable way under (5), forming a closed
subset of operators under the global conformal transforma-
tions. Typically, these operators have the form

TðNÞ ¼
XN
k¼1

X
NjN1…Nk

λðNÞ
N1…Nk

BðN1Þ…BðNkÞ ð6Þ

with the sum taken over the partitions of total conformal
dimension N of TðNÞ and with BðNiÞð∂X; ∂2X;…; ∂NjXÞ
being the Bell polynomials of rank Nj in the world sheet
derivatives of string or superstring space-time coordinates or
the ghost fields (we review the basic properties of these
objects in the next section). The structure of the correlators
of the operators of the form (6), analyzed in this work, as
well as their transformation properties under (5), makes them
natural candidates to test for the analytic solutions of (1).
At the same time, it turns out that the structure constants of
higher spin algebras in AdS can be realized in terms of the
operator product expansion (OPE) structure constants of
the operators of the type (6). This makes a natural guess that
the SFT solutions of the form (6) describe backgrounds with
nonperturbative higher spin configurations stemming from
full interacting (to all orders) higher spin theory in AdS.
More precisely, this means the following. Suppose that
somehow we manage to take a glimpse into full consistently
interacting higher spin theory and the higher spin inter-
actions to all orders. Of course the Lagrangian of such a
theory would be immensely complex, with all due restric-
tions imposed by the gauge invariance, with nonlocalities
etc. One would also expect issues with unitarity as well, at
least in backgrounds other than AdS. Assume, however, that
we managed to identify such a higher spin action and to
solve the equations of motion, i.e. to find the higher spin
configuration minimizing this action. From the string theory
point of view, such a background would correspond to a
certain conformal fixed point, with vanishing β-functions of
higher spin vertex operators. An attempt to compute such β-
functions straightforwardly would be hopeless, since that
would require summing up contributions from all orders of
the string perturbation theory. However, instead of comput-
ing the β-function, one can try to find an analytic solution
describing the shift Q → ~QHS from the flat background to
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the one involving the nonperturbative higher spin configu-
ration in AdS. To make a parallel to Schnabl’s solution for
nonperturbative tachyonic background note that, from the
on-shell string theory point of view, this solution describes
the minimum of the tachyon potential stemming from the
tachyon’s β-function, computed to all orders of the string
perturbation theory. Given the SFT solution for nonpertur-
bative higher spin background, the cohomology of ~QHS
would then describe the physical properties of such a
background. At the first glance, the structure of such a
solution must be enormously complicated. Nevertheless, try
to imagine its possible structure. The complete fully inter-
acting higher spin theory in AdSd, no matter how compli-
cated its Lanrangian might be, is largely determined by two
objects: structure constants of the higher spin algebras in
AdS and conformal blocks in the dualCFTd−1. Moreover, as
we argue in the next section, as far as the cubic SFT is
concerned, for a substantially large class of solutions the
structure constants of the higher spin algebra (more pre-
cisely, the enveloping of this algebra) alone constitute
sufficient information to control the solutions we are looking
for. Thus, if one is able to find a class of SFT solutions
determined by the structure constants of the HS algebra, this
already would be a strong signal that it describes the higher
spin background we are interested in. The rest of this paper
is organized as follows. In Sec. II we discuss, as a warm-up
example, a set of simple SFT solutions that involves the
primary fields only and describes the perturbative back-
ground deformations. Remarkably, one particular example
of these solutions is given by the discrete states in c ¼ 1
model where both the structure constants of the AdS3 higher
spin algebra appear and the vertex operators are described in
terms of products of the Bell polynomials of the type (4).
In Sec. III we develop the OPE formalism for the Bell
polynomials of string fields, evaluating their structure con-
stants. We find that these structure constants can be obtained
from the simple generating function Gðx; yÞ of two varia-
bles, the series expansion of which is determined by
coefficients related to AdS3 structure constants. Next, we
propose an ansatz of the form (6) solving (1). The solution is
given by the certain composite function FðGÞ satisfying
certain defining relations derived in this paper and structur-
ally can be thought of as an enveloping of the higher spin
algebra. In the concluding section we discuss the physical
implications of our results and the generalizations relating
analytic OSFT solutions to higher spin algebras in higher
dimensional AdS spaces.

II. STRUCTURE CONSTANTS, HIGHER SPINS
AND SFT SOLUTIONS: A WARM-UP

EXAMPLE

One particularly simple and almost obvious example of a
class of string fields solving (1) can be constructed as
follows.

Let Viðz; pÞði ¼ 1;…Þ be the set of all physical vertex
operators in string theory in the cohomology of the original
BRST charge Q (primary fields of ghost number 1 and
conformal dimension 0) and λiðpÞ are the corresponding
space-time fields (where p is the momentum in space-time
and we suppress the space-time indices for brevity). Then
the string field

Ψ0 ¼
X
i

λiVi ð7Þ

is the solution of (1) provided that the zero β-function
conditions

βλi ¼ 0 ð8Þ

are imposed on the space-time fields in the leading order of
the perturbation theory. This statement is easy to check.
Indeed, the on-shell invariance conditions on Vi imply
fQ; λiVig ¼ L̂λi ¼ 0 where L̂ is some differential operator
(e.g. a Laplacian plus the square of mass) acting on λi.
Next, since the operators are the dimension zero primaries,
they are invariant under the transformations (5) and there-
fore the star product can be computed simply by using

≪Ψ;Ψ⋆Ψ≫ ¼
�Y3

n¼1

f3n∘Ψð0Þ
�

¼
X
i;j;k

Cijkλ
iλjλk ð9Þ

where Cijkðp1; p2Þ are the structure constants in front of the
simple pole in the OPE of the vertex operators:

Viðz1;p1ÞVjðz2;p2Þ

∼ðz1−z2Þ−1Cijkðp1;p2ÞVk

�
1

2
ðz1þz2Þ;p1þp2

�
: ð10Þ

Substituting (7) and (9) into SFT equations of motion (1)
then leads to the constraints on λi space-time fields,

L̂λi þ Ci
jkλ

jλk ¼ 0; ð11Þ

which are nothing but βλi ¼ 0 equation (8) in the leading
order. Note that the SFT solution (7) is entirely fixed by the
leading order contribution to the β-function (which is
completely determined by the three-point correlation func-
tions of the vertex operators) and does not depend on the
higher-order corrections (related to the higher-point corre-
lators). The higher-order corrections to the β-function only
appear on the deformation (4) of the BRST charge related
to the solution (7) which, in this case, simply reduces to
Q → ~Q ¼ QþP

λiVi. The four-point functions of the Vi
vertex operators will then determine the solution of Eq. (1)
with Q replaced by ~Q. This, in turn, will lead to the further
shift of ~Q in the next order, etc., so the whole procedure can
be performed order by order. The physical meaning of these
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deformations is also quite clear: they define, order by order,
the perturbative changes of the background caused by the
RG flows from the original conformal point (corresponding
to flat background) to the new fixed point (corresponding to
a certain solution of the low-energy effective equations of
motion). Physically, far more interesting is of course the
case when the operators entering (7) are no longer the
primaries of any fixed conformal dimensions and are off
shell, but still solve (1) with the constraints of the type (11).
Then λ describes the background which is beyond the reach
of the conventional string perturbation theory while the
C-constants describe the new two-dimensional CFT related
to this nonperturbative background change. This is pre-
cisely the type of the higher spin related SFT solution we
will be looking for. The instructive point here (which
follows from the above discussion) is that, if we start with
the SFT equation (1) with the unperturbed BRST charge of
the bosonic theory

Q ¼
I

dzfcT − bc∂cg

¼
I

dz

�
−
1

2
c∂Xm∂Xm þ bc∂c

�
þ cTLiouville ð12Þ

the higher spin solution we are searching for should not
depend on higher-point correlators or the conformal blocks,
but only on the structure constants of the higher spin

algebra. The Liouville stress tensor is given by TLiouville ¼
− 1

2
ð∂φÞ2 −

ffiffiffiffiffiffiffiffiffi
25−D
12

q
∂2φ where D is the number of space-

time dimensions. In the rest of the paper, we ignore the
Liouville term in Q since the SFT solutions considered
in our work do not depend on φ except for the example
related to the c ¼ 1 model (see below). In the latter
case, however, the operators depend trivially on the
Liouville model (the Liouville field only appears in the
exponential dressing, needed to ensure the correct
conformal dimension of the operators and has no effect
on the OPE structure constants and the star product in
the zero limit Liouville two-dimensional cosmological
constant, considered here).
The final remark we make before moving further regards

the appearance of the higher spin algebra in the SFT
solution of type (7) at the perturbative level, as well as the
appearance of the Bell polynomials as the operators
realizing this algebra. Consider the noncritical open one-
dimensional bosonic string theory (also known as the c ¼ 1
model). It is well known that this string theory does not
contain a photon in the massless spectrum; however, due to
the SUð2Þ symmetry at the self-dual point, it does contain
the SUð2Þmultiplet of the discrete states which are physical
at integer or half-integer momentum values only and
become massless upon the Liouville dressing. To obtain
the vertex operators for these states, consider the SUð2Þ
algebra generated by

T� ¼
I

dze�iX
ffiffi
2

p

T0 ¼
iffiffiffi
2

p ∂X ð13Þ

where X is a single target space coordinate and the dressed
BRST-invariant highest weight vector

Vl ¼
Z

dzeðilXþðl−1ÞφÞ ffiffi
2

p
ð14Þ

where φ is the Liouville field and l is the integer or half
integer. The SU(2) multiplet of the operators is then
obtained by repeatedly acting on Vl with the lowering
operator T− of SU(2):

Uljm ¼ Tl−m
− Vl − l ≤ m ≤ l: ð15Þ

The dressed Uljm operators are the physical operators
(massless states) of the c ¼ 1 model and are the world
sheet integrals of primary fields of dimension one (equiv-
alently, the primaries of dimension 0 at the unintegrated
b − c ghost number 1 picture).
Manifest expressions for the Uljm vertex operators are

complicated; however, their structure constants have been
deduced by [32–33] by using symmetry arguments. One
has

