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Localization and quasilocalization of a spin-1/2 fermion field on a two-field
thick braneworld
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Localization of a spin-1/2 fermion on the braneworld is an important and interesting problem. It is well
known that a five-dimensional free massless fermion ¥ minimally coupled to gravity cannot be localized
on the Randall-Sundrum braneworld. In order to trap such a fermion, the coupling between the fermion and
bulk scalar fields should be introduced. In this paper, localization and quasilocalization of a bulk fermion
on the thick braneworld generated by two scalar fields (a kink scalar ¢ and a dilaton scalar =) are
investigated. Two types of couplings between the fermion and two scalars are considered. One coupling is
the usual Yukawa coupling —W¥¢¥ between the fermion and kink scalar, another one is AUT™ 9,7y ¥
between the fermion and dilaton scalar. The left-chiral fermion zero mode can be localized on the brane,
and both the left- and right-chiral fermion massive Kaluza-Klein modes may be localized or quasilocalized.
Hence the four-dimensional massless left-chiral fermion and massive Dirac fermions, whose lifetime is

infinite or finite, can be obtained on the brane.
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I. INTRODUCTION

The braneworld scenarios that our observed four-
dimensional universe can be considered as a brane
embedded in a higher-dimensional spacetime can supply
new insights for solving the gauge hierarchy problem [1,2]
and the cosmological constant problem [3-5]. The effective
four-dimensional gravity could be recovered even in the
case of noncompact extra dimensions in the Randall-
Sundrum (RS) braneworld model [6], where singularities
are present at the position of the branes. The smooth
braneworld solutions (thick brane scenario or domain wall
scenario) are generally based on gravity coupled to one or
several bulk scalar fields [7—14]. For some comprehensive
reviews about thick branes, please see Refs. [15-20].

In braneworld scenarios, an interesting and important
problem is whether various bulk fields can be confined
to the brane by a natural mechanism. Generally, a free
massless scalar field [21] can be localized on branes of
different types. A free vector field can be localized on the
Randall-Sundrum brane in some higher-dimensional cases
[22] or on some thick de Sitter branes and Weyl thick
branes [23,24].
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Since the particles in our world are described by
fermions, localization of a bulk fermion is very important
for any braneworld model [21-53]. In general, if one does
not introduce the coupling between the fermion and scalars
which generate the thick braneworlds, a bulk fermion does
not have a normalizable zero mode in five dimensions.
So in order to localize a bulk fermion, the scalar-fermion
coupling should be introduced. Usually, the Yukawa
coupling —yW¢V is a natural choice when the scalar has
the configuration of a kink (i.e., ¢ is an odd function of the
extra dimensional coordinate). However, if the background
scalar has the shape of lump (or an even function of
the extra dimensional coordinate, see Refs. [54-59]), the
Yukawa coupling cannot keep the Z, reflection symmetry
of Lagrange and hence this localization mechanism does
not work anymore. Recently, Liu ef al. presented a new
localization mechanism of a bulk fermion on braneworlds
generated by such a scalar with even parity [46]. The scalar-
fermion coupling is given by AUT™ 9,,7y> ¥, which ensures
not only the Z, reflection symmetry of the Lagrange but
also localization of the left- or right-chiral fermion zero
mode on the branes.

In this paper, we will explore localization of a spin-1/2
fermion ¥ on the Minkowski brane generated by two scalar
fields (a kink scalar field ¢ with odd parity and a dilaton
scalar field # with even parity). We introduce both two
types of couplings between the fermion and scalars: one is
the usual Yukawa coupling —yU¢V¥ between the fermion

© 2015 American Physical Society
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and kink scalar, another is the coupling AWTM9,,7y> ¥
between the fermion and dilaton scalar. If only introducing
the Yukawa coupling, the effective potentials of the
left- and right-chiral fermion Kaluza-Klein (KK) modes
in the corresponding Schrodinger equations are modified
volcano-type potentials. And the left- and right-chiral
fermion zero modes tend to a constant and infinity, respec-
tively, when far away from the brane. So none of the two
zero modes cannot be localized on the brane. However,
the massive resonant KK modes may exist for this type of
potential. If only introducing the second coupling, the
effective potentials of the KK modes are modified
Poschl-Teller potentials, which lead to localization of the
left- or right-chiral fermion zero mode as well as to mass
gaps in the mass spectra. When both two couplings are
considered, the potentials will have a barrier at each side of
the brane, and tend to a positive constant when far away
from the brane. Then one of the left- and right-chiral
fermions zero modes can be localized on the brane, and
there exists a mass gap in the mass spectrum of the fermion
KK modes. Then the massive bound and/or resonant KK
modes can be localized and/or quasilocalized on the brane.

