
Holographic calculation for large interval Rényi entropy
at high temperature

Bin Chen1,2,3,* and Jie-qiang Wu1,†
1Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing 100871, People’s Republic of China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, People’s Republic of China
3Center for High Energy Physics, Peking University, Beijing 100871, People’s Republic of China

(Received 22 August 2015; published 2 November 2015)

In this paper, we study the holographic Rényi entropy of a large interval on a circle at high temperature
for the two-dimensional conformal field theory (CFT) dual to pure AdS3 gravity. In the field theory, the
Rényi entropy is encoded in the CFT partition function on n-sheeted torus connected with each other by a
large branch cut. As proposed by Chen and Wu [Large interval limit of Rényi entropy at high temperature,
arXiv:1412.0763], the effective way to read the entropy in the large interval limit is to insert a complete set
of state bases of the twist sector at the branch cut. Then the calculation transforms into an expansion of four-

point functions in the twist sector with respect to e−
2πTR
n . By using the operator product expansion of the

twist operators at the branch points, we read the first few terms of the Rényi entropy, including the leading
and next-to-leading contributions in the large central charge limit. Moreover, we show that the leading
contribution is actually captured by the twist vacuum module. In this case by the Ward identity the four-
point functions can be derived from the correlation function of four twist operators, which is related to
double interval entanglement entropy. Holographically, we apply the recipe in [T. Faulkner, The
entanglement Rényi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221] and [T. Barrella et al.,
Holographic entanglement beyond classical gravity, J. High Energy Phys. 09 (2013) 109] to compute the
classical Rényi entropy and its one-loop quantum correction, after imposing a new set of monodromy
conditions. The holographic classical result matches exactly with the leading contribution in the field
theory up to e−4πTR and l6, while the holographical one-loop contribution is in exact agreement with

next-to-leading results in field theory up to e−
6πTR
n and l4 as well.

DOI: 10.1103/PhysRevD.92.106001 PACS numbers: 11.25.Tq, 11.10.Kk

I. INTRODUCTION

The entanglement entropy is an important notion in a
quantum many-body system [1,2]. Not only could it be
used to measure the effective degrees of freedom in the
system but it could also be taken as a quantum order
parameter, among its various applications. It is defined as
follows. Let A be a subsystem, and then the reduced density
matrix of A is obtained by tracing out the degrees of
freedom of its complement Ac

ρA ¼ TrAcρ; ð1:1Þ
where ρ is the density matrix of the whole system. Then the
entanglement entropy is defined to be the von Neumann
entropy of the reduced density matrix

SA ¼ −TrρA log ρA: ð1:2Þ
Furthermore, for pure state ρ ¼ jψihψ j, the entanglement
entropy of the subsystem is equal to the one of its
complementary part

SA ¼ SAc; ð1:3Þ

but for a thermal state the equality breaks down,

SA ≠ SAc ð1:4Þ

because of the thermal effect. It is convenient to calculate
the entanglement entropy from the Rényi entropy, which is
defined to be

Sn ¼ −
1

n − 1
log TrρnA: ð1:5Þ

The entanglement entropy can be read from

SEE ¼ lim
n→1

Sn; ð1:6Þ

if the limit n → 1 is well defined.
In quantum field theory, the entanglement entropy and

Rényi entropy are hard to compute because there are an
infinite number of degrees of freedom. In this case, the
entanglement entropy is defined with respect to a spatial
submanifold at a fixed time. By using the replica trick [3]
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the Rényi entropy can be transformed into the partition
function of n copies of field theory with the fields being
identified at the submanifold. It is usually a formidable task
to compute this partition function for a general field theory.
Even for two-dimensional (2D) conformal field theory
(CFT), which is expected to give more analytic results due
to the existence of infinite dimensional symmetries, the
exact results are limited. For 2D CFT, the Rényi entropy is
generally related to the partition function on a higher genus
Riemann surface. Besides a few universal results deter-
mined by the conformal symmetries [4], only the partition
functions of a free boson and fermion on a higher genus
Riemann surface have been known [5–10].
However, it is possible to expand the partition function

with respect to some modular parameters for a general CFT
in some cases. The two simplest nontrivial examples are the
case of two intervals on a complex plane and the case of
one interval on a torus. Generally, to calculate the partition
function, one can cut the Riemann surface at some cycles
and insert a complete set of state bases such that the full
Riemann surface changes into a surface without handle and
hole and the computation transforms into a summation of
multipoint correlation functions on a full complex plane. The
key point is to find the nice way to cut open the Riemann
surface such that the expansion series is well behaved. For a
general genus-g Riemann surface, we can always choose g
couples of A cycles and B cycles with a proper intersection
[11] and cut the Riemann surface at certain cycles. Different
choices on the cutting correspond to different ways of
expanding the partition function. Even though by the
modular invariance the different expansions should be equal
to each other, their convergent rates are different.
The simplest trivial example is the partition function on

a torus. One may quantize the theory along the thermal
direction or the spatial direction, which corresponds to
inserting the complete bases along the spatial cycle or
thermal cycle, and the partition function could be written as

Z¼
X
i

e−
2πβ
R ðLiþL̄i− c

12
Þ; or Z¼

X
i

e−
2πR
β ðLiþL̄i− c

12
Þ: ð1:7Þ

Because of the modular invariance, the two different
calculations give the same answer. At a low temperature
the quantization along the thermal direction leads to a better
convergent series while at a high temperature the spatial
quantization works better.
For the double-interval case, if the intervals are short,

one may take the operator product expansion (OPE) of the
twist operators to compute the Rényi and entanglement
entropy order by order with respect to a small cross ratio
[12,13]. Actually, taking OPE is equivalent to inserting a
complete set of bases at the cycles around the two intervals
on every sheet. In the Riemann surface for the nth Rényi
entropy of the double-interval case, there are n − 1 inde-
pendent couples of cycles denoted by Ai and Bi. As shown

in Fig. 1 for the n ¼ 3 case, there are two couples of
independent cycles Ai, Bi, i ¼ 1; 2. In the small interval
limit, we can take the OPE of the twist operators at the
branch points of the first interval. This is equivalent to
cutting and inserting a complete set of state bases at Ai
cycles enclosing the interval. This expansion is well
convergent for a small cross ratio. On the contrary, for a
large cross ratio, which means the intervals are large and
the branch points of two intervals are close to each other,
we must take the OPE of the second and third twist
operators, which is equivalent to cutting the Riemann
surface along the Bi cycles enclosing the branch points
of separated intervals.
For the case of a single interval on a torus, the Riemann