Ul1jm1
ðzÞUl2jm2

ðwÞ
∼ ðz − wÞ−1Cðl1; l2; l3jm1; m2; m3Þfðl1; l2ÞUl3;m3

ð16Þ

where the SUð2Þ Clebsch-Gordan coefficients are fixed by
the symmetry while the function of Casimir eigenvalues
fðl1; l2Þ is nontrivial and was deduced to be given by
[32–33]

fðl1; l2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2

p ð2l1 þ 2l2 − 2Þ!ffiffiffiffiffiffiffiffiffiffi
2l1l2

p ð2l1 − 1Þ!ð2l2 − 1Þ! : ð17Þ

Remarkably, these structure constants coincide (up to a
simple field redefinition) exactly with those of w∞ wedge,
defining the asymptotic symmetries of the higher spin
algebra in AdS3 in a certain basis, computed in a rather
different context [34]. Thus the primaries (15) are con-
nected to a vertex operator realization of AdS3 higher spin
algebra. The related OSFT solution is then constructed
similarly to the previous one. It is given simply by

Ψ ¼
X
l;m

λljmUljm ð18Þ

with the constants λljm satisfying the β-function condition

Sl3jm3

l1m1jl2m2
λl1m1λl2m2 ¼ 0 ð19Þ
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where Sl3jm3

l1m1jl2m2
¼ Cðl1; l2; l3jm1; m2; m3Þfðl1; l2Þ are the

AdS3 higher spin algebra’s structure constants. As pre-
viously, this solution describes the perturbative back-
ground’s change

Q → ~Q ¼ Qþ
X
l;m

λljmUljm: ð20Þ

The higher-order contributions to the β-function then will
appear in the SFT solutions with Q replaced with ~Q etc.
Our particular goal is, roughly speaking, to find the off-
shell analogues of the string field (18) solving the SFT
equation of motion (1), with λ-constants satisfying the
constraints related to the structures of the higher spin
algebras.
For that, it is first instructive to investigate the manifest

form of the operators (note that in [32–33] the structure
constants were computed from the symmetry arguments,
without pointing out the explicit form of the operators).
Taking the highest weight vector Vl (14) and applying
T− using the OPE

e−iX
ffiffi
2

p
ðzÞeðilXþðl−1ÞφÞ ffiffi

2
p
ðwÞ

¼
X∞
k¼0

ðz−wÞk−2lBðkÞ
−i

ffiffi
2

p
X
∶ eðiðl−1ÞXþðl−1ÞφÞ ffiffi

2
p
∶ ðwÞ ð21Þ

we obtain

Uljl−1 ¼ T−Vl ¼
I

dw∶ Bð2l−1Þ
−i

ffiffi
2

p
X
eðiðl−1ÞXþðl−1ÞφÞ ffiffi

2
p
∶ ðwÞ:

ð22Þ

Here BðnÞ
fðzÞ ≡ BðnÞð∂zf;…; ∂n

zfÞ are the rank n normalized

Bell polynomials in the derivatives off, defined according to

BðnÞð∂zf;…; ∂n
zfÞ ¼ BðnÞðx1;…xnÞjxk≡∂kf;1≤k≤n

¼
Xn
k¼1

Bnjkðx1;…xn−kþ1Þ ð23Þ

where Bnjkðx1;…xn−kþ1Þ are the normalized partial Bell
polynomials defined according to

Bnjkðx1;…xn−kþ1Þ ¼
X

p1;…pn−kþ1

1

p1!…pn−kþ1!
xp1

1

×

�
x2
2!

�
p2

…

�
xn−kþ1

ðn − kþ 1Þ!
�

pn−kþ1

ð24Þ

with thesumtakingoverall thecombinationsofnon-negative
pj satisfying

Xn−kþ1

j¼1

pj ¼ k

Xn−kþ1

j¼1

jpj ¼ n ð25Þ

[note that the standardBell polynomialsPðnÞ are related to the
normalized ones as PðnÞ ¼ n!BðnÞ, similarly for the partial
Bell polynomials]. To calculate the next vertex operator,
Uljl−2 ¼ T−Uljl−1, oneneeds topointout, apart fromtheOPE
(21), theOPEbetweenBell polynomials of theX-derivatives
and the exponents of X as well. Using the definitions
(23)–(25), it is straightforward to deduce the identity

BðnÞ
αX ðzÞeβXðwÞ

¼
Xn
k¼0

ðz − wÞ−k Γð−αβ þ 1Þ
k!Γð−αβ þ 1 − kÞ ∶ Bðn−kÞ

αX ðzÞeβXðwÞ;

ð26Þ
where α and β are some numbers and Γ is the Euler’s gamma
function. Note that this is the double point OPE (sufficient
for our purposes), i.e. accounting only for the contractions

betweenBðnÞ
αX andeβXðwÞ, but not for the expansionsof anyof

them around some fixed point (such as z, w or a midpoint).
Using (21) and (26), it is then straightforward to obtain

Uljl−2 ¼ 2!

I
dw∶ eðiðl−2ÞXþðl−1ÞφÞ ffiffi

2
p 	

Bð2l−1Þ
−i

ffiffi
2

p
X
Bð2l−3Þ
−i

ffiffi
2

p
X
−
	
Bð2l−2Þ
−i

ffiffi
2

p
X



2


∶ ðwÞ: ð27Þ

This operator is given by the exponent multiplied by the quadratic combination of the Bell polynomials with ranks Bð2l−kjÞ;
j ¼ 1, 2 with k1 þ k2 being the length 2 partition of 22 ¼ 4 with 1 ≤ k1;2 ≤ 2 × 2 − 1 ¼ 3. It is straightforward to continue
this sequence of transformations by T− to identify the manifest expressions for all the vertex operators. For arbitrary
Uljl−m ð1 ≤ m ≤ lÞ we obtain

Uljl−m ¼ m!

I
dweðiðl−mÞXþðl−1ÞφÞ ffiffi

2
p X

m2jk1…km

ð−1Þπðk1;…;kmÞBð2l−k1Þ
−i

ffiffi
2

p
X
Bð2l−k2Þ
−i

ffiffi
2

p
X
…Bð2l−kmÞ

−i
ffiffi
2

p
X

ð28Þ
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with the sum taken over all the ordered length m partitions
of m2 ¼ k1 þ � � � þ km with 1 ≤ k1 ≤ …: ≤ km ≤ 2m − 1
and with the parity πðk1;…; kmÞ of each partition defined
as follows. Consider a particular partition of m2: k1 ≤
k2…: ≤ km. By permutation we call any exchange between
two neighboring elements of the partition with one unit that
does not break the order of the partition, e.g.

fk1 ≤…ki−1 ≤ ki ≤ kiþ1 ≤ kiþ2 ≤…≤ kmg
→ fk1 ≤…ki−1 ≤ ðki�1Þ≤ ðkiþ1∓1Þ≤ kiþ2 ≤…≤ kmg:

ð29Þ

Then πðk1;…; kmÞ for any length m partition of m2 is the
minimum number of permutations needed to obtain the
partition m2 ¼ k1 þ � � � þ km from the reference partition
m2 ¼ 1þ 3þ 5þ � � � þ ð2m − 1Þ. Note that, possibly up
to an overall sign change of Uljm, any partition can be
chosen as a reference partition. One particular lesson that
we learn from (28) is that combinations of the objects of the
type

P
fn1…nkg;N¼n1þ���þnkαn1…nk

Q
k
j¼1 B

ðnjÞ form a basis for
the operator realization of the higher spin algebra. As we
see below, this is not incidental, as the products of the Bell
polynomials naturally realize w∞ and envelopings of
SUð2Þ. In general, they are not primary fields, except
for some very special choices of the αn1…nk coefficients in
the summation over the partitions (18). [Strictly speaking,
the products of Bell polynomials in (18)–(19) are the
primaries only for m ¼ l; otherwise they must be dressed
with the exponents]. Two important numbers characterizing
these objects are N and k (total conformal dimension and
the partition length).

The ansatz for the solution in D-dimensional string field
theory that we propose is the following. Define the
generating function for the Bell polynomials:

HðBÞ ¼
X∞
n¼1

hnB
ðnÞ
~α ~X

≡X∞
n¼1

hnP
ðnÞ
~α ~X

n!
ð30Þ

where PðnÞ are the standard (non-normalized) Bell poly-

nomials in the derivatives of ~α ~X, and hn are some
coefficients, defining the associate characteristic function

HðxÞ ¼
X
n

hnxn

n!
: ð31Þ

This function is convenient to use in order to perform
various operations with HðBÞ, e.g. the derivative function
H0ðBÞ can be obtained by differentiating HðxÞ over x and

then replacing xn
n! → BðnÞ

~α ~X
in the expansion series obtained

by differentiation. Next, define another characteristic
function

GðxÞ ¼
X∞
n¼0

gnxn

n!
: ð32Þ

Then the composite function GðHðBÞÞ generates the
products of Bell polynomial operators according to the
Faa de Bruno formula (which is easy to check by simple
straightforward computation):

GðHðBÞÞ ¼
Xinfty
n¼0

gn

n!

X∞
N¼n

N!
X

Njk1…kn

hk1…:hknB
ðk1Þ
~α ~X

…BðknÞ
~α ~X

σ−1ðk1;…knÞ

¼
X∞
n¼0

gn

n!

