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Localization of a spin-1=2 fermion on the braneworld is an important and interesting problem. It is well
known that a five-dimensional free massless fermion Ψ minimally coupled to gravity cannot be localized
on the Randall-Sundrum braneworld. In order to trap such a fermion, the coupling between the fermion and
bulk scalar fields should be introduced. In this paper, localization and quasilocalization of a bulk fermion
on the thick braneworld generated by two scalar fields (a kink scalar ϕ and a dilaton scalar π) are
investigated. Two types of couplings between the fermion and two scalars are considered. One coupling is
the usual Yukawa coupling −ηΨ̄ϕΨ between the fermion and kink scalar, another one is λΨ̄ΓM∂Mπγ

5Ψ
between the fermion and dilaton scalar. The left-chiral fermion zero mode can be localized on the brane,
and both the left- and right-chiral fermion massive Kaluza-Klein modes may be localized or quasilocalized.
Hence the four-dimensional massless left-chiral fermion and massive Dirac fermions, whose lifetime is
infinite or finite, can be obtained on the brane.
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I. INTRODUCTION

The braneworld scenarios that our observed four-
dimensional universe can be considered as a brane
embedded in a higher-dimensional spacetime can supply
new insights for solving the gauge hierarchy problem [1,2]
and the cosmological constant problem [3–5]. The effective
four-dimensional gravity could be recovered even in the
case of noncompact extra dimensions in the Randall-
Sundrum (RS) braneworld model [6], where singularities
are present at the position of the branes. The smooth
braneworld solutions (thick brane scenario or domain wall
scenario) are generally based on gravity coupled to one or
several bulk scalar fields [7–14]. For some comprehensive
reviews about thick branes, please see Refs. [15–20].
In braneworld scenarios, an interesting and important

problem is whether various bulk fields can be confined
to the brane by a natural mechanism. Generally, a free
massless scalar field [21] can be localized on branes of
different types. A free vector field can be localized on the
Randall-Sundrum brane in some higher-dimensional cases
[22] or on some thick de Sitter branes and Weyl thick
branes [23,24].

Since the particles in our world are described by
fermions, localization of a bulk fermion is very important
for any braneworld model [21–53]. In general, if one does
not introduce the coupling between the fermion and scalars
which generate the thick braneworlds, a bulk fermion does
not have a normalizable zero mode in five dimensions.
So in order to localize a bulk fermion, the scalar-fermion
coupling should be introduced. Usually, the Yukawa
coupling −ηΨ̄ϕΨ is a natural choice when the scalar has
the configuration of a kink (i.e., ϕ is an odd function of the
extra dimensional coordinate). However, if the background
scalar has the shape of lump (or an even function of
the extra dimensional coordinate, see Refs. [54–59]), the
Yukawa coupling cannot keep the Z2 reflection symmetry
of Lagrange and hence this localization mechanism does
not work anymore. Recently, Liu et al. presented a new
localization mechanism of a bulk fermion on braneworlds
generated by such a scalar with even parity [46]. The scalar-
fermion coupling is given by λΨ̄ΓM∂Mπγ

5Ψ, which ensures
not only the Z2 reflection symmetry of the Lagrange but
also localization of the left- or right-chiral fermion zero
mode on the branes.
In this paper, we will explore localization of a spin-1=2

fermionΨ on the Minkowski brane generated by two scalar
fields (a kink scalar field ϕ with odd parity and a dilaton
scalar field π with even parity). We introduce both two
types of couplings between the fermion and scalars: one is
the usual Yukawa coupling −ηΨ̄ϕΨ between the fermion
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and kink scalar, another is the coupling λΨ̄ΓM∂Mπγ
5Ψ

between the fermion and dilaton scalar. If only introducing
the Yukawa coupling, the effective potentials of the
left- and right-chiral fermion Kaluza-Klein (KK) modes
in the corresponding Schrödinger equations are modified
volcano-type potentials. And the left- and right-chiral
fermion zero modes tend to a constant and infinity, respec-
tively, when far away from the brane. So none of the two
zero modes cannot be localized on the brane. However,
the massive resonant KK modes may exist for this type of
potential. If only introducing the second coupling, the
effective potentials of the KK modes are modified
Pöschl-Teller potentials, which lead to localization of the
left- or right-chiral fermion zero mode as well as to mass
gaps in the mass spectra. When both two couplings are
considered, the potentials will have a barrier at each side of
the brane, and tend to a positive constant when far away
from the brane. Then one of the left- and right-chiral
fermions zero modes can be localized on the brane, and
there exists a mass gap in the mass spectrum of the fermion
KK modes. Then the massive bound and/or resonant KK
modes can be localized and/or quasilocalized on the brane.
The organization of this paper is as follows: in Sec. II, we

first review the Minkowski thick brane generated by two
scalar fields. Then, in Sec. III, we investigate localization
and quasilocalization of a spin-1=2 fermion field on this
thick brane by introducing two kinds of scalar-fermion
couplings. Finally, our conclusion is given in Sec. IV
together with some discussion on the presented material.

II. REVIEW OF THE MINKOWSKI THICK
BRANEWORLD GENERATED BY TWO

SCALAR FIELDS

In this paper, we consider a Minkowski brane generated
by two interacting scalar fields ϕ and π, embedded in a five-
dimensional spacetime. The action of such a system is

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ25
R −

1

2
ð∂ϕÞ2 − 1

2
ð∂πÞ2 − Vðϕ; πÞ

�
;

ð1Þ

where R is the five-dimensional scalar curvature and
κ25 ¼ 8πG5 with G5 the five-dimensional Newton constant.
For simplicity, the constant κ5 is set to κ5 ¼ 1. The line
element of the Minkowski brane is assumed as

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; ð2Þ

which can also be transformed to the conformally flat one

ds2 ¼ e2AðzÞðημνdxμdxν þ dz2Þ; ð3Þ

by introducing the coordinate transformation, dz ¼
e−AðyÞdy. Here e2A is the warp factor and ημν is the metric

of four-dimensional Minkowski spacetime on the brane.
y or z denotes the extra dimensional coordinate. The
background scalar fields ϕ and π are assumed to be only
the functions of the extra dimensional coordinate.
By considering the metric (3), the equations of motion

generated from action (1) read as

1

2
ϕ02 þ 1

2
π02 − e2AV ¼ 6A02; ð4Þ

1

2
ϕ02 þ 1

2
π02 þ e2AV ¼ −3A00 − 3A02; ð5Þ

ϕ00 þ 3A0ϕ0 ¼ e2A
∂V
∂ϕ ; ð6Þ

π00 þ 3A0π0 ¼ e2A
∂V
∂π ; ð7Þ

where the prime denotes the derivative with respect to z.
The solutions of the thick brane can be found by following

the superpotential method [7,12]. By supposing Vðϕ; πÞ ¼
1
2
e−

2πffiffi
3

p ½ð∂W∂ϕÞ2 −W2� and considering a specific superpoten-

tial function WðϕÞ ¼ vaϕð1 − ϕ2

3v2Þ [54,55], one solution is
obtained

AðzÞ ¼ −
v2

9

�
lnðcosh2ðazÞÞ þ 1

2
tanh2ðazÞ

�
; ð8Þ

ϕðzÞ ¼ v tanhðazÞ; ð9Þ

πðzÞ ¼
ffiffiffi
3

p
AðzÞ; ð10Þ

Vðϕ; πÞ ¼ a2

18v2
e−

2πffiffi
3

p

× ½9v4 − 9v2ðv2 þ 2Þϕ2 þ 3ð2v2 þ 3Þϕ4 − ϕ6�;
ð11Þ

where v and a are positive constants. It can be seen that the
solution for ϕ is a kink and π is the dilaton field, which are
odd and even functions of the extra dimensional coordinate
z, respectively. The energy density of the thick brane is
written as follows:

T00ðzÞ ¼
1

2
ðϕ02 þ π02Þ þ e2AVðϕ; πÞ

¼ a2v2

27
½v2sech6ðazÞ þ 3ðv2 þ 9Þsech4ðazÞ − 4v2�:

ð12Þ

From the above expression (12), we can see that the energy
density has a maximum value Tmax

00 ¼ a2v2 at z ¼ 0

and tends to the minimum value Tmin
00 ¼ − 4

27
a2v2 when
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z → �∞, so the Minkowski brane locates at z ¼ 0.
Localization of gravity, scalar, vector, and Kalb-Ramond
fields was investigated in previous papers [56,57]. So in the
next section, localization of a spin-1=2 fermion with two
types of couplings between the fermion and background
scalar fields will be discussed.