The organization of this paper is as follows: in Sec. II, we
first review the Minkowski thick brane generated by two
scalar fields. Then, in Sec. III, we investigate localization
and quasilocalization of a spin-1/2 fermion field on this
thick brane by introducing two kinds of scalar-fermion
couplings. Finally, our conclusion is given in Sec. IV
together with some discussion on the presented material.

II. REVIEW OF THE MINKOWSKI THICK
BRANEWORLD GENERATED BY TWO
SCALAR FIELDS

In this paper, we consider a Minkowski brane generated
by two interacting scalar fields ¢ and 7, embedded in a five-
dimensional spacetime. The action of such a system is

1 1
= Sx/—g|— R — = Z__ 2 -
s— [ @ [2@ S (00 =3 (0 = V(p. 7).
(1)
where R is the five-dimensional scalar curvature and
K% = 8zG5 with G5 the five-dimensional Newton constant.

For simplicity, the constant ks is set to k5 = 1. The line
element of the Minkowski brane is assumed as

ds* = 0y, dx'dx’ + dy?, (2)
which can also be transformed to the conformally flat one
ds* = A (n,, dx*dx* + dz?), (3)

by introducing the coordinate transformation, dz =
e™40)dy. Here e* is the warp factor and 7, is the metric

PHYSICAL REVIEW D 92, 106007 (2015)

of four-dimensional Minkowski spacetime on the brane.
y or z denotes the extra dimensional coordinate. The
background scalar fields ¢ and 7 are assumed to be only
the functions of the extra dimensional coordinate.

By considering the metric (3), the equations of motion
generated from action (1) read as

1 1
545/2—}—571/2—62‘4‘/:614/2, (4)
1 2 1 /2 2A " ”
Efﬁ +§ﬂ' +e V =-3A"-3A s (5)
aVv
¢/l+3A/¢/ — eZA%’ (6)
ov
717// —|—3A/ﬂ'/ — SZA%, (7)

where the prime denotes the derivative with respect to z.
The solutions of the thick brane can be found by following

the superpotential method [7,12]. By supposing V(¢, 7) =

2z . . . .
levs [(%—‘g)z — W?] and considering a specific superpoten-

tial function W(¢) = vagp(1 — %22) [54,55], one solution is
obtained

Az) = —% In(cosh?(az)) + %tanhz(az) . (8)

¢(z) = vtanh(az), )
7(z) = \@A(Z), (10)

a2 _
V(p,n) = 82

x [9v* — 902 (v? + 2)¢p* + 3(20% + 3)¢p* — ¢°],
(11)

where v and a are positive constants. It can be seen that the
solution for ¢ is a kink and 7 is the dilaton field, which are
odd and even functions of the extra dimensional coordinate
z, respectively. The energy density of the thick brane is
written as follows:

SV

Too(2) =5 (¢ + %) + V(¢ 7)

21}2

= 7[ 2sech®(az) + 3(v* + 9)sech*(az) — 447].

Q =

(12)

From the above expression (12), we can see that the energy

density has a maximum value T3 =a?v? at z=0

and tends to the minimum value T3 = — - a*v? when
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z — £o00, so the Minkowski brane locates at z = 0.
Localization of gravity, scalar, vector, and Kalb-Ramond
fields was investigated in previous papers [56,57]. So in the
next section, localization of a spin-1/2 fermion with two
types of couplings between the fermion and background
scalar fields will be discussed.

III. LOCALIZATION OF A BULK FERMION
ON THE BRANE

In this section, we will investigate localization of a
bulk spin-1/2 fermion on the brane generated by the
scalar fields. In five-dimensional spacetime, fermions are
four-component spinors and their Dirac structure can be
described by ' = €M™ with e} being the vielbein and
{TM, TN} =2¢MN. In this section, M,N,...=0,1,2,
3,5 and M,N,...=0,1,2,3,5 denote the five-
dimensional local Lorentz indices and spacetime coordi-
nates, respectively, and IV are the gamma matrices in
five-dimensional flat spacetime. Our action describing a
massless Dirac fermion coupled with the background
scalars ¢ and 7 in five-dimensional spacetime is assumed
as follows:

S :/de\/—_g[\TlFM(aM—&—a)M)\Il—r]\i!f(d),ﬂ)\If

1
2

+ AUTM0,,9(p, m)y V). (13)

Here w,, is the spin connection defined as wy =
%w%NFMFN with

S . o | B 7 y
N = EeNM(aME% —dvey) — EeNN((‘)Me% — Oveiq)

1

L pi on
jete (

dpeor — Dpepr)el;. (14)

Both the usual Yukawa coupling —7Vf(¢,z)¥ and a
new kind of coupling between the Dirac fermion and
background scalar fields [46] AUTMO,,g(¢p, n)y° ¥ are
introduced. In this paper, we assume that both coupling
constants # and A are positive.

Considering the conformally flat metric (3), the
nonvanishing components of the spin connection are
w, =%A'(2)y,rs. Thus, the equation of motion corre-
sponding to the action (13) can be written as

[0, + 7’ (0, + 2A'(z)) — ne f (¢, m) + Ag (¢ 7)]¥ = 0.
(15)

In order to investigate the above five-dimensional Dirac
equation (15) and write the spinor in terms of four-
dimensional effective fields, we make the general chiral
decomposition:
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U= e_ZA (ZWLn (x)Ln (Z) + ZWRH (x)Rn (Z)> ’ (16)

where i, (x) = =P w1, (x) and wg,(x) = P yg,(x) are
the left- and right-chiral components of a four-dimensional
Dirac field, respectively. Hence, we assume that v, (x) and
Wra(x) satisfy the four-dimensional Dirac equations

yﬂayl//Ln(x) = MyYgrn (x)’ (173)

740w (X) = My, (x). (17b)
Here the four-dimensional chiral fields y;, and yy, are
coupled by the mass m,,. If a four-dimensional fermion is
massless, the two equations in Eqgs. (17a) and (17b) are
decoupled:

YO pn(x) =0, (18a)

yﬂaﬂl//Rn(x) =0. (18]3)

Then the KK modes L,(z) and R,(z) should satisfy the
following coupled equations:

[0 +ne f(¢p.7) — 29 (¢. 7)|L,(2) = m,R,(2). (19)
[0, —ne’f(¢. ) + 29 (¢p. m)|R,(2) = —m,L,(z).  (19b)
The above coupled equations can be recast into

Q'0L,(z) = m;L,(z) = m} L,(z),  (20a)
QO'R,(2) = myR,(2) = my R,(z).  (20b)

where the operator Q is defined as Q = 0, + ne f(¢, ) —
Ag(¢.m) and m; g are the mass of the left- and right-
chiral fermion KK modes, which are equal to the mass
of the four-dimensional Dirac fermion. According to the
supersymmetric quantum mechanics, there are no tachyon
fermion KK modes with negative mass square m% r,- The
above equations (20) can also be rewritten as the following
Schrodinger-like equations for the left- and right-chiral
KK modes of fermions:

(=02 + VL(2)L, = m], L, (21a)
(=02 + Vg(2))R, = my R, (21b)
where the effective potentials are given by
Vi(z) = e f2(¢. ) + 229 * (¢, 7)
—net[A'f(¢. ) + f' (. 7)]
—2n0A(2)f (. m)g (p.7) + 49" ($. 7). (22a)
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FIG. 1. The shapes of the effective potentials of the left- and right-chiral fermions V; (z) for different values of the parameter 7.
The parameter # is set to n = O for the thick line, # = 5 for the thin line, and 1 = 10 for the dashed line. Other parameters are set to

v=1,a=1and 1=5.(a) V,(z), A =35 and (b) Vg(z), 1 = 5.

(a) b)

FIG. 2. The shapes of the effective potentials of the left- and right-chiral fermions V; z(z) for different values of the parameter A.
The parameter 4 is set to A = 0 for the thick line, A = 5 for the thin line, and A = 10 for the dashed line. Other parameters are setto v = 1,

a=1,and n=>5.(a) V;(z), 7 =5 and (b) Vg(z), n = 5.