surface is obtained by connecting n tori along the branch
cut. When the interval is not very large, one may cut the
spatial or thermal cycle and insert a complete set of bases to
compute the partition function [6,14], just as in the genus-1
case. Which cycles to cut depends on the temperature.
But for a high temperature and a very large interval, the
previous treatment is not good enough because the result-
ing expansion series is poorly behaved. Instead, it was
proposed in [7,15] that one should cut the cycle crossing
the branch cut. This requires the insertion of a complete set
of bases in the twist sector rather than the normal sector in
the n-copied CFT. This proposal has been checked for the
free compact and noncompact bosons, and it has been
applied to prove the universal relation between the thermal
entropy and the entanglement entropy.
The AdS/CFT correspondence provides another way to

compute the entanglement entropy in a CFT. For the
Einstein gravity, it was first proposed by Ryu and
Takayanagi [16,17] that the entanglement entropy could
be holographically given by the area of a minimal surface in
the bulk, which is homogeneous to A

SEE ¼ AreaðΣAÞ
4G

: ð1:8Þ

The holographic entanglement entropy could be under-
stood as a generalized gravitational entropy [18,19]. In the

FIG. 1 (color online). Canonical cycles for the double intervals.

BIN CHEN AND JIE-QIANG WU PHYSICAL REVIEW D 92, 106001 (2015)

106001-2



higher dimension case, it is not clear if the holographic
entanglement entropy gives precisely the entanglement
entropy in the dual field theory. Nevertheless, for a 2D
CFT holographically dual to AdS3 gravity, it has been
proved that the holographic computation is correct in
the semiclassical regime [20,21]. Therefore, the Rényi
entropy provides a new window to study the AdS3=CFT2

correspondence.
The AdS3=CFT2 correspondence states that the quantum

gravity in AdS3 spacetime is dual to a 2D CFT with a
central charge [22]

c ¼ 3l
2G

; ð1:9Þ

and a sparse light spectrum [21,23], where G is the three-
dimensional (3D) gravity coupling constant. Though a
precise definition of AdS3 quantum gravity, possibly a
string theory, has not been well established, its semi-
classical limit has been much studied. As the classical
configurations in the AdS3 gravity could be obtained as
the quotients of the global AdS3 by the subgroup of the
isometry group SLð2; CÞ, the path integral of semiclass-
ical AdS3 gravity could be defined in principle. On the
other side, the explicit construction of dual CFT is not
known. Nevertheless, the large central charge limit of the
CFT, corresponding to the semiclassical gravity, is much
simplified. Under this limit, only the vacuum module
dominates the contribution to the CFT partition function
[21]. As a result, the partition function is universal in the
sense that it is very much restricted by the conformal
symmetry and is independent of the explicit construction
of the CFT. In this work, we are interested in the large
central charge limit of the Rényi entropy of 2D CFT.
From the AdS3=CFT2 correspondence, the partition
function of the Riemann surface in the CFT should be
given by the partition function of the gravitational
configuration ending on the Riemann surface. In the
large central charge limit, the Rényi entropy can be
decomposed into the terms proportional to c; c0; 1c ;…,
which should correspond, respectively, to the classical,
quantum one-loop, two-loop, etc., parts of the gravita-
tional partition function [13].
In the field theory side, for a genus-g Riemann surface,

we need to choose g Ai cycles to insert complete bases at
each cycle such that the expansion converges fast. Under
the large c limit, the dominant contribution to the partition
function comes from the light primary states [21] and their
descendants. The heavy states give only nonperturbative
corrections of order Oðe−cÞ. Furthermore, among the light
spectrums only the vacuum module gives the linear c order
result and the other modules give only higher order
corrections with respect to 1

c [21]. Moreover, it turns out
that even for the next-to-leading correction with respect to
1
c, the first few terms in the expansion are captured only by

the vacuummodule [14,24,25]. The vacuum Verma module
consists of a primary identity operator and its descendants,
which could be constructed by the stress tensors TðzÞ and
T̄ðz̄Þ. In this work, we assume that for the field theory that
is dual to the pure gravity, we only need to insert the
vacuum module at each cycle.
Because of the replica symmetry, we always deal with a

CFTon an n-sheeted surface, which can be regarded as one
CFT with n copies of the original field with the fields in
different replicas being identified along the branch cut.
When we combine the n-sheeted surface’s field into one
CFT, we call it n-copied CFT1 with nc central charge and
denote it as CFTn. The original CFT is denoted as CFT1. If
we do not consider the monodromy condition of the fields
around the branch point, the n copies of the fields are
decoupled so that we have just a tensor product of n copies
of the fields. In this case, we call it the normal sector of
CFTn. In contrast, if we consider the twist monodromy
condition of the fields around the branch point, we get the
twist sector of CFTn. In both cases, we can classify the
states by the irreducible representations of its Virasoro
algebra VirðtÞ, defined by the stress tensor TðzÞ ¼P

n
j¼1 T

ðjÞðzÞ. Under VirðtÞ, the twist (normal) sector states
can be decomposed into more than one irreducible module,
and the one with the lowest conformal dimension is called
the twist (trivial) vacuum module. Note that the twist
(trivial) vacuum module has a different meaning from the
vacuum module in the original CFT. For the partition
function of a CFT on an n-sheeted Riemann surface
resulting from the replica trick, we have two pictures to
compute it. One is to regard it as the one of CFT1 on the
n-sheeted surface, and the other one is to regard it as the
correlator of twist operators in CFTn.
On the bulk side, to calculate the partition function on a

higher genus Riemann surface holographically, one needs
to find the gravity configuration whose asymptotic boun-
dary is exactly the Riemann surface. To find the gravity
configuration, one can use the Schottky uniformization to
get the Riemann surface and then extend the uniformiza-
tion to the bulk. However, for one Riemann surface, there
may be more than one Schottky uniformization, and
different uniformizations give different gravity configu-
rations. Among all of the gravity configurations the one
with the least classical action dominates the partition
function in the large c limit [20]. The contributions
from other configurations are suppressed as Oðe−cÞ.
Furthermore, the one-loop correction can be determined
by the functional determinant of the fluctuations around
the classical background [26] by using the heat kernel
method developed in [27,28]. Recently, by using the

1In the literature, this n-copied CFT is usually called orbifold
CFT. As in our following discussion we often use the tensor
product of n copies of CFT, and we would like to call it the
n-copied CFT.
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operator product expansion of the twist operators, the
holographic computation of the double-interval Rényi
entanglement entropy for the CFT has been checked
beyond the classical level [25,29–32]. Furthermore, for
the single interval on a circle at finite temperature, if the
interval is not very large, the holographic computation has
been confirmed to be in exact agreement with the field
theory computation [14], in which the thermal density
matrix is expanded level by level [33].