III. LOCALIZATION OF A BULK FERMION
ON THE BRANE

In this section, we will investigate localization of a
bulk spin-1=2 fermion on the brane generated by the
scalar fields. In five-dimensional spacetime, fermions are
four-component spinors and their Dirac structure can be
described by ΓM ¼ eMM̄Γ

M̄ with eMM̄ being the vielbein and
fΓM;ΓNg ¼ 2gMN . In this section, M̄; N̄;… ¼ 0; 1; 2;
3; 5 and M;N;… ¼ 0; 1; 2; 3; 5 denote the five-
dimensional local Lorentz indices and spacetime coordi-
nates, respectively, and ΓM̄ are the gamma matrices in
five-dimensional flat spacetime. Our action describing a
massless Dirac fermion coupled with the background
scalars ϕ and π in five-dimensional spacetime is assumed
as follows:

S1
2
¼

Z
d5x

ffiffiffiffiffiffi
−g

p ½Ψ̄ΓMð∂M þ ωMÞΨ − ηΨ̄fðϕ; πÞΨ

þ λΨ̄ΓM∂Mgðϕ; πÞγ5Ψ�: ð13Þ

Here ωM is the spin connection defined as ωM ¼
1
4
ωM̄ N̄
M ΓM̄ΓN̄ with

ωM̄ N̄
M ¼ 1

2
eNM̄ð∂MeN̄N − ∂NeN̄MÞ −

1

2
eNN̄ð∂MeM̄N − ∂NeM̄MÞ

−
1

2
ePM̄eQN̄ð∂PeQR̄ − ∂QePR̄ÞeR̄M: ð14Þ

Both the usual Yukawa coupling −ηΨ̄fðϕ; πÞΨ and a
new kind of coupling between the Dirac fermion and
background scalar fields [46] λΨ̄ΓM∂Mgðϕ; πÞγ5Ψ are
introduced. In this paper, we assume that both coupling
constants η and λ are positive.
Considering the conformally flat metric (3), the

nonvanishing components of the spin connection are
ωμ ¼ 1

2
A0ðzÞγμγ5. Thus, the equation of motion corre-

sponding to the action (13) can be written as

½γμ∂μ þ γ5ð∂z þ 2A0ðzÞÞ − ηeAfðϕ; πÞ þ λg0ðϕ; πÞ�Ψ ¼ 0:

ð15Þ

In order to investigate the above five-dimensional Dirac
equation (15) and write the spinor in terms of four-
dimensional effective fields, we make the general chiral
decomposition:

Ψ¼ e−2A
�X

n

ψLnðxÞLnðzÞþ
X
n

ψRnðxÞRnðzÞ
�
; ð16Þ

where ψLnðxÞ ¼ −γ5ψLnðxÞ and ψRnðxÞ ¼ γ5ψRnðxÞ are
the left- and right-chiral components of a four-dimensional
Dirac field, respectively. Hence, we assume that ψLnðxÞ and
ψRnðxÞ satisfy the four-dimensional Dirac equations

γμ∂μψLnðxÞ ¼ mnψRnðxÞ; ð17aÞ

γμ∂μψRnðxÞ ¼ mnψLnðxÞ: ð17bÞ

Here the four-dimensional chiral fields ψLn and ψRn are
coupled by the mass mn. If a four-dimensional fermion is
massless, the two equations in Eqs. (17a) and (17b) are
decoupled:

γμ∂μψLnðxÞ ¼ 0; ð18aÞ

γμ∂μψRnðxÞ ¼ 0: ð18bÞ

Then the KK modes LnðzÞ and RnðzÞ should satisfy the
following coupled equations:

½∂z þ ηeAfðϕ; πÞ − λg0ðϕ; πÞ�LnðzÞ ¼ mnRnðzÞ; ð19aÞ

½∂z − ηeAfðϕ; πÞ þ λg0ðϕ; πÞ�RnðzÞ ¼ −mnLnðzÞ: ð19bÞ

The above coupled equations can be recast into

Q†QLnðzÞ ¼ m2
nLnðzÞ ¼ m2

Ln
LnðzÞ; ð20aÞ

QQ†RnðzÞ ¼ m2
nRnðzÞ ¼ m2

Rn
RnðzÞ; ð20bÞ

where the operator Q is defined as Q ¼ ∂z þ ηeAfðϕ; πÞ −
λg0ðϕ; πÞ and mLn;Rn

are the mass of the left- and right-
chiral fermion KK modes, which are equal to the mass
of the four-dimensional Dirac fermion. According to the
supersymmetric quantum mechanics, there are no tachyon
fermion KK modes with negative mass square m2

Ln;Rn
. The

above equations (20) can also be rewritten as the following
Schrödinger-like equations for the left- and right-chiral
KK modes of fermions:

ð−∂2
z þ VLðzÞÞLn ¼ m2

Ln
Ln; ð21aÞ

ð−∂2
z þ VRðzÞÞRn ¼ m2

Rn
Rn; ð21bÞ

where the effective potentials are given by

VLðzÞ ¼ η2e2Af2ðϕ; πÞ þ λ2g0 2ðϕ; πÞ
− ηeA½A0fðϕ; πÞ þ f0ðϕ; πÞ�
− 2ηλAðzÞfðϕ; πÞg0ðϕ; πÞ þ λg00ðϕ; πÞ; ð22aÞ
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VRðzÞ ¼ η2e2Af2ðϕ; πÞ þ λ2g0 2ðϕ; πÞ
þ ηeA½A0fðϕ; πÞ þ f0ðϕ; πÞ�
− 2ηλAðzÞfðϕ; πÞg0ðϕ; πÞ − λg00ðϕ; πÞ: ð22bÞ

For the purpose of getting the standard four-dimensional
action for a massless chiral fermion and a series of massive
fermions

S1
2
¼

Z
d5x

ffiffiffiffiffiffi
−g

p
Ψ̄½ΓMð∂M þ ωMÞ − ηfðϕ; πÞ

þ λΓM∂Mgðϕ; πÞγ5�Ψ

¼
X
n

Z
d4x½ψ̄Lnγ

μ∂μψLn þ ψ̄Rnγ
μ∂μψRn

−mnðψ̄LnψRn þ ψ̄RnψLnÞ�

¼
X
n

Z
d4xψ̄n½γμ∂μ −mn�ψn; ð23Þ
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FIG. 1. The shapes of the effective potentials of the left- and right-chiral fermions VL;RðzÞ for different values of the parameter η.
The parameter η is set to η ¼ 0 for the thick line, η ¼ 5 for the thin line, and η ¼ 10 for the dashed line. Other parameters are set to
v ¼ 1, a ¼ 1, and λ ¼ 5. (a) VLðzÞ; λ ¼ 5 and (b) VRðzÞ; λ ¼ 5.