Vr(z) = n*e* f2(p.n) + 129 *(p. 7)
+net[A'f(p. ) + [/ (. 7)]
= 2nAA(2)f(p, ) (¢, ) — 29" (p, 7). (22D)

For the purpose of getting the standard four-dimensional
action for a massless chiral fermion and a series of massive
fermions

5 = / Bxy/=GU Dy + wpy) — 1 (.7)

+ MOy g(¢. 1)y’ | W

= Z / d4x[l/_/Ln}/Maul//Ln + l/_/Rn]ﬂuaul//Rn

FIG. 3. The shapes of the zero mode of the left-chiral fermion
Ly(z) for different values of the parameter 7. The coupling
coefficient is setton = 0, 7 = 5, and n = 10 for thick, thin, and

dashed lines, respectively. Other parameters are set to v = 1, = Z / d4x§7/n [}’” aﬂ - mn]‘l/m (23)
a=1,C;, =1and 1=25. n

—my (l/_/Lnl//Rn + l/_/Rnl//LnH
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Ly(z)
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FIG. 4 (color online).
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The shapes of the zero mode of the left-chiral fermion L(z) for different values of the parameter 4. The coupling

coefficient Ais setto A = 0, 4 = 5, and A4 = 10 for thick, thin, and dashing lines, respectively. Other parameters are setto v = 1, a = 1,

Cp=1,andp=5.(a) —3<z<3and (b) 10 < z < 30.
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FIG. 5. The shapes of the relative probability P; z(m?*) for the (a) left- and (b) right-chiral fermion resonant KK modes, with the

parameters a = 1, v =1, A =5, and n = 5.

the following orthonormalization conditions for L, and R,
are needed:

“+oo
/ L,L,dz=35,,, (24)
+o0
/ R,,R,dz = 6,,,, (25)
+0o0
/ L,R,dz = 0. (26)

By setting m,, = 01in Eq. (19), we can obtain the left- and
right-chiral KK fermion zero modes

Ag(p.m)=n [ eAf(gpm)dz

Lyxe (27a)

Ry IR f eAf(¢Jr)dZ_ (27b)

It is impossible to make both massless left- and right-chiral
KK fermion modes to be localized on the brane at the
same time, since when one is normalizable, the other one
is not.

From Egs. (21) and (22), it is clear that, if we do not
introduce the coupling term in the action (13), i.e., # =0
and 1 = 0, the effective potentials for left- and right-chiral
KK modes V; g(z) will vanish and both left- and right-
chiral fermions cannot be localized on the thick brane.
Moreover, if we demand V; (z) and Vg(z) to be Z, even
with respect to the extra dimension z, then the coupling
functions f(¢,7) and g(¢p,7) must be odd and even
functions of z, respectively. The simplest choice is that
f(¢p,7) = ¢ and g(¢, ) = =, since the kink scalar field ¢
and dilaton field 7 are odd and even functions of z. In this
paper, we want to compare the effect of localization of a
bulk fermion with two types of couplings.

By considering the solution of the Minkowski brane (8),
(9), and (10), the effective potentials (22) can be expressed
as follows:
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The shapes of the wave functions for the left-chiral fermion KK modes L,,, with the parameters a = 1, v = 1,

A=35,and n =15. (a) n =0, bound state; (b) n = 1, resonant state; (c) n = 2, resonant state; and (d) n = 3, resonant state.

1 ik 1,2 2 v
Vi(z) = > pes"nh’az (cogh az)‘%[3aneﬁ” tnh*az (cosh az)z(é‘l)(vz(%/gl + 1)(2 + cosh 2az)tanh’az — 9)
+ a?vAes” ez (cosh az)%sech“az(vzi(sinh 2az + tanh az)? — 9v/3) 4 27vn*tanh?az), (28)

1

Vr(z) = = ves"" i’ az (cogh az)‘#[Sar]ef_S’)z anh’ 4z (cogh az)z(é‘])(vz(h/g/l —1)(2 + cosh 2az) tanh? az + 9)

27

+ a?vaes” i a2 (cosh az)%sech‘*az(vz/l(sinh 2az + tanh az)? + 9v/3) 4 27vn? tanh? az). (29)

Here we need to analyze the behavior of the potentials
near 7 = 0 and as z - Foo, respectively. From the above

expressions (28) and (29), it is easy to obtain

VL(Z =

VR (Z

and

1
V" (z = 0) = = a*v[2a>v* 2% + 4V3av(a + vn)A

3

+ 6vn* + 3a(2 + v?)n),

1
0) = —gav(3f7 +V/3avl),

1
0) = §a0(3;1 +V3avl),

VL,RI(Z = 0) =0,

(30)

(31)

(32)

(33)

[
1
Vi"(z=0) = §a20[2a21;3/12 —4v3av(a — vn)i
+ 6017 = 3a(2 + v?)). (34)