X∞
N¼n

BNjnðh1Bð1Þ
~α ~X
;…; hN−nþ1B

ðN−nþ1Þ~α ~XÞ ð33Þ

where
P

Njk1…kn stands for the summation over ordered
length n partitions of Nð0 < k1 ≤ k2… ≤ knÞ and the
sigma factor

σðk1;…; knÞ ¼ qk1 !…qkn ! ð34Þ
is the product of the multiplicities of the elements kj of the
partition. [Note that each qkj elements kj entering the
partition give rise to the single factor of qkj! in the σ−1

denominator in (33).] We are looking for the ansatz SFT
solution in the form (35), that is,

Ψ ¼ GðHðBÞÞ; ð35Þ

and our goal is to determine the coefficients hn and gn (more
precisely, the defining constraints on these coefficients
imposed by the SFT equations of motion). ~α is some
parameter which a priori is not fixed; however, we see
below that the star product for Ψ is drastically simplified if
the tachyonlike constraint α2 ¼ −2 is imposed on ~α and it is
precisely this simplification that ultimatelymakes it possible
to formulate the SFT solutions in terms of the functional
relations for GðHÞ. As is clear from (33)–(35), the SFT
ansatz that we propose is given by the series in the partial
Bell polynomials of the Bell polynomials in the target space
fields. An essential property of these objects is that their
operator algebra realizes the enveloping of SUð2Þ with the
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enveloping parameter related to α2. In particular, a simple
pole in theOPEof these objects leads to classicalw∞ algebra
of area-preserving diffeomorphisms, while the complete
OPE generates the full enveloping (the explicit OPE
structure is given below). This is where the connection with
the higher spin algebra enters the game. To prepare for the
analysis of (1) using the ansatz (33)–(35), in the next section
we analyze the conformal transformation properties, oper-
ator products and the correlators of the vertex operators
involving the Bell polynomials and their products.

III. CFT PROPERTIES OF SFT ANSATZ

The first important building block in our construction of
the SFT solution is the analysis of the conformal field
theory properties of operators constructed out of products
of the Bell polynomials in the target space fields. The first
step is to determine the transformation laws for the
operators in the sum (33). We start from the infinitesimal
transformation of a single Bell polynomial. First, we need
to evaluate the operator product of the stress tensor with

BðnÞ
~α ~X
. This can be done by using the identity

∂n
ze~α

~XðzÞ ¼ n!BðnÞ
~α ~X
ne~α ~X: ð36Þ

Then one can deduce the infinitesimal conformal trans-

formation of BðnÞ
~α ~X

with the generator

I
dzϵðzÞTðzÞ ¼ −

1

2

I
dzϵðzÞ∂Xm∂XmðzÞ ð37Þ

by using the identity

δϵð∂n
ze~α

~XÞ¼ n!ðδϵBðnÞ
~α ~X
Þe~α ~Xþn!BðnÞ

~α ~X
ðδϵe~α ~XÞþδϵðoverlapÞ

ð38Þ
with δϵðoverlapÞ accounting for the contribution in which
one of the ∂Xs of T is contracted with BðnÞ and another with
the exponent. Using the manifest expression for BðnÞ

ψ ,

BðnÞ
ψ ¼

X
l

X
njp1…pl

ð∂p1ψÞm1…ð∂plψÞml

p1!…pk!m1!…mk!
ð39Þ

where ψ ¼ ~α ~X and the sum is taken over the ordered
partitions

n ¼
Xl

j¼1

mjpj

k ¼
Xl

j¼1

mj

1 ≤ k ≤ n; 1 ≤ l ≤ k

p1 < p2 < … < pl ð40Þ
it is straightforward to establish the OPE:

∂XmðzÞBðnÞ
ψ ðwÞ¼−αm

Xn
k¼1

ðz−wÞ−k−1Bðn−kÞ
ψ ðwÞþ regular:

ð41Þ
Using the OPE (41) it is straightforward to compute the
overlap transformation and to deduce the OPE between the

stress-energy tensor and BðnÞ
ψ with the result given by

TðzÞBðnÞ
ψ ðwÞ¼ ðz−wÞ−1∂BðnÞ

ψ ðwÞþnðz−wÞ−2BðnÞ
ψ ðwÞ

þ
Xnþ1

k¼2

ðz−wÞ−k−1
�
nþ1þα2−

1

2
ðα2þ2Þk

�

×Bðn−kþ1Þ
ψ ðwÞ: ð42Þ

Note that the coefficients in front of Bðn−kþ1Þ
ψ ðwÞ do not

depend on k when ~α satisfies the tachyonlike condition
α2 ¼ −2. This drastically simplifies the problem to determine
the behavior of BðnÞ under the global conformal transforma-
tions in the SFT equations, the infinitesimal form of which is
defined by the OPE (42). Using the OPEs (41)–(42), it is now
straightforward to deduce theOPEofTðzÞwith the product of
any number q of the Bell polynomials of the target space
fields, which will be the main building block for the SFT
solutions that we are looking for. It is convenient to introduce
the notation:

R
n1…nq
N ¼

Yq
j¼1

B
ðnjÞ
ψ ðwÞ

N ¼
X
j

nj: ð43Þ

We have

TðzÞRn1…nq
N ðwÞ ¼

Xq
j¼1

Xnjþ1

kj¼2

ðz − wÞ−kj−1
�
nj þ 1þ α2 −

1

2
ðα2 þ 2Þkj

�
R
n1…nqjj
N−nj B

ðnj−kjþ1Þ
ψ

− α2
Xq

l;m¼1;l<m

ðz − wÞ−kl−kmðRn1…nqjl;m
N−nl−nm ÞB

ðnl−klþ1Þ
ψ Bðnm−kmþ1Þ

ψ

þ Nðz − wÞ−2Rn1…nq
N ðwÞ þ ðz − wÞ−1∂Rn1…nq

N ðwÞ ð44Þ
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where n1…nqjj stands for the set of q − 1 indices with nj excluded, similarly for n1…nqjl;m. Given the OPE (44) it is
straightforward to obtain the infinitesimal transformation law for cR

n1…nq
N .

We have

δϵðcRn1…nq
N ÞðwÞ ¼

Xq
j¼1

Xnjþ1

kj¼2

∂kjϵ

kj!

�
nj þ 1þ α2 −

1

2
ðα2 þ 2Þkj

�
cR

n1…nqjj
N−nj B

ðnj−kjþ1Þ
ψ

− α2
Xq

l;m¼1;l<m

∂klþkm−1ϵ

ðkl þ km − 1Þ! cR
n1…nqjl;m
N−nl−nm B

ðnl−klþ1Þ
ψ Bðnm−kmþ1Þ

ψ

þ ðN − 1Þ∂ϵRn1…nq
N ðwÞ þ ϵ∂ðcRn1…nq

N ÞðwÞ: ð45Þ

Now we have to establish transformation law for
cR

n1…nq
N under z → fðzÞ, necessary to compute the corre-

lators in the string field theory equations of motion. This
can be deduced from two conditions: first, the global
transformation should reproduce (45) for fðzÞ ¼ zþ ϵ.
Second, the form of the global transformation must be
preserved under the composition. As is well known, in the
case of the simplest nonprimary field, such as the stress-
energy tensor, this leads to the appearance of the
Schwarzian derivative of fðzÞ which is in fact the degree
2 Bell polynomial in logðf0ðzÞÞ:

SðfðzÞÞ ¼ 2B2

�
−
1

2
logðf0Þ

�
: ð46Þ

This is not a coincidence since for a large class of
nonprimaries in CFT the higher degree Bell polynomials

correspond to the higher derivative extensions of the
Schwarzian derivative in conformal transformations.
Note that the Bell polynomials of the logarithms of
functions defining global conformal transformation satisfy
the following composition identity:

BðnÞ
�
log

�
d
dx

fðgðxÞÞ
��

¼
X
k

Bðn−kÞðlogðf0ðgÞÞÞBðkÞðlogðg0ðxÞÞÞ; ð47Þ

making them natural objects present in global conformal
transformations. The global conformal transformations of
the Bell polynomials, consistent with the infinitesimal
transformations (45), are deduced to be given by

cR
n1…nq
N ðzÞ→z→fðzÞ

�
df
dz

�
N−1

cR
n1…nq
N ðfðzÞÞ −

X
j¼1

Xnjþ1

kj¼2

1

kj

�
df
dz

�
N−kj

Bðkj−1Þ
�
−
�
nj þ 1þ α2 −

1

2
ðα2 þ 2Þkj

�
log

�
df
dz

��

× cR
n1…nqjj
N−nj B

ðnj−kjþ1Þ
ψ þ

Xq
l;m¼1;l<m

1

ðkl þ km − 1Þ
�
df
dz

�
N−kl−kmþ1

Bklþkm−2

�
−α2 log

�
df
dz

��

× cR
n1…nqjl;m
N−nl−nm B

ðnl−klþ1Þ
ψ Bðnm−kmþ1Þ

ψ : ð48Þ

For our purposes, we need to compute the values of the
Bell polynomials in the transformation law (48) for the
functions IðzÞ ¼ − 1

z (in the kinetic term of the SFT action)
and g∘f3kðzÞ at z ¼ 0 where f3k defined in (5) map the string
world sheets of the cubic theory to thewedges of the disc and

gðzÞ ¼ i
1 − z
1þ z

ð49Þ

further maps this disc to the half plane, so that

g∘f31ð0Þ ¼ 0

g∘f32ð0Þ ¼
ffiffiffi
3

p

g∘f33ð0Þ ¼ −
ffiffiffi
3

p
: ð50Þ

For that, we use the fact that if fang are the coefficients in the
series expansion of any function fðxÞ ¼ P

n¼1
anxn

n! [assume
fð0Þ ¼ 0], then efðxÞ ¼ 1þP∞

n¼1 B
ðnÞða1;…; anÞxn. From

now on, to abbreviate things, we restrict ourselves to the case
α2 ¼ −2, relevant to our SFT solution. We start from
BðkÞðκlogðI0ðzÞÞÞ where, in particular, κ ¼ 1 − nj in the first
group of terms in (48) and κ ¼ −α2 ¼ 2 in the second. Then

BðnÞðκlogðI0ðzÞÞÞ ¼ z−nBðnÞð2κ;−2κ;…ð−1Þn2ðn − 1Þ!κÞ:
ð51Þ

The Bell polynomial on the right-hand side is then identified
with the nth expansion coefficient of the exponent of
−2κ log z, i.e. of z−2κ. Therefore
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BðnÞðκlogðI0ðzÞÞÞ ¼ Γð1 − 2κÞz−n
n!Γð1 − 2κ − nÞ : ð52Þ

