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Integrable open spin-chains in AdS;/CFT, correspondences
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We study integrable open boundary conditions for d(2, 1;a)? and psu(1,1

2)? spin-chains. Magnon

excitations of these open spin-chains are mapped to massive excitations of type-IIB open superstrings
ending on D-branes in the AdS; x 3 x §3 x S' and AdS; x §3 x T* supergravity geometries with pure
R-R flux. We derive reflection matrix solutions of the boundary Yang-Baxter equation which intertwine
representations of a variety of boundary coideal subalgebras of the bulk Hopf superalgebra. Many of these
integrable boundaries are matched to D1- and D5-brane maximal giant gravitons.
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I. INTRODUCTION

Integrability has been a remarkable discovery in
AdS/CFT, leading to the matching of an infinite tower
of conserved quantities on the gauge and gravity sides of
these dualities [1,2]. In the canonical AdSs/CFT, [3], the
infinite-dimensional superalgebra underlying integrability
is a Yangian symmetry [4,5] with level-0 Lie superalgebra a
central extension of 3u(2|2), denoted 3u(2|2),. The
universal enveloping algebra of 81(2]2), is endowed with
the structure of a Hopf algebra. Massive excitations of the
world sheet of a closed IIB superstring on AdSs x S° map
to 8u(2]2),—symmetric magnon excitations of a closed
spin-chain built from states in a representation of
p31(2,2|4), which is the superisometry algebra of
AdSs x §°. The integrable S-matrix describing two-
magnon scattering is identified with the R-matrix of the
underlying superalgebra [6]. Three-magnon scattering
factorizes into a succession of two-magnon scattering
processes—a statement of integrability encoded in the
Yang-Baxter equation. Massive excitations of an open
IIB superstring ending on a D-brane in AdSs x S° map
to similar magnon excitations of a p3u(2,2|4) open spin-
chain with a distinguished boundary site [7]. The symmetry
of the boundary is determined by the superisometries
preserved by the D-brane which are contained in the bulk
magnon symmetry algebra 81(2|2).. This boundary Lie
algebra may be extended to a coideal subalgebra of
the bulk Hopf superalgebra. The scattering of a single
magnon off an integrable boundary is described by a
boundary S-matrix—the matrix part of which is the
reflection K-matrix [8§—11]. Two-magnon reflections fac-
torize into a succession of single-magnon reflections and
bulk two-magnon scattering processes—with this boundary
integrability encoded in the boundary Yang-Baxter
equation, also called the reflection equation [12].
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The R-matrix intertwines representations of the bulk
Hopf superalgebra, while the K-matrix intertwines repre-
sentations of a boundary coideal subalgebra of this bulk
superalgebra.

Extensive studies, which were initiated in Ref. [13], have
been made of integrability in AdS;/CFT,. The dual field
theories have been the subject of recent interest [ 14—17], but
much still remains to be understood. On the string theory
side, the IIB supergravity backgrounds AdS; x S° x M*,
with M* = S x §! or 7%, are known [18,19]. Both back-
grounds are half-BPS, preserving eight left- and eight
right-moving supersymmetries, and have a combination
of NS-NS or R-R 3-form flux—we focus here exclusively
on the case of pure R-R flux. The AdS; x $° x §¥ x §!
supergravity geometry has AdS; radius L, and S and S¥
radii R and R’, which must satisfy [18]

1 1 1
R

implying R = L sec fand R’ = L csc 8. Here a = cos” fisa
parameter related to the relative size of the 3-spheres. The
bosonic isometry algebra is

80(2,2) @ 30(4) @ 30(4)" @ u(l)
~[8u(l,1) ® 3u(2) ® su(2)].
@ [8u(l,1) ® 3u(2) ® 3u(2)]g ® u(l),

which splits into two copies (left and right) of the bosonic
subalgebra 8u(1,1) @ 8u(2) @ 31(2)" of the Lie super-
algebra (2, 1;a). The superisometry algebra of AdS; x
§? x $% x STisd(2, 1;@)* @ u(1). The size of the 3-sphere
S becomes infinite in the @ — 1 limit, and a compactifi-
cation' of the resulting R® gives the IIB supergravity

1 . . . . . .
Here we ignore complications which arise from neglecting
winding modes.
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background AdS; x §® x T*. The radii of AdS; and S°,
denoted L, are now the same. The bosonic isometry
algebra

30(2,2) @ 80(4) @ u(1)*
~[8u(1,1) @ su(2)], @ [8u(1,1) ® su(2)]g @& u(1)*

contains two copies of the bosonic algebra 3u(1,1) @
8u(2) of the Lie superalgebra psu(l,1|2). The super-
isometry algebra of AdS; xS xT*is psu(1,1]2)>@u(1)*.

Massive excitations of the world sheet of a closed 1IB
superstring on AdS; x §? x §¥ x S! map to su(1|1)3-
symmetric magnon excitations of a closed, alternating
spin-chain built from states in two representations of
D(2,1;a)? at odd and even sites. There is symmetry
enhancement in the a — 1 limit. Massive world-sheet
excitations of a closed IIB superstring on AdS;x S*x T*
map to [psu(1]1)> @ u(1)]2-symmetric magnon excita-
tions of a closed, homogeneous spin-chain built from
states in a representation of psu(1,1|2)%. The universal
enveloping algebras of 31 (1|1)2 and [psu(1]1)? @ u(1)]2
can be endowed with Hopf algebra structures. Integrable
S-matrices describing two-magnon scattering were derived
in Refs. [20,21] (see Ref. [22] for a recent review and
Refs. [23-25] for early work). The R-matrix of the
psu(1,1]2)? spin-chain is essentially two copies of the
R-matrix of the d(2, 1;@)? spin-chain. A variety of results
for the string sigma model were obtained in Refs. [26-37],
and a proposal for the dressing phases was put forward in
Ref. [38] (see also Ref. [39]). The scattering of massless
excitations of the superstring world sheet was considered in
Refs. [40-44].

Integrability manifests here in the form of infinite-
dimensional Yangian symmetries. Hopf algebra structures
in AdS5/CFT, were described in Refs. [45,46], and the full
81(2|2), Yangian symmetry was introduced in Ref. [47]
and further explored in Refs. [48,49]. Yangian symmetries
in AdS;/CFT, were explored in Refs. [21,50], but only
recently fully described in Ref. [51]. Since the representa-
tion theory of 81(1]1)2 is relatively simple, with massive
excitations being vectors in a two-dimensional atypical
(short) representation and the R-matrix intertwining 2 four-
dimensional typical (long) representations, the Yangian is
not needed to obtain the R-matrix (see Ref. [52] for the
situation in AdS5/CFT,). However, it is necessary to know
the full Yangian symmetry to construct the algebraic Bethe
ansatz equations. The Bethe equations for AdS;/CFT,
were proposed in Ref. [53] and later derived using the
coordinate method in Ref. [54]. Boundary Yangian sym-
metry for AdSs/CFT, has undergone an extensive study in
Refs. [55-60], and the boundary Bethe equations were
constructed in Refs. [11,61-64]. The natural next step in
the exploration of integrability and the spectral problem for
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open superstrings in AdS;/CFT, is to find the boundary
Yangian symmetries and hence derive the Bethe equations.

A comprehensive study of open spin-chains with inte-
grable boundaries in AdS;/CFT, is presented in this paper.
The d(2, 1;@)? and p3u(1,1]2)> open spin-chains map to
open IIB superstrings ending on D-branes in AdS; x §3 x
5% x S' and AdS; x §* x T*. In particular, half- and
quarter-BPS maximal D1- and D5-brane giant gravitons
[65-67] provide a variety of integrable boundaries. We
derive reflection matrices which describe single-magnon
scattering off singlet and vector boundary states. As for the
bulk R-matrix, the K-matrices of the psu(l,1]2)? spin-
chain can be built from two K-matrices of the d(2, 1;a)?
spin-chain. In the (2, 1;a)? case, the reflection matrices
intertwine representations of totally supersymmetric, half-
supersymmetric and non-supersymmetric boundary Lie
algebras (symmetries of the D-branes), which can be
extended to coideal subalgebras of the bulk Hopf super-
algebra. Several of our reflection matrices coincide with
certain 3u(1]1) subsectors of the reflection matrices of
p3u(2,2|4) open spin-chains. These map to open IIB
superstrings ending on D3-brane ¥ =0 and Z = 0 giant
gravitons [8] and D7 branes [9] in AdSs x S°. We uncover
novel hidden boundary symmetries of a chiral reflection
matrix with a non-supersymmetric boundary Lie algebra—
these have no known analogue in AdSs;/CFT,. We also
derive an achiral reflection matrix for a non-supersymmetric
boundary Lie algebra generated by the magnon
Hamiltonian.

The structure of this paper is as follows: D1 and
D5-brane maximal giant gravitons and their symmetries
are described in Sec. II. Sections II A and II B therein focus
on maximal giant gravitons in AdS; x §3 x §” x S! and
AdS; x 8% x T*, respectively. Sections III and IV describe
the d(2,1;a)? closed and open spin-chains. Section III
contains a review of the (2, 1; 05)2 closed spin-chain and its
R-matrices. Here we choose a different frame for the -
deformation of the bulk Hopf superalgebra from the one
used in Ref. [20]; this frame is more convenient for the
boundary scattering theory. Section IV presents our novel
results for the d(2,1;a)?> open spin-chain. We derive
various K-matrices and describe the associated boundary
coideal subalgebras. The psu(1,1]2)? closed and open
spin-chains are the subject of Secs. V and VI. Section V
contains a brief review of the psu(1,1]2)? closed spin-
chain and its R-matrices. Our new results concerning
p3u(1,1]2)? open spin-chains, K-matrices and boundary
coideal subalgebras are presented in Sec. VI. Concluding
remarks are contained in Sec. VII. Appendix A states our
spinor conventions. Appendix B describes the relevant
representation theory of d(2,1;a) and psu(l,1[2).
Appendix C shows various useful expressions relating to
the SO(2,2) and SO(4) bosonic isometry groups of the
supergravity backgrounds.
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II. MAXIMAL GIANT GRAVITONS

A. Maximal giant gravitons on
AdS; x $3 x §¥ x S!

We start by giving the details of the type-1IB super-
gravity background AdS; x $® x §¥ x S!  with pure
R-R 3-form flux, and describe D1 and D5-brane maximal
giant gravitons based on Ref. [67].

1. AdS; x S3 x S¥ x S with
pure R-R flux

IIB supergravity solution.—The AdS; x §* x §¥ x §!
background has the metric

ds* = L*(—cosh?pdt> + dp* + sinh?pdg?)
+ R%(d6? + cos’Ody* + sin’Odg?)
+ R"?(d0” + cos’0' dy? + sin’0' d¢’)
+ 2dE, (2.1)

with R = Lsecf and R’ = L csc 3, where a = cos? f8. This
geometry is symmetric under @ - 1 —a and an inter-
change of §* and $*. The 3-form field strength F ) =
dC ) is given by

F3) = 2L2dt A (sinhp cosh pdp) A dg
+ 2R*(sin @ cos 0dO) A dy A dg

+ 2R (sin@ cos @dd') A dy' A def (2.2)

in the case of pure R-R flux. The Hodge dual 7-form field
strength F(7> = dC<6) = *F(3> is

2R3R3¢
Fay=-

(sin@cos 0dO) A dy N dop

A (cos@ sin@'dd') A dy' A de' A dE
2L3RP¢

dt A (sinh p cosh pdp) A de

A (sin@ cos@'dd') A dy' A dep' A dE

2L3R3¢
+ Tdt A (sinh p cosh pdp) A dg

A (sin@cos 0dO) A dy A dgp A dE. (2.3)

The 3-form and 5-form fluxes couple to D1- and D5-
branes. Dynamically stable giant gravitons with angular
momentum on both 3-spheres were shown to exist in
Ref. [67]. D1- and DS5-brane maximal giant gravitons
provide integrable boundary conditions for open IIB super-
strings on AdS; x §3 x §¥ x S
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Supersymmetry.—The supersymmetry variations of the

dilatino and gravitino are

i

64 = —F 3 (Be)*,
4 (3)( €)
i *

parametrized by ¢ = &' + ie?, with the 32-component Weyl-
Majorana spinors &’ satisfying I'e/ =¢ and (Be!)*=¢!, for

I €{1,2}. The charge conjugation matrix is C = BI".
Also,3

2
F(%) — erlZ(ﬂ + \/ar*012r345 4 A /1 — ar012r678)

4
— _F012K+(a)’

. (2.5)

with our gamma matrix conventions shown in Appendix A.
Here

1

K*(a) == [1£ (Val?2r 4+ /1T —aI0219%)). (2.6)

N

The gravitino Killing-spinor equation 6W,; = 0 implies
a solution of the form [67]

e(xM) = M+ (xM)et + M= (xM)e™

= MM (14 i)es + MM (1 + )R, (2.7)
decomposed into left- and right-movers, with
Mi(xM) — 53 02 p3(@EN 12 o F30 s p3(F 1) 3
x T30 T7s o3& F1')Wes (2.8)
*The vielbeins E* = E4,dx" are given by
E°=Lcoshpd:, E'=Ldp, FE*=Lsinhpdey,
E*=Rd®, E*=RcosOdy, FE>=Rsin0dg,
EC=R'do', E"=Rcos@dy, E*=R'sin@d¢d', E’ =¢de.

The supercovariant derivatives V,, = 9, + Q4PT 5, with Q4% =
QABdxM satisfying dEA 4 Qf A EB, are

1.

Vt = 6, + EsmhpFOI N Vp = 8/},
1

Vq,:@{/,—icoshpl—‘lz, v€:89,

1. 1
VX = BX +§sm 9F34, V¢ = 6¢ - ECOS 6F35, VQ’ = 89/,

1. 1
v)(/ = 6)(/ + ESln9/F67, V¢/ = 8¢/ —ECOS 6,F687 v: = 85

*Here we use the notation F (3 = 4 F(3)nrsEY ESEST e
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Here i(Bet)* = +¢* and T'e™ = &*, with e™ = (1 + i)e"
and & = (1 +i)eR. The left- and right-movers satisfy
(Beb)* =¢- and (BeR)* = =R, with Te® = ¢2, for
a € {L,R}. The Weyl-Majorana spinors are written in
terms of these left- and right-movers as ¢/ = - — i(—1)€R.

The dilatino Killing-spinor equation 64 = 0 now further
implies K (a)e? = 0, which halves the number of left- and
right-moving degrees of freedom from 16 to 8, yielding a
half-BPS geometry.

The spinors e~ and &R can be decomposed into eigen-
states €7/ and eRP# which have eigenvalues (b, 8, ) =
(4, £, &) of the Dirac bilinears given in (A6):

l.rlzé'abﬂ‘é = b&'abﬂ‘b, ir‘35€abﬂﬁ = —ﬂé'abﬂ‘é,

T gge@PP — 36200 (2.9)
The IIB supergravity background AdS; x $3 x §¥ x S! is
thus invariant under eight left- and eight right-moving
supersymmetry transformations, parametrized by &2/,
which satisfy

K ()edth =0

and so K~ (a)edPl = gablp, (2.10)

This gives rise to the kappa symmetry condition
K+ (2)®3PP(7,6) = 0 of Ref. [13] when the target space
superfields are pulled back to the superstring world sheet to
give XM(z,6) and ©3"P#(z,5). Here the spinors &2%/F
parametrize translations in these spinor directions in super-
space, which are generated by the supercharges 23,55 The
full superisometry algebra is d(2,1;a), ®d(2,1;a)gD1u(1),
with the details of the exceptional Lie superalgebra
9(2,1;a) given in Appendix B. It was noted in
Ref. [13] that this is the correct kappa symmetry gauge
choice to allow for comparison between the Green-
Schwarz action and their Z4-graded (d(2,1;a) @
(2, L;a)g)/(3u(1,1) @ 3u(2) @ 3u(2)) integrable coset
model which describes a closed IIB superstring
on AdS; x §3 x §¥ x S

2. Maximal giant gravitons and boundary algebras

Massive excitations of a closed IIB superstring on
AdS; x 5% x §¥ x S! map to magnon excitations of a
D(2,1;a)? closed spin-chain. Section III discusses how
choosing a vacuum Z breaks the d(2, 1;@)? symmetry to
3u(1|1)?, centrally extended to 8u(1]1)2. An open IIB
superstring ending on a D-brane maps to a d(2, 1; @)? open
spin-chain with boundaries. The boundary Lie algebra is a
subalgebra of 81(1|1)2 determined by the D-brane sym-
metries which survive the choice of spin-chain vacuum.
This can be extended to a coideal subalgebra of the Hopf
superalgebra, as explained in Sec. IV. We classify boundary
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X S3 X S8 x St

FIG. 1 (color online). Half of the D5-brane maximal giant
graviton wrapping S' x $3' x S' in AdS; x §% x §% x S!.

Lie algebras for D5 and D1-brane maximal giant gravitons
in AdS; x 83 x §¥ x S

Maximal DS5-brane giant gravitons.—The D5-brane
giant graviton of Ref. [67] factorizes at maximum size
into two DS5-branes, which wrap S!'x 5* x S' and
§% x §1 x S', and move only along the time direction in
AdS;. Each half-BPS D5-brane preserves four left- and
four right-moving supersymmetries on its world volume.
We focus on the first half of the maximal giant (see Fig. 1).
This breaks the bosonic isometry algebra to

(u(l) @ u(l)) & (u(1) ® u(1)) @ 80(4)" & u(1)
C 30(2,2) @ 80(4) @ 80(4) d u(l).

Z = 0 giant.—Let us take the C?> and C? embedding
coordinates of the 3-spheres to be
(Z,Y) = (x| + ixy,x3 + ixg) = (Rcos@e, Rsinfe'?),
(Z,Y') = (x| + ixh, x5 +ix}) = (R cos@e” ,R'sin@ e'?),
(2.11)
as in Ref. [67]. The maximal D5-brane giant graviton
consists of Z =0 and Z’ = 0 halves. Let us focus on the
Z = 0 giant which wraps the ¢ great circle in S* and the
5% x S' space. The world-volume metric, obtained by
setting p = 0 and 6 = 7, is
ds? =—L%dt* + R*d¢p* + R"*(dO* +cos*0' dy'* +sin*@ d¢y?)
+%dE.
The bosonic symmetries of this D5-brane include time
translations and rotations in AdS;, rotations in S* in the
x,x, and x3x, planes, and all rotations in S, generated by
Sa0 € u(1)y C 8u(l,1),,
{Ras. Rasr} € 8u(2);,

fas € u(l), C 3u(2),,
for a € {L,R},

with the splitting of 80(2,2), 80(4) and 380(4)" into
left and right algebras shown in Appendix C. The
Cartan elements of the 8u(1|1)? superalgebra, denoted
Ha = —Tag — @85 — (1 — a)Ryg, are thus included in the
generators of bosonic symmetries of the Z = 0 giant.
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Kappa symmetry on the world volume of the D5-brane
requires

Dosersoe = —i(Be)", (2.12)

with the pullback of the Killing spinor (2.7) given by

e=(1+)M (1,00, .¢ &)e"

+ (1 4+ )M (1,01, ¢, ). (2.13)
Here K™ (a)e? = 0, for a € {L, R}. This kappa symmetry
condition reduces to

F12€a = F35€a, (214)
and hence 3% has labels satisfying —b = f3, with j3 free.
The 4 +4 supersymmetries compatible with kappa

symmetry on the world volume of the Z =0 giant are
generated by

Qo+ =Qa Qa - Qay - =G5, Qa1 }-

The symmetries of this D5-brane include the 8u(1|1)?
superalgebra generated by {Q,, ©,. 9.}, which acts on
magnon excitations of the d(2,1;a)? spin-chain. The
boundary Lie algebra is the centrally extended 8u(1|1)2.
We say the Z = 0 giant is completely aligned with the spin-
chain vacuum Z.