Since the parameters a, v, 1, and A are all positive,
V7(z=0)>0 and V,(z) has a local minimum value
(negative value) at z = 0. As z — =£o0, both potentials tend
to a constant only due to the coupling coefficient A,

4
Eazv“)ﬂ. (35)

Vir(z = £o0) =
The shapes of the effective potentials for the left- and right-
chiral fermions are plotted in Figs. 1 and 2 for different
values of coupling constants, # and A.
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15

The shapes of the wave functions for the right-chiral fermion KK modes R,,, with the parameters a = 1, v = 1,

A=35,and n = 5. (a) n = 1, resonant state; (b) n = 2, resonant state; and (c) n = 3, resonant state.

It is clear that, with the positive coupling coefficients 7
and 4, only the potential for left-chiral fermion KK modes
has negative part around z = 0. So only the left-chiral
fermion zero mode may be localized on the brane. The
expression of the zero mode can be written as

Lo(z) = C e Jo 00

= Cy(cosh az)‘zo_ﬁ”z’1

Lo2anhZaz ;-

22 .
9 (tanh az)e 18" dz

< e—‘(—gvzﬂtanhzaz—m foz(cosh az)

(36)

where C; is a constant. Here the explicit analytic expres-
sion of the left-chiral fermion zero mode cannot be
obtained. However, from the asymptotic behavior of the
warp factor A(z), kink scalar field ¢(z), and dilaton scalar
field #(z) as z — £oo, the asymptotic behavior of the
zero mode can be analyzed

Lo(z = to0) — €, 257

V3

T2
]81}/1

2v3 v%az) . (37

9 2 v
X exp <— gnv e 9

Then we can conclude from the above expression that the
zero mode of the left-chiral fermion tends to a constant

Crem? "¢ ™ when the coupling coefficient 4 = 0, and it

cannot be localized on the brane. For the purpose of
localizing the zero mode of the left-chiral fermion, the
coupling term AWT™ 9,7y’ in the action (13) must be
introduced. We also show the shapes of the left-chiral
fermion zero mode for for different values of the parameters
n and A in Figs. 3 and 4, respectively. In Fig. 4(b), it is clear
that, when A = 0, the left-chiral fermion zero mode tends to
a constant as z — oo, and it cannot be localized on the
brane. Thus, we set the coupling coefficient 1 > 0. So
Vi(z > +o00) = 5a?v*2* > 0, and there is a massless
bound state (the left-chiral fermion zero mode) at least,
and continuous spectra of the left- and right-chiral fermion
KK modes starting from m? > 3 a?v*2%, which indicates
the presence of a mass gap in the fermion KK modes
spectra.

Next, the effect of the two types of couplings between
the fermion and scalar fields for localization of the fermion
KK modes will be investigated. In Fig. 2, when 4 = 0 and
n > 0, the potentials V; (z) are the modified volcano-type
potential. The zero modes of the left- and right-chiral
fermions cannot be localized on the brane, and there is no
massive bound state, i.e., the massive KK modes of the
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The mass, width, and lifetime of bound or resonant KK modes of the fermions. The parameters are settoa =1, v = 1,

A=35,and n =0,5,10. Here, n is the level of KK modes with the corresponding m? from small to large.