20 10 10 20
z

10

10

20

30

40

50

60
VL

(a)

20 10 10 20
z

10

10

20

30

40

50

60
VR

(b)

FIG. 2. The shapes of the effective potentials of the left- and right-chiral fermions VL;RðzÞ for different values of the parameter λ.
The parameter λ is set to λ ¼ 0 for the thick line, λ ¼ 5 for the thin line, and λ ¼ 10 for the dashed line. Other parameters are set to v ¼ 1,
a ¼ 1, and η ¼ 5. (a) VLðzÞ; η ¼ 5 and (b) VRðzÞ; η ¼ 5.
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z
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0.8

1.0

L0 z

FIG. 3. The shapes of the zero mode of the left-chiral fermion
L0ðzÞ for different values of the parameter η. The coupling
coefficient η is set to η ¼ 0, η ¼ 5, and η ¼ 10 for thick, thin, and
dashed lines, respectively. Other parameters are set to v ¼ 1,
a ¼ 1, CL ¼ 1 and λ ¼ 5.
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the following orthonormalization conditions for Ln and Rn
are needed:

Z þ∞

−∞
LmLndz ¼ δmn; ð24Þ

Z þ∞

−∞
RmRndz ¼ δmn; ð25Þ

Z þ∞

−∞
LmRndz ¼ 0: ð26Þ

By settingmn ¼ 0 in Eq. (19), we can obtain the left- and
right-chiral KK fermion zero modes

L0 ∝ eλgðϕ;πÞ−η
R

eAfðϕ;πÞdz; ð27aÞ

R0 ∝ e−λgðϕ;πÞþη
R

eAfðϕ;πÞdz: ð27bÞ

It is impossible to make both massless left- and right-chiral
KK fermion modes to be localized on the brane at the
same time, since when one is normalizable, the other one
is not.
From Eqs. (21) and (22), it is clear that, if we do not

introduce the coupling term in the action (13), i.e., η ¼ 0
and λ ¼ 0, the effective potentials for left- and right-chiral
KK modes VL;RðzÞ will vanish and both left- and right-
chiral fermions cannot be localized on the thick brane.
Moreover, if we demand VLðzÞ and VRðzÞ to be Z2 even
with respect to the extra dimension z, then the coupling
functions fðϕ; πÞ and gðϕ; πÞ must be odd and even
functions of z, respectively. The simplest choice is that
fðϕ; πÞ ¼ ϕ and gðϕ; πÞ ¼ π, since the kink scalar field ϕ
and dilaton field π are odd and even functions of z. In this
paper, we want to compare the effect of localization of a
bulk fermion with two types of couplings.
By considering the solution of the Minkowski brane (8),

(9), and (10), the effective potentials (22) can be expressed
as follows:

3 2 1 1 2 3
z

0.2

0.4

0.6

0.8

1.0

L0 z

(a)

15 20 25 30
z

0

2. 10 9

4. 10 9

6. 10 9

L0 z

(b)

FIG. 4 (color online). The shapes of the zero mode of the left-chiral fermion L0ðzÞ for different values of the parameter λ. The coupling
coefficient λ is set to λ ¼ 0, λ ¼ 5, and λ ¼ 10 for thick, thin, and dashing lines, respectively. Other parameters are set to v ¼ 1, a ¼ 1,
CL ¼ 1, and η ¼ 5. (a) −3 ≤ z ≤ 3 and (b) 10 ≤ z ≤ 30.

(a) (b)

FIG. 5. The shapes of the relative probability PL;Rðm2Þ for the (a) left- and (b) right-chiral fermion resonant KK modes, with the
parameters a ¼ 1, v ¼ 1, λ ¼ 5, and η ¼ 5.
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VLðzÞ ¼
1

27
ve−

1
9
v2tanh2azðcoshazÞ−4v2

9 ½3aηe 1
18
v2tanh2azðcosh azÞ2ðv29 −1Þðv2ð2

ffiffiffi
3

p
λþ 1Þð2þ cosh 2azÞtanh2az − 9Þ

þ a2vλe
1
9
v2tanh2azðcosh azÞ4v29 sech4azðv2λðsinh 2azþ tanh azÞ2 − 9

ffiffiffi
3

p
Þ þ 27vη2tanh2az�; ð28Þ

VRðzÞ ¼
1

27
ve−

1
9
v2 tanh2 azðcosh azÞ−4v2

9 ½3aηe 1
18
v2 tanh2 azðcosh azÞ2ðv29 −1Þðv2ð2

ffiffiffi
3

p
λ − 1Þð2þ cosh 2azÞ tanh2 azþ 9Þ

þ a2vλe
1
9
v2 tanh2 azðcoshazÞ4v29 sech4azðv2λðsinh 2azþ tanh azÞ2 þ 9

ffiffiffi
3

p
Þ þ 27vη2 tanh2 az�: ð29Þ

Here we need to analyze the behavior of the potentials
near z ¼ 0 and as z → �∞, respectively. From the above
expressions (28) and (29), it is easy to obtain

VLðz ¼ 0Þ ¼ −
1

3
avð3ηþ

ffiffiffi
3

p
avλÞ; ð30Þ

VRðz ¼ 0Þ ¼ 1

3
avð3ηþ

ffiffiffi
3

p
avλÞ; ð31Þ

and VL;R
0ðz ¼ 0Þ ¼ 0; ð32Þ

VL
00ðz ¼ 0Þ ¼ 1

3
a2v½2a2v3λ2 þ 4

ffiffiffi
3

p
avðaþ vηÞλ

þ 6vη2 þ 3að2þ v2Þη�; ð33Þ

VR
00ðz ¼ 0Þ ¼ 1

3
a2v½2a2v3λ2 − 4

ffiffiffi
3

p
avða − vηÞλ

þ 6vη2 − 3að2þ v2Þη�: ð34Þ

Since the parameters a, v, η, and λ are all positive,
V 00
Lðz ¼ 0Þ > 0 and VLðzÞ has a local minimum value

(negative value) at z ¼ 0. As z → �∞, both potentials tend
to a constant only due to the coupling coefficient λ,

VL;Rðz → �∞Þ ¼ 4

27
a2v4λ2: ð35Þ

The shapes of the effective potentials for the left- and right-
chiral fermions are plotted in Figs. 1 and 2 for different
values of coupling constants, η and λ.

(a) (b)

(c) (d)

FIG. 6 (color online). The shapes of the wave functions for the left-chiral fermion KK modes Ln, with the parameters a ¼ 1, v ¼ 1,
λ ¼ 5, and η ¼ 5. (a) n ¼ 0, bound state; (b) n ¼ 1, resonant state; (c) n ¼ 2, resonant state; and (d) n ¼ 3, resonant state.
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It is clear that, with the positive coupling coefficients η
and λ, only the potential for left-chiral fermion KK modes
has negative part around z ¼ 0. So only the left-chiral
fermion zero mode may be localized on the brane. The
expression of the zero mode can be written as

L0ðzÞ ¼ CLe
λπ−η

R
z

0
eAðz̄Þϕðz̄Þdz̄

¼ CLðcosh azÞ−2
ffiffi
3

p
9
v2λ

× e−
ffiffi
3

p
18
v2λtanh2az−vη

R
z

0
ðcoshaz̄Þ−2v

2

9 ðtanh az̄Þe− 1
18
v2 tanh2az̄dz̄;

ð36Þ

where CL is a constant. Here the explicit analytic expres-
sion of the left-chiral fermion zero mode cannot be
obtained. However, from the asymptotic behavior of the
warp factor AðzÞ, kink scalar field ϕðzÞ, and dilaton scalar
field πðzÞ as z → �∞, the asymptotic behavior of the
zero mode can be analyzed

L0ðz → �∞Þ → CL2
2
ffiffi
3

p
9
v2λ

× exp

�
−

9η

2av
2

2v2
9 e−

v2
18 −

ffiffiffi
3

p

18
v2λ −

2
ffiffiffi
3

p

9
v2λaz

�
: ð37Þ

Then we can conclude from the above expression that the
zero mode of the left-chiral fermion tends to a constant

CLe−
9η
2av2

2v2
9 e−

v2
18 when the coupling coefficient λ ¼ 0, and it

cannot be localized on the brane. For the purpose of
localizing the zero mode of the left-chiral fermion, the
coupling term λΨ̄ΓM∂Mπγ