Y =0 giant: An SO(4) transformation taking Z to Y
corresponds to simultaneous rotations by 63 = €, =7 in
the x;x3 and x,x, planes, achieved by U, = ic; and Ug =
[ (see Appendix C). The 4 + 4 supersymmetries on the
world volume of the ¥ = 0 giant are hence

QL QL QL Qs
QR+ =R, QR-4— Qry—- =GR, QR+ }-

Thus {QR, ©R, Hr. H.} are both world-volume sym-
metries and in the 8u(1]1)2 superalgebra of magnon
excitations, and they generate the right half-supersymmetric
boundary Lie algebra u(1)_ @ su(1|1)g.
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Y = 0 giant: An SO(4) transformation which takes Z to
Y is obtained by setting 0,5 = —0,4 = 7, corresponding to
U_ = land Ug = —io;. The 4 + 4 supersymmetries of the
Y = 0 giant are

QL =9 QL. =6, Q..
QR-—+ QR QR+ QR4+ -

Here {Q., S, 91, Hr} generate the left half-supersym-
metric boundary Lie algebra su(1]1), @ u(1)g.

Z = 0 giant: An SO(4) rotation taking Z to Z is obtained
by setting 6,4, = z, which corresponds to U, = is; and
Ug = io,. The 4 + 4 supersymmetries of the Z = 0 giant
are thus

{QL——+7 Q- QL++—’ QL+++7
QR——+» QR QR+ QR4+ 1

none of which are in the 3u(1|1)2 superalgebra, although
the Cartan elements §), remain world-volume symmetries.
The boundary Lie algebra 1t(1), @ 1(1)g is therefore non-
supersymmetric.

We also consider the Z' = 0 giant which is completely
aligned with the spin-chain vacuum Z and has totally
supersymmetric boundary algebra 3u(1|1)2. Then SO(4)’
transformations yield the Y = 0, Y’ = 0 and Z’ = 0 giants,
which give right and left half-supersymmetric, and non-
supersymmetric boundary algebras, u(1)_ @ su(1|1)g,
su(1|1). ® u(l)g and u(1). @ u(l)g (see Table I).

Maximal D1-brane giant gravitons.—The maximal D1-
brane giant graviton of Ref. [67] wraps a 1-cycle wound
around a torus S' x S made up of two great circles of radii
R and R’ on the 3-spheres. This quarter-BPS D1-brane
preserves two left- and two right-moving supersymmetries
on its world volume. As shown in Fig. 2, the bosonic
isometry algebra is broken by our choice of torus to

(u(1) @ u(1)) & (u(1) ® u(1)) & (u(1) & u(1))
C 80(2,2) ® 30(4) ® 30(4) ® u(l),

and further by the D1-brane to

TABLE I. Boundary Lie algebras for D5-brane maximal giant gravitons on AdS; x S x ¥ x S!.
D5 giant Bosonic generators Supersymmetry generators Boundary algebra
Z=0 {Ba0: Las: Rax, Rag} {RQa i+, Qay-+} su(1]1)3

Y=0 {SaOsgaS’mai’mag} {QL——i’QL++i»QR—+ivDR+—i} 11(I)L 52 éu(”l)R
Y =0 {Fa0s Ras: Razx, Rag} {QLe, Qi QR QR4 | su(1|1). ® u(l)g
Z=0 {SaOsgaSsmai’ERag} {QL——i’QL++i»QR——i’ QR++i} u(l)L 52 u(l)F{
7' =0 {Sa0: Rax. Las. Ras} {Qa-z+ - Qara-} 3"(1“)5
Y'=0 {Fa0s Raxs Las, Rag} QL+ Qs QR QR ) u(l), @ su(l[l)g

)_/, = {SangaiagaSvmaS}
{Ta0: Bax. Ras. Rag)

{QL-t QL QR QRyt ) su(1[1), @ u(l)g
{QL e Quiss QR QRiay ) u(l

L@ u(l)g
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AdS3 X 93 X Cid
1-cycle on torus

FIG. 2 (color online). The DI-brane maximal giant graviton
wraps a l-cycle on a S' x S in AdS; x 8% x §¥ x S

(u(1) ® u(1) & (u(1), & u(l) & u(1)).

Z =27 =0 giant: Let us again make use of the
coordinates (2.11). The maximal D1-brane giant graviton
is specified in Ref. [67] by p = 0 and Z = Z' = 0, which
gives § = ¢ =35. The world volume is parametrized by
(t,0), where we define ¢ = ac and ¢ = (1 — a)o. The
D1-brane wraps a 1-cycle on the torus (¢, ¢'). The world-
volume metric is

ds? = —L2dr* + L*dc>.

The bosonic symmetries of the torus are generated by all
the Cartan elements {J .0, Ras, Rag}. The Dl1-brane itself
wraps a l-cycle on this torus. Its symmetries are time
translations and rotations in AdS;, rotations in S> and $* in
the x;x, and x|x}, planes transverse to the torus,
and translations along the 1-cycle in the world-volume
direction o. These bosonic symmetries of the Z =2 =0
giant are generated by

a0 € u(1), C 3u(l, 1),
L5 — s € u(l), Ris — Rps € u(l),
—a(85 — Lgs) — (1 —a)(Rs — Rps) € u(l),

or, equivalently, by the generators

{Sa0: ba- Ris — Ris} for a e {L R}

Kappa symmetry on the world volume of the D1-brane
requires

[o(vVals + V1 —aly)e = —i(Be)*,  (2.15)

with the pullback of the Killing spinor (2.7) given by

e=M*(t,0)(1 +i)e- + M~(t,0)(1+i)eR.  (2.16)

Here K™ (a)e? = 0, for a € {L, R}. This kappa symmetry
condition reduces to

F]zga = F35€a = F68€a. (217)

The left- and right-moving supersymmetries preserved on
the D1-brane world volume are parametrized by £2?%, with
labels satisfying —b = f# = . The 2 + 2 supersymmetries
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compatible with kappa symmetry on the world volume of
the Z = Z' = 0 maximal D1 giant are thus generated by

{Qa 1+ =Ra. Qay - =G4}

The generators of the symmetries of this D1-brane include
all the generators {$,, Qa, S,} of the su(1]1)? super-
algebra of magnon excitations of the (2, 1;0:)2 spin-chain,
which is centrally extended to 3u(1|1)2. The Z=2'=0
giant is thus totally aligned with the spin-chain vacuum Z,
and the boundary Lie algebra is the full superalge-
bra su(1]1)2.

Various giant gravitons and boundary Lie algebras may
again be obtained by SO(4) or (and) SO(4) transformations
on one (both) 3-spheres. The results are summarized in
Table II. Here 1(1), are generated by one Cartan element
HLE HRr. In Sec. IV, we will show that totally super-
symmetric, right and left half-supersymmetric and non-
supersymmetric boundary algebras, 8u(1]1), u(1), &
su(1[1)g, su(1[1) @ u(l)g, u(1). & u(l)g and u(1),,
provide integrable open boundary conditions for the
b(2, 1; @) spin-chain; that is, we find reflection matrices
which intertwine representations of these boundary Lie
algebras and satisfy the boundary Yang-Baxter (reflection)
equation. However, the boundary Lie algebras gu(1|1),
gu(11)g, u(1),, u(l)g and u(1)_ will not give rise to
reflection matrices without enhanced boundary symmetry.

B. Maximal giant gravitons on AdS; x $3 x T*

We now give the details of the type-1IB supergravity
background AdS; x $° x T* with pure R-R 3-form flux,
and discuss D1 and D5-brane maximal giant gravitons
based on Refs. [65,66].

1. AdS; x S3 x T* with pure R-R flux

IIB  supergravity solution.—The metric of the

AdS; x §3 x T* background is

ds? = L*(—cosh?pdt* + dp? + sinh?pdg?)

+ L?(d6” + cos*0dy? + sin®0d¢p*) + £7dEr. (2.18)
The 3-form field strength F(3) = dCy) is given by
F(3) = 2L2dt A (sinhp cosh pdp) A dg
+2L2(sin @ cos 0dO) A dy A dep (2.19)

in the case of pure R-R flux. The Hodge dual 7-form field
strength F(7) = dCg) = *F3) 18
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TABLE II.
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Boundary Lie algebras for D1-brane maximal giant gravitons on AdS; x $3 x ¥ x S!.

D1 giant Bosonic generators Supersymmetry generators Boundary algebra
Z2=7=0 {Ba0» Da- 85 — 8rs} {RQait  Qar—-} 3u(1]1)3
Y=272'=0 {Ba0: DL + 2025, DR, L5 + Lps} {QU Q- QR QR } su(1|l)g
Z=Y =0 {3a0, HL + 2085, DR, L5 — QRS} {QL—+—, QL QR4 QFH——} Q’“(HI)R
Y=27'=0 {Ba0- OL. Hr + 208Rs. Ls + Lrs} {Qus+ Q- QR4 QR4 } su(11),
Z=Y=0 {Sa0- OL. HR + 208ks. Ls — Vs } {Qu+ Q- QR QRs—+ } gu(11),
Z2=27=0 {Sa0- OL — Hr. Hr + 2085, L5 — Lps } {Qa——t Qayi-} u(l)_
zZ=7=0 {Sa0- 9L — Dr. O + 208rs, L5 — Lrs } {RQai— Qa4 } u(l)_
Y=y =0 {Ba0 Da: L5 + Lrs} Q- QU QR QR } u(l), @ su(l[l)g
Y=v=0 {Ba0: Da Lus + Lrs} ([ QU QR QR4 } su(1[1), & u(l)g
Z2=7=0 {Ta0: Da. s — Lrs} {Qa-—. Qari+} u(l)L @ u(l)g
Y=v=0 {SaOs HL+ DR, Hr +2a8ks, L5 + 2R5} {QL—+—7 QL+—+»DR——+’ DR++—} u(1)+
Y=Y=0 {Ba0- OL + Or. Or +208Rs, s + Lps} {1+ QL= QR — QR4 u(l),
Y=27'=0 {Ba0- OL. Or + 2a8Rs. L5 + Lks} QL QL QR = QRi—4 u(l),
Z=Y =0 {Ba0- OL. HR + 208ks. L5 — Lps} {QL—— QL QR QR4 ) u(1)
Y=27=0 {Ba0- DL + 20815, DR, 85 + Lrs} ([ QL QR QR4 } u(l)g
Z=Y=0 {Sa0- OL + 2085, HRr. L5 — Lps} {QL—+ QL QR QR4 } u(l)g

Fipy = —2L26,¢5¢5¢ 4(sin O cos 0d6) A dy A dp
AN dEp Ndéy AN dEy N dEy
—2L2¢ 6565 4dt A (sinh p cosh pdp)

Adp A dE| A dE A dEs A dE,. (2.20)

These 3-form and 5-form fluxes couple to the D5- and
Dl1-brane giant gravitons of Refs. [65,66] which have
angular momentum on the 3-sphere. Maximal DI1- and
D5-brane giant gravitons provide integrable boundaries for
open IIB superstrings on AdS; x §% x T4,
Supersymmetry.—The supersymmetry variations of the
dilatino and gravitino (2.4) are now written® in terms of

2 4
F — _F012 I+ F012F345 — —F012K+,
(3) L ( ) L
1
where K* = E(ﬂ + TO12[345), (2.21)
“The vielbeins E* = E4 dx™ are
E°=Lcoshpd:, E'=Ldp, E*= Lsinhpde.
E*=1d9, E*=LcosOdy, E°>=Lsin0dg,
EC=¢,dE, E=¢,dE,,  EP=t¢3dE, B =¢,dE,

and the supercovariant derivatives are given by

p = 0),

1
V,=8,+§sinhpF01, V
1 1.
V(/) = 8W - ECOShPrlz, v(} = 89, VZ = (9)( + ES]]’I 9F34,

1
V¢ = 8¢ - ECOS 9F35, V; = 35,

The gravitino Killing-spinor equation 6¥,; = 0 implies a
solution of the form

e(xM) = M (M) (1 4i)e- + M= (M) (1 +i)eR,  (2.22)
decomposed into left and right-movers, with
M= (XM) — o0 39012 p£30 us p3(dF2 )35 (223)

The dilatino Killing-spinor equation 54 = 0 further implies
K*e? =0, which halves the number of left- and right-
moving degrees of freedom. The spinors - and ™ can be
decomposed into eigenstates e-*#/ and £R?PP_ This Killing
spinor (2.22) can be seen as the o — 1 limit of (2.7).

The IIB supergravity background AdS; x §* x T* is
thus invariant under eight left- and eight right-moving
supersymmetry transformations, parametrized by e3%/F,
which satisfy

K*e® =0 and hence K-edW — g2t (2.24)
These supersymmetry transformations are generated by
the supercharges £,,,;. The superisometry algebra is
psu(1,12), @ psu(1,12)g & u(1)* with the details of
the Lie superalgebra p3u(1,1]|2) given in Appendix C.

2. Maximal giant gravitons and boundary algebras

A closed IIB superstring on AdS; x $3 x 7% maps to a
closed psut(1, 1|2)? spin-chain, as described in Sec. V, with
magnon excitations transforming under a centrally
extended [psu(1]1)> @ u(1)]2 superalgebra specified by
our choice of vacuum Z. An open IIB superstring ending
on a D-brane maps to a psu(1, 1/2)? open spin-chain with
the boundary Lie algebra determined by the D-brane
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FIG. 3 (color online). The DI- and DS5-brane maximal giant
gravitons wrapping S' and S' x T* in AdS; x S® x T*.

symmetries which survive the choice of vacuum. We
consider D1- and D5-brane maximal giant gravitons which
yield boundary Lie algebras, extended to the coideal
subalgebras in Sec. VI.

Maximal DI- and D5-brane giant gravitons.—Both the
maximal giant gravitons wrap a great circle in S, with the
D1-brane pointlike in the 7# and the D5-brane wrapping
the entire T* space [65,66]. We consider these D1- and
D5-brane giants simultaneously. As shown in Fig. 3, the
bosonic isometry algebra breaks to

(u(1) & u(1)) & (u(1) & u(1))
C %0(2,2) @ 20(4) @ u(1)*

and

(u(l) ® u(1)) & (u(1) ® u(1)) & u(1)*
C 30(2,2) @ 20(4) @ u(1)*.

Z = 0 giants.—Let us take the C?> embedding coordi-
nates of the 3-sphere to be

(Z,Y) = (x1 +ixy, x3 + ixy)

= (L cos@e”, L sinfe'?). (2.25)

The Z = 0 giant wraps the ¢-circle in S3, and is obtained by
setting p = 0 and ¢ = 7. The DI- and D5-brane world-
volume coordinates are (z,¢) and (¢, ¢,&;). The world-
volume metrics are

ds®> = —L*df* + L*d¢* and
ds® = —L*dr* + L*d¢* + £2dE3.
The bosonic symmetries of these D-branes include time

translations and rotations in AdSs, and rotations in S° in the
x1x, and x3x4 planes, generated by

PHYSICAL REVIEW D 92, 106006 (2015)
Sa() € u(l)a Cc §1‘1(1’ l)av

R € u(l), csu(2),, forae{L R},
with the splitting of 80(2,2) and 80(4) in Appendix C.
The Cartan elements of (p3u(1,1)? @ u(1))?, denoted
Ha = —Jao — Ras, are thus generators of bosonic sym-
metries of the Z = 0 giants.
Kappa symmetry on the world volumes of the D1- and
D5-branes requires
F058 = —l(BE')* and F0567898 = —i(BE')*, (226)
respectively, with the pullback of the Killing spinor (2.22)
to the world volume given by
e=M(t,9)(1 +i)e- + M~ (t,)(1 +i)e®  (2.27)
in both cases. Here K"¢? = 0, for a € {L, R}. This kappa
symmetry condition reduces to
Flzé'a = F35€a. (228)
Hence, 2%/ satisfies —b = f, with 8 a free label. The
4 + 4 supersymmetries compatible with kappa symmetry
on the world volume of the D1- and D5-brane Z = 0 giants
are generated by

{RQa-r+ = Qa1 Qa—- =Qa,
Qai— =41, Qa—r = G}

The generators of the symmetries of these DI1- and
D5-branes include all the generators {$,, Qai, ©a} of
the (psu(1]1)> @ u(1))? superalgebra of magnon excita-
tions of the psdu (1, 1|2)? spin-chain, centrally extended to
(psu(1]1)?> @ u(1))2. These Z =0 giants are therefore
aligned with the Z vacuum of the spin-chain. We expect the
boundary Lie algebra to be the full superalgebra
psu(11)? @ u(1)]2

Y = 0 giants.—An SO(4) rotation with 0,3 = 6,4 =%
takes Z to Y, corresponding to U, = io; and Ug = [. The
4 + 4 supersymmetries on the world volume of the ¥ = 0
giants are generated by

{QL——J,»v DL———7 QL++—5 DL+++? QR—++ = DR] ’
QR-+- = QR QR4 = GR1, QR+ =G}

The boundary Lie algebra u(1), @ [psu(1]1)? & u(1)]g
is right half-supersymmetric.

Y =0 giants.—An SO(4) transformation with 6,3 =
—b0,, =7 takes Z to Y, and corresponds to U, = [ and
Ug = —ic,. The 4 +4 supersymmetries of the ¥ =0
giants are generated by
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TABLE III
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Boundary Lie algebras for D1- and D5-brane maximal giant gravitons on AdS; x §% x T*.

D1/DS giant Bosonic generators

Supersymmetry generators

Boundary algebra

Z=0 {SaOanS}
Y=0 {SangaS}
):]: 0 {3a07235}
Z=0 {Sao,ﬁas}

{Qa-+ Qay—+}
{DL——:Ev DL++:E7 QR—+17 QRJr—:E}
{QU 4+ Qs QR QR4 1}
{DL——i’ DL++i’ QR——i» QR++1}

[psu(1]1)* @ u(1)]3
u(1), @ [psu(1[1)* @ u(l)lg
[psu(1]1)* @ u(1)], ® u(l)g

u(l), @ u(l)g

QL =Qu. Q- =QL. Q- =G,
Qui—+ =G0, V. VR QR+ VR4 -

The boundary Lie algebra [pau(1]1)> @ u(1)], & u(1)g
is left half-supersymmetric.

Z = 0 giants.—An SO(4) rotation with 0,, = x takes Z
to Z, and corresponds to U, = ic, and Ug = ic;. The
4+ 4 supersymmetries of the Z = 0 giants are generated by

{1 QL Qe Qs
QR+ QR QR+ QR 44}

The boundary Lie algebra u(l), @ u(l)g is non-
supersymmetric.

The above results for both DI1- and DS5-brane
maximal giant gravitons are summarized in Table IIIL
The totally supersymmetric, right and left half-
supersymmetric, and non-supersymmetric boundary Lie
algebras, (psu(1[1)2@u(1))z, u(1) ®psu(1[1)FOu(1),
psu(1/1)} ® u(l), @ u(l)g and u(l), @ u(l)g, are
consistent with reflection matrices that are solutions of
the boundary Yang-Baxter (reflection) equation for the
psu(1, 1|2)? open spin-chain, as described in Sec. VI.