A n Chiral Height of V; p n Bound or Resonant m? m r T
5 0 Left VPT(00) = 3.7037 0 Bound state 0 0 0 )
Right VB (c0) = 3.7037
5 Left Vi = 30.048 0 Bound state 0 0 0 co
1 Resonant state 14.039 3.75 1.30 x 107 7.67 x 10°
2 Resonant state 24.405 4.94 6.17 x 1073 158.67
3 Resonant state 30.380 5.51 0.163 6.119
Right VR®™ =30.071 1 Resonant state 14.039 3.75 1.33 x 107° 7.52 % 10°
2 Resonant state 24.405 4.94 6.16 x 1073 162.321
3 Resonant state 30.329 5.51 0.168 5.939
10 Left Vi = 82.009 0 Bound state 0 0 0 co
1 Resonant state 24.134 491 6.93 x 10713 1.45 x 102
2 Resonant state 44911 6.70 2.50 x 1077 3.999 x 10°
3 Resonant state 62.117 7.88 2.84 x 1074 3.52x 103
4 Resonant state 75.233 8.67 1.83 x 1072 54.588
5 Resonant state 83.240 9.12 0.213 4.690
Right yimax — 82.023 1 Resonant state 24.134 4.91 6.98 x 10713 1.43 x 102
2 Resonant state 44911 6.70 2.48 x 1077 4.03 x 10°
3 Resonant state 62.117 7.88 2.85x 107 3.51 x 103
4 Resonant state 75.231 8.67 1.84 x 1072 54.212
5 Resonant state 83.185 9.12 0.232 4.311
TABLE II. The mass, width, and lifetime of bound or resonant KK modes of the fermions. The parameters are setto a = 1, v = 1,
A =10, and # = 0,5, 10.
A n Height of V n Bound or Resonant m? m r T
10 0 VPT(00) = 14.8148 0 Bound state 0 0 0 )
1 Bound state 9.4517 3.0744 0 o)
5 Vipax = 54.488536 0 Bound state 0 0 0 oo
1 Resonant state 19.7422 4.443 3.00 x 10715 3.75 x 10™
2 Resonant state 35.7677 5.981 3.41 x 107 2.94 x 10°
3 Resonant state 47.7286 6.909 538 x 1073 1.86 x 102
4 Resonant state 54.7649 7.400 0.135 7.390
10 Vs =119.99 0 Bound state 0 0 0 00
1 Resonant state 290.8414 5.4627 3.56 x 10715 2.81 x 104
2 Resonant state 56.2141 7.4976 1.04 x 10~ 9.59 x 100
3 Resonant state 78.9737 8.8867 473 x 1077 2.11 x 10°
4 Resonant state 97.8778 9.8933 3.32x 107 3.01 x 103
5 Resonant state 112.3600 10.06 1.86 x 1072 53.698
6 Resonant state 121.6872 11.0312 0.2019 4.952

left- and right-chiral fermions also cannot be localized on
the brane. However, there may exist the massive resonant
states, which indicates that the KK modes are quasilocal-
ized on the brane. From Fig. 1, we can see that, when 4 > 0
and n = 0, the potentials V; r(z) become the Pschl-Teller
potentials, and the bound states may exist, i.e., the KK
modes can be localized on the brane. When 4 > 0 and
n > 0, there are two symmetrical potential barriers at both

sides of the origin of the extra dimension, and they increase
with the coupling coefficient 7. Generally, this type
potential implies that there may exist bound states when
0 <m? < £a’v*2%, and resonant states may also exist
when 55 a?v*A? < m? < VP (VP is the maximum value
of V; g). The bound states tend to zero when far away from
the brane along the extra dimension, and they can be
normalized. However, the resonant states tend to plane
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TABLE III. The mass, width, and lifetime of bound or resonant KK modes of the fermions. The parameters are settoa =1, v = 1,

A =15, and 1 =0,5, 10.

A n Height of V n Bound or Resonant m? m r T

15 0 VPT(00) = 33.3333 0 Bound state 0 0 0 ©
1 Bound state 15.2586 3.9062 0 00
2 Bound state 26.2153 5.1201 0 &%)

5 V¥ =86.2314 0 Bound state 0 0 0 o0
1 Bound state 25.4736 5.0471 0 co
2 Resonant state 47.1786 6.8687 7.42 x 10713 1.35 x 10'2
3 Resonant state 64.9127 8.0568 438 x 107° 2.284 x 10°
4 Resonant state 78.2950 8.8485 452 %1073 221.25
5 Resonant state 86.3584 9.2929 0.11159 8.96161
10 V¥ = 165.24 0 Bound state 0 0 0 o0

1 Resonant state 35.5690 5.9640 8.85 x 10716 1.13 x 1013
2 Resonant state 67.5881 8.2212 1.78 x 10715 5.63 x 10"
3 Resonant state 95.9463 9.7952 3.27 x 10711 2.73 x 100
4 Resonant state 120.4832 10.9765 6.00 x 1077 1.67 x 10°
5 Resonant state 140.9340 11.8716 3.09 x 10~ 3.232 x 103
6 Resonant state 156.6930 12.5177 0.0162 61.55221
7 Resonant state 166.8501 129171 0.1707 5.8578

waves when far away from the brane, and cannot be
normalized. As in Ref. [36], the relative probability
function of a resonance on the thick brane is defined as
follows:

[ IL(z). R(z)Pdz
Zmax |L(Z)7R(Z)|2dz’

~Zmax

Ppp(m?) = (38)

where 2z, is about the width of the thick brane, and z,,,
is set 0 Zyg = 10z,. It is clear that when m? > V&,
the fermion KK modes are approximately taken as plane
waves and the value of P, p(m?) will tend to 1/10. As
in Ref. [60], the lifetime 7 is estimated to 7 ~ "', with
I' = 6m being the full width at half maximum of the peak.