5Ψ in the action (13) must be
introduced. We also show the shapes of the left-chiral
fermion zero mode for for different values of the parameters
η and λ in Figs. 3 and 4, respectively. In Fig. 4(b), it is clear
that, when λ ¼ 0, the left-chiral fermion zero mode tends to
a constant as z → �∞, and it cannot be localized on the
brane. Thus, we set the coupling coefficient λ > 0. So
VLðz → �∞Þ ¼ 4

27
a2v4λ2 > 0, and there is a massless

bound state (the left-chiral fermion zero mode) at least,
and continuous spectra of the left- and right-chiral fermion
KK modes starting from m2 > 4

27
a2v4λ2, which indicates

the presence of a mass gap in the fermion KK modes
spectra.
Next, the effect of the two types of couplings between

the fermion and scalar fields for localization of the fermion
KK modes will be investigated. In Fig. 2, when λ ¼ 0 and
η > 0, the potentials VL;RðzÞ are the modified volcano-type
potential. The zero modes of the left- and right-chiral
fermions cannot be localized on the brane, and there is no
massive bound state, i.e., the massive KK modes of the

(a) (b)

(c)

FIG. 7 (color online). The shapes of the wave functions for the right-chiral fermion KK modes Rn, with the parameters a ¼ 1, v ¼ 1,
λ ¼ 5, and η ¼ 5. (a) n ¼ 1, resonant state; (b) n ¼ 2, resonant state; and (c) n ¼ 3, resonant state.
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left- and right-chiral fermions also cannot be localized on
the brane. However, there may exist the massive resonant
states, which indicates that the KK modes are quasilocal-
ized on the brane. From Fig. 1, we can see that, when λ > 0

and η ¼ 0, the potentials VL;RðzÞ become the Pöschl-Teller
potentials, and the bound states may exist, i.e., the KK
modes can be localized on the brane. When λ > 0 and
η > 0, there are two symmetrical potential barriers at both

sides of the origin of the extra dimension, and they increase
with the coupling coefficient η. Generally, this type
potential implies that there may exist bound states when
0 ≤ m2 < 4

27
a2v4λ2, and resonant states may also exist

when 4
27
a2v4λ2 < m2 ≤ Vmax

L;R (Vmax
L;R is the maximum value

of VL;R). The bound states tend to zero when far away from
the brane along the extra dimension, and they can be
normalized. However, the resonant states tend to plane

TABLE I. The mass, width, and lifetime of bound or resonant KK modes of the fermions. The parameters are set to a ¼ 1, v ¼ 1,
λ ¼ 5, and η ¼ 0; 5; 10. Here, n is the level of KK modes with the corresponding m2 from small to large.

λ η Chiral Height of VL;R n Bound or Resonant m2 m Γ τ

5 0 Left VPT
L ð∞Þ ¼ 3.7037 0 Bound state 0 0 0 ∞

Right VPT
R ð∞Þ ¼ 3.7037

5 Left Vmax
L ¼ 30.048 0 Bound state 0 0 0 ∞

1 Resonant state 14.039 3.75 1.30 × 10−6 7.67 × 105

2 Resonant state 24.405 4.94 6.17 × 10−3 158.67
3 Resonant state 30.380 5.51 0.163 6.119

Right Vmax
R ¼ 30.071 1 Resonant state 14.039 3.75 1.33 × 10−6 7.52 × 105

2 Resonant state 24.405 4.94 6.16 × 10−3 162.321
3 Resonant state 30.329 5.51 0.168 5.939

10 Left Vmax
L ¼ 82.009 0 Bound state 0 0 0 ∞

1 Resonant state 24.134 4.91 6.93 × 10−13 1.45 × 1012

2 Resonant state 44.911 6.70 2.50 × 10−7 3.999 × 106

3 Resonant state 62.117 7.88 2.84 × 10−4 3.52 × 103

4 Resonant state 75.233 8.67 1.83 × 10−2 54.588
5 Resonant state 83.240 9.12 0.213 4.690

Right Vmax
R ¼ 82.023 1 Resonant state 24.134 4.91 6.98 × 10−13 1.43 × 1012

2 Resonant state 44.911 6.70 2.48 × 10−7 4.03 × 106

3 Resonant state 62.117 7.88 2.85 × 10−4 3.51 × 103

4 Resonant state 75.231 8.67 1.84 × 10−2 54.212
5 Resonant state 83.185 9.12 0.232 4.311

TABLE II. The mass, width, and lifetime of bound or resonant KK modes of the fermions. The parameters are set to a ¼ 1, v ¼ 1,
λ ¼ 10, and η ¼ 0; 5; 10.

λ η Height of VL n Bound or Resonant m2 m Γ τ

10 0 VPT
L ð∞Þ ¼ 14.8148 0 Bound state 0 0 0 ∞

1 Bound state 9.4517 3.0744 0 ∞
5 Vmax

L ¼ 54.488536 0 Bound state 0 0 0 ∞
1 Resonant state 19.7422 4.443 3.00 × 10−15 3.75 × 1014

2 Resonant state 35.7677 5.981 3.41 × 10−6 2.94 × 105

3 Resonant state 47.7286 6.909 5.38 × 10−3 1.86 × 102

4 Resonant state 54.7649 7.400 0.135 7.390
10 Vmax

L ¼ 119.99 0 Bound state 0 0 0 ∞
1 Resonant state 29.8414 5.4627 3.56 × 10−15 2.81 × 1014

2 Resonant state 56.2141 7.4976 1.04 × 10−11 9.59 × 1010

3 Resonant state 78.9737 8.8867 4.73 × 10−7 2.11 × 106

4 Resonant state 97.8778 9.8933 3.32 × 10−4 3.01 × 103

5 Resonant state 112.3600 10.06 1.86 × 10−2 53.698
6 Resonant state 121.6872 11.0312 0.2019 4.952
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waves when far away from the brane, and cannot be
normalized. As in Ref. [36], the relative probability
function of a resonance on the thick brane is defined as
follows:

PL;Rðm2Þ ¼
R
zb
−zb jLðzÞ; RðzÞj2dzR
zmax
−zmax

jLðzÞ; RðzÞj2dz ; ð38Þ

where 2zb is about the width of the thick brane, and zmax
is set to zmax ¼ 10zb. It is clear that when m2 ≫ Vmax

L;R ,
the fermion KK modes are approximately taken as plane
waves and the value of PL;Rðm2Þ will tend to 1=10. As
in Ref. [60], the lifetime τ is estimated to τ ∼ Γ−1, with
Γ ¼ δm being the full width at half maximum of the peak.
Equation (21) can be solved by the numerical method,

and we will set the coupling coefficients λ and η as different
values, respectively, for comparing two types of couplings.
When λ ¼ 5 and η ¼ 0, only the left-chiral fermion zero
mode (bound state) can be localized on the brane. However,
for the right-chiral fermion KK modes, there is no bound
state or resonant state. When λ ¼ 5 and η ¼ 5, for the left-
chiral fermion KK modes, there is only one bound zero
mode and three resonant KK modes; but for right-chiral
fermion KK modes, there are only three resonant KK
modes. The profiles of the relative probability PL;Rðm2Þ
corresponding to coupling coefficients λ ¼ 5 and η ¼ 5 are
shown in Fig. 5. In these figures, each peak corresponds
to a resonant state, and the left- and right-chiral fermion
KK modes are shown in Figs. 6 and 7. For the left-chiral
fermion KK modes, it can be seen that the first massive KK
mode is an odd-parity wave function, and the second one
has even parity. However, for the right-chiral fermion KK
modes, the first massive KK mode has even parity and the