III. INTEGRABLE CLOSED 5(2,1;a)?
SPIN-CHAIN AND SCATTERING
MATRICES IN AdS; x S3 x ¥ x S!

The bosonic isometry group of the AdS; x 3 x §% x S!
supergravity background is

S0(2,2) x SO(4) x SO(4) x U(1),
whose Lie algebra splits into left- and right-movers

80(2,2) ~3u(l,1) & su(l,1)g,
30(4) ~3u(2), & 3u(2)g,
80(4)" ~3u(2)] @ 3u(2)g.
According to this splitting, the bosonic isometries can be
rearranged into
[Bu(1,1) & 3u(2) ® 3u(2)].
@ [8u(l,1) ® 3u(2) ® 3u(2)]g @® u(l),

which constitutes the bosonic part of the full superisometry
algebra

D(Z, l;a)L @ D(Z, 1;G)R @ 11(1)

Massive excitations of the world sheet of a closed I1IB
superstring propagating on AdS; x % x §¥ x ! can be
identified with the magnon excitations of an alternating
double-row (2, 1;@)? closed spin-chain which transform
under a centrally extended $u(1]1)2 algebra [53]. The left-
and right-moving excitations’ decouple in the weak cou-
pling limit. This section contains a review based on
Refs. [20,22,53] of this integrable d(2, 1;05)2 closed
spin-chain and the S-matrix describing two-magnon
scattering.

A. 9(2,1;a)? spin-chain with 3u(1|1)? excitations

1. Single-row d(2,1; ) closed spin-chain
with 3u(1|1) excitations

Symmetry generators.—The (2, 1;a) superalgebra
shown in Appendix B has bosonic generators
So,Sbeéu(l,l), 2[;,856@11(2), 27{/3,9{86,@:11(2)’
of 3u(1,1) ® 3u(2) @ 8u(2)’, and fermionic generators
2, labeled by b, f, p = + indices.

Sites.—Two neighboring sites, called odd and even, in
the alternating single-row d(2,1;a) spin-chain are the
modules

@ _ al 1\ _ (| (n)
M@ :M(—§7§,0> = SPanC{|¢ﬁ >7|‘//’; )}

l-a

1 n
M=) = M(_—vo’_) - SpanC{“ﬁ/('f gl

(n)
) 3 Yy >}

States at these sites are vectors transforming under
half-BPS representations of d(2,1;a) described in
Appendix B. The odd and even sites together form the
module M = M@ ® M/(l‘“), which carries a quarter-BPS

>These left- and right-movers are not related to the actual left-
and right-moving (clockwise and counterclockwise) modes of a
closed string, but are rather string excitations charged under
generators of different copies of d(2, 1; a).
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representation of d(2, 1; ). The vacuum state is identified
with the highest weight vector

12) = 10", (3.1)

and the four fundamental

{lg). ly).19'). ly")}, with r=1..

excitations  |@") =
.4, are defined by

) =10d"). )= |i¢+ ).
) =100 ) =10, (3.2)
Here {|¢),|w)} and {|¢'),|w')} span modules of a

closed 8u(1]|1) subalgebra’ with fermionic generators
Q=2Q_,, and © =9, __, and bosonic Cartan element

={Q,8} =-Fo—als— (1 —a)Rg the magnon
Hamiltonian. These unprimed and primed modules are
associated with energies a and 1 — a. We note this 3u(1[1)
subalgebra can be extended to a u(1]1) = u(1) x 8u(1|1)
algebra

[Qej=5 [xG--0 (2=

by the inclusion of X = —18s — 1R, which does not
annihilate the ground state.

Spin-chain.—The alternating single-row d(2, 1; ) spin-
chain with 2J sites can be identified with the module
M® = (M@ @ M'('-9)®/ The spin-chain vacuum and
fundamental excitations are

0y =127). o, = |2z, (33)
We construct vectors in momentum space using the
standard approach to obtain low-lying single-magnon
excitations

J

pp) = ePlgl,).

n=1

Here {|¢,).|w,)} and {|¢},).|y),)} are modules of
3u(1]1) with energies @ and 1 —a. The action of the
fermionic generators on the unprimed single-magnon
excitations is given by

(3.4)

Q|¢p> = \/a|l//p>’ @|¢p> = 0,
Qly,) =0,  Gly,) =Valp,). (3.5)
where also

®There are a number of other closed subsectors (see Sec. Vlin
Ref. [40]).
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x0) =30, %)= (<34 5) )

J
xll//p> = _5 |l//p>,

and similarly for the primed single-magnon excitations
with ¢ - 1 —a. Multimagnon excitations are obtained
using the generalized standard approach

re . rmn T
0P @5, - P
— el (P1xi+paxatetpxy)

1<n <ny<...<m<J

nl—l ry ny—ny—1 oot J—n
X ZM T 2T TG 0 2T

for 2 < k < J. The individual excitations (p(’;_) are known

as impurities or fields in the spin-chain, and are assumed to
be well separated.

2. Double-row d(2,1;@)? closed spin-chain
with 3u(1/1)? excitations
The alternating double-row (2, 1;@)? spin-chain is
made up of left- and right-moving d(2,1;a)_ and
9(2, I;a)g spin-chains which decouple in the weak cou-
pling limit.

Sites.—Odd and even sites of the left- and right-moving
spin -chains together form the module M| @ Mg =
® ML ® Ml(:(:) Q Mgl_{l)

fundamental excitations are

27G)) wAl(G)) 0el())

/(1-a)

. The ground state and

(3.6)
which transform under the 1(1|1)? algebra
1
{Qav @b} = $abab. [xaa Qb} = _Egaéab’
1
(Xa, &) = 5 ©a6ab- (3.7)

with a,b € {L, R}. Notice that X = X — X¥g now does
annihilate the ground state, although X and Xg individu-
ally do not. We define = 9, + Hr and M = H — Hr,
with $ the magnon Hamiltonian. We do not need to
consider excitations for which the left- and right-moving
excitations ¢ and @g coincide, since we focus on well-
separated excitations in the J — oo limit.

Spin-chain.—The alternating double-row (2, 1; @)?
spin-chain can be identified with the module (M| ® Mg)®’.
The ground state is
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Z 0\’
o =12)-|(75) ).
R
and left- and right-moving fundamental excitations are
ZL n—1 qo’ ZL J—n
) =12z = (2 () (2) )
ZRr ZR ZR
~ _ ZL n—1 ZL ZL J-n
s - vz | )7 () (2))
ZR YR/ \ ZR

(3.9)

(3.8)

with low-lying left- and right-moving single-magnon
excitations

J J

0p) =Y emal,). @) =D e@l,).  (3.10)

n=1 n=1

The wunprimed and primed left- and right-moving
magnon excitations {|¢,).|w,)} and {|¢,).|¥,)}, and
{|#%). lv,)} and {|¢,). [} have energies a and 1 —a
of the magnon Hamiltonian $. The left/right-movers
have mass eigenvalues +a and +(1 —a) of M. The
nontrivial action of the fermionic generators of the
8u(1]1)? algebra on these left- and right-moving magnon
excitations is

DL|¢p> = \/a|l//p>’
DR|$17> = \/&|l/_/p>’

@Lll//p> = \/a|¢p>’

@rli,) = Vald,).  (.11)
with the nontrivial action of the additional 1(1) generator of
the 1(1) x 8u(1|1)? algebra, which annihilates the ground
state, given by

1 - 1 -
x|¢p> :§|¢p>v x‘¢p> = _§‘¢p>’
and similarly for the primed left- and right-moving magnon
excitations with @ — 1 — a. The generalization to multi-
magnon states is again straightforward.

B. 5(2,1;@)? spin-chain with centrally extended
3u(1]1)2 excitations

We have so far considered only the weak-coupling
limit of the d(2, I;)? spin-chain in which the left- and
right-moving excitations decouple. Beyond this regime,
interactions must be taken into account by the introduction
of a centrally extended 81(1|1)? algebra which links the
two otherwise independent d(2,1;a), and (2, 1;a)g
spin-chains. Let us denote this extended algebra by
su(1]1)2.

PHYSICAL REVIEW D 92, 106006 (2015)

The algebra 8u(1]1)2 is generated by the fermionic
generators ,, ©,, and bosonic generators $, and the
central elements P, P’, where a € {L,R}, satisfying7

{Ra. Gp} = GabDa.
{@L’ @R} = s'pTv

{Qb DR} = s’nv
(3.12)

with the remaining relations being trivial. We may further
extend this algebra by the inclusion of the element X,
which annihilates the ground state and has nontrivial
commutation relations:

1 1
(X, Q] = —590 X,©] = E@L,

1

1
[X.QR] = EQR» (X, @R = _E@R-

A dynamic d(2, 1; @)? spin-chain with 81 (1|1)2-symmetric
massive excitations was constructed in Ref. [20] and,
subsequently, a nondynamic d(2, 1;@)? spin-chain with
an additional Hopf algebra structure was introduced in
Ref. [21]. We now briefly review these constructions.

1. Finite spin-chain with length-changing effects

Here we allow the additional bosonic central elements 3
and B of the 8u(1|1)2 algebra to have a length-changing
effect on the spin-chain. Let us introduce some additional
notation: Z* and Z~ denote the insertion or removal of a
vacuum state (if possible) at the specific spin-chain site in
the left-moving magnon excitation |¢7,):

J

|Zi(p;> — Z eipn‘Zn—lil(prZJ—n>’
n=1
J

|(/);Zi> _ Z eip”‘Z”_](prZJ_”il>,
n=1

where we define |[Z71¢p" - ) =|¢p"- ) and |--- " Z7!) =
|-+ -¢") (that is, if there is no vacuum state before or after
the field ¢” to remove, then the state remains unchanged).
Imposing periodic boundary conditions e?’/|Z¢p) =
|pZ”) for a closed spin-chain now gives

9, 27) = "7 250}, (3.13)

and similarly for right-moving magnon excitations. For two
left-moving magnons, we define

"Setting ¢; = Qu, e = G, f1 =@, f =, " = HL,
hy = 9r, ky =P, k, =P7, the anticommutation relations
(3.12) can be written in a more compact form as follows:
{e;. f;} = 6;;h; + (1 = 8;;)k; (see Sec. Il in Ref. [51]).

106006-11



PRINSLOO, REGELSKIS, AND TORRIELLI

ESADERY

1<n<m<J

Z ei(pntqm) |Zn—l¢rzm—n—lil(pszj—m>’

1<n<m<J

ei(pn+qm) |Zn—1:t1g0rzm—n—l{pszj—m> ,
025 0y) =

and hence, using the periodic boundary conditions,

0, 250y = e P |25 0L0). (3.14)
and similarly for two right-moving magnons, or for left-
and right-moving magnon excitations.

Single-magnon excitations.—The action of the fermionic
generators of the 81(1]1)2 algebra on the left- and right-
moving magnon excitations was proposed in Ref. [20].
Here we will consider a slightly different action,® with the
insertion or removal of Z from the left side:

QLl,) = a,ly,), GLly,) =b,lg,).

Qrlw,) = c,|Z%¢,), Grlp,) = d,|Z7y,),
Qrl®,) = a,l,), @glw,) = b,lo,).

Quw,) =¢,127¢,), @Llp,) =d,|Z7y,), (3.15)

with the unbarred and barred parameters for left- and
right-movers. The action of the central elements is deduced
from the algebra (3.12). The energy eigenvalues of
H =9 +9Pr of a left- or right-moving magnon
excitation are

=a,b,+¢

E,=a,b,+c,d E, »

pép
while the eigenvalues of I = $H| — HR, related to the
masses of the magnon excitations, are

m=ayb,—c,d,, —m = —(apbp

—Cp dp)’
taken to be independent of the momentum p (but dependent
on the unprimed or primed flavor). Here m = m = a and
m' = m' = 1 — a. Now, for one physical left-moving mag-
non excitation, we require the eigenvalues  and P’ to
vanish to return to a representation of the nonextended
gu(1|1)? symmetry preserved by the vacuum. This leads to
the conditions a,c, = b,d, =0 and a,c, = I_apc_ll, =0
with solution ¢, =d, =¢, = c_ip = 0 resulting again in
decoupled spin-chains.

Two-magnon excitations.—Let us now consider two left-
moving magnon excitations |¢),¢}) of momenta p and g.

¥This action is equivalent to that of Ref. [20] with a rescaling
cp =~ e‘ipcp and d), — eipdp for the left-moving excitations, and
a similar rescaling of ¢, — ¢~'?¢,, and d, — ¢'Pd,, for the right-
moving excitations, as can be seen from (3.13), and will be
convenient when we subsequently consider a semi-infinite open
spin-chain with a boundary on the right.
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The nontrivial action of the fermionic generators of the
3u(1]1)2 algebra is

Qalppdy) = daLaplw,q) + SaLagld,wy),

Qalbpwy) = SaLaplw,by) + Sarecy| 27 h by,
QalwpPg) = Sarc)| Z7h,dy) — Saraglw,w,).
Qalwp¥y) = Sarcp| 27,0 y) — SarePcy| 21w ),
@aldyptg) = Sardy| Z W pby) + Sare P dy| 27w ,),
Galdpwy) = 6ardp|Z7W ) + SaLbyl,dy).

@alyp ) = SaLbplpdy) — Sare™Pdy| 27y wry),
Galw,wy) = SaLbpldpwy) — Sabylw ) (3.16)

and similarly for primed left-moving magnon excitations.
The action on two right-moving magnon excitations
|@),@;), or a left- and a right-mover, |¢},@}) or |@,¢3),
is obtained by interchanging L <> R indices and using
barred notation for the action on the right-movers. The
energy eigenvalue of the magnon Hamiltonian $ is
E, + E,. Now ‘B and B’ must annihilate physical two-
magnon states, which implies

ayc, +ePa,c, = h(1—ePtd)) =0,

b,d,+ e Pb,d, = h(l1 — e PT0)) =0,

and hence ¢/(P*?) = 1, with our choice of parameters

i
Cp = _\/Eif7

Xp

ap:\/%r]p, bp:\/ﬁnpv

in . -
=vh p, with 73 = i(x, —x}). (3.17)

Exactly the same choice of barred parameters a,, 1_9,,, ¢,

and Zip must apply for the right-moving magnon repre-

sentation. Here x,f are the Zhukovski variables which

satisfy
1 1 ]
<x; ++) - (XI_, +_) :@
X, X}, h

The energy of a single-magnon excitation of momentum p
and mass m is given by

.o P
E,=/m*+ 16h2s1n25.

2. Infinite spin-chain with Hopf algebra structure

+
X .
r _ el[)’

; (3.18)

P

(3.19)

In the J — oo infinite spin-chain limit, we can drop the
Z* symbols on the left, and thus obtain one- and two-
magnon representations of the 8u(1|1)2 algebra. The
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length-changing effects can be encoded in a U-braided
Hopf algebra structure for the 81(1]1)2 algebra, similar to
that of Appendix B in Ref. [21].
Single-magnon representations.—We want to rewrite
the action (3.15) in terms of matrix representations of the
3u(1|1)2 algebra. Let us introduce vector spaces

V, =spanc{|¢},). lw,)}. V), = spanc{|¢},). [w})}

for the left-moving magnons, and

V, = spanc{[$,). [7,)}. V) = spanc{|@y). 7))}
for the right-moving magnons. We can identify these vector
spaces with C'' in the natural way. Now the action (3.15)
can be defined in terms of the usual supermatrices [;;
End(C'“) which span the Z,-graded gl(1]|1) Lie super—
algebra and the identity matrix is | = E;; + E,,. The left-
moving representation 7,: $u(1|1)2 — End(C!l") is

”p(QL) = a,kyy, ”p(QR) = ¢k,
ﬂp<@L) =b,E», ”p(@R) =d,Ey,
7,(DL) = a,b)l, 7,(9R) = c,pd,l,
7,(P) = a,c,l, 7,(P') = b,d,l, (3.20)

with the parameters given by (3.17). The right-moving
representation 7, $u(1/1) — End(C'") is

’The supermatrices E;; € End(C'") have matrix elements
([E Dab = 0ia0jp, With [Ell and E,, even elements of degree 0,
and [Elz and E,; odd elements of degree 1. These supermatrices
satisfy

[E;j. Exll = 6;E; — (—1)%eEudeeBus,E, .

ijs

with [|-, -] the supercommutator. The multiplication of the tensor
product of supermatrices is

(XQ@Y)(ZQW) = (—1)keZdeeY X7 & YW,
deg(X ® Y) =degX +degY
for any X,Y,Z, W € g[(1]|1) and, in particular,
(Eij ® Ex)(Epr ® Eyp) = (—1)* 50 %ebr s 5, F;, ® Ey,

The graded permutation operator P € End(C'I' ® C'I') is

P=> (-1

=E 1 ®E —Ep ®Ey + By @ Ejp —Eop ® Epp.

TUE; ®

The generalization to supermatrices in End(C2P?) is straightforward.
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7,(Qr) = a,B31.  7,(QL) = ¢,Ey3,
7,(©R) = b,Ej;3, 7,(@) =d [E217
7,(DR) = ayb,l,  7,(HL) =
7, (0B) = aye,l, 7, = (3.21)

obtained by interchanging L <> R indices; we have also
replaced the indices 1 — 1 and 2 — 2 to distinguish left and
right vector spaces. The primed representations are similarly
defined. We will not add subscripts to distinguish the
identity matrices; we hope it will always be clear from
the context in which space the identity matrix lives.

Hopf algebra.—We introduce an additional grouplike
generator 2, which is central with respect to the 81(1|1)2
algebra. The action on any single-magnon excitation is

Ulgp) = e2lop).  Ulgh) =elpp),  (3.22)
so that
m,(U) = —c,d,;'l = 21,
7,(U) = —C,d,'l = el (3.23)

for our left- and right-moving single-magnon representa-
tions. We are now ready to define a Hopf algebra structure
on 3u(1|1)2. We denote this Hopf superalgebra by A
throughout Secs. III and IV so that

L(A) = 8u(1]1)2

is the associated Lie superalgebra.

Let 1 denote the unit of 4. The coproduct A corre-
sponding to the action on the left-moving magnon excita-
tions in this spin-chain frame is given by

AL(Qa) = Qo @ 1+ U¥er @ Q,,
AL(P)=PR1+UQP.
AL(G) =©, @1+ U PR Q &,
AP =P @1+U2 QP
AL(Da) =Ha®1+1Q Ha.
AL(uil) — uil ® uil

and the coproduct Ag giving the action on the right-moving
magnon excitations is obtained by interchanging indices
L < R. In the representation 7, ® 7, this yields (3.16) in
the infinite spin-chain limit. It is convenient to switch to a
symmetric frame,10 similar to that of Ref. [21], in which the

In the representation 7, ® 7, we twist the left and right
coproducts A — T'A T and AR — TR'ARTR using the twist
matrices
Tg = €2l @ Ejj + 1

TL=e2lQE; +1® Ep, ® Ej3.
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coproduct A is the same for both left- and right-moving
sectors'":

A(Qy) =1+ URQ,.
AP)=PR1+2UQ P,
A(G,)=6,01+U!R&,,

AP =P @1+ U? @ P,

A(Da) =9H.91+1Q® H,,

AUE) = U @ UL (3.24)

The central elements of the superalgebra € € {95, B, B’}
must be co-commutative, A(C)= A°?(C), where
A°(a) = PA(a) for a € A, with P the graded permutation
operator which permutes the elements of the superalgebra
in the coproduct. This is true if'%;

S,I}:I/I(l—uz) and mT :I/z(l—u_z),

with 2,1, € C\{0}, (3.25)

where we choose v; =v, =h to obtain our previous
unitary representation.

Let u: A® A — A be the usual associative multipli-
cation of elements of the superalgebra 4. Moreover, let
12 C —> A be the unit, which maps (1) =1, and ¢: A —
C the counit, defined by

e(U*) =1

and €(J) =0 (3.26)

for all § € 3u(1]1)2. The antipode S: A — A must then
satisfy u(S ® id)A = e, which gives

S(Da) = _u_lﬁav S(@a) =-UG,, (Sja) —9a,
S(P)=-U2P,  S(P")=-wP, SAU)=u".
(3.27)

This antipode relates left- and right-movers in the repre-
sentations r, and 7:

(3.28)

with the charge conjugation matrix trivial. Here a € A,
with a € A defined by

"This coproduct exhibits a Z-grading (see Remark 2.1 in
Ref [51]).