Next, we need the values of the Bell polynomials
BðnÞðlog dfðzÞ

dz Þ with fðzÞ ¼ g∘f3kðzÞ at z ¼ 0.
Straightforward calculation gives the result

BðnÞ
�
κ log

dfðzÞ
dz

�
jz¼0 ¼ BðnÞðβ1…βk…βnÞ ð53Þ

with

βk ¼ κ

�
5

3
ð−iÞn þ 1

3
ðiÞn −

�
1

2

�
n−1

�
ðn − 1Þ! ð54Þ

for g∘f31ðzÞ,

βk ¼ κ

�
5

3
ð−iÞn þ 1

3
ðiÞn þ 2e

2iπn
3

�
ðn − 1Þ! ð55Þ

for g∘f32ðzÞ and

βk ¼ κ

�
5

3
ð−iÞn þ 1

3
ðiÞn þ 2e

−2iπn
3

�
ðn − 1Þ! ð56Þ

for g∘f33ðzÞ. Accordingly, these Bell polynomials are iden-
tified with the expansion series of

h1ðzÞ ¼ ð1þ izÞ−5
3
κð1 − izÞ−1

3
κ

�
1þ z

2

�
−2κ

h2ðzÞ ¼ ð1þ izÞ−5
3
κð1 − izÞ−1

3
κð1 − e

2iπ
3 zÞ−2κ

h3ðzÞ ¼ ð1þ izÞ−5
3
κð1 − izÞ−1

3
κð1 − e

−2iπ
3 zÞ−2κ ð57Þ

for g∘f31, g∘f32 and g∘f33 respectively. Accordingly, the values
of the Bell polynomials are given by

BðnÞ
�
κ log

�
d
dz

g∘f31ðzÞ
�����

z¼0
¼

X
k;l;mjkþlþm¼n

e
iπ
2
ðk−lÞ2−m

k!l!m!

Γð1 − 5
3
κÞΓð1 − 1

3
κÞΓð1 − 2κÞ

Γð1 − 5
3
κ − kÞΓð1 − 1

3
κ − lÞΓð1 − 2κ −mÞ

BðnÞ
�
κ log

�
d
dz

g∘f32ðzÞ
�����

z¼0
¼

X
k;l;mjkþlþm¼n

eiπð12ðk−lÞþ2m
3
Þ

k!l!m!

Γð1 − 5
3
κÞΓð1 − 1

3
κÞΓð1 − 2κÞ

Γð1 − 5
3
κ − kÞΓð1 − 1

3
κ − lÞΓð1 − 2κ −mÞ

BðnÞ
�
κ log

�
d
dz

g∘f33ðzÞ
�����

z¼0
¼

X
k;l;mjkþlþm¼n

eiπð
1
2
ðk−lÞ−2m

3
Þ

k!l!m!

Γð1 − 5
3
κÞΓð1 − 1

3
κÞΓð1 − 2κÞ

Γð1 − 5
3
κ − kÞΓð1 − 1

3
κ − lÞΓð1 − 2κ −mÞ ð58Þ

with the sums taken over the unordered partitions of
n ¼ kþ lþm. These relations altogether fully determine
the transformation properties of our string field ansatz,
including the star product.
The final step to make before actually computing the SFT

correlators is to point out the operator product rules involving
the Bell polynomial operators and their blocks. We will do
this in the next section, in particular by deriving an analogue
of the generalized Wick’s theorem for the Bell polynomial
operators and pointing out the relevance of their correlators in
the structure constants of the higher spin algebra.

IV. BELL POLYNOMIAL OPERATORS:
OPERATOR PRODUCTS AND CORRELATORS

The most crucial building block in our computations
involves the OPE rules for the operators of the SFT

ansatz (33)–(35) which we establish in this section.
Ultimately, it turns out that it is precisely the structure
of these OPE rules which makes it possible to work out the
SFT solution and, moreover, to relate it to the higher spin
algebra.
We start from the simplest OPE between BðNÞ

~α ~X
ðzÞ

and BðmÞ
~β ~X

ðwÞ. This does not turn out to be an easy OPE

to compute. The manifest expressions (23)–(24) for the
Bell polynomials do not appear to be very helpful.
Nevertheless, there are some observations to simplify the
computation. First of all, the OPE has to preserve the
conformal transformation structure (48) of the Bell poly-
nomial operators. This suggests that the OPE must have the
structure

BðNÞ
~α ~X

ðzÞBðMÞ
~β ~X

ðwÞ ¼
XN
n¼0

XM
m¼0

ðz − wÞ−n−mλNjMjmjn∶ BðN−nÞ
~α ~X

ðzÞBðM−mÞ
~β ~X

ðwÞ∶ ð59Þ
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(again, for the brevity we consider the double point OPE here, just as explained above). In other words, the Bell polynomial
structure (48) of the operators is preserved by (59). The next helpful hint comes from the identity (36) relating the Bell
operators to the derivatives of the exponents and from analyzing the correlator

�
BðNÞ
~α ~X

e~α ~XðzÞBðMÞ
~β ~X

e~β ~XðwÞ ¼ 1

N!M!
∂N
z ∂M

w < e~α ~XðzÞe~β ~XðwÞ
�

¼ ðz − wÞ−~α ~β−N−M Γð1 − ~α ~βÞ
N!M!Γð1 − ~α ~β−M − NÞ

: ð60Þ

This correlator can be computed in two equivalent ways:
one either starts with applying the OPE (26) of the Bell
polynomials with the exponents and then contracting the
remaining derivatives of X between themselves in each of
the OPE terms; or, alternatively, starting with the OPE (59)
between the Bell polynomials, containing the unknown
λ-constants and then contracting the remaining derivatives
of X in each of the operators with the opposite exponent.
Comparison of these two expressions identifies the re-
markably simple OPE structure:

BðNÞ
~α ~X

ðzÞBðNÞ
~β ~X

ðwÞ

¼ hBðnÞ
~α ~X
ðzÞBðmÞ

~β ~X
ðwÞi∶ BðN−nÞ

~α ~X
ðzÞBðM−mÞ

~β ~X
ðwÞ∶ ð61Þ

i.e. the OPE coefficients are simply given by the two-point
correlators of the lower rank polynomials:

λNjMjmjn ≡ λmjn ¼ ðz − wÞnþmhBðnÞ
~α ~X
ðzÞBðmÞ

~β ~X
ðwÞi: ð62Þ

The last step is to compute the two-point correlators and
somehow this again does not turn out to be an elementary
exercise. Straightforward calculation using the manifest
expression (24) for the Bell polynomials and the Wick’s
theorem leads to a complicated sum over partitions which
does not seem to be realistic to evaluate and does not look
illuminating or useful for our purposes. Instead, we start
from the identity

BðnÞ
~α ~X

¼ 1

n
ð∂Bðn−1Þ

~α ~X
þ ~α∂ ~XBðn−1Þ

~α ~X
Þ: ð63Þ

Inserting this identity in the correlator (62) and using the
OPE (59) we obtain the recursion relation

λnjm ¼ −
nþm − 1

n
λn−1jm −

~α ~β
n

Xm−1

l¼1

λn−1jl: ð64Þ

This recursion relation can be simplified by repeating the
above procedure and inserting the identity (63) into the
correlator hBðnÞBðm−1Þi, obtaining the similar recursion
relation for λnjm−1 and subtracting it from (64). Then the
recursion becomes

nðλnjm − λnjm−1Þ ¼ −ðnþm − 1Þλn−1jm
þ ðnþm − 2 − ~α ~βÞλn−1jm−1 ð65Þ

with the obvious physical constraints

λ0jk ¼ λkj0 ¼ δ0k: ð66Þ

To solve this recursion, define the generating function

Fλðx; yÞ ¼
X
m;n

λnjmxnym; ð67Þ

multiply the recursion (65) by xnym and sum over m and n.
This leads to the first order partial differential equation for
Fλðx; yÞ:

ð1 − yÞð1þ xÞ∂xFλ þ yð1 − yÞ∂yFλ þ ~α ~β yF ¼ 0 ð68Þ

with the boundary conditions

Fλðx; 0Þ ¼ Fλð0; yÞ ¼ 1: ð69Þ

This equation is not hard to solve. Defining

ξ ¼ logð1þ xÞ; η ¼ logðyÞ
Gðx; yÞ ¼ logFðx; yÞ ð70Þ

the equation simplifies according to

∂ξGðξ; ηÞ þ ∂ηGðξ; ηÞ −
~α ~β y

1 − e−η
¼ 0 ð71Þ

and is equivalent to the characteristic ordinary differential
equation system

dξ
ds

¼ dη
ds

¼ 1

dG
ds

¼ ~α ~β y
1 − e−η

ð72Þ

so the general solution is

Gðξ; ηÞ ¼ Hðξ − ηÞ þ ~α ~β
Z

dη
1 − e−η

: ð73Þ
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Substituting Gð0; ηÞ ¼ 0 then fixes H to be