In this paper, we study the Rényi entropy of a large
interval on a circle at high temperature in the context of
AdS3=CFT2 correspondence, extending our previous study
in [14]. In the large interval limit, the computations in both
the field theory and the bulk need to be developed
furthermore. On the field theory side, the study in [14]
showed that the perturbative series in the partition function
do not converge well. Actually, the classical part of the
Rényi entropy is just

Snjclassical ¼
c
6

1þ n
n

log sinhð2πTYÞ þ const −
c
9

ðnþ 1Þðn2 − 1Þ
n3

�
sinh4ð2πTyÞe−4πTR

þ 4sinh4ð2πTyÞcosh2ð2πTyÞe−6πTR þ
�
−11 − 2n2 þ 1309n4

11520n4
coshð16πTyÞ

−
−11þ 28n2 þ 199n4

1440n4
coshð12πTyÞ − 77 − 346n2 þ 197n4

2880n4
coshð8πTyÞ

−
−77þ 436n2 þ 433n4

1440n4
coshð4πTyÞ þ −77þ 466n2 þ 907n4

2304n4

�
e−8πTR

�
þOðe−10πTRÞ; ð1:10Þ

where y is the length of the interval. When the length of
the interval is comparable with the size of the circle y ∼ R,
the expansion converges very slowly and is not good
anymore. This asks us to find another perturbative way to
compute the partition function more effectively and
reliably. In [7], we proposed to insert a complete twist
sector state through the branch cut and expand the Rényi

entropy with respect to e−
2πL
nβ . In [7,15], we tested this

proposal and reconsidered the noncompact and compact
free scalars and found good agreements with direct
expansions of the partition functions. Now we are going
to consider the CFTwith a holographic gravity dual, in the
large interval and high temperature limit. We only con-
sider the vacuum module of CFT1 and its correspondents
in the twist sector of CFTn. After cutting through the
branch cut, the Riemann surface still has a nonzero genus,
and the four-point functions in the twist sector cannot be
calculated directly. Furthermore, we use the OPE of the
two twist operators at the branch points and compute the
correlation functions on the unfolded cylinder of length
nβ with the fields in the OPE at the different positions. We
manage to expand the result with respect to the comple-
mentary part of the interval length l. We calculate the
Rényi entropy up to order l4 and e−

8πL
nR , including the

leading linear c, the c-independent, and 1=c parts. More-
over, we find that the leading contribution is actually
captured by the twist vacuum module. We support this
result not only by the argument using the large central
charge limit of the conformal blocks but also by direct
computation using the Ward identity. As a result, we
obtain the exact formula for the entanglement entropy.

For the holographic calculation, we follow the treatments
in [20,26], but basing on a different monodromy condition.
As shown in [34], the holographic entanglement entropy
for the large interval case is not read from the bulk geodesic
ending on the interval. Instead, it is the sum of the horizon
length and the geodesic of the complementary interval. This
fact suggests that there is a phase transition when the
interval becomes large, and the bulk gravitational configu-
ration for the large interval must be different. Instead of the
cycles used in [14], we choose another n cycles to be of
trivial monodromy. Among them, there is one cycle cross-
ing the branch cut n times, and the other n − 1 independent
ones crossing the branch cut and enclosing the comple-
mentary part of the branch cut in different sheets. As shown
in Fig. 2 for n ¼ 3, we set ~Ai’s to be of trivial monodromy.
As a warm-up, we compute the classical holographic
entanglement entropy by using the new monodromy con-
ditions, and we obtain the result suggested in [34].
Furthermore, we compute the holographic Rényi entropy
(HRE) up to l6 and e−4πTR for classical contribution, and up
to l4 and e−

6πTR
n for one-loop quantum contribution. The

results are in perfect match with CFTs computation.
The remaining parts of the paper are organized as

follows. In Sec. II, we present the field theory computation.
After a brief review on the twist sector of the CFTn, we
focus on the vacuum module and compute the Rényi
entropy in the first few orders. In Sec. III, we show how
to do holographic computation with the new monodromy
condition. We obtain both the classical and one-loop
quantum results perturbatively. Up to the orders we are
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interested in, we find good agreements with the field
theory results. In Sec. IV, we end with conclusions and
discussions. We collect some technical details in the
Appendixes.

II. FIELD THEORY CALCULATION

In this section, we present our computation on the large
interval Rényi entropy on a circle at high temperature in the
CFTwhich corresponds to pure AdS3 gravity. By the replica
trick the Rényi entropy can be transformed into calculating
the partition function on a higher genus Riemann surface,
which is obtained by pasting n tori along a large branch cut.
In Fig. 3, we cut open the torus and show the branch cut
(interval). The horizontal line is the spatial direction of
length R, and the vertical line is the thermal direction of a
length β. The large interval is presented as double solid lines
between T ðþÞ and T ð−Þ. In Fig. 3(b), we translate the
interval, and in Fig. 3(c), we unfold the branch cut and
get a cylinder of thermal length nβ, with n cuts. We denote
the coordinate in Fig. 3(b) as u and the one in Fig. 3(c) as y,
and set the two branch points to be at � l

2
in Fig. 3(b).

As in our previous paper [7,15], we would cut
the Riemann surface through the branch cut, ~Að1Þ cycle
in Fig. 3(b), and insert complete bases in the twist sector of
CFTn at the cycle. The calculation transforms into a series
of four-point functions with two twist operators and two
operators in the twist sector. As the two branch points are
actually very close to each other, we may take the OPE for
the two twist operators, which amounts to an infinite
summation of local operators in the n-copied CFT.
Alternatively, we may unfold the Riemann surface as in

Fig. 3(c) and insert complete state bases of the normal
sector in single sheet CFT to do the computation. Changing
into the coordinate in Fig. 3(c), we find that the localized

FIG. 2 (color online). Canonical cycles for the large interval at
high temperature: n ¼ 3 case.