second one has odd parity. This is held for any nth fermion
KK mode, namely, the parities of the nth left- and right-
chiral KK modes are opposite. In fact, this conclusion is
originated from the coupled equations of the left- and right-
chiral fermions. For the case of λ ¼ 5 and η ¼ 10, the
conclusion is similar to that of λ ¼ 5, η ¼ 5. The mass,
width, and lifetime of the left- and right-chiral fermion KK
modes with different values of η are listed in Table I. It can
be seen that the mass and lifetime of the left- and right-
chiral fermion resonances are almost the same; thus, the
formation of the four-dimensional massive Dirac fermions
can be realized [35]. So we can summarize that the four-
dimensional massless left-chiral fermion can be localized
on the brane, and the four-dimensional massive Dirac
fermions can also be obtained, which consist of the pairs
of coupled left- and right-chiral KK modes with different
parities. On the other hand, the total number of resonant
KK modes increases with the coupling coefficient η.
Next, we turn to investigate the effect of the coupling

coefficient λ on localization of the fermion KK mode. The
left- and right-chiral fermion KK modes and the corre-
sponding resonant mass spectrum are solved and calculated
for different values of λ. We only list the mass, width, and
lifetime of the left-chiral fermion KK modes in Tables II
and III, since the result of the right-chiral fermion KK
modes is the same except the zero mode. From Tables I, II,
and III, it can be concluded that for the same coupling
coefficient λ, with the increase of the coupling coefficient η,
the number of fermion resonances also increases, and the
number of fermion bound KK modes decreases. The reason
is that, for the same λ, as increasing η the potential barriers
at both sides of the origin of the extra dimension become
higher, and the potential well of the left-chiral fermion

TABLE III. The mass, width, and lifetime of bound or resonant KK modes of the fermions. The parameters are set to a ¼ 1, v ¼ 1,
λ ¼ 15, and η ¼ 0; 5; 10.

λ η Height of VL n Bound or Resonant m2 m Γ τ

15 0 VPT
L ð∞Þ ¼ 33.3333 0 Bound state 0 0 0 ∞

1 Bound state 15.2586 3.9062 0 ∞
2 Bound state 26.2153 5.1201 0 ∞

5 Vmax
L ¼ 86.2314 0 Bound state 0 0 0 ∞

1 Bound state 25.4736 5.0471 0 ∞
2 Resonant state 47.1786 6.8687 7.42 × 10−13 1.35 × 1012

3 Resonant state 64.9127 8.0568 4.38 × 10−6 2.284 × 105

4 Resonant state 78.2950 8.8485 4.52 × 10−3 221.25
5 Resonant state 86.3584 9.2929 0.11159 8.96161

10 Vmax
L ¼ 165.24 0 Bound state 0 0 0 ∞

1 Resonant state 35.5690 5.9640 8.85 × 10−16 1.13 × 1015

2 Resonant state 67.5881 8.2212 1.78 × 10−15 5.63 × 1014

3 Resonant state 95.9463 9.7952 3.27 × 10−11 2.73 × 1010

4 Resonant state 120.4832 10.9765 6.00 × 10−7 1.67 × 106

5 Resonant state 140.9340 11.8716 3.09 × 10−4 3.232 × 103

6 Resonant state 156.6930 12.5177 0.0162 61.55221
7 Resonant state 166.8501 12.9171 0.1707 5.8578

LOCALIZATION AND QUASILOCALIZATION OF A SPIN- … PHYSICAL REVIEW D 92, 106007 (2015)

106007-9



KK modes at z ≈ 0 tends to be deeper and narrower. The
mass of the first massive KK mode also increases with η.
On the other hand, for the potential of the right-chiral
fermion KK modes, when η ≥ 1

27
avλð4v2λ − 9

ffiffiffi
3

p Þ, we
have VRð0Þ ≥ VRð∞Þ, and there is no right-chiral fermion
KK bound state and no mass gap in the mass spectrum of
the right-chiral fermion KK modes.
For the same λ and η, the lifetime of a resonant KK mode

decreases with its mass. As an example, when λ ¼ 15 and
η ¼ 5, all localization and quasilocalization of the left-
chiral fermion KK modes are shown in Fig. 8. The zero
mode and first massive KK mode are bound states, which
are localized on the brane. Some other massive KK modes

are resonances, which are quasilocalized on the brane. The
mass spectra of the left- and right-chiral fermion KK modes
are also plotted in Fig. 9. Only the left-chiral fermion zero
mode can be localized on the brane, so there exists only
the four-dimensional massless left-chiral fermion. The first
massive left- and right-chiral fermion KK modes can also
be localized on the brane, so a four-dimensional massive
Dirac fermion consisting of a pair of coupled left- and
right-chiral KK modes can be localized on the brane.
When m2

L;R ≥ VL;Rð∞Þ ¼ 4
27
a2v4λ2, there are four pairs

of coupled left- and right-chiral resonant KK modes,
so the four-dimensional massive Dirac fermions with
finite lifetimes can be quasilocalized on the brane. When

(a) (b)

(c) (d)

(e) (f)

FIG. 8 (color online). The shapes of the wave functions for the left-chiral fermion KK modes Ln, with the parameters a ¼ 1, v ¼ 1,
λ ¼ 15, and η ¼ 5. (a) n ¼ 0, bound state; (b) n ¼ 1, bound state; (c) n ¼ 2, resonant state; (d) n ¼ 3, resonant state; (e) n ¼ 4, resonant
state; and (f) n ¼ 5, resonant state.
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m2
L;R ≫ Vmax

L;R , both the left- and right-chiral fermion KK
modes cannot be confined to the brane and will be excited
into the bulk.

IV. CONCLUSION AND DISCUSSION

In this paper, localization and mass spectra of a bulk
spin-1=2 fermion field on a thick brane generated by two
scalar fields (a kink scalar and a dilaton scalar) in five
dimensions have been investigated.
For localization of the fermion zero mode, the coupling

between the fermion and scalar fields must be introduced
in the five-dimensional action. In this paper, we introduce
two types of the couplings: the usual Yukawa coupling
−ηΨ̄ϕΨ between the fermion and kink scalar and the
new coupling λΨ̄ΓMð∂MπÞγ5Ψ between the fermion and
dilaton scalar.
If only introducing the Yukawa coupling, both of the left-

and right-chiral fermion zero modes cannot be localized on
the brane. So the new coupling term λΨ̄ΓMð∂MπÞγ5Ψ must
be introduced. If only introducing the new coupling, the
left-chiral fermion zero mode is localized on the brane,
and a finite number of bound massive KK modes of left-
and right-chiral fermions may be localized on the brane.
The number of bound states increases with the coupling
coefficient λ. If we further introduce the Yukawa coupling,
there exists a finite number of resonant massive KK modes
of left- and right-chiral fermions, and the number of
resonances also increases with the Yukawa coupling
coefficient η. Hence, the massless fermion localized on
the brane consists of just the left-chiral KK mode, while the
massive fermions localized or quasilocalized on the brane
consist of the left- and right-chiral fermion KK modes
and, hence, represent the four-dimensional Dirac massive
fermions. The lifetime of the fermion KK resonant modes
decreases with their masses.
Finally, we note that if by making the replacement, the

Dirac coupling term into the Majorana coupling term in the
action (13), we can obtain the action of a Majorana fermion

coupling with the background scalars ϕ and π in five-
dimensional spacetime is written as follows:

SM ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
Ψ̄ΓNð∂N þ ωNÞΨ

−
1

2
ηðΨ̄fðϕ; πÞΨc þ H:c:Þ

þ 1

2
λðΨ̄ΓN∂Ngðϕ; πÞγ5Ψc þ H:c:Þ

�
; ð39Þ

where Ψc is defined as Ψc ≡ C5Ψ� with the five-
dimensional charge conjugation, C5 ¼ Γ5Γ2. Thus, the
equation of motion corresponding to the action (39) can
be written as

½γμ∂μ þ γ5ð∂z þ 2A0ðzÞÞ�Ψ − ηeAfðϕ; πÞΨc

þ λg0ðϕ; πÞΨc ¼ 0: ð40Þ
Since the Majorana fermion describes a neutral fermion, we
can conclude the Majorana condition