Hðξ − ηÞ ¼ ~α ~β logð1 − eη−ξÞ ð74Þ

so the solution is

Fλðx; yÞ ¼
�ð1þ xÞð1 − yÞ

ð1þ x − yÞ
�

−~α ~β

λnjm ¼ 1

n!m!
∂n
x∂m

y Fλðx; yÞjx;y¼0: ð75Þ

This solution, describing the correlator of two Bell poly-
nomial operators is related to the higher spin algebra in
AdS3 and determines the parameter μ of the enveloping
TðμÞ of SUð2Þ [32–33] and [35].
Next, using the OPE (64) and (75), it is straightforward

to identify the world sheet correlators of the products of the
Bell operators in terms of the λmjn -numbers, relevant to w∞
and to the SU(2) enveloping generators, as well as to our
SFT ansatz (33)–(35). The result is given by

h∶ Bðn1Þ
~α …BðnpÞ∶ ðzÞ∶ Bðm1Þ…BðmqÞ∶ ðwÞijN¼n1þ���þnp; M¼m1þ���þmq

¼ ðz − wÞ−N−M
X

partitions½αij;βji�

Yp
i¼1

Yq
j¼1

ðq!Þpλαijjβji
�Yq

k¼1

σðα1kjβk1Þ!
�

−1
…

�Yq
k¼1

σðαpkjβkpÞ!
�

−1
�Yp

l¼1

σðslÞ!
�

−1
ð76Þ

with the constraints

Xq
j¼1

αij ¼ ni

Xq
i¼1

βji ¼ mj

Xp
i¼1

αij ¼ rj

Xq
j¼1

βji ¼ si

Xq
j¼1

rj ¼
Xp
i¼1

ni ¼ N

Xq
j¼1

mj ¼
Xp
i¼1

si ¼ N ð77Þ

where the notations are as follows. We have introduced the
exchange numbers αij indicating how much of the total
conformal dimension ni of the BðniÞðzÞ-operator in the
product of the Bell polynomials on the left at z is
contributed to its interaction with the operator BðmjÞðwÞ
in the product of the Bell polynomials at w on the right,
according to the OPE structure (59). Similarly, the ex-
change number βji indicates the reduction in the conformal
dimension of BðmjÞðwÞ on the right as a result of its
interaction to BðniÞðzÞ on the left. Altogether, this corre-
sponds to the order of ðz − wÞ−αij−βji term in the OPE of
these two operators entering the left and right chains,
contributing to the overall correlator. Thus rj-numbers,
forming the length q partition of N (as opposed to the
length p partition of N, formed by ni) indicate the total loss

of conformal dimension of the complete operator on the left-
hand side at z due to the interaction with the single
polynomialBðmjÞðwÞ on the right. Similarly, the si-numbers,
forming the lengthp partition ofM (as opposed to the length
q partition of M formed by mi), indicate the total loss of
conformal dimension of the complete operator on the
right-hand side at w due to the interaction with the single
polynomial BðniÞðzÞ on the left. Next, σðαjkjβkjÞðj ¼
1;…; pÞ indicates the multiplicity of the array of the
exchange numbers αjkjβkj in p arrays of the length q each:
fαj1jβ1j;…; αjqjβqjg (j ¼ 1;…p), similarly to (34).
Finally, σðslÞ counts multiplicities of the s-numbers defined
above [again, similarly to (34)]. As before, all the partitions
are considered ordered. While the sum (76) involving the
products of the exchange numbers, summed over the
partitions, looks tedious, there are some significant simpli-
fications in important cases, when the partitions are summed
over.
In fact, we are particularly interested in objects of

the type (43) with the partitions summed over, as, e.g. in
(33)–(35). Let us again start with the simplest possible
warm-up example of summing over the partitions—with all
the partition elements summed over uniformly, that is, with
the sum being a Bell polynomial of Bell polynomials.
Namely, consider the elementary example of a toy string
field given by

Ψ ¼
X∞
M¼0

XM
q¼1

X
Mjm1…mq

�Yq
i¼1

½σðmiÞ�−1
�
Bðm1Þ…:BðmqÞ ð78Þ

and let us calculate the simplest SFT correlator
hΨð1ÞΨð0Þi. To calculate this correlator, the expression
(76) must be further summed over the partitions according
to the definition (78) of the toy Ψ. Take the product (76),
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defining the correlator hBðn1Þ…:BðnpÞð1ÞBðm1Þ…:BðmqÞð0Þi
and let us begin with the summation over partitions
in the second operator at 0. Consider the first row in the
product (76)

∼
X

partitionsðn1;s1Þ

Yq
j¼1

ðq!Þλαijjβji
�Yq

k¼1

σðα1kjβk1Þ
�

−1
ð79Þ

with the sum taken over the partitions of n1 and s1 into the
exchange number sets. This row completely describes the
interaction of Bðn1Þ with the array of the Bell polynomials at
w withM being the total conformal dimension of the array.
Let us calculate the effect of the partition summation (78)
for this row. Now, in addition to the summation over the
above partitions, sum over all the partitions of M with
lengths 1 ≤ q ≤ M and uniform weights for each q.
It is then straightforward to check that the result will be

given by the series expansion coefficient of the following
simple generating function:

∼
X

partitionsðn1;s1Þ

Yq
j¼1

ðq!Þλαijjβji
�Yq

k¼1

σðα1kjβk1Þ!
�

−1

¼ 1

n1!s1!
∂n1
x ∂s1

y

�
1

1 − Fλðx; yÞ
�
jx;y¼0: ð80Þ

The same procedure can be repeated for the remaining
p − 1 rows parametrized by ðnj; sjÞ; j ¼ 1;…p, leading
to the

∼
∂n1
x ∂s1

y ð 1
1−Fλðx;yÞÞ…∂np

x ∂sp
y ð 1

1−Fλðx;yÞÞ
n1!s1!…np!sp!½σðn1js1Þ�!…½σðnpjspÞ�!

:

Finally, let us sum over the partitions for the first string field
at 1. For the fixed values of N and M the result is

∼
1

M!N!
∂N
x ∂M

y

�
1

1− 1
1−Fλ

�����
x;y¼0

¼−∂N
x ∂M

y
1

Fλ

����
x;y¼0

; ð81Þ

so the two-point function of the toy string field (78) is

hΨð1ÞΨð0Þi ¼ e−
1

Fλðx;yÞjx¼y¼1: ð82Þ

The objects of the type (78) are of interest to us both
because they are relevant to our SFT ansatz and, at the same
time, form an operator algebra realization of w∞ and SUð2Þ
envelopings. Namely, instead of the string field Ψ (78)
consider the field

ΨNjp ¼
Xp
q¼1

X
Njn1…nq

�Yq
i¼1

½σðniÞ�−1
�
Bðn1Þ…:BðnqÞ ð83Þ

(it is easy to see that the toy string field Ψ is given by
Ψ ¼ P∞

N¼0ΨNjN). This field is characterized by the num-
bers N and p, with the first being its total conformal
dimension and the second indicating the maximum length
of the “words” made out of Bell polynomial “letters,”
contained in the string field “sentence” ΨNjp. Let us
compute the OPE of two sentences ΨN1jp1

ðzÞ and
ΨN2jp2

ðwÞ around the midpoint 1
2
ðzþ wÞ. Clearly, the

conformal transformation properties of the Bell polyno-
mials imply that the Bell polynomial structure must be
preserved under such an operator product. It is also
clear, from the OPE structure (61) and (76) for the Bell
polynomials that the terms (sentences)of the order
ðz − wÞ−NðN > 0Þ would consist of words of conformal
dimension N1 þ N2 − N and lengths up to p1 þ p2. For
N ¼ 1 this sends a strong hint towards the emergence of
w∞ and of SUð2Þ envelopings for higher-order N values.
Indeed, straightforward calculation, using (61) and the
recurrence relation (63) leads to the following midpoint
OPE simple pole

ΨN1jp1
ðzÞΨN2jp2

ðzÞ

¼ ðz − wÞ−1ðN2p1 − N1p2ÞΨN1þN2−1jp1þp2

�
zþ w
2

�

ð84Þ

and the general OPE structure

ΨN1jp1
ðzÞΨN2jp2

ðzÞ ¼ ðz − wÞ−1ðN2p1 − N1p2ÞΨN1þN2−1jp1þp2

�
zþ w
2

�

þ
XN1þN2

n¼2

ðz − wÞ−nγnðN1; p1jN2; p2ÞΨN1þN2−njp1þp2

�
zþ w
2

�
: ð85Þ

Although we have not computed the γn coefficients in this
paper explicitly, such a computation does not look like a
conceptual challenge and the result must be anyway
determined by combinations of the λ-numbers (75)
stemming from the two-point correlators of the Bell

polynomials. So we recognize classical w∞ at the simple
pole and the enveloping TðμÞ of SU(2) at the higher-order
singularities with the μ-parameter related to the λ-numbers.
Note that this is the midpoint OPE. If, for example, one
needs to compute the OPE around the w-point, the
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right-hand side of (85) must be shifted from 1
2
ðzþ wÞ to w

by the appropriate series expansion in 1
2
ðz − wÞ. This way,

the full enveloping algebra will appear, for example, in
commutators of the charges

H
dzΨNjn.

Now consider a more general example of a string field,
relevant to our ansatz. Consider again a generating function
of the normalized Bell polynomials

HðBÞ ¼
X∞
n¼0

hn
n!

BðnÞ
~α ~X

and the string field given by

Ψ ¼ G∘HðBÞ

where

GðxÞ ¼
X∞
n¼0

gn
n!

xn

with some fixed coefficients hn and gn. Using the OPE rules
and the formalism developed above, the calculation of the
two-point function gives

hΨð1ÞΨð0Þi ¼
X∞
N¼0

X∞
M¼0

XN
n¼0

XM
m¼0

gngm
X

Njp1…pn

X
Mjq1…qm

hp1
…hpn

hq1…hqm
p1!…pn!q1!…qm!

Q
i;j½σðpiÞ�!½σðqjÞ�!