Equation (21) can be solved by the numerical method,
and we will set the coupling coefficients A and 7 as different
values, respectively, for comparing two types of couplings.
When 4 =5 and n = 0, only the left-chiral fermion zero
mode (bound state) can be localized on the brane. However,
for the right-chiral fermion KK modes, there is no bound
state or resonant state. When 4 = 5 and 5 = 5, for the left-
chiral fermion KK modes, there is only one bound zero
mode and three resonant KK modes; but for right-chiral
fermion KK modes, there are only three resonant KK
modes. The profiles of the relative probability P; p(m?)
corresponding to coupling coefficients A = 5 and n = 5 are
shown in Fig. 5. In these figures, each peak corresponds
to a resonant state, and the left- and right-chiral fermion
KK modes are shown in Figs. 6 and 7. For the left-chiral
fermion KK modes, it can be seen that the first massive KK
mode is an odd-parity wave function, and the second one
has even parity. However, for the right-chiral fermion KK
modes, the first massive KK mode has even parity and the

second one has odd parity. This is held for any nth fermion
KK mode, namely, the parities of the nth left- and right-
chiral KK modes are opposite. In fact, this conclusion is
originated from the coupled equations of the left- and right-
chiral fermions. For the case of 1 =15 and 5 = 10, the
conclusion is similar to that of 1 =15, # = 5. The mass,
width, and lifetime of the left- and right-chiral fermion KK
modes with different values of # are listed in Table I. It can
be seen that the mass and lifetime of the left- and right-
chiral fermion resonances are almost the same; thus, the
formation of the four-dimensional massive Dirac fermions
can be realized [35]. So we can summarize that the four-
dimensional massless left-chiral fermion can be localized
on the brane, and the four-dimensional massive Dirac
fermions can also be obtained, which consist of the pairs
of coupled left- and right-chiral KK modes with different
parities. On the other hand, the total number of resonant
KK modes increases with the coupling coefficient 7.
Next, we turn to investigate the effect of the coupling
coefficient 4 on localization of the fermion KK mode. The
left- and right-chiral fermion KK modes and the corre-
sponding resonant mass spectrum are solved and calculated
for different values of 2. We only list the mass, width, and
lifetime of the left-chiral fermion KK modes in Tables II
and III, since the result of the right-chiral fermion KK
modes is the same except the zero mode. From Tables I, II,
and III, it can be concluded that for the same coupling
coefficient A, with the increase of the coupling coefficient 7,
the number of fermion resonances also increases, and the
number of fermion bound KK modes decreases. The reason
is that, for the same A, as increasing # the potential barriers
at both sides of the origin of the extra dimension become
higher, and the potential well of the left-chiral fermion
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The shapes of the wave functions for the left-chiral fermion KK modes L,, with the parameters a = 1, v = 1,

A=15,andy = 5. (a) n = 0, bound state; (b) n = 1, bound state; (c) n = 2, resonant state; (d) n = 3, resonant state; (e) n = 4, resonant

state; and (f) n = 5, resonant state.

KK modes at z =~ 0 tends to be deeper and narrower. The
mass of the first massive KK mode also increases with 7.
On the other hand, for the potential of the right-chiral
fermion KK modes, when 1> L avid(40?2 —9V/3), we
have V(0) > Vz(o0), and there is no right-chiral fermion
KK bound state and no mass gap in the mass spectrum of
the right-chiral fermion KK modes.

For the same A and 7, the lifetime of a resonant KK mode
decreases with its mass. As an example, when 4 = 15 and
n =135, all localization and quasilocalization of the left-
chiral fermion KK modes are shown in Fig. 8. The zero
mode and first massive KK mode are bound states, which
are localized on the brane. Some other massive KK modes

are resonances, which are quasilocalized on the brane. The
mass spectra of the left- and right-chiral fermion KK modes
are also plotted in Fig. 9. Only the left-chiral fermion zero
mode can be localized on the brane, so there exists only
the four-dimensional massless left-chiral fermion. The first
massive left- and right-chiral fermion KK modes can also
be localized on the brane, so a four-dimensional massive
Dirac fermion consisting of a pair of coupled left- and
right-chiral KK modes can be localized on the brane.
When m3 p >V g(o0) = 3-a’v*A?, there are four pairs
of coupled left- and right-chiral resonant KK modes,
so the four-dimensional massive Dirac fermions with

finite lifetimes can be quasilocalized on the brane. When
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the square of the mass for resonant KK modes. The parameters are setto a =1, v =1, A =15, and n = 5.

m3 p > VI both the left- and right-chiral fermion KK
modes cannot be confined to the brane and will be excited
into the bulk.