Ψ ¼ Ψc; ð41Þ
which implies the equality of particle and antiparticle. We
choose to decompose the five-dimensional fields in terms
of left- and right-chiral components to keep our derivation
easily comparable with the Dirac case. The general chiral
decomposition is written as follows:

Ψ ¼ e−2A
�X

n

ψLnðxÞLnðzÞ þ
X
n

ψRnðxÞRnðzÞ
�
; ð42aÞ

Ψc ¼ e−2A
�X

n

ψc
LnðxÞL�

nðzÞþ
X
n

ψc
RnðxÞR�

nðzÞ
�
; ð42bÞ

and the left- and right-chiral four-dimensional fields ψLnðxÞ
and ψRnðxÞ satisfy the four-dimensional Majorana equa-
tions and Majorana conditions

(a) (b)

FIG. 9 (color online). The mass spectra and effective potentials for the (a) left- and (b) right-chiral fermion KK modes. The blue lines
represent the potentials VL and VR, the red lines represent the square of the mass for bound KKmodes, and the red dashed lines represent
the square of the mass for resonant KK modes. The parameters are set to a ¼ 1, v ¼ 1, λ ¼ 15, and η ¼ 5.
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γμ∂μψLnðxÞ ¼ mnψRnðxÞ ¼ mnψ
c
LnðxÞ; ð43aÞ

γμ∂μψRnðxÞ ¼ mnψLnðxÞ ¼ mnψ
c
RnðxÞ: ð43bÞ

Then the KK modes LnðzÞ and RnðzÞ also satisfy the
following coupled equations:

∂zLnðzÞ þ ηeAfðϕ; πÞR�
nðzÞ − λg0ðϕ; πÞR�

nðzÞ ¼ mnRnðzÞ;
ð44aÞ

∂zRnðzÞ þ ηeAfðϕ; πÞL�
nðzÞ − λg0ðϕ; πÞL�

nðzÞ
¼ −mnLnðzÞ: ð44bÞ

From the five- and four-dimensional Majorana conditions,
it is easily conclude LnðzÞ ¼ R�

nðzÞ and RnðzÞ ¼ L�
nðzÞ, so

Eq. (44) and Eq. (19) are same. Hence the four-dimensional
left- and right-chiral fermions are coupled by the same

mass, and the situation of localization for the Majorana
fermion is similar to the Dirac fermion. We plan to return to
this problem on another occasion.

ACKNOWLEDGMENTS

The authors are extremely grateful for the anonymous
referee, whose comments led to the improvement of this
paper. H. G. was supported by the National Natural Science
Foundation of China (Grant No. 11305119), Natural
Science Basic Research Plan in Shaanxi Province of
China (Program No. 2015JQ1015), and the Fundamental
Research Funds for the Central Universities (Grants
No. K5051307001 and No. K5051307019). Q.-Y. X. was
supported by the National Natural Science Foundation of
China (Grant No. 11375075), and C.-E. F. was supported
by the National Natural Science Foundation of China
(Grant No. 11405121).

[1] M. Gogberashvili, Hierarchy problem in the shell universe
model, Int. J. Mod. Phys. D 11, 1635 (2002); Four
dimensionality in non-compact Kaluza–Klein model,
Mod. Phys. Lett. A 14, 2025 (1999).

[2] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The
hierarchy problem and new dimensions at a millimeter,
Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-
Hamed, S. Dimopoulos, and G. Dvali, New dimensions at a
millimeter to a Fermi and superstrings at a TeV, Phys. Lett.
B 436, 257 (1998).

[3] V. A. Rubakov and M. E. Shaposhnikov, Do we live inside a
domain wall?, Phys. Lett. 125B, 136 (1983); Extra space-
time dimensions: Towards a solution to, Phys. Lett. 125B,
139 (1983); E. J. Squires, Dimensional reduction caused by
a cosmological constant, Phys. Lett. 167B, 286 (1986).

[4] S. Randjbar-Daemi and C. Wetterich, Kaluza-Klein solu-
tions with noncompact internal spaces, Phys. Lett. 166B, 65
(1986).

[5] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R.
Sundrum, A small cosmological constant from a large extra
dimension, Phys. Lett. B 480, 193 (2000); S. Kachru,
M. Schulz, and E. Silverstein, Self-tuning flat domain walls
in 5D gravity and string theory, Phys. Rev. D 62, 045021
(2000); A. Kehagias, A conical tear drop as a vacuum-
energy drain for the solution of the cosmological constant
problem, Phys. Lett. B 600, 133 (2004).

[6] L. Randall and R. Sundrum, A Large Mass Hierarchy from a
Small Extra Dimension, Phys. Rev. Lett. 83, 3370 (1999);
An Alternative to Compactification, Phys. Rev. Lett. 83,
4690 (1999).

[7] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch,
Modeling the fifth dimension with scalars and gravity, Phys.
Rev. D 62, 046008 (2000).

[8] M. Gremm, Four-dimensional gravity on a thick domain
wall, Phys. Lett. B 478, 434 (2000); , Thick domain walls
and singular spaces, Phys. Rev. D 62, 044017 (2000).

[9] C. Csaki, J. Erlich, T. Hollowood, and Y. Shirman,
Universal aspects of gravity localized on thick branes,
Nucl. Phys. B581, 309 (2000).

[10] A. Campos, Critical Phenomena of Thick Brane in Warped
Space-Time, Phys. Rev. Lett. 88, 141602 (2002).

[11] A. Wang, Thick de Sitter 3-branes, dynamic black holes,
and localization of gravity, Phys. Rev. D 66, 024024
(2002).

[12] D. Bazeia, F. A. Brito, and J. R. Nascimento, Supergravity
brane worlds and tachyon potentials, Phys. Rev. D 68,
085007 (2003); D. Bazeia, F. A. Brito, and A. R. Gomes,
Locally localized gravity and geometric transitions, J. High
Energy Phys. 11 (2004) 070; D. Bazeia and A. R. Gomes,
Bloch brane, J. High Energy Phys. 05 (2004) 012; D.
Bazeia, F. A. Brito, and L. Losano, Scalar fields, bent
branes, and RG flow, J. High Energy Phys. 11 (2006) 064.

[13] V. Dzhunushaliev, V. Folomeev, D. Singleton, and S. Aguilar-
Rudametkin, 6D thick branes from interacting scalar fields,
Phys. Rev. D 77, 044006 (2008); V. Dzhunushaliev, V.
Folomeev, K. Myrzakulov, and R. Myrzakulov, Thick brane
in 7D and 8D spacetimes, Gen. Relativ. Gravit. 41, 131
(2009).

[14] G. German, A. Herrera-Aguilar, D. Malagon-Morejon, R. R.
Mora-Luna, and R. d. Rocha, A de Sitter tachyon thick
braneworld and gravity localization, J. Cosmol. Astropart.
Phys. 02 (2013) 035.

[15] S. SenGupta, Aspects of warped braneworld models,
arXiv:0812.1092.

[16] V. Dzhunushaliev, V. Folomeev, and M. Minamitsuji, Thick
brane solutions, Rep. Prog. Phys. 73, 066901 (2010).