"To be precise, we extend 81(1]1)2 by 2 and its inverse 2",
and then consider the Hopf algebra over the quotient of the
enveloping algebra of this double-extended algebra by the ideal

(PB—ui(1-22). P =1, (1-U?)).
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Qa=06aQR+0RQAU. P=DP. Ha=01Dr+RDL.
Sa=0aGr+6rSL. P=P’. U =uF

(3.29)
The representation 7; has Zhukovski variables
=L (3.30)
Pk

C. Two-magnon scattering and R-matrices

We are interested in the scattering of magnon excitations.
Let H,) denote the space of all asymptotic incoming
states, and let H ) be the space of all asymptotic outgoing
states. We consider the limit in which the spin-chain is
infinitely long and the number of excitations n is much
smaller than the number of spin-chain sites L. This allows
us to treat the asymptotic states as well separated and
noninteracting. Integrability implies that any scattering
process factorizes into two-magnon scattering events, in
which the only dynamical process allowed is the inter-
change of magnon momenta and flavors. We need thus only
consider such scattering of two-magnon asymptotic states.

The two-magnon scattering matrix S(p, ¢) is a map from
H in) t0 H(ou) Which takes an incoming two-magnon state
to an outgoing two-magnon state:

S(p, q) . H(in) N H(out)7 |<I)L(m)q)‘21(m)> N |(I)(2](out) (I)L(out)%

where these asymptotic states can be represented by

|@})(ln) 2(in)> =
|(p%](out) (out) >

D)) ® |7).
|27) ® [©}).

We shall consider integrable two-magnon scattering on the
b(2,1;@)? double-row spin-chain. Hence the magnons
|®,) are vectors in one of the spaces

Wp = Vp S ‘717 = SpanC{|¢p>’ |Wp>’
W, =V, @ V), = spanc{|¢),), [v}),

bp)-
b)).

Wp) s
W)t

both isomorphic to C?2. The scattering matrix then acts as

S(p.q): W, @W, =W, ®@W,, with W,e{W, W},

and also V, € {V,,V,} and V, € {V,.V"}. This sim-
plifying notation takes into account both primed and

unprimed magnon states. The Zhukovski variables xi
L
and xy satisfy
+ +
X , X .
L =er=ul, L =l =ul, (3.31)
Xp Xq
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and the mass-shell constraints

1 1 im
x++_)_<x_+__>:—p’
( Pxh Px h
1 1 im
+ ) -4 ) -4
<x" +x3> <xQ +x;) h

where m,,m, € {m = a,m’ =1 —a} are the masses of
the two magnons with momenta p and q.
The scattering matrix can be written as

(3.32)

S(p.q) = PR(p.q). with R(p,q) € EndW, @ W,),

(3.33)

in terms of the graded permutation operator P.
Therefore S(p,q) =PR(p,q) with the R-matrix R(p, g) €
End(C?? ® C??). The S-matrix commutes with all the
symmetries of magnon excitations:

S(p.q). (=, ® 7,) ® (z, ® 7,))(A(a))] =0,
for all a € A,

which implies the intertwining equations on the R-matrix:

(zm, ®7,)Q (7, ®7,))(A%(a))R(p.q)
=R(p.q)((z, ®7,) ® (r,®7,))(Ala)), forallacA.
(3.34)

We change 7, and 7, to representations 7, and 7, for
primed magnon excitations. The S-matrix is unitary,
S(q.p)S(p.q) = I, implying (R(g. p))*"R(p. q) =1 with
(R(p.q))™ = PR(p.q)P.

1. Complete and partial R-matrices

We now describe the structure of the R-matrix R(p, q).
Recall that the 4-dimensional vector space W, =V, @ ]_/p
is a direct sum of two 2-dimensional vector spaces
vV, V, = C!') 5o that W, = C22, Thus W, ®W, can
be split into four 4—dimensional subspaces, and conse-
quently R(p,q) is a 16 x 16 matrix that can be decom-
posed into 16 sectors. However, conservation of chirality
(the total number of left- and right-moving magnon states)
and mass impose additional constraints [20]. Focusing on
the case of pure transmission (rather than pure reflection)
for the scattering of left and right states, the complete
R-matrix decomposes into a direct sum of four partial
R-matrices:

R(p.q) = R"(p.q) ®@ RR(p.q) ® RR(p. q)

@ RRR(p, q). (3.35)
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where R2(p,q) € End(C!I' ® C'!"). These four partial
R-matrices depend on Zhukovski variables satisfying mass-
shell constraints which may depend on either primed or
unprimed masses.

The partial R-matrices satisfy intertwining equations
which are the result of the corresponding partial S-matrices
commuting with the generators of the Hopf superalgebra A.
These R-matrices also satisfy unitarity and crossing sym-
metry conditions, and a discrete LR symmetry condition
made manifest by our choice of a symmetric Hopf algebra.
These conditions determine the complete R-matrix up to
overall factors (dependent on dressing phases) and imply
the Yang-Baxter equation.

Left-left and right-right sectors.—We write the partial
R-matrices in the LL and RR sectors as

R“(p,q) = Z (RLL(Pﬂ))j‘]z{[Eij ® Eu,
i.jkI=1.2

RF(p,q) = Z (R™(p, q))}iEi; ® Ep,
i kl=12

which depend on the momenta p and ¢, and on the masses
m,, and m,, of the two magnons. The intertwining equations
in the LL and RR sectors are

(7, ® 7,)(AP(a))R"(p. q)
=R (p.q)(m, ® ,)(A(a)),
(7, ® 7,)(AP(a)) R (p. q)
= RRR(p7 Q)(ﬁp ® ﬁq)(A(a))’
for all a€. A We note that (7, ® 7,)(A%(a)) =
P(z, ® n,)(A(a))P. These intertwining equations are
linear equations which are relatively easy to solve. They

determine R'-(p,q) and RRFR(p,q), each up to one
complex factor,” called s*(p. ) and s"R(p, q):

R'(p.q)
(x) —x)
= s (p. @) |En @ By + —F—L=F) @ Ex
up(xp = xg)
uy(x, —x;) uy(xy; —xy)
———En®E +——— T En®Eyp
(x; — x;) (X, — xﬁ
Mply iU plg
+——=En®E ————~E; ®E,|,
(x, = x7) u,(x, —xj)
(3.36)

B This happens because the tensor product of two atypical,
two-dimensional, irreducible representations is isomorphic to the
typical, four-dimensional, irreducible representation of A (see,
for example, Sec. II. C in Ref. [51]).
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RRR(p, q)
(xy —x7)
=" (p.q) |Eii @ i+ —F—"=E11 @ E3;
up(x, = xg)
ug(xp —x3) uy(Xf —x3)
e e @ E L @ sy
o —x7) 2 ® “+up(x,‘,—x;) 32 ® B33
Mplly g1y
P Er @ Eyp - — 51 ® Eps.
(x,,—x;) 2 21 p(xp_le») 1 12
(3.37)

The unitarity conditions on the R-matrices take the form

(R (g.p)) PR (p.q) =1, (RRR(g.p))PRFR(p.q) =1,
with (R%(p,q))? =PR¥®(p,q)P

(¢.p)=1.
|

implying s (p. g)s*t(q. p) = sTR(p. q)s"R

R"R(p.q) = s (p.q)[(x} x5 -
+ Mgl(xpxq — 1)[E22 ® Ejj+u uql(x xq

R (p, q) = sPH(p. @) [(xpxg — 1) (xpxg — D] 2[(xfxg —
+ u;l(x;x;; -1E5 QEj + U,y (xp

up to the overall factors s“%(p,q) and sP(p,
unitarity conditions are

(R¥(g. p))PRA-(p.q) =1,
(RRL(q. p))PR M (p.q) =1,

implying 'R (p,q)sP(q.p)=s"(p.q)s"F(q.p)=1.

We require the parity relation s°3(—¢q, —p) = s (p, q)
for the scale factors in the R-matrix, and also impose a
discrete LR symmetry s“-(p,q) =s"R(p.q) and

R(p.q) = s"(p.q) as in Ref. [20]. These conditions
will be necessary to derive reflection matrix solutions of the
boundary Yang-Baxter equation in Sec. IV. We note,
finally, that additional bulk crossing symmetry conditions
must be imposed which further constrain the scale factors

a(p q). A proposal for the solution to these crossing
symmetry conditions has been advanced in Ref. [38].

q). The

2. Yang-Baxter equation

The complete R-matrix R(p, ¢) must satisfy

Ru(l?v Q)RB(P, r)RB(% ”)

= R23(l]’ ”)RB(P, ")Ru(P,Q)» (3'40)

1) (x5x; = D] [(xpx; = DEy ® Epq + u, (xpx;
Ey ® B33 + u,nyn,Ern ® Eis + n,pn,u;' Eyy ® Eszl,

E;; ® By + up(x;x; —
xg = 1)Es5 ® Exy + upn,n,Eiz ® Epp +npm uy' st @ Ey.
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Left-right and right-left sectors.—We write the partial R-
matrices in the LR and RL sectors as

Z (RLR (p7 q));]lc[Elj ® [Ekh

ij=12;
kiI=12

§ (RRL(p? Q))lk[Et] ® [Ekl
ij=1.2;
k=12

R-R(p,q) =

RR-(p,q) =

The intertwining equations are given by

(7, ® 7,) (AP (a))R(p, q)
=R (p,q)(z, ® 7,))(A(a)),
(7, ® m,)(A%(a))RF-(p, g)
=RR(p,q)(z, ® 7,))(A(a)),

for all a € A, which determine the transmission R-matrices
in the LR and RL sectors as

7~ DE; ® Es3

(3.38)
DEj; ® Exn

(3.39)

|
which is the Yang-Baxter equation of an integrable system.
The partial R-matrices then satisfy

R (p. ¢)R (p, r)RE5 (g 7)
= R3% (¢, RS (p. NRE(p, q) (3.41)
for all a,b,c € {L, R} (see Fig. 4). Here we define

R®(p.q) @1  R¥E(p.q) =1QR®(p.q).
1®P)(R®(p.q) ®N(IQP),

R(p,q) =
R (p,q) =

and similarly for Ry, (p,q), Ri3(p,q) and Ro3(p,q) in
terms of the complete R-matrices, with a change to the
identity matrix in End(C2?) and the graded permutation
matrix in End(C?? ® C??).

We can check that the R-matrices above satisfy (3.41) for
(abc) in the homogeneous (LLL, RRR) and mixed (LLR,
LRL, RLL, LRR, RLR, RRL) sectors. Note that the
discrete LR symmetry means we need only check half
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Riz(p,7)

1

Rus(p,7)

Ros(g,7)

2

FIG. 4 (color online). Three-magnon scattering factorizes into a
succession of two-magnon scattering events. The double red and
blue line indicates the direct sum of left- and right-magnon states
with scattering described by the complete R-matrix. The scatter-
ing of individual red or blue lines (left or right magnons) is
described by partial R-matrices. This diagram gives both the
Yang-Baxter equation for the complete R-matrix (treating double
lines as a single composite line) and the Yang-Baxter equation for
the partial R-matrices (choosing a red or blue line from each pair
to give eight possibilities).

of these equations. This ensures that the complete R-matrix
satisfies (3.40).

IV. INTEGRABLE OPEN b(2.1;@)* SPIN-CHAIN
AND REFLECTION MATRICES
IN AdS; x $3 x §¥ x S!

In this section, we consider the boundary scattering of
magnon excitations of a (2,1;@)?> open spin-chain
off an integrable boundary. These correspond to
massive excitations of an open superstring ending on a
D-brane in AdS; x §3 x §¥ x §', such as one of the
maximal D1- or DS5-brane giant gravitons described in
Sec. ITA.

A. Open spin-chains and boundary
scattering

1. Double-row d(2,1;a)? open spin-chain
with 3u(1|1)2 excitations

Semi-infinite open spin-chain.—In the infinite J — oo
spin-chain limit we can consider one end of the spin-chain
at a time—we choose the right end of the open spin-chain.
Thus we obtain a semi-infinite spin-chain with a distin-
guished site at the right end which we call the boundary
site. The vector occupying this site transforms in a
representation of a boundary subalgebra, dictated by
boundary conditions. The ground state of the semi-infinite
open spin-chain is

0) =27 Fs). (4.1)

where Fpg is the right boundary field. This infinitely heavy
state represents the whole D-brane to which the open
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superstring is attached (to account for conservation of
momentum). 14

We will enumerate the sites of the semi-infinite open
spin-chain by —J,—J +1,...,—1,0, with O denoting the
boundary field site. In this notation the fundamental
excitations are described by the spin-chain state vectors

@08 = 2779 2" F),

@08 = 279 2/ F), (4.2)
where ¢”, " represent the excitations discussed in
Sec. III A 2. The low-lying left- and right-moving single-
magnon excitations are now given by

J
0p)s = Z;e_”’"kﬂfnﬂa,

J
@) =D e 9], (4.3)
n=1

The supercharges acting on these states insert or remove a
Z field from the left side. In the J — oo limit, in which the
state has infinite length in the left direction, this does not
change the length of the spin-chain or the location of the
excitation. We can identify magnon states of the semi-
infinite open spin-chain with magnon states of the infinite
closed spin-chain, with an extra boundary state,

[0p)e = l0y) @ 10)s,  |@p)s = 9)) ® 0)s,  (44)

where |¢},) and |@],) are bulk magnon excitations in the

vector spaces V,, and ]_),,, with the action of the Hopf

superalgebra 4 defined in the usual way. The boundary
field Fg is represented by the boundary vacuum state |0)g.
The generalization for the multimagnon states is
straightforward.

Boundary algebra.—The symmetries of the boundary
site are related to those symmetries of the D-brane which
survive the choice of vacuum Z. These boundary sym-
metries are generated by a subalgebra of the bulk symmetry
algebra, which in our case is Hopf superalgebra A. We will

A similar construction is presented in Sec. I .B of Ref. [8], in
which open superstrings on the AdSs x §° background are
attached to ¥ =0 and Z = 0 maximal giant gravitons. In the
dual CFT, description, an open superstring corresponds to a
gauge invariant local operator Tr(Z...Z), with impurities, at-
tached to a det(Y) or det(Z) operator dual to a maximal D3-brane
giant graviton. The full determinant plays the role of the
boundary field Fg. Here the CFT, dual of IIB superstring theory
on AdS; x 83 x §% x S! is not known, although it is conjectured
to arise as the IR limit of the D1-D5-D5" world-volume gauge
theory of Ref. [17]. We expect, however, that an open superstring
attached to our maximal D1- and D5-brane giant gravitons will be
dual to similar determinant-like CFT, operators.
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denote the boundary symmetry algebra by B with elements
beb.

Since B C A, the elements b inherit all the additional
algebraic structures (coproduct, counit, etc.) defined on A.
However, B is not a Hopf subalgebra of .A. The integra-
bility assumption requires boundary algebra to be a coideal
subalgebra of the bulk symmetry algebra:

Ab)e A® B forallbeB. (4.5)
The boundary vacuum state |0)g is taken to be a vector in
the trivial representation of the coideal subalgebra B,
defined by the counit map e. We call this the singlet
boundary. We will later extend this construction to accom-
modate a vector representation of B—called the vector
boundary.

Boundary integrability.—TIt is known that integrability is
preserved if the bulk and boundary Lie algebras form a
symmetric pair (see Ref. [5] and references therein for a
review of boundary integrability). Recall that a symmetric
pair of Lie algebras is a pair (g, ) such that g = @ m,
where ) is a subalgebra of g and the following relations
hold:

5. 5] C b,

The statement above is true if g is a simple complex Lie
algebra. Integrability is then ensured by the existence of a
twisted Yangian associated with the symmetric pair (g, §)),
the Cartan subalgebra of which is an infinite-dimensional
Abelian algebra. By a quantum extension of the classical
Liouville integrability theorem, this is enough to ensure
that the system is integrable.15 The question of boundary
integrability becomes much more complicated if g is
nonsimple, since both the Yangian and twisted Yangian
(for a given symmetric pair) are not well defined.
Integrability then needs to be examined on a case-by-case
basis. Likewise, the integrable structures associated with
symmetric pairs of Lie superalgebras often require further
investigation. An alternative way of verifying the integra-
bility of boundary scattering is by finding the reflection
K-matrix which is a solution of the reflection equation and
intertwines the boundary symmetries.

[, m] C m, [m, m] C ). (4.6)

2. Boundary scattering and K-matrices

Outgoing  single-magnon representations x_, and
7_,—Let us take the states (4.3) to be incoming magnons
with momentum p. To define the boundary scattering
theory, we need a notion of outgoing states with opposite
momentum —p. We will denote the corresponding vector

SThere is no analogue of the Liouville-Arnold theorem for
infinite-dimensional quantum systems; thus we consider integra-
bility as the set of constraints that are necessary to ensure
factorized scattering.
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spaces by V_, and 1_}_1,. The left- and right-moving
outgoing magnon representations z_,: A — End(C'l")
and 7_,: A — End(C'I") are parametrized by the labels
—p» €, and d_,, =
Recall that xi satisfy (3.18): the first equality implies
+

xZ, =-f px,jf, for some phase factor f,, while the second

equality sets f, = 1. Thus we obtain

a_,, b with Zhukovski variables x

+

X, = —xj, Hep = Mp. (4.7)

The outgoing left-moving representation z_, is (3.20) with
the parameters (3.17) replaced by

a, = \/}_111,,, b_,= \/ﬁnl,, c_p= \/f_zm—p

+ b
*p
i X,
d,=—Vhor, o2, =2 (4.8)
X X
P P
The outgoing right-moving representation 7_, is given

by (3.21) with an identical replacement.

Singlet boundary scattering.—Boundary scattering on
the semi-infinite open spin-chain is described by a boun-
dary scattering matrix Spoundary(2) Which maps incoming
states to outgoing states, while keeping the boundary fixed.
As for bulk scattering, we denote the space of all asymp-
totic incoming magnon states of the open spin-chain by
Hin)> and the space of all outgoing states by H o). By the
integrability hypothesis, we need only consider the reflec-
tion of single magnons off the boundary. The boundary
scattering matrix maps Hp) t0 Houy:

Sboundary(p): H(in) - H(oul)’ |q)§7m)> = |q)(_0[l)11)>‘

We can write the incoming and outgoing states as

@5") = 19,) ® [0)s.  [85") =|2_,) ® [0)e.
where |®,) € W, and |®_,) € W_, are bulk magnons,
and |0)g is the singlet boundary state.

For our purposes it will be convenient to introduce the
boundary intertwining K-matrix. Let k denote the natural
reflection map which acts as the identity map on |0)g and

ki W, = W_,, |D,) = |P_,),
which is the canonical isomorphism W, xW_,.
The boundary scattering matrix Spoundgary(p) is the
composition16

"“This composition is well defined, since |0)g is a state in a
one-dimensional vector space (= C) and W, ® C =W ,,.
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Sboundary (p) = K'K(p), with K(p) € End(Wp> (49)

Now W, =C?? so the K-matrix corresponds to

K(p) € End(C??). The boundary S-matrix must commute
with all the boundary symmetries, which yields the
boundary intertwining equations for the K-matrix. There
is also a unitary condition on the boundary S-matrix.

Vector boundary scattering.—Let us consider a vector
representation of the boundary algebra. A boundary vector
state is anticipated to have an interpretation as a magnon
state'’ |Pg) € Wg, with maximum total momentum z,
absorbed by a singlet boundary state |0)g. The boundary
Lie algebra associated with the coideal subalgebra, in this
case denoted Bt C A, is thus the totally supersymmetric
3u(1]1)2 symmetry of bulk magnon excitations.