×
X

partitions½αij;βji�

Yn
i¼1

Ym
j¼1

λαijjβji

�Ym
k¼1

σðα1kjβk1Þ!
�

−1
…

�Ym
k¼1

σðαnkjβknÞ!
�

−1
�Yn

l¼1

σðslÞ!
�

−1
ð86Þ

with the constraints

Xm
j¼1

αij ¼ ni;
Xn
i¼1

βji ¼ mj

Xn
i¼1

αij ¼ rj;
Xm
j¼1

βji ¼ si

Xm
j¼1

rj ¼
Xn
i¼1

ni ¼ N

Xm
j¼1

mj ¼
Xn
i¼1

si ¼ N ð87Þ

with the multiplicity σ-factors, exchange numbers and r,
s-numbers defined as before. By direct comparison, it is
straightforward to realize that the lengthy expression on the
right-hand side of (86)–(87) is just a series expansion of the
relatively simple generating composite function, that is, it
can be cast as simply as

hΨð1ÞΨð0Þi ¼ ~GðHðFλðx; yÞÞ;
HðFλðx; yÞÞÞjx¼y¼1 ð88Þ

where the function of two variables ~Gðx; yÞ is related to the
function GðxÞ with the single argument according to

~Gðx; yÞ ¼
X
m;n

gmgn
m!n!

xmyn ð89Þ

where gn are the expansion coefficients of G. It is
instructive to generalize this two-point correlator to the

case of two different string fields, that is, for the case of
string fields of the type (84) with the different H-functions,
but with the same G-function. The calculation, completely
similar to the above, gives

Ψ1 ¼ G∘H1ðBÞ
Ψ2 ¼ G∘H2ðBÞ

hΨ1ð1ÞΨ2ð0Þi ¼ ~GðH1ðFλðx; yÞÞ;
H2ðFλðx; yÞÞÞjx¼y¼1: ð90Þ

The next step in the computation of the SFT correlators
relevant to the equations of motion in SFT is to determine
how the global conformal transformations by IðzÞ and
gkðzÞ≡ g∘f3kðzÞ act on the string fields of the type (84).
Using the transformations (48)–(58), it is not difficult to
deduce that, under any of these conformal transformations
[denoted by fðzÞ for brevity] the string field (84) trans-
forms as

Ψ≡ GðHðBÞÞ → f̂Ψ

¼ dG
dH

X∞
n¼1

Xn
k¼1

αfðk; nÞ½ðB − 1Þ∂k
BHðBÞ þ ∂k−1

B HðBÞ�

þ d2G
dH2

X∞
m;n¼1;m<n

Xkþl¼n−1

k;l¼1;m<n

∂kH∂lHβfðk; ljnÞ ð91Þ

with the differentiation rules for G and H explained above
(31)–(32) and with the coefficients αf and βf related to the
conformal transformations by IðzÞ ¼ − 1

z and g∘f3kðzÞ (5),
(49) according to
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αIðzÞðk; nÞ ¼
1

k!
Γð2n − 1Þ
Γð2n − kÞ

αg∘f3
1
ðzÞðk; nÞ ¼

1

k

�
−
2

3

�
n−k X

a;b;cjaþbþc¼k−1

e
iπ
2
ða−bÞ2−c

a!b!c!

Γð1 − 5
3
ð1 − nÞÞΓð1 − 1

3
ð1 − nÞÞΓð1 − 2ð1 − nÞÞ

Γð1 − 5
3
ð1 − nÞ − aÞΓð1 − 1

3
ð1 − nÞ − bÞΓð1 − 2ð1 − nÞ − cÞ

αg∘f3
2
ðzÞðk; nÞ ¼

1

k

�
−
8

3

�
n−k X

a;b;cjaþbþc¼k−1

eðiπ2 ða−bÞþ2iπc
3
Þ2−c

a!b!c!

Γð1 − 5
3
ð1 − nÞÞΓð1 − 1

3
ð1 − nÞÞΓð1 − 2ð1 − nÞÞ

Γð1 − 5
3
ð1 − nÞ − aÞΓð1 − 1

3
ð1 − nÞ − bÞΓð1 − 2ð1 − nÞ − cÞ

αg∘f3
3
ðzÞðk; nÞ ¼

1

k

�
8

3

�
n−k X

a;b;cjaþbþc¼k−1

eð
iπ
2
ða−bÞ−2iπc

3
Þ2−c

a!b!c!

Γð1 − 5
3
ð1 − nÞÞΓð1 − 1

3
ð1 − nÞÞΓð1 − 2ð1 − nÞÞ

Γð1 − 5
3
ð1 − nÞ − aÞΓð1 − 1

3
ð1 − nÞ − bÞΓð1 − 2ð1 − nÞ − cÞ

ð92Þ

and

βIðzÞðk; ljnÞ ¼
2

ðkþ l − 1Þ!
�
−
2

3

�
n−k−lþ1 Γð−3Þ

Γð−1 − k − lÞ

βg∘f3
1
ðzÞðk; ljnÞ ¼

1

kþ l − 1

�
−
8

3

�
n−k−lþ1 X

a;b;cjaþbþc¼kþl−2

e
iπ
2
ða−bÞ2−c

a!b!c!

Γð− 7
3
ÞΓð1

3
ÞΓð−3Þ

Γð− 7
3
− aÞΓð1

3
− bÞΓð−3 − cÞ

βg∘f3
2
ðzÞðk; ljnÞ ¼

1

kþ l − 1

�
−
8

3

�
n−k−lþ1 X

a;b;cjaþbþc¼kþl−2

eð
iπ
2
ða−bÞþ2iπc

3
Þ2−c

a!b!c!

Γð− 7
3
ÞΓð1

3
ÞΓð−3Þ

Γð− 7
3
− aÞΓð1

3
− bÞΓð−3 − cÞ

βg∘f3
2
ðzÞðk; ljnÞ ¼

1

kþ l − 1

�
8

3

�
n−k−lþ1 X

a;b;cjaþbþc¼kþl−2

eðiπ2 ða−bÞ−2iπc
3
Þ2−c

a!b!c!

Γð− 7
3
ÞΓð1

3
ÞΓð−3Þ

Γð− 7
3
− aÞΓð1

3
− bÞΓð−3 − cÞ : ð93Þ

Furthermore, our notations in (91) are defined as follows.
Consider a function of the normalized Bell polynomials

fðB1; B2;…:Þ ¼ P
n>0fnB

ðnÞ
~ψ and the associate function

fðBÞ given by the formal series in auxiliary argument B
fðBÞ ¼ P

n>0fnB
n. Consider a transformation fðBÞ →

gðBÞ where gðBÞ ¼ P
ngnB

n can be obtained from f by
differentiation over B, integration, multiplication(s) by B
and/or their combination. Then the formal series for gðBÞ
define the new associate generating function of the nor-

malized Bell polynomials gðB1;…; BnÞ ¼
P

ngnB
ðnÞ
~ψ by

identifying Bn → BðnÞ
~ψ .

This fully determines the transformations of the SFT
string field ansatz under the conformal transformations
mapping the world sheets to the wedges of the single disc
and then to the single half plane. The next step is to point
out the action of the BRST charge on the string field ansatz.
This too can be reduced to the transformations of the ansatz
functionsG andH. Since the only SFT correlator involving
the BRST charge is ≪QΨjΨ≫ ¼ hQΨð0ÞI∘Ψð0Þi and
both Ψ and I∘Ψ are proportional to c, the only terms in the
commutator with the BRST charge (12) contributing to this
correlator are those proportional to ∂cc and ∂2cc, while
all the terms in QΨ containing higher derivatives of

the c-ghost do not contribute to the correlator since ∂ncc ∼
Bðn−1Þ
σ ∂cc with σ being the bosonized c-ghost. Such terms

do not contribute to the two-point correlators since the Bell
polynomials in the derivatives of the bosonized c-ghost

Bðn−1Þ
σ cannot fully contract to the c-ghost of the opposite

string field for n > 2. Using the OPE (61)–(62) and (75) it
is straightforward to show that for the string field Ψ
(33)–(35) the relevant terms in the BRST transformation
are given by

QΨ≡QcGðHðBÞÞ¼ ∂ccðB∂BGðHðBÞÞ−GðHðBÞÞÞ

þ1

2
∂2ccB∂2

BGðHðBÞÞ

¼ ∂cðB∂BΨ−ΨÞþ1

2
∂2cB∂2

BΨ ð94Þ

with the notations explained above. With all the above
identities it is now straightforward to calculate the SFT
correlators. The three-point correlator is then computed
to give

≪g1∘GðHðBÞÞð0Þg2∘GðHðBÞÞð0Þg3∘GðHðBÞÞð0Þ≫
≡≪ΨjΨ⋆Ψ≫ ¼ T1 þ T2 þ T3 þ T4: ð95Þ
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Here

T1 ¼
X∞

n1;n2;n3¼0

X∞
m1;m2;m3¼0

X∞
q1;q2;q3¼0

Xm1

k1¼0

Xm2

k2¼0

Xm3

k3¼0

X∞
N;R;T¼0

X
Njn1…nq1

X
Rjr1…rq2

X
Tjt1…tq3

XNþm1−k1

N1¼0

XRþm2−k2

R1¼0

XTþm3−k3

T1¼0

×

�
gq1þ1gq2þ1gq3þ1

q1!q2!q3!
hm1

hm2
hm3

hn1…:hnq1hr1…hrq2ht1…:htq3 ×
Yq2þ1

i1¼1

Yq1þ1

j1¼1

Yq3þ1

i2¼1

Yq1þ1

j2¼1

Yq3þ1

i3¼1

Yq2þ1

j3¼1

λαi1j1 jβj1i1 λ ~αi2j2 jβj2i2 λ ~αi2j2 j ~βj2i2

×
Yq1þ1

μ¼1

σ−1ðλαμ;1jβ1;μ ;…λαμ;q2þ1jβq2þ1;μ
Þσ−1ðλ ~αμ;1jβ1;μ ;…λ ~αμ;q3þ1jβq3þ1;μ

Þ
Yq2þ1

ν¼1

σ−1ðλ ~αμ;1j ~β1;μ ;…λ ~αν;q3þ1j ~βq3þ1;ν
Þ

× σ−1ðsð1Þ1 ;…sð1Þq2þ1Þσ−1ð~sð1Þ1 ;…~sð1Þq3þ1Þσ−1ðsð2Þ1 ;…sð2Þq1þ1Þσ−1ð~sð2Þ1 ;…~sð2Þq3þ1Þσ−1ðsð3Þ1 ;…sð3Þq1þ1Þ

× σ−1ð~sð3Þ1 ;…~sð3Þq2þ1Þððq2 þ 1Þ!ðq3 þ 1Þ!Þq1þ1ððq3 þ 1Þ!Þq2þ12NþT1−N1þm1−k1ð
ffiffiffi
3

p
ÞNþRþTþm1−k1þm2−k2þm3−k3

�

þ permutationsðg1∘Ψ; g2∘Ψ; g3∘ΨÞ ð96Þ

where the exchange numbers are defined similarly to the
previous case, as well as the σ−1-factors, defined by
products of array multiplicities in the relevant partitions.
Next, the s, ~s-numbers are similar to the r, s-numbers
defined previously and are related to conformal dimension
losses of string field components due to interactions with
partition elements (individual Bell polynomials) in com-
ponents of two opposite string fields. Altogether, these
numbers satisfy the following constraints:

Xq2þ1

j¼1

αij þ
Xq3þ1

j¼1

~αij ¼ niði ¼ 1;…; q1 þ 1Þ

Xq1þ1

j¼1

βij þ
Xq3þ1

j¼1

~βij ¼ riði ¼ 1;…; q2 þ 1Þ

Xq1þ1

j¼1

γij þ
Xq2þ1

j¼1

~γij ¼ tiði ¼ 1;…; q3 þ 1Þ ð97Þ

and
Xq1þ1

i¼1

αij ¼ sð1Þj ðj ¼ 1;…; q2 þ 1Þ

Xq1þ1

i¼1

~αij ¼ ~sð1Þj ðj ¼ 1;…; q3 þ 1Þ

Xq2þ1

i¼1

αij ¼ sð2Þj ðj ¼ 1;…; q1 þ 1Þ

Xq2þ1

i¼1

~βij ¼ ~sð2Þj ðj ¼ 1;…; q3 þ 1Þ

Xq3þ1

i¼1

γij ¼ sð3Þj ðj ¼ 1;…; q1 þ 1Þ

Xq2þ1

i¼1

~γij ¼ ~sð3Þj ðj ¼ 1;…; q2 þ 1Þ ð98Þ
and furthermore

N þm1 − k1 ¼
Xq1þ1

i¼1

ni ¼
Xq2þ1

j¼1

sð1Þj þ
Xq3þ1

j¼1

~sð1Þj

Rþm2 − k2 ¼
Xq2þ1

i¼1

ri ¼
Xq1þ1

j¼1

sð2Þj þ
Xq3þ1

j¼1

~sð2Þj

T þm3 − k3 ¼
Xq3þ1

i¼1

ti ¼
Xq1þ1

j¼1

sð3Þj þ
Xq2þ1

j¼1

~sð3Þj : ð99Þ

In other words, the exchange numbers that form the OPE
structure of the Bell polynomial products can be visualized
as “partitions of partitions” of the conformal dimensions of
the string field components.
This constitutes T1, the first out of four terms contrib-

uting to the three-point correlator. The remaining three can
be obtained from T1 by a few simple replacements/
manipulations. That is, T2 is obtained from T1 by replacing
one of three α coefficients in (96) by the β-coefficient,
αðk1; n1Þ → βðk1; l1jn1Þ, with k1, l1 being summed over
from 0 to k1 þ l1 ¼ n1; inserting an extra h-coefficient in
the sum according to hm1

hm2
hm3

→ hm1
hm2

hm3
hm4

, replac-
ing the difference m1 − k1 → m1 þm4 − k1 − l1 and
finally replacing q1 þ 1 → q1 þ 2 in the upper limits in
the products over j1 and j2 in (96)–(99), as well as in the
relevant g-coefficient [the first among three in (96)] and in
the relevant σ−1-factors, increasing their number of argu-
ments by one unit—and finally, permuting over the con-
formal transformations by g1, g2, g3, as in T1. Thus the
T1-contribution has the ααα-structure, while T2 carries the
βαα-structure. Similarly, to obtain T3 out of T2, one further
replaces the second α-coefficient by the β-coefficient,
αðk2; n2Þ → βðk2; l2jn2Þ, inserts an extra h-coefficient in
theproduct,hm1

…hm4
→ hm1

…hm4
hm5

, and further replaces
m2 − k2 → m2 þm5 − k2 − l2 and q2 þ 1 → q2 þ 2
according to the prescriptions explained above. This,
upon the permutation over the conformal transformations,
similar to the above, gives the T3-contribution with
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the ββα-structure. The final contribution, T4, having the
βββ-structure, is obtained similarly from T3 by replacing
the last remaining αwith β and performing themanipulations
identical to those described above. The overall expression for
the three-point correlator thus looks complex enough.

Nevertheless, it is straightforward to check that, just as in
the elementary warm-up example demonstrated previously,
the complicated sum given by (96)–(99) can be converted
successfully into the generating composite function and
identified with its series expansion. Namely, we obtain

≪ΨjΨ⋆Ψ≫≡≪g1∘GðHðBÞÞð0Þg2∘GðHðBÞÞð0Þg3∘GðHðBÞÞð0Þ≫ ¼
X4
j¼1

KjðGðHðFλÞÞÞ ð100Þ

where

K1ðGðHðFλÞÞÞ¼
X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

Xn1
k1¼0

Xn2
k2¼0

Xn3
k3¼0

Xk1
Q¼1

Xk2
R¼1

Xk3
S¼1

f½αg1ðk1;n1Þαg2ðk2;n2Þαg3ðk3;n3Þþαg1ðk1;n1Þαg3ðk2;n2Þαg2ðk3;n3Þ

þαg2ðk1;n1Þαg1ðk2;n2Þαg3ðk3;n3Þþαg2ðk1;n1Þαg3ðk2;n2Þαg1ðk3;n3Þþαg3ðk1;n1Þαg2ðk2;n2Þαg1ðk3;n3Þ
þαg3ðk1;n1Þαg1ðk2;n2Þαg2ðk3;n3Þg∂k1

Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p ∂k2

Fλ
HðFλðx;yÞÞjx;y¼2

ffiffi
3

p ∂k3
Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p

×G0ð∂QHðFλðx;yÞÞÞjx;y¼ ffiffi
3

p G0ð∂RHðFλðx;yÞÞÞjx;y¼2
ffiffi
3

p G0ð∂SHðFλðx;yÞÞÞjx;y¼ ffiffi
3

p ð101Þ

K2ðGðHðFλÞÞÞ ¼
X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

Xk1þl1¼n1

k1;l1¼0

Xn2
k2¼0

Xn3
k3¼0

Xk1þl1−1

Q¼1

Xk2
R¼1

Xk3
S¼1

βg1ðk1; l1jn1Þðαg2ðk2; n2Þαg3ðk3; n3Þþ αg3ðk2; n2Þαg2ðk3; n3ÞÞ

×G00ð∂QHðFλðx;yÞÞÞjx;y¼ ffiffi
3

p G0ð∂RHðFλðx;yÞÞÞjx;y¼2
ffiffi
3

p

×G0ð∂SHðFλðx;yÞÞÞjx;y¼ ffiffi
3

p ð∂k1
Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p ∂l1

Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p

× ∂k2
Fλ
HðFλðx;yÞÞjx;y¼2

ffiffi
3

p ∂k3
Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p Þþ βg2ðk1; l1jn1Þðαg1ðk2; n2Þαg3ðk3; n3Þ

þ αg3ðk2; n2Þαg1ðk3; n3ÞÞG00ð∂QHðFλðx;yÞÞÞjx;y¼2
ffiffi
3

p G0ð∂RHðFλðx;yÞÞÞjx;y¼ ffiffi
3

p G0ð∂SHðFλðx;yÞÞÞjx;y¼ ffiffi
3

p

× ð∂k1
Fλ
HðFλðx;yÞÞjx;y¼2

ffiffi
3

p ∂l1
Fλ
HðFλðx;yÞÞjx;y¼2

ffiffi
3

p ∂k2
Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p ∂k3

Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p Þ

þ βg3ðk1; l1jn1Þðαg1ðk2; n2Þαg2ðk3; n3Þþ αg2ðk2; n2Þαg1ðk3; n3ÞÞ
×G0ð∂QHðFλðx;yÞÞÞjx;y¼ ffiffi

3
p G0ð∂RHðFλðx;yÞÞÞjx;y¼ ffiffi

3
p G0ð∂SHðFλðx;yÞÞÞjx;y¼2

ffiffi
3

p

× ð∂k1
Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p ∂l1

Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p ∂k2

Fλ
HðFλðx;yÞÞjx;y¼ ffiffi

3
p ∂k3

Fλ
HðFλðx;yÞÞjx;y¼2

ffiffi
3

p Þ ð102Þ

K3ðGðHðFλÞÞÞ ¼
X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

Xk1þl1¼n1

k1;l1¼0;k1<l1

Xk2þl2¼n2

k2;l2¼0;k2<l2

Xn3
k3¼0

Xk1þl1−1

Q¼1

Xk2þl2−1

R¼1

Xk3
S¼1

ðβg1ðk1; l1jn1Þβg2ðk2; ; l2jn2Þ

þ βg2ðk1; l1jn1Þβg1ðk2; ; l2jn2ÞÞαg3ðk3; n3ÞG00ð∂QHðFλðx; yÞÞÞjx;y¼ ffiffi
3

p G00ð∂RHðFλðx; yÞÞÞjx;y¼2
ffiffi
3

p

× G0ð∂SHðFλðx; yÞÞÞjx;y¼ ffiffi
3

p ð∂k1
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂l1

Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂k2

Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p

× ∂l2
Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p Þ∂k3
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p þ ðβg1ðk1; l1jn1Þβg3ðk2; ; l2jn2Þ

þ βg3ðk1; l1jn1Þβg1ðk2; ; l2jn2ÞÞαg2ðk3; n3ÞG00ð∂QHðFλðx; yÞÞÞjx;y¼2
ffiffi
3

p G00ð∂RHðFλðx; yÞÞÞjx;y¼ ffiffi
3

p

× G0ð∂SHðFλðx; yÞÞÞjx;y¼ ffiffi
3

p ð∂k1
Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p ∂l1
Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p ∂k2
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p

× ∂l2
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p Þ∂k3

Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p þ ðβg2ðk1; l1jn1Þβg3ðk2; ; l2jn2Þ

þ βg3ðk1; l1jn1Þβg2ðk2; ; l2jn2ÞÞαg1ðk3; n3ÞG00ð∂QHðFλðx; yÞÞÞjx;y¼ ffiffi
3

p G00ð∂RHðFλðx; yÞÞÞjx;y¼ ffiffi
3

p

× G0ð∂SHðFλðx; yÞÞÞjx;y¼2
ffiffi
3

p ð∂k1
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂l1

Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂k2

Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p

× ∂l2
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p Þ∂k3

Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p ð103Þ
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K4ðGðHðFλÞÞÞ ¼
X∞
n1¼0