HENG GUO, QUN-YING XIE, AND CHUN-E FU PHYSICAL REVIEW D 92, 106007 (2015)

106007-12

http://dx.doi.org/10.1142/S0218271802002992
http://dx.doi.org/10.1142/S021773239900208X
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1016/0370-2693(83)91253-4
http://dx.doi.org/10.1016/0370-2693(83)91254-6
http://dx.doi.org/10.1016/0370-2693(83)91254-6
http://dx.doi.org/10.1016/0370-2693(86)91156-1
http://dx.doi.org/10.1016/0370-2693(86)91156-1
http://dx.doi.org/10.1016/S0370-2693(00)00359-2
http://dx.doi.org/10.1103/PhysRevD.62.045021
http://dx.doi.org/10.1103/PhysRevD.62.045021
http://dx.doi.org/10.1016/j.physletb.2004.08.067
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevD.62.046008
http://dx.doi.org/10.1103/PhysRevD.62.046008
http://dx.doi.org/10.1016/S0370-2693(00)00303-8
http://dx.doi.org/10.1103/PhysRevD.62.044017
http://dx.doi.org/10.1016/S0550-3213(00)00271-6
http://dx.doi.org/10.1103/PhysRevLett.88.141602
http://dx.doi.org/10.1103/PhysRevD.66.024024
http://dx.doi.org/10.1103/PhysRevD.66.024024
http://dx.doi.org/10.1103/PhysRevD.68.085007
http://dx.doi.org/10.1103/PhysRevD.68.085007
http://dx.doi.org/10.1088/1126-6708/2004/11/070
http://dx.doi.org/10.1088/1126-6708/2004/11/070
http://dx.doi.org/10.1088/1126-6708/2004/05/012
http://dx.doi.org/10.1088/1126-6708/2006/11/064
http://dx.doi.org/10.1103/PhysRevD.77.044006
http://dx.doi.org/10.1007/s10714-008-0659-8
http://dx.doi.org/10.1007/s10714-008-0659-8
http://dx.doi.org/10.1088/1475-7516/2013/02/035
http://dx.doi.org/10.1088/1475-7516/2013/02/035
http://arXiv.org/abs/0812.1092
http://dx.doi.org/10.1088/0034-4885/73/6/066901


[17] M. Shifman, Large extra dimensions: Becoming acquainted
with an alternative paradigm, Int. J. Mod. Phys. A 25, 199
(2010).

[18] T. G. Rizzo, Introduction to extra dimensions, AIP Conf.
Proc. 1256, 27 (2010).

[19] P. D.Mannheim,Brane-LocalizedGravity (World Scientific,
Singapore, 2005).

[20] R. Maartens and K. Koyama, Brane-world gravity, Living
Rev. Relativity 13, 5 (2010).

[21] B. Bajc and G. Gabadadze, Localization of matter and
cosmological constant on a brane in anti de Sitter space,
Phys. Lett. B 474, 282 (2000).

[22] I. Oda, Localization of matters on a string-like defect, Phys.
Lett. B 496, 113 (2000).

[23] Y.-X. Liu, X.-H. Zhang, L.-D. Zhang, and Y.-S. Duan,
Localization of matters on pure geometrical thick branes, J.
High Energy Phys. 02 (2008) 067; Y.-X. Liu, L.-D. Zhang,
L.-J. Zhang, and Y.-S. Duan, Fermions on thick branes in
the background of sine-Gordon kinks, Phys. Rev. D 78,
065025 (2008).

[24] H. Guo, A. Herrera-Aguilar, Y.-X. Liu, D. Malagon-
Morejon, and R. R. Mora-Luna, Localization of bulk matter
fields, the hierarchy problem and corrections to Coulomb’s
law on a pure de Sitter thick braneworld, Phys. Rev. D 87,
095011 (2013).

[25] Y. Grossman and N. Neubert, Neutrino masses and mixings
in non-factorizable geometry, Phys. Lett. B 474, 361 (2000).

[26] R. Koley and S. Kar, A novel braneworld model with a bulk
scalar field, Phys. Lett. B 623, 244 (2005); Erratum: A novel
braneworld model with a bulk scalar field, Phys. Lett. B
631, 199(E) (2005); A. Melfo, N. Pantoja, and J. D. Tempo,
Fermion localization on thick branes, Phys. Rev. D 73,
044033 (2006).

[27] S. Ichinose, Fermions in Kaluza-Klein and Randall-Sun-
drum theories, Phys. Rev. D 66, 104015 (2002).

[28] C. Ringeval, P. Peter, and J. P. Uzan, Localization of massive
fermions on the brane, Phys. Rev. D 65, 044016 (2002).

[29] T. Gherghetta and M. Shaposhnikov, Localizing Gravity on
a Stringlike Defect in Six Dimensions, Phys. Rev. Lett. 85,
240 (2000).

[30] I. P. Neupane, Consistency of higher derivative gravity in the
brane background, J. High Energy Phys. 09 (2000) 040;
Completely localized gravity with higher curvature terms,
Classical Quantum Gravity 19, 5507 (2002).

[31] S. Randjbar-Daemi and M. Shaposhnikov, Fermion zero-
modes on brane-worlds, Phys. Lett. B 492, 361 (2000).

[32] R. Koley and S. Kar, Scalar kinks and fermion localisation
in warped spacetimes, Classical Quantum Gravity 22, 753
(2005).

[33] S. L. Dubovsky, V. A. Rubakov, and P. G. Tinyakov, Brane
world: Disappearing massive matter, Phys. Rev. D 62,
105011 (2000).

[34] Y. Brihaye and T. Delsate, Remarks on bell-shaped lumps:
Stability and fermionic modes, Phys. Rev. D 78, 025014
(2008).

[35] C. A. S. Almeida, R. Casana, M. M. Ferreira, and A. R.
Gomes, Fermion localization and resonances on two-field
thick branes, Phys. Rev. D 79, 125022 (2009).

[36] Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu, and Y.-S. Duan,
Fermion localization and resonances on a de Sitter thick

brane, Phys. Rev. D 80, 065019 (2009); Y.-X. Liu, C.-E. Fu,
L. Zhao, and Y.-S. Duan, Localization and mass spectra
of fermions on symmetric and asymmetric thick branes,
Phys. Rev. D 80, 065020 (2009); L. Zhao, Y.-X. Liu, and
Y.-S. Duan, Fermions in gravity and gauge backgrounds
on a brane world, Mod. Phys. Lett. A 23, 1129 (2008).

[37] R. Koley, J. Mitra, and S. SenGupta, Fermion localization in
a generalized Randall-Sundrum model, Phys. Rev. D 79,
041902(R) (2009).

[38] Y.-X. Liu, Z.-H. Zhao, S.-W. Wei, and Y.-S. Duan, Bulk
matters on symmetric and asymmetric de Sitter thick branes,
J. Cosmol. Astropart. Phys. 02 (2009) 003.

[39] Y.-X. Liu, L.-D. Zhang, S.-W. Wei, and Y.-S. Duan,
Localization and mass spectrum of matters on Weyl thick
branes, J. High Energy Phys. 08 (2008) 041.

[40] L. B. Castro, Fermion localization on two-field thick branes,
Phys. Rev. D 83, 045002 (2011).

[41] R. A. C. Correa, A. de Souza Dutra, and M. B. Hott,
Fermion localization on degenerate and critical branes,
Classical Quantum Gravity 28, 155012 (2011).

[42] A. E. R. Chumbes, A. E. O. Vasquez, and M. B. Hott,
Fermion localization on a split brane, Phys. Rev. D 83,
105010 (2011).

[43] W. T. Cruz, A. R. Gomes, and C. A. S. Almeida, Fermions
on deformed thick branes, Eur. Phys. J. C 71, 1790 (2011).

[44] A. A. Andrianov, V. A. Andrianov, and O. O. Novikov, CP
violation in the models of fermion localization on a domain
wall (brane), Theor. Math. Phys. 175, 735 (2013).

[45] V. K. Oikonomou, Localized fermions on domain walls and
extended supersymmetric quantum mechanics, Classical
Quantum Gravity 31, 025018 (2014).

[46] Y.-X. Liu, Z.-G. Xu, F.-W. Chen, and S.-W. Wei, New
localization mechanism of fermions on braneworlds, Phys.
Rev. D 89, 086001 (2014).

[47] Y.-X. Liu, L. Zhao, and Y.-S. Duan, Localization of
fermions on a string-like defect, J. High Energy Phys. 04
(2007) 097; Y.-X. Liu, L. Zhao, X.-H. Zhang, and Y.-S.
Duan, Fermions in self-dual vortex background on a string-
like defect, Nucl. Phys. B785, 234 (2007); Y.-Q. Wang,
T.-Y. Si, Y.-X. Liu, and Y.-S. Duan, Fermionic zero modes
in self-dual vortex background, Mod. Phys. Lett. A 20, 3045
(2005).