In the case of this vector boundary state, the incoming
and outgoing states in Hj,) and H o) have the following
tensor product decomposition:

25"y = |®,) ® |Pa) ® |0)g,
1250 = |B_,) ® |Ps) ® |0)g,

where |®g) € W is a vector in the boundary space. We
will now denote the boundary scattering matrix by
Sboundary (P- B). As before, we write this as a composition
of the reflection map «, which now acts as the identity map
on the boundary vector state, and a reflection K-matrix:

Sboundary(p’ B) = KK(p’ B)’

with K(p.B) € EndW, ® Wg).  (4.10)

Now W, Wg = C22, so the K-matrix K(p,B) corre-
sponds to K(p,B) € End(C?? @ C2P).

We will discuss singlet boundaries in Sec. IV B and the
vector boundary in Sec. IV C. Note that only a vector
representation (not a singlet) of the boundary algebra B+ is
possible due to the inclusion of the central elements 8 and
SB7. We will explain this argument in detail in subsequent
sections.

B. Singlet boundaries

Boundary algebras.—There are four boundary subalge-
bras B of the bulk Hopf superalgebra .4 which describe the
scattering of magnons off singlet boundaries. The

A boundary state is created when the boundary absorbs
magnon excitations via the so-called boundary bootstrap pro-
cedure (see, for example, Sec. III in Ref. [68]). Boundary states
for open superstrings in AdSs x S° were considered in
Refs. [52,58,69]. We will give a detailed description of similar
boundary states for open superstrings in AdS; x $3 x §¥ x S! in
a forthcoming publication.
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associated Lie algebras L(B) can be compared with the
boundary algebras in Tables I and II. We will denote them
as follows:

(1) Left and right half-supersymmetric boundary
algebras By, Br, corresponding to D-branes pre-
serving half of the bulk supersymmetries, and the
magnon Hamiltonian $ and I, implying chiral
boundary scattering. The boundary Lie algebras are
u(ll1), ® u(l)g and u(1)_ & 3u(1]1)g.

(2) Non-supersymmetric chiral boundary algebra Byg,
corresponding to D-branes which do not respect any
bulk supersymmetries, but preserve both $ and .
The boundary Lie algebra is u(1), & u(1)g. We
will show that scattering off the non-supersymmetric
chiral boundary has a hidden symmetry, denoted Bp,
at the level of the Hopf superalgebra.

(3) Non-supersymmetric achiral boundary algebra
Bna, corresponding to D-branes which preserve $
and no bulk supersymmetries. The associated boun-
dary Lie algebra is u(1),.

Boundary intertwining equations—The K-matrix
K(p) € End(C??) is the boundary analogue of the bulk
R-matrix and is required to satisfy the boundary intertwin-
ing equations

((7—p ® 7)) ® €)(A(D))K(p)

= K(P)((”p ® ﬁp) ® €)(A(b)) (4.11)

for all b € B for a given boundary subalgebra 5. For those
b € 3u(1|1)2, this simplifies to the form

(n- ® 7,)(OK(p) = K(p)(r, ® ,)(B).  (4.12)
where we have dropped the trivial boundary representation
€, since €(b) = 0.

The complete K-matrix K(p) can have four sectors
which correspond to chiral reflections [left-to-left K-(p)
and right-to-right K®(p)] and achiral reflections [left-to-
right AL(p) and right-to-left AR(p)]. We denote these
partial K-matrices by K2(p), A2(p) € End(C'I"). Here the
superscript a denotes the chirality of the incoming magnon
before the reflection. The complete K-matrix is then

L R
K(p) = <ELEP; . (p)>

p) KR(p)
= (K-(p) ® KR(p))

() o JEwesten. @

which is also required to satisfy the unitarity condi-
tion K(—p)K(p) = L.

Constraints from the central elements.—The central
elements of the boundary subalgebra B play a crucial role

106006-19



PRINSLOO, REGELSKIS, AND TORRIELLI

in boundary scattering. Let us explain why. A central
element € € B3 is required to commute with the boundary
scattering matrix and thus must intertwine the K-matrix
K(p) trivially. Since B C A, there are five candidates
for central elements in B. Consider $, with a € {L, R}.
Note that

”p(ga) F* ﬁ—p(ga)7 ﬁp(ga) # ﬂ—p(‘ba)’

and thus chirality is conserved if either (or both) $| or Hr
are in 3. However, chirality is not conserved if only the
linear combination = 9| + Hr, butnot M = H;, — HR,
is in B, since

”p(sj) = ﬁ'_p(.fj),

Now, let us consider € € {P, P'}. Then

7, (M) # 7, (M).

mp(€) #71_,(C),  7,(€) #7_,(C).

so, if the boundary representation is trivial, then the central
elements B and B’ cannot be in the boundary subalgebra.
However, suitable linear and quadratic combinations of 3
and B’ are allowed. In particular, p* = P £ P and K =

PP satisfy

ﬂp(m+) = ﬂ—p(m+)v
ﬂp(ﬁ) = ”—p(ﬁ)’
7, (P7) # 7, (P7).

and thus we may have P, & € B, but P~¢B5, if the
boundary representation is trivial. We also note that P+,
K € B does not imply any constraints on the chirality of
the reflection.

The last central element we need to consider is 2[. Since
e(U) = 1, we should note that

7,(B7) # 7_,(P),
ﬁp<s‘p+) = ﬁ—p(s‘B+>7
7,(R) =7_,(8),

(7, ® 7,) @ €)(AU)) # ((7_, ® 7_,) ® €)(A(U)),

which implies that 2l cannot be in the boundary algebra B,
if boundary representation is given by the counit €. We will
show in the next section that this is also true for the vector
boundary.

1. Boundary subalgebras and K-matrices

Left and right half-supersymmetric boundary algebras.—
We define the left and right half-supersymmetric boundary
superalgebras, B, and Bg, to be coideal subalgebras of
A generated as

BL = <DL7 @L’ SjL’ SjR>’

Br = (Qr. ©r. HL. Hr)- (4.14)
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It remains to check the symmetric pair property. Let

g=L(A) = su(1]1),
b= L(BL) = su(1[1). & u(l)g,

bhr = L(Br) = u(l). @ su(l[l)g (4.15)
denote the associated Lie superalgebras, and m and
mp denote spaces generated by {Qg,Sg. P, P’} and
{QL, S, B, P'}, respectively. Thus g =h & m_ and
g = hr @ mp as vector spaces, and an easy computation
shows that the property (4.6) indeed holds. The boundary
Lie superalgebra Yy is that of an open superstring on
AdS; x $3 x §¥ x S! ending on the ¥ =0 or ¥' = 0 half
of the D5-brane maximal giant graviton, orthe ¥ = ¥’ = 0
D1-brane giant (which is the intersection of ¥ = 0 and Y’ =
0 giants). The boundary Lie superalgebra by is that of an
open superstring ending on the ¥ = 0 or Y’ = 0 half of the
D5-brane maximal giant, or the ¥ =Y =0 DI-brane
giant. These are analogues of open superstrings attached
to ¥ =0 and Y = 0 giant gravitons in AdSs x S° [8].

Let us construct the K-matrices Kp (p) for both
a e {L,R}. Since |, Hr € By, these K-matrices are
chiral:

Kz, (p) = Kz, (p) ® K3 (), (4.16)

where

K; (p) = Z (Kliga(P))jEij’

a
ij=12

(KEB(P»;[EU-

(4.17)

ST
<
=

2~
oy
=

I

~
=
S

1l
=
=

for all beB,. The wunitarity conditions are
Kg, (—=p)Kg, (p) =1 and K§ (-=p)KZ (p) = 1. The solu-
tions to these intertwining equations take the form

KZ () = kg (p)(Eq1 — ujEs3), (4.18)
KIZiR(P) = kBR (p)(lEll - Mp[Ezz),
KR, (p) = k3. (P, (4.19)

with both ki (—p)kp_(p) = 1 and k§ (—p)kg (p) = 1 for
unitarity.
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Non-supersymmetric chiral boundary algebra.—Let us
now consider a boundary algebra containing no super-
charges. We set

Bne = (9L DR)- (4.20)
The boundary Lie algebra L(Byg) = u(1l), @ u(l)g is
from an open superstring on AdS; x $° x §¥ x S! attached
to the Z = 0 or Z' = 0 half of the D5-brane maximal giant
or to the Z = Z' = 0 D1-brane giant. This is analogous to
an open superstring ending on the Z = 0 giant graviton on
AdSs x S5 [8].
Now the coideal boundary algebra By is a subalgebra of

A, and the constraints from the central elements imply that
boundary reflections must be chiral. The K-matrix is thus

Kpye (P) (4.21)

= K5, (p) ® K§ (p).
Since there are no additional constraints coming from the
intertwining equations of By, we must solve the boundary
Yang-Baxter equation or reflection equation (4.31), dis-
cussed in the next subsection, directly. The solution to this
reflection equation has

KIBNC(I’) = kIBNC(P) |:[E11 + mEzz] .
K () = K () B+ o] (42)

where kl'g,NC(—p)k'BNC (p)=1 and ngC(—p)ngc(p) =1
for unitarity. The parameter ¢ € C, which is interpreted
as a free boundary parameter, has several interesting values.
Setting ¢ = tan @ gives

limKg,.(p) = Kg (p),  limKg (p) = Kg, (p).
2

whereas, for ¢> = —1, the partial K-matrices (4.22) become
identical, since now

(c—xp)  (I+exp)

(c+x3,) (1 —cx,)

Now we want to ask: Does there exist a larger super-
symmetric subalgebra of A which yields this K-matrix as a
solution of the intertwining equations? The answer is yes.
Let us introduce the diagonally supersymmetric boundary
algebra

Bp = (q,.q_.b.d), (4.23)

which is a coideal subalgebra of .A. Here

PHYSICAL REVIEW D 92, 106006 (2015)
a; = P'QL + icP&p,
q- = PG + icP'Qg,
D= (9L c*Hr+ic(P+P))K,

b= (H - Hr —ic(P+ P8, (4.24)
with & = PP. We also introduce the space Mp gen-
erated by {8.,8_,n,n}, where

8, = P'QL - icPSp,
3_ = SB@L - ic’BTDR,
n=(9HL+ >Hr +ic(P-P)) K,

= (9L +*Hr—ic(P-P))K. (4.25)
The generators of Bp and Mp satisty the following
nontrivial identities:

{a,.qa-}=>2 {q..8_}=n {q,8.}=0

{8,.8_}=b. {a_.8,}=n. {q_.8_}=0. (426
where D, b and n, n are central elements. Notice that these
relations are identical to those in (3.12). Thus, the asso-
ciated Lie superalgebra L(Bp @ Mp) is isomorphic to
L(A), while L(Bp) = 8u(1|1)p @ u(1)p consists of the
Lie superalgebra 8u(l|l)p generated by the triple
{q..9_.0}, and u(1)p generated by d. Moreover,

6= L(Bp ® Mp) = L(A) = su(1[1)2,

bhp = L(Bp) = su(1|1)p @ u(l)p (4.27)
gives a symmetric pair (g, jp) of Lie superalgebras.

Solving the intertwining equations of the superalgebra
Bp, with ¢ € C an arbitrary parameter such that ¢ # —1,
gives precisely the K-matrix Kp(p) obtained above.
Hence, the algebra Bp can be understood as a hidden
symmetry of the non-supersymmetric chiral boundary
for ¢ # —1.

We note, however, that setting ¢> = —1 yields a solution
of the intertwining equations for Bp which consists of both
chiral parts, KIBNC (p) and KENC( p), and achiral parts
AZ .(p) and A (p). This solution does not satisfy the
reflection equation. There is no obvious hidden symmetry
for ¢ = —1.

Non-supersymmetric achiral boundary algebra.—Let us
now consider the possibility of a boundary algebra con-
taining only the magnon Hamiltonian. Let us assume that

Bya = (D).

with 9 = 9| + R, (428)

which allows for both chiral and achiral reflections.
The associated boundary Lie algebra, given by
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Chiral reflection

FIG. 5 (color online).

PHYSICAL REVIEW D 92, 106006 (2015)

Achiral reflection

A two-magnon reflection off a singlet boundary factorizes into a succession of single-magnon reflections and

two-magnon scattering events. The double red and blue line again indices the direct sum of left and right magnon states which scatter by

complete R and K-matrices.

L(Bna) = u(l),, is that of an open superstring on
AdS; x $3 x §¥ x S! ending on the ¥ =Y =0 or on
the Y =Y =0 DIl-brane maximal giant graviton. We
choose an achiral ansatz for the K-matrix

0 AR (p)
Kpu(P) = <A%NA(P) 0 )

_<(ﬂ) (ﬂ)>(%NA(P)@A2NA(p)), (4.29)

AENA(P) = Z(AENA(P))E[EU?

1
1

where

oo

i
J

AIBNA(P) = Z(AIZiNA(p));[Eij‘

oo

i
There are no constraints from the intertwining equations of
Bna. We must therefore proceed by solving the reflection
equation (4.31) directly—which eventually yields a sol-
ution of the form

AR (p) =al (p)(1 + xpx5)2[—cuy' (i + x; )y
+ i, (Eys + Epp) — ¢ uy (i — x,)Eqs].
N_Llr _ .
A% (p) = ag  (p)(1 +xpx,) 2wy (i 4 x))Ey,

+iny By + B3y) + cup(i = xp)B5] - (4.30)

for any ¢ € C. Here both agNA(—p)a'l;NA(p) =1 and

ag,, (—p)ag  (p) =1 for unitarity.

We can ask the same question as before: does there exist
a coideal subalgebra of .4 which yields this K-matrix as a
solution of the intertwining equations? We were not able to
find such an algebra, but this does not exclude its existence.

2. Reflection equation

A reflection K-matrix must satisfy the boundary Yang-
Baxter equation, also called the reflection equation [12],

K5 (q)R21 (. =) K ()R 12 (P, q)

= Ry1(=¢, —p)Ki(P)R12(p, —q)Ka(q)- (4.31)

Let us now consider chiral and achiral reflections sepa-
rately. This reflection equation is equivalent, for the partial
R-matrices and partial chiral K-matrices, to

K8(q)RS2(q. —p)K2(p)R%(p. )

=R (=q.—p)K{(P)RB(p. —9)K3(q).  (4.32)

and, for the partial R-matrices and the partial achiral K-
matrices, to

AS(q)R3}(q. —p)A}(p)RB(p. q)

= R (~q.—p)A(P)RB(p. ~q)A3(q).  (433)

foralla,b,c € {L,R}, with L = Rand R = L (see Fig. 5).
Here we define

RE(p.q) = PR®(p, q)P,
Ké(p) =1® K3(p),
A%(p) =1 ® A?(p),

R (p.q) = R¥®(p.q).
K*(p) ®1,

=

=

=
[

and similarly for R, (p, ¢) and Ry, (p, ¢), and K;(p) and
K, (g) in terms of the complete R-matrices and K-matrices.
All the K-matrices constructed above are found to satisfy
the reflection equation, if we impose the parity and
discrete LR symmetry constraints on the scale factors
sab( p,q) in the partial R-matrices, which were described
in Sec. [II C 1.

C. Vector boundary

The totally supersymmetric boundary superalgebra By is
the coideal subalgebra of A generated as

Br = (QL. ©L. H1. Qr. SR, Hr. B. P). (4.34)
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Note that elements 2, 2~ ¢Br. Since U and U~ appear in
the left tensor factor of the coproduct only, the coideal
property A(b) € A ® By for all b € By is satisfied.

The vector boundary state transforms in the left- or right-
moving representation, zg or 7g, of the boundary Lie
superalgebra L(Bt) = $u(1|1)2. This boundary superal-
gebra arises from an open superstring ending on the Z = 0
or Z' = 0 half of the D5-brane maximal giant graviton, or
the Z = 7' = 0 Dl-brane giant (the intersection of Z =0
and Z' =0 giants), shown in Tables I and II. This is
analogous to an open superstring attached to the Z =0
giant graviton in AdSs x S° [8].

Boundary representations ng and ng.—We define the
vector spaces associated with left- and right-moving
boundary vector states in the same way as for the magnons
in the bulk:

Vg

Ve

spanc{|¢g). lyg)} = C'I,
spanc{|dg). [pg)} = C'I,

and set Wg = Vg @ Vg = C22. The left boundary repre-
sentation zg: Bt — End(C'!") is given by (3.20), with the
subindex p replaced by B. The right boundary representa-
tion 7g: Br — End(C'") is analogous to (3.21) subject to
the p — B replacement. The primed space Wi = Vi @ Vi
and representations g and 7y are defined in a similar way.
We will use the notation Wg € {Wg, Wg}.

We may choose the following parametrization of the
boundary parameters:

ag = \/EnB, bg = \/EnB, cg = \/El:—:,
dg = V2B 2 = —ixg, (4.35)
XB

where xg is the boundary Zhukovski variable satisfying the
boundary mass-shell identity

imB
xB+_:—a

4.36
Py (4.36)

with mp the boundary mass parameter. This boundary
representation can be obtained from z, by setting the

momentum to p = 7z (so that xg = x}}_, = —x},_,), defin-
ing the boundary mass parameter to be mg = m,_, and

rescaling h — h/2. We expect this representation to
describe a magnon state absorbed by the boundary.
Notice that the total bulk and boundary momentum before
and after the reflection sumto p + 7 — p + 7 = 27 ~ 0 due
to periodicity—which is conservation of momentum for an
elastic reflection off an infinitely massive boundary. We
will further justify these boundary parameters when we
discuss the constraints from the central elements in Br.
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Boundary intertwining equations.—For this case of a
vector boundary, the intertwining equations for the K-
matrix K1(p,B) € End(W, ® Wg), corresponding to
Kt(p.B) € End(C?? ® C??), are very similar to those
imposed on the bulk R-matrix in Sec. IIl. The boundary
scattering involves three states: bulk magnon, boundary
vector state and the boundary singlet vacuum state. Since
the boundary vacuum state is described by the trivial
representation e satisfying e¢(b) =0 for all b € By, we
can drop it to obtain the boundary intertwining equations
for the vector boundary:

(7, ®7_,) ® (78 ® 78))(A(b)) Kz, (p.B)

= Kp (p.B)((7, ® 7,) ® (75 @ 78))(A(D)) (4.37)
for all b € Br.

Constraints from the central elements for vector
boundary.—Central elements of Bt imply important con-
straints for reflections off a vector boundary and for the
parameters of the boundary representation zg. Recall that
central elements must intertwine the reflection matrix
trivially, which means that, for a chiral reflection,

(7, ® 78)(A(€)) = (7, ® 78)(A(C)),
(7, ® 78)(A(C)) = (7, ® 7B)(A(C))

for all € € {H,, B, P'}. Suppose that we do not know the
boundary representation 7g. Since the elements B and P’
are central, we must have zg(‘B) = fgl and zg(p’) = fg[l
for some fg, fg € C. Using 7,() = h(1 —u3)l and
7,(P) = h(1 —u,?)l, and the boundary intertwining
equations, we obtain

h(1 —u3) + upfg = h(l — uy?) 4+ u,’ fg,
h(l — u;z) + u;szB =h(1- u%,) + u%,fT,

giving fg = fg = h. Now notice that 7, (B)|,_. 4-n/2 =
7(PB7)| p—znn/2 = hl, which justifies our interpretation of
the vector boundary as a bulk magnon state with momen-
tum p =7z. A vector state at the boundary is always
necessary for the boundary algebra By, since the central
elements P and P’ cannot be preserved by a singlet
boundary.

