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Within massive gravity, we construct a gravity dual for the insulator/metal phase transition and colossal
magnetoresistance effect found in some manganese oxides materials. In the heavy graviton limit, a
remarkable magnetic-field-sensitive DC resistivity peak appears at the Curie temperature, where an
insulator/metal phase transition happens and the magnetoresistance is scaled with the square of field-
induced magnetization. We find that metallic and insulating phases coexist below the Curie point and the
relation with the electronic phase separation is discussed.
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I. INTRODUCTION

In recent years, the holographic correspondence [1–4],
relating a weak coupling gravitational theory in a (dþ 1)-
dimensional asymptotically anti–de Sitter (AdS) space-
time to a d-dimensional strong coupling conformal
field theory (CFT) in the AdS boundary, has been exten-
sively investigated and some remarkable progresses have
been made in condensed matter physics systems [5–9].
For a recent review on the holographic superconductor/
superfluid models, please refer to Ref. [10]. Very recently,
the present authors and their collaborators have realized
the paramagnetism/ferromagnetism and paramagnetism/
antiferromagnetism phase transitions in holographic mod-
els by introducing a massive 2-form field in an AdS black
brane background and some interesting magnetic properties
of the models have been investigated in a series of papers
[11–17]. In this paper, we will provide a new application of
the holographic AdS=CFT correspondence by implement-
ing the metal/insulator phase transition and the colossal
magnetoresistance (CMR) effect found in some manganese
oxides materials in a holographic model.
Complex magnetic materials showing strong magneto-

resistance have simultaneously been the focus of the
attentions of the magnetic recording industry and the study
of strongly correlated electron systems. Particularly, the
study of the manganites such as A1−xBxMnO3 (A ¼ La, Pr,
Sm, etc. and B ¼ Ca, Sr, Ba, Pb), which exhibit the
“colossal” magnetoresistance effect, is among the main
areas of research in strongly correlated electron systems
[18–24]. These materials show remarkable magnetoresis-
tivity and an insulator (or semiconductor)/metal phase
transition associated with a paramagnetic/ferromagnetic
phase transition, which has a completely different physical
origin from the “giant” magnetoresistance observed in

layered and clustered compounds. These materials are
currently being intensively investigated by a sizable frac-
tion of the condensed matter community, and its popularity
is reaching the level comparable to the high-temperature
superconducting cuprates.
After great efforts in recent years, mainly through

computational and mean-field studies for realistic models,
considerable progress has been achieved in understanding
the curious properties of those compounds. However, a
fully quantitative understanding of the CMR effect is still a
challenge; much work remains to be carried out and it is the
subject of current active investigation [25]. The holo-
graphic duality provides an alternative method for this
type of strong correlated phenomena. In this paper, we will
make a first attempt to build a holographic model to
understand the CMR effect.

II. HOLOGRAPHIC MODEL

Before presenting our holographic model, let us make a
brief analysis about how to build a holographic description
for such a phenomenon. First, before the ferromagnetic
phase transition happens, CMR materials are in an insulat-
ing phase where DC resistivity is finite and increases with
decreasing temperature. So the translation symmetry is
broken; otherwise no scattering happens and DC resistivity
is divergent. More important is that, more and more results
from experiments show that the insulating phase in CMR is
charge ordered, in which charges are localized and form
inhomogeneous structures [21]. To realize the inhomoge-
neity for the CMR effect is a challenge both in condensed
matter theory and the holographic description. Fortunately,
just as pointed out recently in Ref. [26], momentum
relaxation by breaking the translation invariance can be
achieved by introducing a mass term of the graviton in the
bulk so that the macroscopic DC resistance becomes finite.
This provides us with a very simple holographic model to
study macroscopic DC resistance in some inhomogeneous
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materials without involving some complicated computa-
tions. Second, in general, only breaking the translational
invariance cannot lead to an insulating resistivity. Meffort
and Horowitz [27] proposed a simple framework to have
the insulating behavior in general relativity without break-
ing translational invariance, where a real scalar field is
coupled to an U(1) gauge field. But the Meffort-Horowitz
model is only valid in the case of zero charge density. Thus
a natural choice to build a holographic insulator model with
finite charge density is to consider the Meffort-Horowitz
model in a massive gravity theory. Finally, motivated by our
previous work about DC resistivity in the paramagnetism/
ferromagnetism phase transition in the probe limit [17], the
model with a massive 2-form field coupled with the
Maxwell field shows a metallic ferromagnetic phase at
low temperatures.
Based on these considerations, we present the model

with the massive 2-form field-Maxwell-dilaton theory in a
massive gravity with a negative cosmological constant. The
action can be written as,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
− ðLins þ λ2LferrÞ þ Lmg