[48] C. Germani, Spontaneous localization on a brane via a
gravitational mechanism, Phys. Rev. D 85, 055025 (2012).

[49] Y. Kodama, K. Kokubu, and N. Sawado, Localization of
massive fermions on the baby-Skyrmion branes in 6
dimensions, Phys. Rev. D 79, 065024 (2009).

[50] T. Delsate and N. Sawado, Localizing modes of massive
fermions and a U(1) gauge field in the inflating baby-
Skyrmion branes, Phys. Rev. D 85, 065025 (2012).

[51] L. J. S. Sousa, C. A. S. Silva, D. M. Dantas, and C. A. S.
Almeida, Vector and fermion fields on a bouncing brane
with a decreasing warp factor in a string-like defect, Phys.
Lett. B 731, 64 (2014).

[52] M. Gogberashvili, P. Midodashvili, and D. Singleton,
Fermion generations from ‘apple-shaped’ extra dimensions,
J. High Energy Phys. 08 (2007) 033.

[53] S. Aguilar and D. Singleton, Fermion generations, masses
and mixings in a 6D brane model, Phys. Rev. D 73, 085007
(2006).

LOCALIZATION AND QUASILOCALIZATION OF A SPIN- … PHYSICAL REVIEW D 92, 106007 (2015)

106007-13

http://dx.doi.org/10.1142/S0217751X10048548
http://dx.doi.org/10.1142/S0217751X10048548
http://dx.doi.org/10.1063/1.3473866
http://dx.doi.org/10.1063/1.3473866
http://dx.doi.org/10.12942/lrr-2010-5
http://dx.doi.org/10.12942/lrr-2010-5
http://dx.doi.org/10.1016/S0370-2693(00)00055-1
http://dx.doi.org/10.1016/S0370-2693(00)01284-3
http://dx.doi.org/10.1016/S0370-2693(00)01284-3
http://dx.doi.org/10.1088/1126-6708/2008/02/067
http://dx.doi.org/10.1088/1126-6708/2008/02/067
http://dx.doi.org/10.1103/PhysRevD.78.065025
http://dx.doi.org/10.1103/PhysRevD.78.065025
http://dx.doi.org/10.1103/PhysRevD.87.095011
http://dx.doi.org/10.1103/PhysRevD.87.095011
http://dx.doi.org/10.1016/S0370-2693(00)00054-X
http://dx.doi.org/10.1016/j.physletb.2005.07.060
http://dx.doi.org/10.1016/j.physletb.2005.09.063
http://dx.doi.org/10.1016/j.physletb.2005.09.063
http://dx.doi.org/10.1103/PhysRevD.73.044033
http://dx.doi.org/10.1103/PhysRevD.73.044033
http://dx.doi.org/10.1103/PhysRevD.66.104015
http://dx.doi.org/10.1103/PhysRevD.65.044016
http://dx.doi.org/10.1103/PhysRevLett.85.240
http://dx.doi.org/10.1103/PhysRevLett.85.240
http://dx.doi.org/10.1088/1126-6708/2000/09/040
http://dx.doi.org/10.1088/0264-9381/19/21/315
http://dx.doi.org/10.1016/S0370-2693(00)01100-X
http://dx.doi.org/10.1088/0264-9381/22/4/008
http://dx.doi.org/10.1088/0264-9381/22/4/008
http://dx.doi.org/10.1103/PhysRevD.62.105011
http://dx.doi.org/10.1103/PhysRevD.62.105011
http://dx.doi.org/10.1103/PhysRevD.78.025014
http://dx.doi.org/10.1103/PhysRevD.78.025014
http://dx.doi.org/10.1103/PhysRevD.79.125022
http://dx.doi.org/10.1103/PhysRevD.80.065019
http://dx.doi.org/10.1103/PhysRevD.80.065020
http://dx.doi.org/10.1142/S0217732308025796
http://dx.doi.org/10.1103/PhysRevD.79.041902
http://dx.doi.org/10.1103/PhysRevD.79.041902
http://dx.doi.org/10.1088/1475-7516/2009/02/003
http://dx.doi.org/10.1088/1126-6708/2008/08/041
http://dx.doi.org/10.1103/PhysRevD.83.045002
http://dx.doi.org/10.1088/0264-9381/28/15/155012
http://dx.doi.org/10.1103/PhysRevD.83.105010
http://dx.doi.org/10.1103/PhysRevD.83.105010
http://dx.doi.org/10.1140/epjc/s10052-011-1790-3
http://dx.doi.org/10.1007/s11232-013-0059-4
http://dx.doi.org/10.1088/0264-9381/31/2/025018
http://dx.doi.org/10.1088/0264-9381/31/2/025018
http://dx.doi.org/10.1103/PhysRevD.89.086001
http://dx.doi.org/10.1103/PhysRevD.89.086001
http://dx.doi.org/10.1088/1126-6708/2007/04/097
http://dx.doi.org/10.1088/1126-6708/2007/04/097
http://dx.doi.org/10.1016/j.nuclphysb.2007.05.018
http://dx.doi.org/10.1142/S0217732305018037
http://dx.doi.org/10.1142/S0217732305018037
http://dx.doi.org/10.1103/PhysRevD.85.055025
http://dx.doi.org/10.1103/PhysRevD.79.065024
http://dx.doi.org/10.1103/PhysRevD.85.065025
http://dx.doi.org/10.1016/j.physletb.2014.02.010
http://dx.doi.org/10.1016/j.physletb.2014.02.010
http://dx.doi.org/10.1088/1126-6708/2007/08/033
http://dx.doi.org/10.1103/PhysRevD.73.085007
http://dx.doi.org/10.1103/PhysRevD.73.085007


[54] A. Kehagias and K. Tamvakis, Localized gravitons, gauge
bosons and chiral fermions in smooth spaces generated by a
bounce, Phys. Lett. B 504, 38 (2001).

[55] M. O. Tahim,W. T. Cruz, andC. A. S. Almeida, Tensor gauge
field localization in branes, Phys. Rev. D 79, 085022 (2009).

[56] C.-E Fu, Y.-X. Liu, and H. Guo, Bulk matter fields on two-
field thick branes, Phys. Rev. D 84, 044036 (2011).

[57] Y.-X. Liu, C.-E. Fu, H. Guo, and H.-T. Li, Deformed brane
with finite extra dimension, Phys. Rev. D 85, 084023 (2012).

[58] K. Yang, Y.-X. Liu, Y. Zhong, X.-L. Du, and S.-W. Wei,
Gravity localization and mass hierarchy in scalar-tensor
branes, Phys. Rev. D 86, 127502 (2012).

[59] K. Yang, Y. Zhong, S.-W. Wei, and Y.-X. Liu, Pure
geometric branes and mass hierarchy, Int. J. Mod. Phys.
A 29, 1450120 (2014).

[60] R. Gregory, V. A. Rubakov, and S. M. Sibiryakov, Opening
up Extra Dimensions at Ultralarge Scales, Phys. Rev. Lett.
84, 5928 (2000).

HENG GUO, QUN-YING XIE, AND CHUN-E FU PHYSICAL REVIEW D 92, 106007 (2015)

106007-14

http://dx.doi.org/10.1016/S0370-2693(01)00274-X
http://dx.doi.org/10.1103/PhysRevD.79.085022
http://dx.doi.org/10.1103/PhysRevD.84.044036
http://dx.doi.org/10.1103/PhysRevD.85.084023
http://dx.doi.org/10.1103/PhysRevD.86.127502
http://dx.doi.org/10.1142/S0217751X14501206
http://dx.doi.org/10.1142/S0217751X14501206
http://dx.doi.org/10.1103/PhysRevLett.84.5928
http://dx.doi.org/10.1103/PhysRevLett.84.5928