The next step is to check the intertwining equations for
achiral reflections. For example,

(7, ® 78)(A(Da)) # (7, ® 78)(A(Da)).
(7, ® 78)(A(9Da))) # (7, ® 7p)(A(Da))-

However,
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(7, ® 78)(A(C)) = (7, ® 78)(A(€)),
(7, ® 78)(A(C)) = (7, ® 78)(A(€)),

forall € € {$,.B. B }. This implies that the total number
of left or right states is a conserved quantum number as a
result of the central elements in Bt. Scattering off a vector
boundary, which intertwines the representations 7, ® 7g
and 7_, @ ng or 7, ® ng and n_, ® 7g, is forbidden
rather by the intertwining equations for the supercharges.
Thus, the K-matrix Kp (p) decomposes into the four
sectors (left-from-left, right-from-right, left-from-right
and right-from-left) with [K%? (p) describing the chiral
reflection of a magnon of chirality a from a boundary of
chirality b.

1. Complete and partial K-matrices

The complete K-matrix decomposes into the direct sum

Kz, (p,B) = Kz (p.B) ® KgF(p.B)

® Kf(p.B) O KF(p.B)  (438)
of partial K-matrices in the LL, RR, LR and RL decoupled
sectors. The partial K-matrices are solutions of the boun-
dary intertwining and reflection equations, and the unitarity
condition.

Left-left and right-right sectors.—We write the partial
K-matrices in the LL and RR sectors as

K- (p.B) = (K“-(p.B))%(E;; ® Ey).
ijkl=12

KRR (p.B)= > (KRR(p.B))A(E; ® Ey).
ij k=12

which depend on the magnon momentum p and its mass
m,, through the Zhukovski variables x , and the boundary
mass parameter mg through xg. The boundary intertwining
equations are

(7, ® 75)(A(D)) K5 (p. B)

= Kz, (p.B)(n, ® 75)(A(D)),

(7_, ® 78)(A(D))KFR(p, B)

~ KER(p.B)(%, ® 7a) (A(D))
for all be By. The unitarity condition implies
KEL (—p B)KE (p.B)=1 and KEP(p.B)KER(p.B) 1.
We find the solutions to these boundary intertwining

equations to be
|

Kg (p.B) = ki (p

+ (xpxg — up)Ex ® Ez5 —
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KE-(p. B)
(x; — up’xg)
= kg;(l’»B) En ® En +ﬁﬂfn ® Ex
(x, + upxg) (x + xg)
——Lt —E E E E
o —xp) 2 ® Eyy + 5 —xg) 2 ® 2
u,+u
LRI TP
(xp _xB)
i(u, + u," ),
- WEZI ® En|. (4.39)
P
KFR(p.B)
(x5 — u;"xs)
KER( B)[[ETT®[ETT+ (,, E—"FEi; ® E33
Xp _xB)
(x; + ubxg) (x} +xg)
e T s @ Eip P 35 @ Es
(xp _xB) 22 11 (xp _xB) 22 22
-1
l(”p +u, )’7p’78 Fi; ® Es
(xp _XB)
i(u, +u," ),
— —p(x_ —pr)p Es1 ® Ei5], (4.40)
P

where kg-(—p,B)kg-(p.B)=1 and kZR (- p,B)kj"(p,B)=
for unitarity.

Left-right and right-left sectors.—We write the partial
K-matrices in the LR and RL sectors as

K (p.B) = Z(K%, B))(E; ® Ex).
KIRS-IF(p? B) = Z(KRL(p’ B))lk(lElj ® lEkl)

ij=13
k=12

The left-right K-matrix is a solution of the boundary
intertwining equations

(7_, ® 78)(A(B)) K5 (p. B)

=K (p.B)(7, ® 78)(A(D)),

(7, ® 75)(A(D))KEF:(p. B)

=K (p.B)(7, ® 78)(A(D))
for all be By. The unitarity condition implies
Kg, (—p.B)KF(p.B) =1 and KJ-(-p.B)KF (p.B)=1.

The solutions to the boundary intertwining equations take
the form

B)[(1— 1) (1 + x70) (x5 05+ 43201,  Ery + (573 + En ® Exs + (35 — En ® Ery
(up 4+ uy" )n,neErn ® Eis + (u, + " )n,meEs @ Esgl,

(4.41)
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KE-(p.B) = ki (p.B
+ (xpxp —ud)Ez; ® By —

where ki (= p,B)kg (p,B)=1and k3-(- p,B)kG-(p,B)=
for unitarity.

We note that it is necessary to impose boundary crossing
symmetry conditions on all our K-matrices, which constrain
the scale factors k2(p) and a?(p). We anticipate that these
will be related to the dressing phases of Ref. [38] in the bulk
R-matrix. We leave this for future research.

2. Reflection equation

The reflection equation for the complete K-matrix is

[K23(q, B>R21 (61, —P)Km(Pv B)RIZ(])7Q)
:R21(—CI —P)KB(P’B)Ru(P’—Q)Kza(q’B),

for the partial R-matrices and

(4.43)

which is equivalent,
K-matrices, to

135 (¢. B)RS(q,
=R%(~q.

-p)KE(p.B)RE(p.q)
~P)K%(p.B)RPY(p.—q)K35(4.B).

for all a,b,c € {L, R} (see Fig. 6). Here we define

(4.44)

R (p.q) = R%®(p,q) @1,

REP(p.q) = (PR®(p,q)P) ® I,

K (p,B) = (ﬂ R P)([K*(p,B)@ NI P),
K& (p.B) =1 Q@ K®(p.B).

and similarly for Ri,(p,q), Ryi(gq, p), Kiz(p,B) and
K»3(g,B) in terms of complete R- and K-matrices.

A direct computation shows that the R-matrices and
K-matrices for the vector boundary satisfy (4.44) for (abc)
in the homogeneous (LLL, RRR) and mixed (LLR, LRL,

FIG. 6 (color online). A two-magnon reflection off a vector
boundary factorizes into a succession of single-magnon reflec-
tions and two-magnon scattering events. The double red and blue
line again indicates a direct sum of left and right magnons or
boundary vector states.

)[(1— x5 x8)(1+x5x8)] 72 (x5 x5 + 1,7 Eq§ @ Eyy + (xpx8 + 1Ejj ® Ex + (x5 x5 —
(up + 15 )peErs @ Ero + (uy, + 13 JpieEsi @ Byl
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1)Es5 ® Eyy
(4.42)

RLL, LRR, RLR, RRL) sectors. This ensures that the
complete R-matrix and K-matrix satisfy (4.43).

V. INTEGRABLE CLOSED psu(1,1]2)>
SPIN-CHAIN AND SCATTERING
MATRICES IN AdS; x $3 x T*

The bosonic isometry group of the AdS; x §® x T*
supergravity background is

50(2,2) x SO(4) x U(1)*4,
with the Lie algebra splitting into left- and right-movers

80(2,2) ~ 3u(l,
30(4) ~ 3u

DL @ su(l, 1),
(2)L @ 3u(2)p.

The bosonic isometries can thus be rearranged into
[Bu(1.1) @ su(2)]. @ [3u(l.1) ® su(2)|z © u(1)",
which is the bosonic part of the superisometry algebra

peu(l,112), @ psu(1,112)g & u(1)".

Massive excitations of the world sheet of a closed
superstring on AdS; x §3 x T can be identified with the
magnon excitations of a homogeneous double-row
psu(l, 1|2)? closed spin-chain. These magnons transform
under a centrally extended [p&u(1]1)2 @ u(1)]2 algebra'®
[two copies of 8u(1|1)2 with the Cartan and central
elements identified, respectively]. The left- and right-
moving excitations decouple in the weak coupling limit.
This section contains a review based on Ref. [21] of this
integrable closed psu (1, 1]2)? spin-chain and the S-matrix
describing the scattering of magnon excitations.

A. p3u(1,1)2)? closed spin-chain
with [psu(1]1)? @ u(1)]? excitations

1. Single-row p3u(1,1|2) spin-chain
with p3u(1|1)* @ u(1) excitations
Symmetry generators.—The p3u(1,1]2) superalgebra
shown in Appendix B has bosonic generators

So. 3 € 8u(l. 1), 25, 85 € 3u(2)

"®*Note that here we use pau(1]1)? &
sum of Lie algebras as vector spaces.

1(1) to denote the direct
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of 8u(l,1) @ 8u(2), and fermionic generators R,

labeled by b,p,f =+ indices. There is also a u(1)
automorphism Rg.

Sites.—A site in this homogeneous single-row
p3u(l1, 1|2) spin-chain is the module
M=M —l l 0 | = span {|¢(n)> l//(n)>}
2 ) 2 ) C B ) B

A vector at this site transforms in the half-BPS representa-
tion of the pdut(1, 1]2) superalgebra shown in Appendix B.
The vacuum state is

0
2) =192, (5.1)
and the four fundamental excitations (pﬂﬁ are
o) = 100). o) =18,
l075) == @) o) = ), (5.2)

which transform under a psu(1]1)? @ u(1) algebra with

fermionic psu(1]1)> generators

Ql = Q—++7
@1 = QJF——v

QZ = _Q—Jr—’
€=,

satisfying {Q;,&;} = $5,;, for i,j € {1,2}. The addi-
tional bosonic 1(1) generator $ = —F, — &5 is the mag-
non Hamiltonian. We notice that this psu(1[1)> @ u(1)
algebra can, alternatively, be viewed as two copies of

su(1|1)> with the Cartan elements identified. We can
extend this algebra to u(1)? x [psu(1]1)> @ u(1)] by
introducing X; = =125 —1Rg and X, = —1 25+ 1 R,
which satisfy
1
{sz@/}:$5117 [x,,nj] =—§5UQ,,
1
[xl,@]} :Eﬁugl’ (53)

but do not annihilate the vacuum state.

Spin-chain.—The homogeneous single-row spin-chain
with J sites is now identified with the module M®’. The
spin-chain vacuum and fundamental excitations are

0y =12"),  lof)) =

Single-magnon excitations are constructed as vectors in
momentum space:

|zt zimy. (5.4)

o) = Z gl

n=1

(5.5)
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The action of the fermionic p3u(1]|1)? generators on a
magnon state is

Qo) = o). @le’) =0,

Qe =0, &lo)) = o).

Qz|¢g+> = (-1 5”‘|€0fv ), @2\‘/’§+ =

Qleh ) =0, Glg ) = (-1)%- w”* (5.6)

These low-lying magnon excitations have energy 1 with
respect to the magnon Hamiltonian $. Here also

- J —
Xilwp™) = =5 lop7),

= (-5+3) 0t
1

. J . . J .
£lof) = (—5+2)| . o) = - Llop).

J
x[0) =300 Xlo

. - A J o1
%) = -3t Ble) = (=343 )ler).

The standard procedure by which single-magnon excita-
tions may be generalized to multimagnon excitations was
described in Sec. III A 1.

2. Double-row p3u(1,
with [psu(11)> &

The homogeneous double-row psu(1,1]2)> spin-chain
2). and
which decouple at weak

2)? closed spin-chain
u(1)]? excitations

psu(l.12)q
coupling.

Sites.—Sites of the left- and right-moving spin-chains
form the module M| ® Mg, with M| and Mg the left and
right copies of the module M. The vacuum state and
fundamental excitations are

S8 &) AR )
()

which transform under the [psu(1]1)? &

spin-chains

(5.7)

u(1)]? algebra

1
{Qaiv C"-’Vij} = Sja5ab5ijv [xaia ij] = _EQaiéab(Sijv

1
(X4, ©pj] = E@aiéabéij
with a,b € {L,R} and i,j € {1,2}. Notice that X; =
X, — Xg; do annihilate the vacuum state, although X,
and Xg; individually do not. We define $ = | + Hr and
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M = 9. — HR, with H the magnon Hamiltonian. Again,
we will focus on well-separated magnon excitations in the
J — oo limit so that the left- and right-moving excitations

goﬂ and q/é do not coincide.

Spin-chain.—The homogeneous double-row spin-chain
is identified with the module (M| ® Mg)®’. The ground
state is

(5.8)

and left- and right-moving fundamental excitations are

- () ()(E))
e G

(5.9)

with low-lying left- and right-moving single-magnon
excitations given by

. J . . J .
7y = Z_;emq(pff)% 77 = ;em@ff)). (5.10)

The left- and right-moving magnon excitations |¢/’) and

|g'0gﬂ ) have energy eigenvalue 1 of the magnon Hamiltonian
9, whereas the left/right-movers have mass eigenvalues
+1, with thus a particle/antiparticle interpretation. The
nontrivial action of the fermionic generators of the

[p8u(1]1)? @ u(1)]? algebra on these magnon states is

Quilef’) = \ . euled) = 1o,

QL2|(/’€:+> = (=1 |gh ), @wleh ) = (=1)-|gh"),

Qi) = \-— ) @ailard) =1a"),

Qralh) = (D% 1@ ), Ggaldh ) = (1)1 7)
(5.11)

with the nontrivial action of the u(1) generators X; of the
u(1)? x [psu(1]1)> @ u(1)]* algebra, which annihilate
the ground state, given by

) 1 . . 1 .
Zlop ) =5les ) EloyT) =3lei0),
s 1. ..
Zloi ") = —5 05",

. 1 L
") ==l

. 1 .
X|p,") = §|¢;+>’

- 1 -4 -
X\|py7) = —Elrﬂﬁ )s X%\,
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We again make use of the standard generalization to
multimagnon excitations.

B. p3u(1,1]2)? spin-chain with centrally extended
[psu(1]1)% @ u(1))? excitations

Beyond the weak-coupling limit of the psu(1,1[2)>
spin-chain in which the left- and right-moving excitations
decouple, we must centrally extend the subalgebra of the
massive magnon excitations to [p8u(1[1)> @ u(1)]2. This
centrally extended algebra has fermionic generators Qg;,
©,; and bosonic generators H,, B, P, with a € {L, R}
and i € {1,2}. These generators satisfy

{Qah @‘bj} = S)a‘sabéij»
{&L. @R} = P's;;.

{QLhDRj} = 21351‘]"
(5.12)

Here B and B are the new central elements. The dynamic
and nondynamic p3u(1, 1|2)? spin-chains were studied in
detail in Ref. [21]. Let us briefly review these constructions.

1. Finite spin-chain with length-changing effects

The bosonic central elements P and B’ have length-
changing effects on the closed finite spin-chain above. Here
Z* and Z~ insert or remove a vacuum state, as described in
Sec. III B 1.

Single-magnon excitations.—The action of the fermionic
generators of the [p3u(1]1)? @ u(1)]2 algebra on the left-
moving magnon excitations is [21]

Quley" =a,lo’). @ulei’)=b, |<0“}>,

Quleh ) =(- 5”’ap|fp§ ), ©L2|‘P€7 = §”b| ),
Qriler’) =c, |25 0"). Smilol >=dp|Z‘(ﬂ; ),
Qroloh )= (=1)%c,|Z¢)").

©praleh ) =(=1)%-d,|Z=g,"). (5.13)

and, similarly, on the right-moving magnon excitations,

@ril@y") = b, ;7).

Qri|," >:a |<0p )

Qrol@y ) = (1), | ).

Srol#h) = (- 1)‘% 7).

Qg =512 07, eulay’) = 4,1z a").
Q@) ) = (-1)%-¢ ZJrfﬂ/j+

SLldh) = (-1 éﬂ—d,,|z-<oéi (5.14)

The energy eigenvalues of $ = H| + Hr on the left- and
right-moving magnons are

E,=a,b,+cpd,,
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and the eigenvalues of the mass operator MM = H| — HR
are

m=a,b,—-c,d,=1,
Physical single-magnon states should again be annihilated
by the central elements B and PB’, which would imply
» =d, =¢,=d, =0, sowerevert to a magnon state of
the decoupled spin-chain.

Two-magnon excitations. We can write similar excita-
tions for two left-moving magnons of momenta p and g to
those in Sect. IIIB 1, as well as for two right-moving

c

magnons, and for left- and right-moving magnons |¢/ i W

@7, o), 1@l in terms of these length—
changing effects. We find that, for these two-magnon states
to be annihilated by the central elements B and PB', we
must make use of the same parametrization (3.17) for both
a,, b,, c,, d, and a,, ZJP, Cps Zip, satisfying the same
constraints (3.18), with the unit mass now m = m = 1.

2. Infinite spin-chain with Hopf algebra structure

Now, in the J — oo infinite spin-chain limit, we can
encode the length-changing effects rather in a U-braided
Hopf algebra structure for the [psu(1]1)> @ u(1)]2 super-
algebra, as in Appendix B of Ref. [21].

Single-magnon representations.—We will write the
actions (5.13) and (5.14) in terms of matrix representations
of [pgu(1]1)? @ u(1))2. We must first introduce the vector

spaces
V, = spanc{logt) 1oy 7). Loy ). Loy ) s
V, = spanc{lg; 7). 1957). |@,7). 1257)}

for left- and right-moving magnons. We can identify
these vector spaces with C!!! ® C'I'. The action (5.13)
can be encoded in the left-moving representation
7, [peu(1]1)? @ u(1)]z —» End(C'' @ C''"):

m,(QL) = a,Ey ® 1, 7,(Q) = a,l @ Ey,
7,(Qr1) = c,En @I, 7,(QR1) = ¢l @ Eys.
mp(@L1) = byE; @ 1. 7,(@1) =b,l @ Epy,
7,(Gpi) =d [E21 ® 1, 7,(Gry) = d,l ® By,
mp(DL) = ®L  7,(9r)=c,d, I QI
n,(B) = a,c, ®ﬂ 7, (P7) =b,d, 1 ®1, (5.15)

and the action (5.14) can be encoded in the right-
moving magnon representation 7, : [psu(1]1)*@u(1)]3 —
End(C''@C'"):

—-m=—(a,b,-¢,d,) =-1.
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7,(Qry) = a,l ® Ezj,
7,(Qu) = ¢l ® Ej3,
7p(Gre) = bl @ Ey3.
7,(G12) = d,l @ Esj,
7,(9L) = c,d, I @1,

2, (P) =b,d 1 ®1, (5.16)

both with parameters (3.17).

Hopf algebra.—Again we introduce an additional gen-
erator I, which is central with respect to the [p3u(1]1)? &
u(1)]2 superalgebra. The action on any single-magnon
excitation is

Ulgf) = eBlgll). W) =eElgh).  (5.17)
and hence

m,(U) =—c,d,' 1@ 1=e21QI

7,(U) =-¢,d;'I @1 =cl®I (5.18)

in the left- and right-moving single-magnon representa-
tions. As in Sec. III B 2, we define a Hopf algebra structure
on [psu(1]1)> @ u(1)]2, denoting this Hopf superalgebra
by A throughout Secs. V and VI

L(A) = [psu(1]1)* @ u(1)[;

is the associated Lie superalgebra.
We again choose a symmetric frame in which the
coproduct takes a form similar to that of [21]

A(Qa) = Qa @ 1+ U Q Qu;»
AP)=PR1+2U P,

A(By) =G, @1+ U Q &y,
AP =P @1+ U2 @ P,
A(D) =9H2Q14+1® Ha.

AQUEY) = U @ U, (5.19)

with opposite coproduct A°?(a)="PA(a). The central ele-
ments co-commute, A(€)=A%(C) for €€{H,,B. B},
which implies B =v;(1 — U?) and P =1, (1 - U2),
again using v; = v, = h to obtain our representations 7,
and 7,. All the other Hopf algebra structures of Sec. II1 B 2
generalize in the obvious manner. In particular, the antipode

S: A- Ais
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S<Qai) = _u_lnai’ S(gai) = UGy,
S(9a) =—Ha.  S(P) =-UP,
S(PH) = -2, S =u-!, (5.20)

which relates left- and right-movers in the representations 7,
and 7 through

7,(S(a)) = (5 (@), (5.21)

with the charge conjugation matrix trivial. Here a € A with
a € A defined by

Qai =0 QR +0arQALi, P="P,
5a :5aL5R +5aRbL’

Sai =0 @R +6rGL, PI=P', U =U*. (522)

C. Two-magnon scattering and R-matrices

The two-magnon scattering matrix is

S(p.q) = PR(p.q), with R(p,q) € EndW,®W,),

(5.23)
where now

W,=V,®V,
= spanc{|¢; ). o7 7). [0y ). ey 7).
@y ) @y 7) @y ) @)}

Again, R(p, g) can be decomposed into a direct sum of four
sectors R%®(p, ) corresponding to the partial R-matrices

R (p,q) € End((C'' ® C'") @ (C'I' @ C'")).  Here
the complete R-matrix
R(p.q) =R (p.q) ® RF(p.q) & R™(p.q)

® RR(p. q) (5.24)

satisfies the intertwining equations (3.34), with z,, and 7,
now the representations (5.15) and (5.16), and a similar
unitarity condition.