�
;

Lins ¼ e−2g0ψFμνFμν þ 1

2
ð∇ψÞ2 þm2

2

2
ψ2;

Lferr ¼
ðdMÞ2
12

þm2
1

4
MμνMμν þMμνFμν

2
þ J
8
VM;

Lmg ¼ αTrKþ β½ðTrKÞ2 − TrK2�: ð1Þ

Here L is the AdS radius and G is the Newtonian
gravitational constant. Without loss of generality, we can
set L ¼ 1. λ, J, α, β and g0 are all model parameters. R is
the scalar curvature, andAμ is the U(1) gauge field with field
strength Fμν ¼ 2∇½μAν�. ψ is a dilaton field with squared
mass m2

2.Mμν is a 2-form field with squared massm2
1 and a

nonlinear potential VM. dM is the exterior differential of the
2-form field Mμν and ðdMÞ2 ¼ 9∇½μMντ�∇μMντ. Lmg is the
mass term of the graviton, where the matrix K is defined in
terms of the dynamical metric gμν and a reference back-
ground metric fμν by

Kμ
νKν

τ ¼ gμνfντ: ð2Þ

This is a special case of the formulation of the massive
gravity theory [28,29] presented in Ref. [30]. As shown
in Refs. [26,31], there is a position-dependent mass
of the gravitational perturbations, m2

gðrÞ ¼ −2β − α=r.
Reference [26] showed that, in the leading level of the
lattice, the gravitonmass term is proportional to the square of
the modulating amplitude multiplied by the wave vector in
the dual boundary lattice. This gives a physical meaning of
the graviton mass in the holographic model, i.e., m2

g

describes the strength of inhomogeneity in the dual

boundary theory. This consequence plays a key role in
our holographicmodel. In this paper,wewill pay attention to
two limits, i.e., the weak inhomogeneous and strong
inhomogeneous cases, which correspond to the cases of
m2

g ≪ 1 andm2
g ≫ 1, respectively. These two cases admit us

to obtainDC resistivity in a simplemanner.Wewill see later,
that only the case with a large value of m2

g can give rise to
the typical CMR effect, which agrees with the fact that there
is a strong inhomogeneity with the CMR effect in the
manganite.
The parameter λ can be understood as the coupling

strength between the polarization field Mμν and the back-
ground Maxwell field strength by rescaling the polarization
field and the parameter J. In the effective action of string
theory, the value of the dilaton coupling parameter is
taken to be g0 ¼ 1. The case with g0 ¼

ffiffiffi
3

p
corresponds

to the four-dimensional action by dimensionally reducing
from the five-dimensional Kaluza-Klein theory [32].
Nonetheless, it is helpful to set g0 as an arbitrary positive
constant here so that we can see what role the dilaton field
plays in the model. In addition, the choice of the nonlinear
potential VM is not unique. What we need is that there is a
critical temperature, below which the xy component ofMμν

can condense. In this paper, we take the potential as
follows:

VM ¼ ð�MμνMμνÞ2 ¼ ½�ðM ∧ MÞ�2: ð3Þ

Here � is the Hodge-star operator. We choose this form just
for simplicity. To be stable for both the bulk and boundary
theories when ψ ¼ 0, we require m2

g ≥ 0 for all r [33,34].
Following Ref. [34], we take the degenerate reference
background with fxx ¼ fyy ¼ 1 and the other components
vanish. Although the reference background is degenerate,
Ref. [34] showed that this two-parameter massive theory is
ghost free for the case with a β mass term, but it has not yet
been proven for the case with an α mass term. Therefore in
this paper, we will take α ¼ 0 in order to avoid possible
problems with causality.