FIG. 3 (color online). Riemann surface for finite temperature Rényi entropy. The horizontal line denotes the spatial direction of unit
length, and the vertical line denotes the thermal direction of length β. (a) The Riemann surface for n cylinders connected by a branch cut,
which is denoted by a solid line T ðþÞT −. In each sheet, there is a cycle AðiÞ along the imaginary time direction. However, there could also
be a cycle marked by ~Að1Þ, which crosses the branch cut and goes from one sheet to the next one n times until it goes back to the original
sheet. (b) The same as (a), just by shifting the branch cut to the boundary. T −T þ denotes the complement of the original interval.
In (c) we unfold the twist. There are n copies of T −T þ cuts in the unfolded picture.
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operators in the jth copy in the OPE sit in the imaginary
axis

yðjÞ ¼ iðjβÞ: ð2:1Þ

In this way, each term in the expansion is a multipoint
correlation function on an infinite cylinder, with two
normal sector operators at the left and the right infinities
of the cylinder2 and n localized operators at yðjÞ.
We calculate the leading terms for the Rényi entropy

expanded with respect to both e−
2πR
nβ and l. The results in the

large c limit actually include the leading contribution,
which is linear c, and the next-to-leading contribution,
which is of order one, and even the next-to-next-to-leading
contribution. We argue that only the descendants of the
twist vacuum, the states generated by acting the Virasoro
algebra VirðtÞ of CFTn on the twist vacuum, contribute to
the leading c result. We confirm this fact by the analysis of
the classical conformal block expansion in the large c limit.
We furthermore derive the first few leading linear c terms
from the descendants by using the Ward identity on the
correlation functions of four twist operators, which could
be related to the one in the double-interval case. In the
n → 1 limit, we find that only the twist vacuum module has
a nonvanishing contribution. This leads to the entanglement
entropy of the large interval, which is exactly the same as
the one from the holographic computation. However, when
we consider the next-to-leading contribution to the Rényi
entropy, we have to take the contributions from other states
in the twist sector into account.

A. Twist sector

In this subsection, let us give a brief review on the twist
sector in the CFTn. By the replica trick the Rényi entropy
can be transformed into the partition function of a single
copy CFT on an n-sheeted surface connected at the branch
cut. From the path integral, it is easy to see that the partition
function could be taken as the n copies of field theory, one
on each sheet, with fields on different sheets being related
at the branch cut. In this n-copied theory, the locality
requires us to introduce the twist field or antitwist field at
the branch points [4,35].
Let us show how the twist sector arises in a CFTn with a

branch cut, following the discussion in [36]. As the twist
field is a local field, we consider simply the n-sheeted
surface connected by a single branch cut. As in Fig. 4, the
T � denote the branch point located at z1, z2 and the double
line denotes the branch cut. Now we study it as a CFTn.
Considering an operator Tðj1ÞðzÞ, it will change to
Tðj1þ1ÞðzÞ when it moves once around the branch point

T þ along the circle (2). The point z ¼ z1 is a branch
singularity in the n-copied theory, which is a source of
stress tensor [4]

hTðzÞi ¼ nhTð1ÞðzÞi ∼ c
24

�
n −

1

n

�
1

ðz − z1Þ2
; ð2:2Þ

when z is close to z1. Independence on the branch cut
implies a local operator at the branch point. This local
operator is known as the twist operator, denoted as
T̂ þðz1Þ. It is a primary field, with conformal dimension
h ¼ c

24
ðn − 1

nÞ. In a similar way, we can get the antitwist
operators at the other branch point. Much information of
the CFTn is encoded in the twist operators. For example,
the partition function of an n-sheeted complex plane with
N intervals is determined by the 2N-point function of
the twist and antitwist operators on a complex plane.
Moreover, considering the operator-state correspondence,
the twist operator corresponds to the ground state in the
twisted sector of Hilbert space. Considering the OPE
of the twist field with other basic fields in the theory, we
will find other excited twist fields. Correspondingly,
we find the excited states in the twist sector, as we will
review soon.
Before our discussion of the twist sector and antitwist

sector states in the n-copied field theory, we show that the
OPE of a twist sector operator and an antitwist sector
operator give trivial sector operators in the n-copied field
theory. As argued above, the excited states in the twist
sector could be obtained by considering the monodromy of
the field moving around the branch point z1 along the circle
(2) in Fig. 4. However, when we consider the OPE of the
operators in both the twist sector and the antitwist sector, by
the monodromy condition, the resulting states in the circle
(1) in Fig. 4 must be in the trivial sector. This fact has been
applied in the discussion of the OPE of two twist operators

FIG. 4 (color online). Branch cut.

2By the state-operator correspondence, the inserted normal
sector states can be transformed into two vertex operators at the
left and the right infinities with a factor e−

2πR
nβ Δ.
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in the short interval limit. In that case, the operators in the
expansion are in the tensor product of the normal sector of
the CFT in each sheet (which is just the trivial sector in the
CFTn picture), as shown in [12,25]. More generally, for the
excited states in the twist sector, their OPE should consist
of the trivial sector states.
Now, let us give a review on the twist sector states [14]

in the CFTn arising from the replica trick in calculating
the Rényi entropy. Let us work in the coordinate u in
Fig. 3(b). To expand the partition function, we need to
insert complete twist sector bases along the cycle ~Að1Þ. We
may temporarily forget about the geometric structure of the
torus and only consider the geometry and the monodromy
condition near the cycles ~Að1Þ. Moreover, as the vacuum
module dominates in the large central charge limit, we
focus on the twist sector from the vacuum module. For a
more complete discussion on other modules, please see
[14]. In the vacuum module, the fields are constructed
from the stress tensor. The monodromy condition on the
stress tensor is