The intertwining equations of ,; and &,; intertwine
only the C'l' space nontrivially, and similarly those of Qg,

and &, intertwine only C'"'. The intertwining equations of
9, may be thought of as acting nontrivially on either space
and trivially on the other, and just ensure the decomposition
of the R-matrix into block diagonal form. Thus, two copies
of the partial R-matrices of the d(2, 1; @) spin-chain given
in Sec. IIIC 1,
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R (p,q) = Z(Rab(l” Q)>7§[Eij ® Eys
ikl

R*®(p.q) = > _(R®(p.q))iE;; ® Eyj.
S

can be used to build an R-matrix R(p,q) for the
psu(1,1]2)? spin-chain [21]. This decomposes into the
partial R-matrices given by

R®(p,q) =Y (R®(p.q))""% (B O E;;) @ (Err ® Ey),

isiyjijs
kLl

(5.25)

with!"?

(R (p.)) ;= (=)D (R (. )5 (R (p. ) k.
(5.26)

where i,i,j,j € {1,2} and {1,2} fora=L and a =R,
respectively, and k, k£, ¢ € {1,2} and {1,2} forb=1L
and b = R. Now the Zhukovski variables satisfy a mass
shell constraint (3.18) with unit mass m = 1. This R-matrix
satisfies the Yang-Baxter equation (3.40) and a unitarity
condition.

VL. INTEGRABLE OPEN p3u(1,1[2)2
SPIN-CHAIN AND REFLECTION
MATRICES IN AdS; x 3 x T*

Let us now consider the boundary scattering of magnon
excitations of a psu(1,1|2)> open spin-chain off an
integrable boundary. These correspond to massive excita-
tions of an open superstring ending on D-branes in
AdS; x §3 x T*, such as one of the maximal giant grav-
itons discussed in Sec. II B.

A. Open spin-chains and boundary scattering

1. Double-row p31u(1,1|2)? open spin-chain
with [p3u(1]1)? @ u(1)]? excitations
Semi-infinite open spin-chain.—Again we consider a
semi-infinite open spin-chain with J — oo which has a
boundary site on the right side. The ground state is

0) = |27 7). (6.1)
with Fg an infinitely heavy boundary field. Fundamental
excitations now take the form

“We make use of the isomorphism | ® P ® [ between
Cl'ec'eC'"eC'"and C''@C''®@C!"®C'", which
maps the graded tensor product R?°(p, ¢) ® R*®(p. q) of the R-
matrices in Sec. IIIC 1 to the R-matrix R?(p, ¢) here.
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|‘p/(jf)>B = |2/ Z2n1 F),

) = |2 @ 2/ Fg) (62)

in terms of the left- and right-moving excitations ¢”# and

@" of Sec. VA2. The low-lying left and right single-
magnon excitations of the double-row open spin-chain
are thus

. J :
¥ )s = Zl e_ip"|€0€f)>8,

(6.3)

. J .
@8 = Zl e—'l’”|(7/(’f)>3.

In the / — oo limit, magnon states of the semi-infinite open
spin-chain can again be identified with magnon states of the
closed spin-chain, with an additional boundary state,

) =10y ® |0},

with |¢/”) and |#/”) bulk magnon excitations in V ,and V.
The length-changing effects of the dynamic spin-chain are
encoded in the Hopf algebra A of Sec. V B 2. The boundary
field Fg is represented by the boundary vacuum state |0)g.
We can generalize to multimagnon states.

Boundary algebra.—The boundary algebra 5 C .A must
be a coideal subalgebra of the bulk Hopf superalgebra A.
The singlet boundary state |0)g transforms in the trivial
representation of 53 defined by the counit map e. A vector
state |®)g at the boundary |0)g is also possible.

7D)e=10) ®(0)s,  (6.4)

2. Boundary scattering and K-matrices

Outgoing  single-magnon representations x_, and
7_,—Incoming magnons are states in }V,, and V,,, whereas
outgoing magnons are states in the vector spaces V_, and
V_ »- The incoming single-magnon representations r, and
7, are shown in (5.15) and (5.16). The outgoing single-
magnon representations z_,: A — End(C!I' ® C'" and
7, A—End(C''® C'") are obtained by replacing the
parameters a,, b,, c,, d, with the parameters a b
c_p, d_, given in (4.8).

Singlet boundary scattering.—The boundary scattering
matrix is

-p’ 7=p°

Sboundary(p) = K'K(p), with K(p) € End(Wp>’ (65)
with k the reflection map. The scattering of magnons off a
singlet boundary |0)g was described in Sec. IVA 2. The
vector space W, =V, @ V, with )V, ]_/p ~CI'® C'l'is
discussed in Sec. V C.
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Vector boundary scattering.—The boundary scattering
matrix is now

Sboundary (p’ B) = KK(p’ B)’

with K(p,B) €End(WW, ® Wg). (6.6)
Here W, and Wg are both modules of By =
[p8u(1]1)? @ u(1)]2. The scattering of magnon excitations
of an open spin-chain off a vector boundary |®g) ® |0)g
was described in Sec. IVA 2.

We will discuss singlet boundaries in Sec. VI B and the
vector boundary in Sec. VIC.

B. Singlet boundaries

Boundary algebras.—There are now more possible coi-
deal boundary subalgebras B3 of the bulk Hopf superalgebra A
describing the scattering of magnons off singlet boundaries
than in Sec. IV B. The associated Lie algebras L(B) can be
compared with the boundary algebras shown in Table III.

(1) Left, right and mixed half-supersymmetric boundary
algebras B(L,L)s B(R,R)s B(L,R)’ B(R.L)’ COITCSpOHdiIlg
to D-branes preserving half the bulk supersymme-
tries, and the magnon Hamiltonian $ and IN,
implying chiral boundary scattering. The boundary
Lie algebras associated with these coideal boundary
subalgebras are psu(1[1)} @& u(l), & u(l)g,
u(l)L @ psu(l[1)f ® u(l)g, and su(lfl) &
su(1]1)g.

(2) Non-supersymmetric  chiral boundary algebra
BncNe)» corresponding to D-branes which preserve
none of the bulk supersymmetries, but do preserve $
and M. The associated boundary Lie algebra is
(1), @ u(1)g. We will show that scattering off this
boundary has a hidden symmetry, denoted Bpp),
contained in the bulk Hopf superalgebra.

(3) Left and right quarter-supersymmetric boundary
algebras B(L,NC)? B(NC,L)? B(R,NC)9 B(NC,R)’ corre-
sponding to D-branes preserving a quarter of the
bulk supersymmetries, and $ and 9. The associ-
ated boundary Lie algebras are 3u(1[1), & u(l)g
and u(1), @ 3u(1|l)g. We will show that these
boundary scattering processes preserve hidden sym-
metries, denoted B p, Bp 1), Brp)> Bo.Rr), at the
level of the Hopf superalgebra.

(4) Non-supersymmetric achiral boundary algebra
Bnana), corresponding to D-branes preserving £,
but no bulk supersymmetries. The associated boun-
dary Lie algebra is u(1),.

Boundary intertwining equations.—The K-matrix
K(p) € End(W,) again has four sectors: K*(p) are chiral
reflections, and A2(p) are achiral reflections. The partial
K-matrices K2(p), A%(p) € End(C'I' ® C'"). The com-
plete K-matrix K(p) takes the form shown in (4.13). The
boundary intertwining equations (4.11) for all b€ B
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simplify to (4.12) for those b € [p3u(1]1)> @ u(1)]2. Here
n, and 7, are now the representations (5.15) and (5.16),
and similarly for the reflected representations.

Integrable K-matrices satisfying the reflection equa-
tion (4.43) can be built from two of the K-matrices
Kg,(p) and Kg, (p) given in Sec. IV B I—which have
partial K-matrices

K%] (P) = Z(K?sl (p));'[Eijv A%l (P) = Z(A%l (p))j'[Eij’
K ()= (K3, (n)iEsj, A (p) =D (4, ())iE;;

(6.7)

The result is a complete K-matrix solution of the boundary
intertwining equations associated with a boundary coideal
subalgebra, denoted B(;;). The partial K-matrices are

given by

K%, , (P) = K3 (p) ®KE,(p) = Z(Ka (P ));?Eij®ﬂgil}’

A3, (P) =A% (P) ®AG, (p) = Z (43, (P))}jEy O F,
(6.8)
with
(K3, () = (K3, (p))}(K3, (p)]
(A% ()L = (A3, (P)i(AR, (P)]-

We notice that Kz (p) and Kz, (p) must both be chiral or
must both be achiral for a nonzero reflection matrix
Kp,,,, (p) built in this way.

Constraints from the central elements.—Again, boun-
dary subalgebras associated with singlet boundaries may
not contain the central elements 3 and B*. The inclusion of
H or HR in the boundary algebra B once more implies a
chiral K-matrix, although achiral K-matrices are allowed if
only 9 = H_ + HR is contained in B.

1. Boundary subalgebras and K-matrices

Left, right and mixed half-supersymmetric boundary
algebras.—The left, right and mixed half-supersymmetric
boundary superalgebras, B(_|), Brp), BLr) and BRry)
are defined to be coideal subalgebras of .4 generated as
follows:

B( = (QL1 L1, Q2. G, D1, HR)

Brr) = (Qri: Gri- [rz, Gr2, OL. DR),

Br) = (QLi. GL1. Qr2, ©r2, HL. DR: )

Bry) = (Qr1> Gri» Qo G120, O, HR)- (6.9)
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That B, is an integrable boundary algebra follows from
the fact that (g,H(ap)) forms a symmetric pair of Lie
algebras, if we define

g=L(A) = [psu(1]1)* & u(1)],
by =L(Bey) = [psu(11)? @ u(1)]. @ u(1)g,
brr) =L(Brp) =u(l)L & [psu(l]1)* & u(l)],
hr = L(BLr) = su(1]1), @ su(l[1)g,
= L(Bry)) = su(1]1), & su(1[1)g.

LICTR (6.10)
Here g = f)(a,b) (&) Mab), with mL), MRR) MLR) and
mpy) generated by  {Qgi, Sri, Qre, Sro, P, BT)
{QL1:©11,Q0.G0L.P. B}, {Qr1.Gr1. Q.G PP}
and {QL, S, Qr», Ry, B, P'}. The boundary Lie
superalgebras § ) and hrR) are associated with open
superstrings on AdS; x $3 x T* endingon Y = 0 and ¥ = 0
D1- and DS5-brane maximal giant gravitons, respectively.

The K-matrix solutions of the relevant boundary inter-
twining equations are given by

__ L
Klg(a.b) (p) - KE(a.b)
with [K%(a.b) (p)

(») ® K, (7).
KS, (p) ® K§, (p).

(6.11)

for a,b,c € {L,R}, in terms of solutions in Sec. IV B 1.
This satisfies the reflection equation (4.44).

Non-supersymmetric  chiral boundary algebra.—A
boundary coideal subalgebra which contains no super-
charges, but leads to boundary scattering processes which
preserve chirality, is

= (DL Dr)- (6.12)

Bnc.ne)
The boundary Lie algebra L(Bncne)) = (1) @ u(1)g
is that of an open superstring on AdS; x $° x T* ending on
the Z =0 DI1- or D5-brane maximal giant graviton. A
K-matrix solution of the boundary intertwining equation
for Bincne) and the reflection equation is

KB(N(;_NC) (p) = K NC NC) (p) @ B (NC.NC) (p)

with K3 o (p) = K3 (p) ® K, ().

(6.13)

Let us now show that there is a hidden symmetry. A
diagonally supersymmetric boundary algebra is defined by

Bppp) = (941,921, 942.9-2. . D), (6.14)
which is a coideal subalgebra of A. The K-matrix (6.13)
intertwines representations of these hidden boundary sym-
metries Bp p). Here

106006-31



PRINSLOO, REGELSKIS, AND TORRIELLI
a4, = P'QL, + icPSg;, 9= P, + icP'QR;.
D= (HL-"Hr+ic(P+P)K

D= (HL—2Hr—ic(P+P'))K (6.15)

with & = PP’. The space Mppp) is generated by
{8,1,8_1,8,5,8_,,n, 1}, where we define

1+ =P'QL — icPSp;,
8_; =PS, — icP'Qg;,
n= (9. +2Hr+ ic(P-P))K

= (9. +2Hr—ic(P-P))K (6.16)

The generators of Bppy and M p p) satisfy
{a:ia-;1 =05, {q.,8_;} =nd;,  {4.,%8} =0,
{84.8_;} =055, {a-i.8,;} =06, {a-,8_;} =0,
(6.17)

with D, b and n, n central elements. These relations are
identical to (5.12). The associated Lie superalgebra
L(Bipp) ® Mpp)) is isomorphic to L(A), while here

L(Bpp)) is generated by {q;1,4q-1.952.9-2. D, 5} Now
(8. Hp,p)) defines a symmetric pair, with

g=L(Bpp) ® Mpp)) =L(A)
= [psu(1]1)* ® u(1)f,

Ho.0) =L(Bpp))
= [psu(l[1)’ @ u(l)]p ® u(l)p.  (6.18)
Left and right quarter-supersymmetric boundary

algebras.—The following left and right quarter-
supersymmetric boundary superalgebras can also be
defined:

Bine) = (Qui- G190, Hr)»

Biney) = (Qu2 ©12, 1s DR)s

Brnc) = (Qr1> @ri: OL. Dr)-

Biner) = (Qr2, ©ros DL OR)- (6.19)
Here the associated boundary Lie superalgebras
are  L(Bunc)) = L(Bney) = su(1|1). @ u(l)g  and
L(Brne)) = L(Biner)) = u(1), @ su(1|l)g. The K-

matrices which satisfy the boundary intertwining equations
of Banc) and Bnca), respectively, and the reflection
equation are
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Bane) (P) = K5 (P) @ KG_ ().
with Kj_ (p) = Kg (p) ® KB (p),
Bca (P) = Ki o, (P) ® KG  (P),
with B<Nca) (p) =K} (p) ® KBa(p>v (6.20)

for a,b € {L,R}.

There are again hidden symmetries in the Hopf super-
algebra. We define coideal subalgebras of .4 which take the
form

Bip) = (Qui.©L1.4:2.9-2. 5. 5. H. HR).
Bpr = (441,921, Qu2s G2, D, 2. H1. HR).
Brp) = (Qri. ©Ri.q12.9-2. 0,0, 1. HR).
Bpr) = (4+1:9-1, Q2> ©R2: D, 2. 9. HR). (6.21)

We define M(L,D)’ M(D,L)» M(R.D) and M(D,R) to be
spaces generated by {Qm, ©R1,840,8,, 1, ﬁ},
{8:1,8.1,Qro. Gro .1}, {QU,©G1,815, 85, 0,1}
and {8,1,8_;,Q. G, n,n}. Here we can construct
symmetric pairs (g, hanc)) and (g, hnca)) of Lie
algebras:

g=L(Bap) ® M@ap) = L(Bp.a © Mpa))
= L(A) = [psu(1]1)* ® u(1)]5,
Hap) = L(Bap)) = su(1[1), & su(1|1)p,

Hpa) =L(Bpa) = su(l|l)p & su(1|1),. (6.22)

Non-supersymmetric achiral boundary algebra.—A
boundary algebra which contains no supercharges and
breaks chiral symmetry is

Binana) = (D) (6.23)

The boundary Lie algebra is L(Bnana)) = u(1),. A K-
matrix solution of the boundary intertwining equation of
Bnana) and reflection equation is

K () ( 0 A(RNA.NA)(ID)>
(NANA\P) = )
AI('NA,NA)(I’) 0

= AZa(P) ® Afu(p)- (6.24)

with A?NA,NA) (p)

It is not clear if there is a hidden symmetry in this case.
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C. Vector boundaries

The totally supersymmetric boundary superalgebra
Bt is the coideal subalgebra of A generated as

B = (Qui, G, Qua, G0, Qris ©Ris [res

@RZ’ Sij Sij s’pv S'BT>’ (625)

with 21, u‘lséB(T,T).

The vector boundary state transforms in the left- or right-
moving representation, zg or 7g, of the boundary Lie
superalgebra L(Brr)) = [psu(1]1)> @ u(1)];. Table III
shows that this is the boundary superalgebra of an open
superstring on AdS; x S x T* attached to the Z = 0 D1-
or D5-brane maximal giant graviton.

Boundary representations ng and mg.—We define the
vector spaces associated with left- and right-moving

boundary vector states in the same way as for the magnons
in the bulk:

Vg = spanc{log ). log ). log ). log )}

Vg = spanc{|@g ™). [ 7). |#5"). @5 7) ).

both isomorphic to C'I' ® C'". We set Wg = Vg @ Vg.
The left and right boundary representations zg: Bt 1) —
End(C'' ® C'") and 7g: Bt — End(C'' ® C' are
given by (5.15) and (5.16), with the subindex p replaced by
B. We choose the parametrization (4.35) for ag, bg, cg and
dg, with mg the boundary mass parameter.

Boundary intertwining equations and K-matrix.—
The K-matrix K(p,B) € End(WW, ® Wg) decomposes
into a direct sum of K-matrices in four sectors

K %‘(’m( p.,B), which correspond to the partial K-matrices

K (p.B) € End((C'' ® ¢ @ (" @ C'")). Here
the complete K-matrix

Ky (0.8) =, (0.B) DI, (B

x @ Kg; ., (p.B) ® K§T (p.B)  (6.26)

satisfies the boundary intertwining equations (4.37) for all
b e [psu(1]1)* @ u(1)]3, with 7, and 7, the representa-
tions (5.15) and (5.16), and the reflected representations
n_, and 7_, and boundary representations zg and 7g
similarly defined. The complete K-matrix is required to be
unitary.

This K-matrix of a p8u (1, 1|2)? spin-chain with a vector
boundary can be built from two copies of the K-matrix of a
9(2, 1;@)? spin-chain with a similar boundary given in
Sec. IV C—which have partial K-matrices of the form
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K (p.B) = ) (K (p.B))ifE, ® Eu.
ij.k.l

K (p.B) =) (K& (p.B))I\E;; ® Ey.
ki

The K-matrix Kg_ (p,B) then has partial K-matrices
b . b A'A’k]'c
KE. (p.B) =Y (K& (p.B)*(E; @)

[ANNA
kk,.1

® (Eir ® E;;), (6.27)
where
(RS, (B, = (DS (K (. B))f
x (K2(p.B))1k (6.28)

and satisfies the reflection equation (4.43).

VII. DISCUSSION

We have derived integrable boundary S-matrices which
describe magnon scattering off vector and singlet
boundaries for d(2,1;a)? and psu(l,1|2)> open spin-
chains in AdS;/CFT,. These massive magnon excitations
have 8u(1]1)2 and [psu(1|1)? @ u(1)]2 bulk symmetries,
which are the level-0 Lie superalgebras of bulk
Hopf superalgebras. The matrix parts of these boundary
S-matrices are reflection K-matrices which are solutions of
the boundary Yang-Baxter equation and the boundary
intertwining equations associated with a coideal subalgebra
B of the bulk superalgebra .A.

In the case of the (2, 1;a)? open spin-chain, we find
chiral integrable reflections associated with

(1) A totally supersymmetric boundary algebra, Br.

(2) Left and right half-supersymmetric boundary

algebras, B and Bg.