III. BACKGROUND EQUATIONS

Now we are in the position to calculate the background
solution from our holographic model (1). From this action,
we can get the equations of motions for matter fields and
gravity,

∇τðdMÞτμν −m2
1Mμν − Jð�MτσMτσÞð�MμνÞ ¼ Fμν;

∇μ

�
e−2g0ψFμν þ

λ2

4
Mμν

�
¼ 0;

∇2ψ −m2
2ψ þ 2g0e−2g0ψFμνFμν ¼ 0;

Rμν −
1

2
Rgμν −

3

L2
gμν − βXμν ¼ Tμν: ð4Þ
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The energy-momentum tensor Tμν reads

Tμν ¼ λ2
�
1

4
ðdMÞσμτðdMÞσατgαν þ

m2
1

2
MτμMτ

ν

þMτðμFτ
νÞ þ

J
8
VMgμν

�
þ 2e−2g0ψFτ

μFτν

þ∇μψ∇νψ þ 1

2
ðλ2Lferr þ LinsÞgμν ð5Þ

and the tensor field Xμν is,

Xμν ¼ ðK2Þμν − ðTrKÞKμν þ
1

2
gμν½ðTrKÞ2 − TrðK2Þ�:

ð6Þ

In order to solve Eq. (4), we assume that the metric has
the following form:

ds2 ¼ −r2fe−χdt2 þ dr2

r2f
þ r2ðdx2 þ dy2Þ; ð7Þ

where f and χ are two functions of r. Suppose the solution
has a horizon at rh; the associated temperature then is
T ¼ r2hf

0e−χ=2=4π. We take the following self-consistent
ansatz for the matter fields:

Aμ ¼ ϕðrÞdtþ Bxdy; ψ ¼ ψðrÞ;
Mμν ¼ −pðrÞdt ∧ drþ ρðrÞdx ∧ dy: ð8Þ

Here B is a constant magnetic field and it will be viewed as
the external magnetic field in the boundary field theory.
Putting the ansatz and the metric in Eq. (7) into Eq. (4), we
can get a set of ordinary differential equations. To solve
these equations, we need a total of seven initial conditions
and the position of the horizon rh. We impose the regular
conditions at the horizon, which means that all the
functions have Taylor expansions near the horizon and
fðrhÞ ¼ ϕðrhÞ ¼ 0. This means there are only five inde-
pendent initial parameters, which are ρðrhÞ, ψðrhÞ, χðrhÞ,
pðrhÞ and rh.
Near the boundary r → ∞, the equations give the

following asymptotic solutions for the matter fields:

ρ ¼ ρþ

�
r
rh

�ð1þδ1Þ=2 þ ρ−

�
r
rh

�ð1−δ1Þ=2 þ � � � þ B
m2

1

;

p ¼ σr2h
m2

1r
2
þ � � � ; ϕ ¼ μ −

σrh
r

þ � � � ;

ψ ¼ ψþ

�
r
rh

�ðδ2−3Þ=2 þ ψ−

�
r
rh

�
−ðδ2þ3Þ=2

þ � � � ; ð9Þ

where δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

1

p
and δ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

2

p
, μ is the

chemical potential, σ is the charge density and ρ� and

ψ� are all constants. We impose the regular conditions at
the horizon and the Dirichlet and source-free conditions for
the matter fields at the boundary of r → ∞, i.e., ϕ ¼ μ,

ψþr
ð3−δ2Þ=2
h ¼ Δ and ρþ ¼ 0. Without loss of generality, we

can set Δ ¼ 1. Note that a nontrivial solution for ψ always
exists when g0 and Fμν are both nonzero. Four boundary
conditions give four constraints for five initial values of
ρðrhÞ, ψðrhÞ, χðrhÞ, pðrhÞand rh. As a result, only one of
them is free. We can choose pðrhÞ as the free initial
parameter.
Following Ref. [17], we need J < 0 and δ1 > 1, δ2 < 3.

Otherwise, the nonlinear terms of ρ and ψ will play more
and more important roles when r → ∞, which will break
the asymptotic AdS4 geometry of space-time and lead to
the instability of the dual theory in the UV region.

IV. DC RESISTIVITY IN THE HEAVY
GRAVITON LIMIT

A. Perturbations in the low-frequency limit

Now let us study how DC conductivity is influenced by
temperature and the external magnetic field in this model.
We need to investigate the properties of perturbation both in
the matter sector and the gravitational sector. Because it is
isotropic in the x − y plane, the DC resistivity is also
isotropic. Then we only need to compute the DC resistivity
along the x direction or the y direction. To do so, we
consider the perturbation δAx ¼ ϵaxðrÞe−iωt. Then all the
terms of Aμ, gμν andMμν are involved. However, if we only
care about the DC resistivity in the low-frequency limit,
i.e., T ≫ ω → 0, then the problem can be simplified. In
such a limit, we need only consider the components,

δAx ¼ ϵaxðrÞe−iωt; δMij ¼ ϵCijðrÞe−iωt;

δgμνdxμdxν ¼ 2ϵ

�
r2gtxðtÞdxdtþ

iωgrxðrÞ
f

drdx

�
e−iωt:

ð10Þ

Here ði; jÞ ¼ ðr; xÞ or ðt; yÞ. At the linear level of ϵ, the
equations for the matter field perturbations are,

C00
ty þ

χ0

2
C0
ty þ

��
f0

f
− χ0

�
gtx − g0tx

�
ρ0

−
m2

1Cty

r2f
− 4Jρp

�
Crx

r2
þ eχpgtx

r2f

�
þOðωÞ ¼ 0; ð11aÞ

m2
1Crx − a0x −

4Jpρeχ

r4f
ðCty − ρgtxÞ þOðωÞ ¼ 0; ð11bÞ

½r2fe−χ=2ðe−2g0ψa0x − λ2Crx=4Þ�0
þ eχ=2g0txr2ðλ2e2g0ψp=4 − ϕ0Þ þOðωÞ ¼ 0; ð11cÞ

and the equations for the metric perturbations are,
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g0tx þ ½λ2ð2B −m2
2ρÞρ − 4B2e−2g0ψ � e

−χ

r4
grx

þ ax
r2

ðλ2p − 4ϕ0e−2g0ψ Þ þOðωÞ ¼ 2βe−χ

r2
grx;

× ðr2grxe−χ=2Þ0 þOðωÞ ¼ −gtxeχ=2=f ð12Þ

where ψ , p, ρ, f and χ are determined by background
solutions.OðωÞ are the terms with order of ω, and the other
equations of gravity parts and matter parts are of order
OðωÞ, all of which can be neglected when ω → 0.
Here it is worth stressing how to get these perturbational

equations. The equations (11) are obtained directly from
the equations of motion for Mμν and Aμ. However, the
perturbation equations for the gravity part are not from the
gravity field equations directly. The first equation in
Eq. (12) is a combination of the equations of the rx and
xx components at the first and zeroth order of ϵ, respec-
tively, where we eliminated the f00 term. Note that the
perturbational equations for gravity at the linear level of ϵ
also give a tx-component equation, which is rather com-
plicated. It is not easy to see how to combine it with other
equations including the gravity and matter equations to
obtain a simple equation. A very simple method to obtain
the second equation in Eq. (12) is as follows. First, from the
definition of the energy-momentum tensor, combined with
the equations of the matter fields, we have ∇μTμν ¼ 0 (of
course, this is a generic conclusion). On the other hand, the
Einstein tensorGμν ¼ Rμν − 1

2
Rgμν is also divergence free.

Then the equations of the gravity field imply ∇μXμν ¼ 0,
which should hold at any order of ϵ. At the linear order of ϵ,
it gives the second equation in Eq. (12).

B. Heavy graviton limit

In the case of weak inhomogeneity m2
g ≪ 1, the main

part of the DC resistivity is very simple. In that case, the
graviton mass is very small, and gravitation fluctuations
suffer from smaller scattering than others. So the DC
conductivity is dominated by the background geometry.
In other words, we can neglect the fluctuations of the matter
fields when we compute the DC resistivity. Then following
Refs. [26,31], we can find that the DC resistivity
R ∝ m2

g → 0. The more interesting case is the strong
inhomogeneous limit, i.e., m2

g ≫ 1, which is the case that
really interests us in this paper. In such a limit, the graviton
has very heavy mass so that it is in fact very hard to be
excited by fluctuations. The heavy mass term suppress the
fluctuation of gravity so that we can fix the background
geometry. In this case, the main part of the DC resistivity
can be obtained by just considering the fluctuations of the
matter fields. To see that, now let us consider the case when
jβj ≫ 1. We assume that ϕ, p, ρ, χ, f are of order Oð1Þ;
then the first equation of Eq. (12) shows that grx is of order
Oð1=βÞ and similarly for gtx. This means that in the heavy
graviton limit, i.e., β ≫ 1, we can neglect the fluctuations

of the metric. This limit enables us to obtain the formula for
the DC resistivity easily.
After neglecting the fluctuations of the metric, we

have the following equations of perturbations in the low-
frequency limit:

C00
ty þ

1

2
χ0C0

ty −
m2

1Cty

r2f
−
4JpρCrx

r2
þOðωÞ ¼ 0; ð13aÞ

m2
1Crx − a0x −

4JeχpρCty

r4f
þOðωÞ ¼ 0; ð13bÞ

½r2fe−χ=2ðe−2g0ψa0x − λ2Crx=4Þ�0 þOðωÞ ¼ 0: ð13cÞ

At the boundary, we have the following asymptotic
solutions:

Cty ¼ Ctyþr−ð1−δ1Þ=2 þ Cty−r−ð1þδ1Þ=2 þ � � � ;
Crx ¼ −

ax−
m2

1r
2
þ � � � ; ax ¼ axþ þ ax−

r
þ � � � : ð14Þ

Since δ1 > 1, we need a boundary condition Ctyþ ¼ 0.
According to the dictionary of AdS=CFT correspondence,
the electric current is hJi ¼ ax− and the DC conductivity is
given by R ¼ limω→0iωaxþ=ax−.
From Eq. (13c), we see that in the limit ω → 0, there is a

radial conserved quantity,

F ¼ r2fe−χ=2ðe−2g0ψa0x − λ2Crx=4Þ: ð15Þ
At the boundary r → ∞, by taking the asymptotic solutions
(14) and the fact that ψ ¼ χ ¼ 0 and f ¼ 1 into account
we have,

F ¼ −ð1 − λ2=4m2
1ÞhJi: ð16Þ

At the horizon, using Eqs. (13a) and (13b) with the fact that
Cty is regular at the horizon, we have,

F ¼ lim
r→rh

r2fa0x

�
e−2g0ψ −

λ2m2
1

4ðm4
1 þ 16J2eχp2ρ2=r4Þ

�
:

ð17Þ

The ingoing condition for ax at the horizon implies,

r2fa0x ¼
d
dr�

a0x ¼ −iωax ð18Þ

at r → rh. Here r� ¼
R
dr=ðr2fÞ is the tortoise coordinate.

So we get,

hJi ¼ iωaxðrhÞ
1 − λ2

4m2
1

�
e−2g0ψ0 −

λ2m2
1

4ðm4
1 þ 16J2eχ0p2

0ρ
2
0=r

4
hÞ
�
:

ð19Þ
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Here ψ0, p0, χ0 and ρ0 are the initial values of ψ , p, χ and ρ
at the horizon. Now our mission is to find the relation of
aðrhÞ and aþ. In the-low frequency limit, Eq. (13c) implies
that the electric field is constant, i.e., limr¼rhaxðrÞ ¼ axþ.
So we obtain the DC resistivity in the heavy graviton
limit as,

1

Rheavy
¼
�
1−

λ2

4m2
1

�
−1
�
e−2g0ψ0 −

λ2m2
1

4ðm4
1þ16J2eχ0p2

0ρ
2
0=r

4
hÞ
�

þOð1=m2
gÞ: ð20Þ

We see that the DC resistivity is controlled by the values of
the field at the horizon. This is in agreement with the
statement proposed first by Iqbal and Liu in Ref. [35] using
the “membrane paradigm” of a black hole.
As a self-consistency check, we can take λ ¼ 0. In that

case there are only the dilaton and the Maxwell field. Then
we have R−1

heavy ¼ e−2g0ψ0 þOð1=m2
gÞ, which agrees with

the exact result R−1 ¼ Zðψ0Þ þ μ2=m2
g given in Ref. [31]

with the dilaton coupling Zðψ0Þ ¼ e−2g0ψ0 . From the
expression for the DC resistivity, we see that when
Rheavy ∼m2

g, the heavy graviton limit is broken. In that
case, the fluctuations of the metric have to be taken into
account.

V. METAL/INSULATOR PHASE TRANSITION
AND MAGNETORESISTANCE IN

STRONG INHOMOGENEITY

The physical phase at different temperatures depends on
the model parameters. As a typical case, we fix m2

1 ¼ 1=3,
m2

2 ¼ −2, m2
g ¼ 40, g0 ¼ 1 and λ ¼ 3=4 to compute the

DC resistivity at different temperatures and small external
magnetic fields numerically. All the results are shown
in Fig. 1.
In Fig. 1(a), we plot the DC resistivity at zero magnetic

field with different values of the chemical potential μ. There
is a critical μc ≃ 9.71. When μ < μc, there is an insulator/
metal phase transition. The resistivity shows an insulator’s
behavior described by the dilaton field when T > TC.
When the temperature is lowered to the Curie temperature
TC, ρ begins to condense spontaneously and a ferromag-
netic phase transition happens. Below and near TC, the
resistivity decreases when the temperature is lowered,
which shows a metal’s behavior. Though the behavior of
the DC resistivity is transformed into metallic from
insulating, the insulating phase described by the dilaton
field coexists with the ferromagnetic metallic phase in the
sample. Numerical results show that two different elec-
tronic phases can coexist below the Curie temperature.
There is a distinct peak at the temperature where sponta-
neous magnetization begins to appear and an insulator/
metal phase transition happens there. This is just one of the
characteristic properties of CMR materials in manganese

oxides. When μ > μc, the DC resistivity shows a metallic
behavior in the whole temperature range (up to the region
where numerical computations can be done), though there
is still a sudden drop at TC. What is more, when a small