X∞
n2¼0

X∞
n3¼0

Xk1þl1¼n1

k1;l1¼0;k1<l1

Xk2þl2¼n2

k2;l2¼0;k2<l2

Xn3
k3;l3¼0;k3<l3

Xk1þl1−1

Q¼1

Xk2þl2−1

R¼1

Xk3þl3−1

S¼1

× ðβg1ðk1; l1jn1Þβg2ðk2; l2jn2Þβg3ðk3; l3jn3Þ þ βg1ðk1; l1jn1Þβg3ðk2; l2jn2Þβg2ðk3; l3jn3Þ
þ βg1ðk2; l2jn2Þβg2ðk1; l1jn1Þβg3ðk3; l3jn3Þ þ βg1ðk2; l2jn2Þβg3ðk1; l1jn1Þβg2ðk3; l3jn3Þ
þ βg1ðk3; l3jn3Þβg2ðk1; l1jn1Þβg3ðk2; l2jn2Þ þ βg1ðk3; l3jn3Þβg3ðk1; l1jn1Þβg2ðk2; l2jn2ÞÞ
×G00ð∂QHðFλðx; yÞÞÞjx;y¼ ffiffi

3
p G00ð∂RHðFλðx; yÞÞÞjx;y¼ ffiffi

3
p G00ð∂SHðFλðx; yÞÞÞjx;y¼2

ffiffi
3

p

× ð∂k1
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂l1

Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂k2

Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p

× ∂l2
Fλ
HðFλðx; yÞÞjx;y¼ ffiffi

3
p ∂k3

Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p ∂k3
Fλ
HðFλðx; yÞÞjx;y¼2

ffiffi
3

p Þ ð104Þ

where, in our notations,Gð∂QHÞ is obtained fromGðHÞ by
replacing the argument H → ∂QH and ∂QH ≡ ∂QH

∂Fλ
Q and

finally G0ð∂QHÞ ¼ ∂G
∂ð∂QHÞ. This concludes the computation

of the three-point SFT correlator for our solution ansatz.
The final step is to compute the kinetic term
≪QΨð0ÞjI∘Ψð0Þ≫ using the operator products and
the identities derived above. According to the BRST
transformation identity (94) this correlator is determined
by two contributions: one proportional to the
ghost part hcðzÞ∂ccðwijz¼0;w→∞ ¼ ðz − wÞ2 another to
hcðzÞ∂2ccðwÞijz¼0;w→∞ ¼ −2ðz − wÞ. Note that, since c,
∂cc and ∂2cc ghost fields have conformal dimensions −1,
−1 and 0 respectively, and since the conformal trans-
formation by IðzÞ takes 0 to infinity, it is straightforward

to check that the matter part of the first contribution only
contains the terms with the conformal dimensions of the
string field components at z equal to those of the string
components at w; all the terms with unequal conformal
dimensions of operators at z and w vanish in the limit
w → ∞. Similarly, the matter part of the second contribu-
tion [multiplied by the hcðzÞ∂2ccðwÞijz¼0;w→∞ ghost cor-
relator] only contains the terms with the conformal
dimensions of the operators at z equal to those of the
operators at w plus one.
Then, performing straightforward calculation of the

correlator, similar to those above, plugging into SFT
equations of motion (1) leads to the defining relation for
the GðHðFλÞÞ function of our ansatz, given by

X∞
n¼0

Xn
k¼1

αIðk; nÞ
Xk
Q¼0

fZ0½ ~GðHðFλÞÞjG0ð∂Q
Fλ
HðFλÞÞ� − Z1½∂Fλ

~GðHðFλÞÞjG0ð∂Q
Fλ

~HðFλÞÞ�g�∂k
Fλ

~HðFλÞjx¼y¼1

þ
X∞
n¼0

Xn
k;l¼1;k<l

βIðk; ljnÞ
Xkþl−1

Q¼0

gZ0½ ~Gð ~HðFλÞÞjG00ð∂Q
Fλ

~HðFλÞÞ�

− Z1½∂Fλ
~GðHðFλÞÞjG00ð∂Q

Fλ
~HðFλÞÞ�g∂k

Fλ
~HðFλÞj∂l

Fλ
~HðFλÞjx;y¼1g ¼

X
j

KjðGðHðFλÞÞÞ ð105Þ

where the operations Zk½f1ðxÞjf2ðxÞ� acting on functions
f1 and f2 are defined as follows: if f1ðxÞ ¼

P
mamx

m and
f2ðxÞ ¼

P
nanx

n are the series expansions for f1 and f2
then Zk maps them into the function (formal series)

Zk½f1ðxÞjf2ðyÞ� ¼
X
n

anbnþkxnynþk: ð106Þ

The tilde operations are again defined according to

~GðHðxÞÞ ¼ x
d
dx

GðHðxÞÞ −GðHðxÞÞ

~HðxÞ ¼ x
d
dx

HðxÞ −HðxÞ ð107Þ

and the Kj-functions are defined by (101)–(104). The
functional equation (105) is the main result of this paper
and constitutes the defining relation for the SFT ansatz. As
cumbersome as this relation is, it can be, e.g. solved order
by order by iterations and reduces the SFT equation (1) to
the identity which is essentially algebraic. In the case of
α2 ¼ −2 that we mostly have explored in this paper, one
particularly simple example for the generating functions
solving the defining relation (105) is given by

GðHÞ ¼ 1

1 −HðFλÞ
HðxÞ ¼ 1

1 − x
: ð108Þ
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Replacing xn → BðnÞ
~ψ according to our usual prescription

leads to the generating function of the SU(2) enveloping
algebra TðμÞ with the parameter μ defined by the Fλ
(elementary correlator of Bell polynomial operators).
The classical w∞ algebra is then recovered in the simple
pole ∼ðz − wÞ−1 of the OPE of GðHðBðnÞðzÞÞÞ and
GðHðBðnÞðwÞÞÞ. In general, the defining relation (105)
appears to parametrize the class of SFT solutions, of which
(108) is an elementary example. Finding the explicit form
of this class of the solutions generalizing (108) appears to
be an important challenge and obviously does not seem to
be easy. However, it appears that this class is most naturally
expressible in terms of the series in the powers of the
generating function (108) for the products of the Bell
polynomial operators, relating it to the enveloping of the
enveloping of SUð2Þ (and more particularly, to the envel-
oping of w∞). Objects like these are known to be relevant to
the quantization of higher spin theories and to the multi-
particle realizations of the higher spin algebras [36]. The
crucial point about the SFT solutions, constrained to the
subspace of operators given by products of the Bell
polynomials, is that these objects
(a) behave in a controllable and consistent way in the SFT

star product computations
(b) and form a natural operator basis for the free-field

realization of the SUð2Þ envelopings and w∞. In the
concluding section, we briefly discuss how the con-
struction, studied in this paper, can be generalized to
higher space-time dimensions.

V. CONCLUSION AND DISCUSSION

In this paper we have considered the ansatz solution in
bosonic string field theory, given by formal series in partial
(incomplete) Bell polynomials of Bell polynomial operators
in the world sheet derivatives of the target space fields. These
objects formanoperator algebra realization for theenveloping
of SUð2Þ, including the w∞ algebra appearing at the simple
pole of the OPE. This, up to ideal factorization, is isomorphic
to a chiral copy of higher spin algebra inAdS3. The solution is
given in terms of the functional constraints on the generating
functions for the operators realizing this enveloping. These
constraints altogether are quite cumbersome and finding their
manifest solutions does not appear to be an easy challenge,
except for a relatively simple example (108).
Nevertheless, the constraints for the h and g-expansion

coefficients are essentially algebraic and in principle can be
analyzed order by order by iterations.
An important question is whether the construction,

considered in our work, can be extended to SFT solutions
involving higher dimensional enveloping/higher spin alge-
bras. A possible answer to that may come from superstring
generalization of the computation performed in this work
and switching on the β − γ system of the superconformal
ghosts. Just as the solution, considered in this paper, was in
a sense inspired by the bosonic c ¼ 1model (an elementary
example pointing out the relevance of operator algebra

involving Bell polynomial products to w∞ and higher spin
algebra) one can use a supersymmetric c ¼ 1 model
coupled to the β − γ system as a toy model inspiration.
It is known that the interaction with the superconformal
ghosts enhances the SUð2Þ symmetry at the self-dual point
to SUðNÞ where N − 2 is the maximal superconformal
ghost number (ghost cohomology rank) of the generators
[37]. One can hope that the manifest form of the vertex
operators in this model will prompt the form of the ansatz
we should be looking for, and the resulting solution will be
relevant to envelopings of SUðNÞ or their subalgebras,
related to isometries of AdS in different space-time
dimensions. The manifest form of the vertex operators in
this model would again involve the products of Bell
polynomials; however their structure will be far more
diverse. In the present paper the ψ ¼ ~α ~X parameter of
the operators was fixed to be the same for all the string field
components (as it is the same for all the operators for the
bosonic discrete states and is equal to−i

ffiffiffi
2

p
X). Switching on

the higher superconformal ghost pictures in the c ¼ 1model
would then result in the appearance of Bell polynomial
products with mixed ψ-parameters. While the naive number
of the parameters would be 1

2
NðN − 1Þ [total number of the

lowering operators of SUðNÞ], the actual number would be
less and of the order of N, since not all the lowering
operators, acting on tachyonic primaries, lead to physically
distinct states. The distinct states are basically generated by
the lowering operators of ghost numbers N − 2 carrying the
maximum momentum value in the X-direction, equal to
N − 1, and the total number of such generators is N − 1.
Thus one can hope that introducing extra ψ-parameters will
direct us towards the SFT solutions describing the higher
dimensional enveloping/higher spin algebras. It looks plau-
sible that the framework involving theWess-Zumino-Witten-
type Berkovits string field theory may turn out to be a
convenient framework for this program along with cubic
superstring field theory with picture-changing insertions
[2,19,21,38]. Following this strategy, one can hope to find
the defining constraints for the generating functions, similar
to those considered in this paper. It would certainly be of
interest and of importance to study these constraints and to
identify some of their manifest solutions. This hopefully will
lead to new important insights regarding nonperturbative
higher spin configurations, as well as to deeper under-
standing of the underlying relations between SFT and higher
spin field theories, which appear to be crucial ingredients of
holography principle in general.
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