(3) A non-supersymmetric boundary algebra, Byc.
We also derive an achiral integrable reflection correspond-
ing to a non-supersymmetric boundary algebra By gen-
erated by the magnon Hamiltonian only. These all match to
D1- and D5-brane maximal giant graviton boundaries in
AdS; x §3 x 83 x S'. We uncover a hidden symmetry
which enhances the non-supersymmetric chiral boundary
B to a diagonally supersymmetric coideal subalgebra Bp
of A. This hidden symmetry 5p has no known analogue
in AdSs/CFT,.

In the case of the p3u(l,1]2)? open spin-chain, the
integrable bulk S-matrix was found in Ref. [21] to be
essentially two copies of the bulk S-matrix of the d(2, 1; a)2
spin-chain [20]. The same is true for the integrable
boundary S-matrices. We can put together two K-matrices
for the d(2,1;@)? spin-chain, which are associated with
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boundary coideal subalgebras 5, and B,, to form a K-
matrix for a psu(1, 1|2)? spin-chain corresponding to a
boundary algebra denoted B, 5). In this way, we derived
chiral integrable reflections associated with

(1) A totally supersymmetric boundary algebra, Bt 7).

(2) Left, right and mixed half-supersymmetric boundary

algebras, B(L,L)a B(R,R)a B(L,R) and B(RfU'

(3) Left and right quarter-supersymmetric boundary

algebras, B(L,NC)? B(NC,L)9B(R,NC) and B(NC,R)'

(4) A non-supersymmetric boundary algebra, Bnc nc)-
Now only B(T,T)’ B(L,L)’ B(R,R) and B(NC.NC) have obvious
interpretations as D1- and D5-brane maximal giant grav-
itons in AdS; x §* x T*. There are hidden symmetries
enhancing the quarter supersymmetric and non-supersym-
metric chiral boundary algebras to B p), Bp.L).Brp)
Bipr) and Bpp). There is also an achiral integrable
reflection with a non-supersymmetric boundary algebra
Bnana), which now has no clear D-brane interpretation.

It is well known that 8u(1|1)2 R-matrices can be
identified with certain subsectors of the 81(2|2), R-matrix
[6,70,71]. We find that our K-matrices for the totally
supersymmetric boundary can be identified with the cor-
responding subsectors of the K-matrix associated with the
Z = 0 giant graviton [8] and the right factor of the K-matrix
associated with the D7-brane [9]. The K-matrices for the
half-supersymmetric boundaries can be identified with the
corresponding subsectors of the K-matrix associated
with the ¥ = 0 giant graviton [8] and its dual [57]. The
K-matrix for the non-supersymmetric chiral boundary is
essentially two copies of the reflection matrix of Ref. [10],
with its free parameter a identified with our ¢ and —% in
these copies. For certain values of the parameter c, this
K-matrix can also be identified with the corresponding
subsectors of the left factor of the K-matrix associated with
the D7-brane [9]. The remaining K-matrices have no such
analogues.

This work takes the first steps in an exploration of
boundary integrability in AdS;/CFT,. There are many
important questions which may now be addressed. We
expect to present the boundary crossing symmetry relations
and an analysis of boundary bound states in future research.
The underlying boundary Yangian symmetries and the
boundary Bethe equations in AdS;/CFT, still remain to
be studied. Recently, the authors of Ref. [72] were able to
incorporate massless magnons into the AdS;/CFT, bulk
scattering picture. It would be interesting to extend our
analysis to include the scattering of massless excitations off
integrable boundaries. The Wilson loop computations of
Refs. [73,74] relied upon results [11] from AdSs/CFT,
boundary scattering, and our work may prove useful should
similar computations be undertaken in AdS;/CFT, dual-
ities. Finally, it would be interesting to study integrable
boundaries for open superstrings on AdS; supergravity
backgrounds with mixed NS-NS and R-R flux [72,75-82].
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APPENDIX A: SPINOR CONVENTIONS

Here we use the following 10D gamma matrices™:

M=06'QiRIR I,
F=0cQIxIxIxl,
(A1)

M"=06'®cr'RIRI,
M"=6'QRIRIRy",

where we now choose y* = (ic?, 6%, 6'), y" = (¢', 6%, 6?)

and y" = (¢!, 6%, 6%). Hence,
M2 =5’ QRIxIQI,
Y =-ic' @' IR IR I,

M =—ic' @ RIQRIR L. (A2)

The Weyl condition I'e = ¢ is written in terms of the
chirality matrix as

I'=Topusese =0 @I IR IR L. (A3)

The Majorana condition on left- and right-moving spinors
is (Beb)* = - and (BeR)* = —¢R, with
B=TTTI"=-0"Q1Q¢ ®c>®@c>, (A4

which satisfies BI'YB~! = (I'™)*, with B~! = B. The
charge conjugation matrix is defined to be

C=BI"=is, ®0, R0, R0, ® 0y, (AS)

We make use of the conventions of Ref. [13] with a
rearrangement of the Pauli matrices.
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satisfying CTMC~! = —(I'y;)*, with C~! = —C. We can
compute the bilinears

I,=-il®I®-CRIRI,
s =ilQIQIR &I,
I =ilRIRIRI® . (A6)

We define kappa symmetry projection operators for the
AdS; x §3 x §3 x S! background as

1
K:t<a) =_ [l + (\/&1—*0121—‘345 + 1 /1 — ar012r678)]

QIF (Vac* —vV1i-0as") | @IQ1Q1,
(A7)

N = N

which are dependent on the parameter a, which controls the
relative size of the 3-spheres, and appears also in the
superconformal algebra (2, 1;a), @ d(2, 1;a)g @ u(1).
In the limit as @ — 1, we obtain the kappa symmetry
projectors for the AdS; x S® x T* background

N
|II

(1 + F012F345)

R = N —

I(1F0)RIRIRI, (A8)

with the superconformal algebra now p3u(l,1[2) &
p§u( s 2)R (&) 11(1)4.

APPENDIX B: REPRESENTATIONS
OF d(2,1;a) AND p3u(1,1]2)

1. »(2,1; @) superalgebra and BPS representations

Let us briefly review the representation theory of the
exceptional Lie superalgebra d(2,1;a) based on
Refs. [13,20,83]. The bosonic subalgebra of d(2, 1;a) is
3u(1,1) @ 3u(2) @ 3u(2)". The bosonic generators are
denoted

S €su(l. 1), g, € 3u(2), R, € 3u(2),

with g € {0, £}, m € {5, £}, m € {8, £}, and the fer-
mionic generators 55, with & indices. The full 2(2, 1)
superalgebra is given by
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(S0 3+] = £+, 3+ 3-] =230,
1
(0. Qupjl = iEDiﬂﬁ’ (B Q) = Qg
85, 8.] = £84, (8:.8] =28,
1
(s, Qbi—[}’] = iEQh:t/'i’ (2. thc/'}] = Qypsp,
[Rs, Ri] = £R, R R_| =Ry,
1
(R, Qupe] = iinbﬂi’ (R, Qup] = Qg
Q. Q4 } ==£3., Qi Qi i} =F I+,
(R, Qs =F aly, Q1. Q 1} = +al.,
Q. Q 1} =F (1 -a)R.,
Q.9 1} =£(1 2R,
{114, Q—:F:F} =-Jo T als £ (1 - )Ry,
Q45 Q 52} = Jo F a8 £ (1 - a)Rs. (B1)

The bosonic and fermionic generators {J,. 2, ,R, } and
{4, Q,,_..9Q,_,.Q,__} are raising operators. The
Cartan subalgebra is generated by {$),Ls,Rg}, with
H=-Fo— a8 — (1 —a)Rs.

Half-BPS  representation (—%,%,0).—The module
M*(—%.%,0) on which this representation of d(2, 1; &) acts

is spanned by bosons |¢ Y ) which transform in the 2 of

31(2), and fermions |1//$)>, which transform in the 2 of
31(2), both transforming nontrivially also under 3u(1, 1).
The nontrivial action of d(2, 1; @) on this module is given by

n ] n n n
Llgl) =2l el = e,

n 1 n n n
Ry ) == W) Rapy) = W),

S+n )by,

(n)
. +n>|w,; )

=~
)=-(3+3
F.l8) = \/n<n—§¢§+

Soloy) = -

[ (n)
do|l/’/;

>|¢ ST,

st o
Qo) = i\/mw,[(}n))’
Q+¢/}|¢(¥n)> = ﬂ:\/ﬁ|y/<.”_1>>,
Qpelyy) =F Va+1ig5"),
Qpuly) =F Vi + alg”). (82)
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The highest weight state |¢5?>> is annihilated by all the
raising operators, as well as by R_ and by two of the four
fermionic lowering operators, 3_,, and Q_,_. This
representation is therefore half-BPS with the shortening
condition

Q7.2 )

= (F S0 F a8 + (1 —a)Ry)[p\Y) =0,  (B3)

which implies $|¢<+O)> = 0. The lowering operators act
nontrivially on this highest weight state as

0 0
p) =100). Iy = ~lp),
Q6D = —var®. 96" = —Valy
1) aly’”), | alp®).
(B4)
Half-BPS representation (—"T“,O, 2) —The module

M’““‘)( ‘“,;,O) on which this representation of
9(2, I; ) acts is spanned by bosons |¢/i(")>, which trans-

form in the 2 of 8u(2), and fermions |z///i(")>, which
transform in the 2 of 81(2), both transforming nontrivially
under 3u(1, 1). The nontrivial action of d(2, I;a) on this
module is given by

"),
Yl = ),

ly
l-a 0
1 -

2

n 1 /(n n
Relgl”) = 2 101"). Ralgl) =

" 1
25|‘l’/¢( )> ~— 3

+
Soley”) = —(

n a 1 n
Solvj") = - +5+n>|w}§ ).
S 11 (nF1)
Slgy ) =+ n ’H‘E:FE—“ bs )
. I(n)\ g l_ /(nF1)
Salyy”) = i\/n(n+2 F5 a)lw,—, )
Qe [p1) = =Vn+ T=aly"),

n /(n—1)

Qo el = =/l ),

Q) =F Va+1g" ),
QW) =F V1= alg)”). (BS)

The highest weight state |(/)/J<FO)> is annihilated by all the
raising operators, as well as by £_ and by two of the four
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fermionic lowering operators, 2_,, and Q__,. This
representation is therefore half-BPS with the shortening
condition

{Qi. Q)

= (F S0 - a8 F (1-a)Ry)¢ ") =0, (B6)

which implies 3:)|(,{)$)> = 0. The lowering operators act
nontrivially on this highest weight state as

2 |p ) = 1¢10), gy = —|¢'"),
Q_,_|p") = VT =aly'”),
Q___[¢1") = =V =aly®). (B7)

Quarter-BPS representation (— gé,O)@( 2“, ,%)—
The tensor product representation of the two half-BPS
representations consists of vectors in the module M =
M?*® M'1-%)_ The highest weight state is |¢<+0)¢$0>>,
which is annihilated by all the raising operators and
one of the four fermionic lowering operators, Q_, ..
This representation is quarter-BPS with the shortening
condition

Q.. o)
~(Fo + a5 + (1 - a)Ry)|p """

—5lp V4" =0, (BS)

and the other elements of the Cartan subalgebra act on the
highest weight state as

0) o)y _ 10,10
Lo 9") = 51000,

1
Rslg ") =510 17, (B9)

The nontrivial action of the bosonic lowering operators on
this highest weight state is

S ’“’>>:—|¢+ N =10 >,
g |pV¢ ) = 1904y, R_|pV¢ ) = 16V,
(B10)

and the nontrivial action of the fermionic lowering oper-
ators is
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Q [p9L") = ~valy D),
Q. |pV1”) = —vi=alp"y'),
Q__|p¢'") = —Valy ")
~VT=alpPy). (B11)
2. p3u(1,1|2) superalgebra and BPS representations

Here we review, based on Ref. [21], the representation
theory of the Lie superalgebra ps8u(1, 1|2), which has the
bosonic subalgebra of d(2, 1;a) is 3u(1,1) @ 3u(2). The
bosonic generators are

J.e8u(l.1), L, esu(2),

with u € {0, £}, m € {5, %}, and the fermionic generators
Q> With & indices. The full psu(1, 1|2) superalgebra is

[Bo- B =£3+.  [B+: -] = 230.

(B Qg = Qg
(R,,8] =28,

(L, Qz,;/;] = Qp1p.

{Q4— Qi i} =F T2,
{D+i—’ Q—i+} = 18,

1
[0, Qupjl = iiﬁiﬁ/},
[25’ gi] = :I:S:b
1
[2s. Dbi/i] = iinbi/'i’

{Qi++’ Qi——} =3,
Qi+, Qs } =F 8.,
{Q—s-ii’ Q—xqﬂ} = _30 + 85’

Qi1+, Q521 =Fo F & (B12)

The bosonic generators {J_, 8, } and fermionic gener-
ators {Q, . Q.. Q.. Q,__} are the raising oper-
ators. The Cartan subalgebra is generated by {$, &5}, with
$H = —(Fo + &5). There is also a u(1) automorphism Rg
which satisfies

1
R Qupl = 5 Qi

: (B13)

This p8u(1,1|2) superalgebra can be seen as the a — 1
limit of the d(2, 1;a) superalgebra.
1

Half-BPS representation (—%,3).—This representation

of psu(1,12) acts on the module M(—4.}) which is
spanned by bosons |¢§f) ), transforming in the 2 of 3u(2),
and fermions |y/$)> which are singlets. Both transform
nontrivially under 3u(1, 1). The superalgebra p3u(1, 1|2)
acts as
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n 1 n n n
Llgl) =22l el = lel).
n 1 n
ol == (57 ) ),
s ™y — (1 (n)
Solyy ) = =1+ n)ly;"),

n L 1\ &
Sl = (n+ 5% 5 )0,

o (m)y _ l l é l (nF1)
di\vfﬁ>—i\/<n+2¢2><n+2$2 ),
Q_los) = £Va+ Ty,

n n—1
Qo8 = £/ Y),
Q) =F Vot 1lgy),
Q el =F Vi 11g5").

(B14)

The highest weight state |¢i?) ) is annihilated by the raising
operators, as well as by two of the four fermionic lowering
operators, Q_, ; and Q_, _. This representation is half-
BPS with the shortening condition

{Qir QoY) =F (Fo + 25)0Y)

=¥ 5lp?) =o. (B15)

The lowering operators act nontrivially on this highest
weight state as

S 1oy = —lp).
Q__[¢?) =-y). (Bl6)

g |p) =199,
Q__|p) = ),

APPENDIX C: BOSONIC SYMMETRIES
1. SO(2,2) isometry group

80(2,2) splitting.—Let us specify the Lie algebra split-
ting 380(2,2) =38u(l,1). @ 3u(l,1)g. Here SO(2,2)
group transformations act on x* = (x',x%,x%,x%) €
AdS; € R**2, If we combine the vector components into
a quaternion

(C1)

x=x'r,, with 7, = (il,ics,01.0,) = (il, 1),

then SO(2,2) transformations can be realized as a
SU(1,1), x SU(1, 1)g transformation

x - UxUg' ®x+6x, with U= = SU(2),
and Ug = e % € SU(2)g.

where thus
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(C2)

— ok _ Ak _ H
ox = a"nx — ' xty = 6xf'z,.

The double-covering nature of this relationship corre-
sponds to the fact that (+U_,+URg) generate the
same SO(2,2) rotation. The rotation angles and boost
parameters are

-, Pu=Pu=a-a%

Piz=Pis=a' —a', Oz = =043 = —(® + &),

Pu=Pu=—(+2), fyu=pp=a +a".

Opp=-0 =a

(C3)

Here ¢/@'% and ¢/ are in the Cartan subgroups U(1), C
SU(1,1), and U(l)g c SU(1,1)g. The u(l) @ u(1)
generators of rotations by #,, and 65, can be written as
SLo— Jro and —(JLo + Jro) in terms of the left and
right generators, a9, of the Cartan subalgebra
u(l)L @ u(l)p.

2. SO(4) isometry group

80(4) splitting.—Let us specify the Lie algebra splitting
30(4) ~3u(2), @ 3u(2)g. A SO(4) rotation acts on
K = (x', %%, %3, x*) € $3 C R*. If we combine the vector
components into a quaternion

x = xKzg,

(C4)

with Tk — (ﬂ,i03,i01,i02),

then any rotation in SO(4) can be realized (in two ways) as
a SU(2). x SU(2)g transformation

x— U xUg' ~x+6x, with UL = e e SU(2),
and Ug = €@ € SU(2)R.

where

ox = i(drorx — axoy) = xKrg. (C5)
The rotation angles are given by
O =—0, = —a*, 0,4=—0, =a*>-2,
O3=—0p=a'—a', Oy=—0i=—(+2a’),
Oy =—0p=—(*+*), Oy=—0p=0a"+a'. (Co)

Here ¢“’% and ¢/ are elements of the Cartan subgroups
U(1), cSU(2), and U(1)g € SU(2)g. The u(1) & u(1)
generators of rotations by 6, and 65, can be written
as 85— L5 and —(8 5+ Lrs) in terms of the left and
right generators, &5, of the Cartan subalgebra
u(l), & u(l)p.
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80(4)" splitting.—There is a similar splitting 80(4)'~
$u(2) @ 8u(2)g with the u(1) @ u(1) generators, R 5 —
R s and —(R s + Rpgs), of rotations by ), and 6%, written
in terms of left and right generators, Rz, of the Cartan
subalgebra u(1); @ u(l)g.

D(2,1;a)® spin-chain fields.—This (2,1;a)> spin-
chain described in Sec. III contains left- and right-
moving fields which transform under 30(4) @ 30(4)" ~
(3u(2), ® 3u(2)g) ® (3u(2)] B 3u(2)p).

Let us define Z = x; +ix, and Y = x3 + ix4, which
transform under SO(4). We notice that

)G e

We can write a similar relation for Z' = x| + ix, and Y’ =
x4 + ix)y transforming under SO(4)".
0 0 (0 0 0 (0
Now iy = (4. ¢2) and b} = (). 4g.) trans-
form nontrivially under SU(2), and SU(2)g, respectively.
Thus Z and Y (and their complex conjugates Z and Y)

transform under the rotational symmetry SO(4)~
SU2). x SU(2)g as

(0) (0)
(8) ()

¢R+ ¢R_
ro (M) 5o

o) oS

in the notation of the fields in our double-row spin-chain.
Similarly, for the primed fields associated with the SO(4)’
rotational symmetry group,

o~ () ()
¢ ) o)
(%) ()

o)) o)

The vacuum of the d(2, 1;a)? spin-chain therefore trans-
forms as

Z:<ZL>: (B, 1) o
Z (DR P))

while the fundamental bosonic excitations transform as

< X1 + i.)C2
X =
- i(x3 4 ixy)
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o= (5) - (s )7
R (¢R+’¢R+

)
¢,:<§L> (mfm >> -
R (¢R+’¢R+)
$_<ZL> ( ¢|__ ¢L+)>~YZ’,
R (¢R+’ R+ )
1(0)
&y: (ZJ_) <(¢L+’¢|/_(_)> NZY-,
¢R (¢R+’¢R )

Here a composite state of the ¢ and ¢’ excitations would
transform as YY’'.
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psu(1, 1|2)? spin-chain fields.—The p3u(1,1]2)? spin-
chain described in Sec. V contains left- and right-moving
fields which transform under 80(4) ~ 3u(2), @ 3u(2)g.

Defining again Z=x; +ix, and ¥ =x3+ix4, we find that
the vacuum of the psdu(1,1|2)? spin-chain transforms as

(0)
Z
= (2)-(5p )
R Pr
while, for the first bosonic excitations,

| (0)
0 9
Z dr.
©)
S P L=
¢ ey (0) '
R PR_
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