TðjÞðuþ iβÞ ¼ Tðjþ1ÞðuÞ; j ¼ 0;…; n − 1 ð2:3Þ

in the u coordinate, with TðnÞðuÞ ¼ Tð0ÞðuÞ, and

Tðyþ inβÞ ¼ TðyÞ; ð2:4Þ

in the y coordinate. In the y coordinate, the n copies of
fields are unfolded as

TðjÞðuÞ ¼ TðyÞjy¼uþijβ: ð2:5Þ

Taking the conformal transformations

z ¼ e
2πu
β ; ð2:6Þ

w ¼ e
2πy
nβ ; ð2:7Þ

the monodromies in the new coordinates z, w are,
respectively,

TðjÞðze2πiÞ ¼ Tðjþ1ÞðzÞ; ð2:8Þ

Tðwe2πiÞ ¼ TðwÞ: ð2:9Þ

The states inserted at the ~Að1Þ cycle in Figs. 3(b) and 3(c)
can be described as the vertex operators being inserted at
the origin of z and w. As in [7], we can redefine the
operators in the z coordinate,

Tðt;kÞðzÞ≡Xn
j¼1

TðjÞðzÞe2πi
n kj; k ¼ 0; 1;…; n − 1; ð2:10Þ

and expand it as

Tðt;kÞðzÞ ¼
X
m∈Z

LðkÞ
m

zmþ2þk
n

: ð2:11Þ

The operators LðkÞ
m satisfy a commutation relation similar to

the Virasoro algebra. Among the operators Tðt;kÞðzÞ, Tðt;0Þ is
of special importance. It is the total stress tensor for the

whole n-copied theory, and fLð0Þ
m g are the generators of the

corresponding Virasoro algebra VirðtÞ.
We may study the spectrum of the theory with respect to

VirðtÞ. From the commutators between LðkÞ
m and Lð0Þ

0 ,

½Lð0Þ
0 ; LðkÞ

m � ¼ −
�
mþ k

n

�
Lk
m; ð2:12Þ

we know that when the operators LðkÞ
m act on a state, those

with

m > 0; 0 ≤ k < n; or m ¼ 0; 0 < k < n; ð2:13Þ

decrease conformal dimension, so they are annihilation
operators; while those with

m < 0; 0 ≤ k < n; ð2:14Þ

increase the conformal dimension, so they are creation
operators. Therefore we can define the vacuum for the twist
sector to be

LðkÞ
m jti ¼ 0 for m > 0; 0 ≤ k < n; or

m ¼ 0; 0 < k < n: ð2:15Þ

The twist vacuum has the lowest conformal dimension

hv ¼
c
24

n

�
1 −

1

n2

�
: ð2:16Þ

Acting with the creation operators on the twist vacuum we
can get all of the excited states in the twist sector.
There is a one-to-one correspondence between the twist

sector states in the CFTn and the normal sector states in
the original one-sheet CFT. Actually the trivial mono-
dromy condition in the w coordinate suggests that the
mode expansion in the w coordinate for the field gives the
normal sector of the CFT. The conformal dimensions
between the twist sector states and the normal sector states
are related by

htwist ¼
1

n
hnormal þ

c
24

n

�
1 −

1

n2

�
: ð2:17Þ

On the cylinder, the energy of the state could be written as
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H ¼ 2π

β

�
Ltwist þ L̄twist −

nc
12

�

¼ 2π

nβ

�
Lnormal þ L̄normal −

c
12

�
: ð2:18Þ

The 1
n factor in the last equation is due to the fact that in the

y coordinate the length of the thermal cycle is nβ. For
convenience, we will denote the states in the twist sector as
jt; ii, corresponding to the state jii in the original theory.
It turns out to be more useful to classify the states in the

twist sector by using the conformal symmetry in the
n-copied theory. The states should be decomposed into
different irreducible modules of the Virasoro algebra VirðtÞ.
To show this decomposition we calculate the chiral
partition function for the twist sector

TrqL0 ¼ qhv
Y∞
s¼2

1

1− q
s
n
¼
�
qhv ·

Y
s≥2;sn∉N

1

1− q
s
n

�
·
Y∞
r¼1

1

1− qr
:

ð2:19Þ

In the second equation, we have used the fact that there is a
one-to-one correspondence between the twist sector states
in the CFTn and the normal sector states in the one-sheet
CFT, with their the conformal dimensions being related by
(2.17). For the vacuum module in the normal sector, the
descendants are generated by the Virasoro algebra L−s with
s ≥ 2, so the product begins from s ¼ 2. For a primary
operator with the conformal dimension h, if there is no
null state in its descendants, its contribution to the chiral
partition function is

TrqL0 jh ¼ qh
Y∞
s¼1

1

1 − qs
: ð2:20Þ

Considering this fact, the quantity in the parentheses of
(2.19) can be taken as a generating function for the primary
operators with respect to the Virasoro algebra. As explained

in [7], the operators Lð0Þ
−m in the z coordinate correspond to

the generators L−mn in the unfolded w coordinate with
mn > 1. As L−mn do not generate null states in the normal

sector vacuum module, the operators Lð0Þ
−m do not generate

null states in the twist sector either. Therefore there is no
null state in the descendants of each primary states in the
twist sector. Expanding the function�

qhv ·
Y

s≥2;sn∉N

1

1 − q
s
n

�
; ð2:21Þ

with respect to q, the coefficient before qh is the number
of the primary operator with conformal dimension h. It is
clear that in the twist sector there are many new primary
states and the number of the primary states increases

exponentially with the conformal dimension. For example,

acting with the operators Lðn−iÞ
−1 on the twist vacuum, the

resulting states that have conformal dimensions h ¼ hv þ i
n

are the primary states, since they can be annihilated by the

operators Lð0Þ
m , m > 0 in VirðtÞ. Among the modules in the

twist sector, the vacuum module generated by Lð0Þ
m , m < 0

on the twist vacuum is the most important one in our
following discussion. We call this module the twist vacuum
module.
In the following discussion, we will meet another notion,

the normal sector, in the n-copied field theory. It is defined
with respect to the n-copied field theory without a branch
cut, or the tensor product of n copies of Hilbert space of the
normal sector of a single CFT. Moreover, as we only focus
on the vacuummodule of the CFT, we call the tensor product
of the n-copied vacuum module as the trivial sector in the n-
copied field theory. Note that the stress tensor Tðt;0Þ is still a
well-defined quantity in the n-copied field theory without the
branch cut. Therefore we may classify the states in the trivial
sector by the Virasoro algebra VirðtÞ. In this case, we find
that there are exponentially increasing primary operators
with respect to VirðtÞ in the trivial sector of the CFTn as well.
Considering the chiral partition function, we have