IV. CONCLUSION AND DISCUSSION

In this paper, localization and mass spectra of a bulk
spin-1/2 fermion field on a thick brane generated by two
scalar fields (a kink scalar and a dilaton scalar) in five
dimensions have been investigated.

For localization of the fermion zero mode, the coupling
between the fermion and scalar fields must be introduced
in the five-dimensional action. In this paper, we introduce
two types of the couplings: the usual Yukawa coupling
—nWpU between the fermion and kink scalar and the
new coupling AUT™ (9,,7)y’¥ between the fermion and
dilaton scalar.

If only introducing the Yukawa coupling, both of the left-
and right-chiral fermion zero modes cannot be localized on
the brane. So the new coupling term AUT™ (9,,7)y> ¥ must
be introduced. If only introducing the new coupling, the
left-chiral fermion zero mode is localized on the brane,
and a finite number of bound massive KK modes of left-
and right-chiral fermions may be localized on the brane.
The number of bound states increases with the coupling
coefficient 4. If we further introduce the Yukawa coupling,
there exists a finite number of resonant massive KK modes
of left- and right-chiral fermions, and the number of
resonances also increases with the Yukawa coupling
coefficient 7. Hence, the massless fermion localized on
the brane consists of just the left-chiral KK mode, while the
massive fermions localized or quasilocalized on the brane
consist of the left- and right-chiral fermion KK modes
and, hence, represent the four-dimensional Dirac massive
fermions. The lifetime of the fermion KK resonant modes
decreases with their masses.

Finally, we note that if by making the replacement, the
Dirac coupling term into the Majorana coupling term in the
action (13), we can obtain the action of a Majorana fermion

coupling with the background scalars ¢ and = in five-
dimensional spacetime is written as follows:

Sm = / dx\/=g {\IrrN(aN + oy ¥
- %n(iff(fp, 2)UC 4 He.)

1 -
+ E/I(WFNaNg(qb, )y’ +He)|, (39)
where W€ is defined as W¢=CsU* with the five-
dimensional charge conjugation, Cs = I'I"2. Thus, the
equation of motion corresponding to the action (39) can
be written as

[0, + 7> (0. + 2A"(2))]¥ — ne f (. ) W¢

+ A¢ (¢, m)P¢ = 0. (40)

Since the Majorana fermion describes a neutral fermion, we
can conclude the Majorana condition

v = ve, (41)
which implies the equality of particle and antiparticle. We
choose to decompose the five-dimensional fields in terms
of left- and right-chiral components to keep our derivation
easily comparable with the Dirac case. The general chiral
decomposition is written as follows:

¥ = ey ) + R ). @20

Pe =24 (Zy/gn (x)Li(z) + Zwﬁn(x)Rii(Z)> . (42b)

and the left- and right-chiral four-dimensional fields y , (x)
and wpg,(x) satisfy the four-dimensional Majorana equa-
tions and Majorana conditions
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}’Maﬂllan (x) = mnWRn(x) = mnwzn (X), (438')

yﬂaﬂl//Rn ()C) = mM,Yr, (.X) = mnlllﬁ?n (.X) (43b)

Then the KK modes L,(z) and R,(z) also satisfy the
following coupled equations:

0,L,(z) + ne* f(¢. m)R;(z) — Ag (¢p. 7)R;;(2) = m,R,(2).
(44a)

O.R,(2) + ne’ f(¢. )Ly (z) — Ag (¢. 7)L;(2)

= —m,L,(2). (44b)
From the five- and four-dimensional Majorana conditions,
it is easily conclude L, (z) = R}(z) and R, (z) = L;(z), so
Eq. (44) and Eq. (19) are same. Hence the four-dimensional
left- and right-chiral fermions are coupled by the same

PHYSICAL REVIEW D 92, 106007 (2015)

mass, and the situation of localization for the Majorana
fermion is similar to the Dirac fermion. We plan to return to
this problem on another occasion.
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