(a)

(b)

(c)

(d)

FIG. 1 (color online). (a): The behavior of the DC resistivity vs
temperature for different μ with B ¼ 0 and J ¼ −2. (b): The DC
resistivity vs temperature for different external magnetic fields.
Here B0=T2

C ≃ 5.5 × 10−4, and J ¼ −1=3. (c) and (d): The DC
resistivity for La1−xSrxMnO3 as a function of temperature for
different doping x and magnetic fields. The experimental data are
from Ref. [18].
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magnetic field B is turned on, we find that the resistivity is
very sensitive to the external magnetic field [see Fig. 1(b)].
Here we emphasize that the heavy graviton limit plays a

very important role. Just as mentioned above, for the light
graviton case, the behavior of the DC resistivity is
dominated by the fluctuation of the graviton; then no such
metal/insulator phase transition or CMR effects appear.
This is in agreement with the fact that the CMR effect is due
to the fact that two electronic phases mix with each other
and form an inhomogeneity at the nm scale [19,21,36].
It is interesting to compare our holographic results with

some experimental data of CMR materials. The resistivity
of a typical CMR material La1−xSrxMnO3 is shown in
Figs. 1(c) and 1(d). We see that our holographic model
gives qualitatively similar results when x ≥ 0.1, which is a
powerful evidence to support that this holographic model is
a suitable one to describe the CMR effect. Furthermore, in
La1−xSrxMnO3, when x > xc ≃ 0.2, the peak of the DC
resistivity disappears, which is very similar to the case
when the chemical potential μ > μc. This is consistent with
the standard holographic dictionary that the chemical
potential μ relates to the doping of materials. In addition,
we can find from Eq. (20) the following scaling relation for
magnetoresistance (MR) in the case of a weak magnetic
field and T → Tþ

C :

MRðBÞ ¼ 1 − RðBÞ=RðB ¼ 0Þ ∝ ρ20 ∝ B2: ð21Þ

Note that in the region of T > TC, the system is in the
paramagnetic phase. Therefore the magnetic moment N is
proportional to B in the weak-field case. Then Eq. (21) tells
us that MRðBÞ ∝ N2. This result is in complete agreement
with the experimental data of CMR materials [18].
Here it is worth making some additional comments on

Fig. 1. In Fig. 1(b) we only plotted the DC resistivity with
respect to temperature for different magnetic fields near the
Curie point so that the different curves can be seen clearly.
When the temperature is much less than TC, the DC
resistivity will grow similarly to Fig. 1(d). The character-
istic phenomenon of the CMR effect is that the DC
resistivity is sensitive to the magnetic field at the Curie
temperature. Since the Curie point disappears when x → 0,
there is no CMR effect. The model can only cover the

materials in the region where the CMR effect can happen,
so it cannot reproduce the behavior of La1−xSrxMnO3

when x → 0. The model here is a phenomenological one
for the CMR effect rather than a model for the material
La1−xSrxMnO3, so it can only cover the region where the
CMR effect happens in La1−xSrxMnO3.

VI. DISCUSSION

In this paper we have presented a gravity dual to the
metal/insulator phase transition and found that the model
can describe the CMR effect in some manganese oxides
materials. The behavior of DC resistivity is in qualitative
agreement with experimental data. The model provides a
new example to apply the AdS=CFT correspondence to
condensed matter systems. As the first attempt to describe
the CMR effect in a holographic setup, more aspects of the
model should be further studied. The first one is to study
the behavior of DC resistivity in the case with an arbitrary
graviton mass. For this, we need to consider the perturba-
tions of the gravitational background, which is under
investigation. Note that the current model only realizes
the macroscopic phenomenon at large scales. It is very
interesting to consider whether one can directly realize such
a local electronic phase separation in a holographic setup
with Einstein’s gravity theory rather than massive gravity.
For example, we can set the chemical potential to be
periodic in the spatial directions and take the lattice and
impurity into account. In those cases, we can expect both ψ
and ρ to be inhomogeneous, and electronic phase separa-
tion may be realized. For this, we have to deal with a set of
partially differential equations and the involved numerical
computation is extremely nontrivial. We expect it could be
reported in the future.
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