TrqL0 ¼
�Y∞

s¼2

1

1 − qs

�
n

¼
Y∞
s¼2

1

1 − qs
þ ð1 − qÞ

�Y∞
r¼2

1

ð1 − qrÞn−1 − 1

�

×
Y∞
s¼1

1

1 − qs
: ð2:22Þ

In the last equation, we decompose the whole partition
function into the contribution from different modules

with respect to VirðtÞ. Each module is generated by Lð0Þ
−m,

m > 0 acting on the highest weight state. The first term
denotes the module generated from the vacuum state, with
zero conformal dimension, so the product starts from s ¼ 2.
For the other primary operators, there are no null states
in their descendants. This is because the primary state has a
nonzero conformal dimension, and the states Lm

−1jhi
have a nonzero norm. Considering ½Lr;L−r� ¼ c

12
rðr2−1Þ þ

2rL0, for r > 1, the commutator has a linear c term. In the
large c limit, all of the states have a nonzero norm. To read
the number of other primary states, we just need to expand
the quantity

ð1 − qÞ
�Y∞

r¼2

1

ð1 − qrÞn−1 − 1

�
; ð2:23Þ

with respect to q, such that the coefficient before qh is just the
number of the primary states with a conformal dimension h.
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We can easily see that the number of the primary states
increases exponentially with their conformal weights. In the
following, we call the module generated from the vacuum a
trivial vacuum module, with respect to VirðtÞ.

B. Rényi entropy

As discussed previously, we can expand the partition
function by inserting complete twist sector bases in Fig. 3(b)
or complete normal sector bases in Fig. 3(c). The partition
function can be expanded as

Zn ¼
X
i

e−
2πR
β ðht;iþh̄t;i−n c

12
Þht; ijT̂ −ðu1ÞT̂ þðu2Þjt; iiju

¼
X
i

e−
2πR
nβ ðhiþh̄i− c

12
Þht; ijT̂ −ðu1ÞT̂ þðu2Þjt; iiju; ð2:24Þ

in the u coordinate, and in the second line we use (2.17).
And the thermal partition function reads

Z1 ¼
X
i

e−
2πR
β ðhiþh̄i− c

12
Þ: ð2:25Þ

In the large c limit, we only need to consider the vacuum
module, which captures the perturbative effect. We list the
first few states in the vacuum module and their vertex
operators at the origin and the infinity in Appendix A.
Such states give the first few leading order contributions to
the Rényi entropy.
Each term in (2.24) is a four-point function with two twist

operators at the branch points and two operators in the twist
sector at the left and the right infinities.3 For the CFT dual to
pure gravity,we do not knowexactly the analytic formof this
correlation function. Nevertheless, when the twist operators
are very close, we may take the OPE of two twist operators

T̂ −
�
−
l
2

�
T̂ þ
�
l
2

�
∼ cnl

−c
6
nð1− 1

n2
ÞVð0ÞV̄ð0Þ; ð2:26Þ

where

VðuÞ ¼ 1þ
X
i

1

12

�
1 −

1

n2

�
l2TðiÞðuÞ þ

X
i

1

488

�
1 −

1

n2

�
l4∂2TðiÞðuÞ

þ
X
i

1

288

�
1 −

1

n2

�
2

l4
�
∶TðiÞðuÞ2∶ − 3

10
∂2TðiÞðuÞ

�

þ
X
i1<i2

�
1

8c
1

n4
1

sin4 π
n ði1 − i2Þ

þ 1

144

�
1 −

1

n2

�
2
�
l4Tði1ÞðuÞTði2ÞðuÞ þOðl5Þ; ð2:27Þ

and the similar form for the antiholomorphic part V̄ðuÞ. In
the operator product expansion, we only consider the
vacuummodule in each sheet and ignore the other modules.
In practice, it is more convenient to unfold the twist and

consider the correlation function in Fig. 3(c). After trans-
forming into the coordinate y, we find that the operators in
Vð0Þ are localized at

TðjÞð0Þ → TðyÞjy¼ijβ; ð2:28Þ

namely, the operators in different sheets are unfolded and
located at different positions in the cylinder.Wemay use the
OPE of the twist operators to compute the partition function
perturbatively. Now the partition function can be expanded
as amultipoint correlation function on the cylinder involving
n operators located at y ¼ ijβ, and two vertex operators at
left and right infinities.We can furthermore take a conformal
transformation into thew coordinate anddo the calculation in
a full complex plane. Formally, we still write

Zn ¼ e
πRc
6nβhtjT̂ −ðu1ÞT̂ þðu2Þjti

�X
i;ī

ht; i; ījT̂ −ðu1ÞT̂ þðu2Þjt; i; īi
htjT̂ −ðu1ÞT̂ þðu2Þjti

e−
2πR
nβ ðhiþh̄iÞ

�

¼ e
πRc
6nβcnl

−c
6
nð1− 1

n2
ÞhtjVð0ÞjtihtjV̄ð0Þjti

�X
i

ht; ijVð0Þjt; ii
htjVð0Þjti e−

2πR
nβ hi

��X
ī

ht; ījVð0Þjt; īi
htjVð0Þjti e−

2πR
nβ h̄i

�

¼ e
πRc
6nβcnl

−c
6
nð1− 1

n2
Þ
�
htjVð0Þjti

�X
i

ht; ijVð0Þjt; ii
htjVð0Þjti

�
e−

2πR
nβ hi

�
2

: ð2:29Þ

3The bases we insert when cutting the Riemann surface are in the Schrödinger picture. In (2.24), we change them into the Heisenberg
picture, with a factor e−

2πR
β H, and the states now correspond to the vertex operators at the infinities.
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In the second line we take into (2.26), and the fact that the
holomorphic and antiholomorphic parts decompose. In this
case, the holomorphic and antiholomorphic parts are equal
to each other. The Rényi entropy is

Sn ¼ −
1

n − 1
log

Zn

Zn
1

¼ −
1

n − 1

��
log cn −

c
6
n

�
1 −

1

n2

�
log l

þ πRc
6nβ

þ 2 loghtjVð0Þjti

þ 2 log

�X
i

ht; ijVð0Þjt; ii
htjVð0Þjti e−

2πR
nβ hi

��

− n

�
πRc
6β

þ 2 log

�X
i

e−
2πR
β hi

���
: ð2:30Þ

Denote

fi ¼
ht; ijVð0Þjt; ii
ht; 0jVð0Þjt; 0i

����
u
¼ hijVð0Þjii

h0jVð0Þj0i
����
y
; ð2:31Þ

where in the last equation, we change into the y coordinate.
Taking fi into (2.30), we get the first few terms of the nth
Rényi entropy,

Sn ¼ −
1

n − 1
log cn þ

c
6

nþ 1

n
log l

þ πLc
6β

nþ 1

n
−

2

n − 1
loghtjVð0Þjti

−
2

n − 1

�
f2e

−4πR
nβ þ f3e

−6πR
nβ

þ
�
f4;1 þ f4;2 −

1

2
f22

�
e−

8πR
nβ þOðe−10πR

nβ Þ
�

þ 2n
n − 1

�
e−

4πR
β þ e−

6πR
β þ 3

2
e−

8πR
β þOðe−10πR

β Þ
�
:

ð2:32Þ

The Rényi entropy is expanded with respect to e−
2πR
β and

e−
2πR
nβ . The two expansion arguments are not independent. In

the above formula, we have actually done the computation
in Fig. 3(c). In other words, we have unfolded the twist and
consider the insertion of the normal sector states at the left
and the right infinities of the cylinder. Meanwhile to
calculate the analytic form of fi, we also take the OPE
of the twist operators, which is an expansion with respect to
the relative length of the two twist operators. Therefore, we
have two kinds of expansion, one from the normal sector
states and the other from the OPE of the twist operators.
This results in two different expansions in Sn.

The explicit expressions of fj ’s can be found in
Appendix C. There are a few remarkable properties on fj’s.
(1) First of all, the l2 terms in fj’s always take the form

j
3

ð−1þn2Þπ2
β2n3 . This is because the operator at l2 order in

the OPE is the stress tensor TðzÞ ¼Pn
j¼1 T

ðjÞðzÞ,
whose correlation function is fixed by the Ward
identity.

(2) Second, for each fj there exist some exceptional
integersn atwhichfj doesnot share ageneral formula
and take specific form. This fact forbids an analytic
continuation of the Rényi entropy to noninteger n in
order to calculate the entanglement entropy. It is
because in the OPE (2.26) there is always a term likeX

j1<j2

Tðj1ÞTðj2Þ: ð2:33Þ

The correlation function involving such a term
includes the summation

Xn−1
j1−j2¼1

sinm
�
πðj1 − j2Þ

n

�
: ð2:34Þ

Whenm < 0, the summation has a universal formula
for any integer n, while for m > 0, it is more
complicated. We can rewrite the sine function in
the summations as

sinm
�
πðj1 − j2Þ

n

�
¼
X
r

are
2πirðj1−j2Þ

n : ð2:35Þ

If we take a summation for each term we find

Xn−1
j1−j2¼1

e
2πirðj1−j2Þ

n ¼
�−1; for r

n ∈N

n − 1; for r
n ∈ N

; ð2:36Þ

which shows the nonanalytic origin.
(3) We notice that fj has no linear c contribution for

nearly all of n but finite exceptions. Actually, when
jt; ji is primary, there is no linear c term in fj. To
understand this effect, we can first transform into a z
coordinate and expand the four point function by
conformal blocks. Using the large c conformal block
[21], there should be no linear c contribution. For
nearly all of n but finite exceptions, jt; ji is primary.
For example, when n is bigger than the conformal
dimension of jji, which is the corresponding state in
the normal sector, the state jt; ji is primary because
it can be annihilated by all of the Virasoro algebra

generators Lð0Þ
m with m > 0.

(4) Furthermore, we also notice that for the n in which fj
has no linear c terms, fj always share a general
formula up to l4. As we discussed before, the
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nonanalytic property comes from correlation
functions

ht; jjTðj1ÞðuÞTðj2ÞðuÞjt; ji: ð2:37Þ

Because of the symmetry, the correlation function is a
sum of

sinm
π

n
ðj1 − j2Þ: ð2:38Þ

If there are some terms with m > 0 the final result
is nonanalytic for n. However, if jt; ji is primary,
this cannot happen. ConsiderX
j1<j2

ht; jjTðj1ÞðuÞTðj2ÞðuÞjt; ji

¼ n
2

Xn−1
j1−j2¼1

ht; jjTðj1ÞðuÞTðj2ÞðuÞjt; ji;

¼ n
2

Xn−1
j1−j2¼1

X
m

bmsinm
π

n
ðj1 − j2Þ: ð2:39Þ

On the other hand, we haveX
j1<j2

Tðj1ÞðuÞTðj2ÞðuÞ

¼ 1

2

�Xn−1
j¼0

TðjÞðuÞ
�

2

−
1

2

Xn−1
j¼0

ðTðjÞðuÞÞ2

¼ 1

2
TðuÞ2 − 1

2

Xn
j¼0

ðTðjÞðuÞÞ2: ð2:40Þ

For the primary state, the correlation function
ht; jjTðuÞ2jt; ji can be fixed by the Ward
identity, and it is analytic for all n. The term
ht; jjðTðjÞðuÞÞ2jt; ji does not depend on j, and it is
also analytic, which means there is no m > 0 terms
in (2.39). It is not clear whether this property can
be extended to a higher order of OPE expansion
with respect to l.

Here we just list the first few leading order results of the
Rényi entropy:

S2 ¼ − log c2 þ c

�
1

4
log lþ πR

4β
þ
�
π2l2

96β2
−

61π4l4

184320β4

�
−

π4l4

64β4
e−

2πR
β −

11π4l4

64β4
e−

4πR
β

�

þ
�
−

π4l4

2048β4
−
�
2þ π2l2

2β2
þ 25π4l4

384β4

�
e−

2πR
β −

�
2þ 3π2l2

4β2
þ 15π4l4

256β4

�
e−

3πR
β

þ
�
1 −

3π2l2

2β2
−
275π4l4

384β4

�
e−

4πR
β

�
þ 1

c

�
−
3π4l4

64β4
e−

2πR
β þ π4l4

128β4
e−

3πR
β −

21π4l4

64β4
e−

4πR
β

�

þOðl5Þ þO
	
e−

5πR
β



; ð2:41Þ

S3 ¼ −
1

2
c3 þ c

�
2

9
log lþ 2πR

9β
þ
�

π2l2

243β2
−

347π4l4

1771470β4

�
−
128π4l4

6561β4
e−

2πR
β

�

þ
�
−

16π4l4

177147β4
−
�
1þ 16π2l2

81β2
þ 800π4l4

59049β4

�
e−

4πR
3β −

�
1þ 8π2l2

27β2
þ 280π4l4

6561β4

�
e−

2πR
β

−
�
3

2
þ 16π2l2

27β2
þ 608π4l4

6561β4

�
e−

8πR
3β

�
þ 1

c

�
−
256π4l4

59049β4
e−

4πR
3β −

32π4l4

6561β4
e−

2πR
β −

64π4l4

6561β4
e−

8πR
3β

�

þOðl4Þ þOðe−10πR
3β Þ; ð2:42Þ

S4 ¼ −
1

3
c4 þ c

�
5

24
log lþ 5πR

24β
þ
�

5π2l2

2304β2
−

2089π4l4

14155776β4

�
−
126π4l4

6144β4
e−

2πR
β

�

þ
�
−

11π4l4

262144β4
−
�
2

3
þ 5π2l2

48π2
þ 749π4l4

147456β4

�
e−

πR
β −

�
2

3
þ 5π2l2

32β2
þ 1375π4l4

98304β4

�
e−

3πR
2β

−
�
1þ 5π2l2

16β2
þ 719π4l4

16384β4

�
e−

2πR
β

�
þ 1

c

�
−

19π4l4

24576β4
e−

πR
β −

95π4l4

49152β4
e−

3πR
2β −

23π4l4

8192β4
e−

2πR
β

�

þOðl4Þ þOðe−5πR
2β Þ; ð2:43Þ
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Sn ¼ −
1

n − 1
log cn þ c

�
1

6

nþ 1

n
log lþ πR

6β

nþ 1

n
þ π2l2ðnþ 1Þ

36β2n3
−
l4π4ðnþ 1Þðn6 þ 9n4 − 9n2 þ 11Þ

12960β4n7

�

þ −
l4π4ðnþ 1Þðn2 þ 11Þð3n4 þ 10n2 þ 227Þ

226800β4n7
−

2

n − 1

��
1þ 2π2l2ðn2 − 1Þ

3β2n3

−
π4l4ðn6 − 12n5 − 3n4 þ 24n3 þ 135n2 − 444nþ 299Þ

54β4n7

�
e−

4πR
nβ

þ
�
1þ π2l2ðn2 − 1Þ

β2n3
−
π4l4ðn6 − 18n5 − 5n4 þ 36n3 þ 835n2 − 4626nþ 6081Þ

36β4n7

�
e−

6πR
nβ

þ
�
3

2
þ 2π2l2ðn2 − 1Þ

β2n3
−
l4π4ð5n6 − 120n5 − 31n4 þ 240n3 þ 9635n2 − 72840nþ 135111Þ

90β4n7

�
e−

8πR
nβ

�

þ 1

c
2

n − 1

�
π4l4ð2n6 − 63n4 − 672n2 þ 733Þ

945β4cn7
e−

4πR
nβ þ π4ð2n6 − 217n4 þ 1148n2 − 933Þ

630β4cn7
e−

6πR
nβ

þ l4π4ð2n6 − 427n4 þ 13328n2 − 40320nþ 27417Þ
315β4n7

e−
8πR
nβ

�
þOðl4Þ þOðe−10πR

nβ Þ ð2:44Þ

for n > 4.

C. Classical limit of the conformal blocks

In the previous subsection, we claimed that for each fj,
when jt; ji is a primary state in n-copied theory, it has
no linear c contribution. In this subsection, we clarify this
fact from the point of view of a large c conformal block,
and furthermore we show that we only need to consider the
twist vacuum module to find the linear c order entangle-
ment and Rényi entropies.
Let us study the four point function between two twist

operators and two vertex operators corresponding to jt; ji in
the twist sector, which is primary under the conformal
symmetry of the n-copied theory. By the conformal trans-
formation

v ¼ e
2π
β ðu−l

2
Þ; ð2:45Þ

the four-point correlation function can be transformed into

ht; jjT −
�
−
l
2

�
T þ
�
l
2

�
jt; jiju

¼
�
2π

β
e−

2πl
β

�c
6
ðn−1

nÞht; jjT −ðe−2πl
β ÞT þð1Þjt; jijv;

which can be expanded by the conformal blocks as

X
p

C
hp
hT ;hT

C
hp
ht;j;ht;j

F ðnc; hT ; hT ; ht;j; ht;j;hp; 1 − e−
2πl
β Þ;

ð2:46Þ

where nc is the central charge of the CFTn, and C
h3
h1;h2

is the
OPE coefficient from two primary operators with h1 h2
conformal dimension to a primary operator with h3

conformal dimension. The first four conformal dimensions
in F are for the four external operators, two twist operators
and two operators in the twisted vacuum, and the last one
hp is the conformal dimension of the primary field in the
propagator. In each replica, we consider only the vacuum
module in CFT1, so the states in the propagator are in the
tensor product of n vacuum modules, which is the trivial
sector in the CFTn.
One essential point is that the OPE coefficient is of order

c0. The primary operators can be normalized as

hOðz1ÞOðz2Þi ¼
1

ðz1 − z2Þ2h
: ð2:47Þ

In our case, each operator in the propagator is a combi-
nation of the stress tensors and their partial derivatives. If
the largest number of the stress tensors in the combination
is r, such an operator should be normalized by a factor of

order c−
r
2 in the large c limit. The OPE coefficient C

hp
T ;T

equals the expectation value in the n-sheeted surface. To
compute it we need to transform into a full complex plane
w. We can decompose the transformation into two steps: the
first one transforms the z coordinate into an n-sheeted fan
with boundary condition

TðjÞð ~we2πi
n Þ ¼ Tðjþ1Þð ~wÞ; ð2:48Þ

and the second step unfolds the n-sheeted fan into the full
complex plane. In the transformations, the number of the
stress tensors in the operators does not change, so the
expectation value is at most order c0 in the large c limit,

which means the OPE coefficient C
hp
T ;T is at most order c0
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[25]. For C
hp
t;h;t;h, we just need to insert two extra operators,

and it is still of order c0.
Furthermore, the leading contribution in the conformal

block F is the same in the large c limit. As suggested in
[21,37],

F ðc; hi; hp; xÞ ¼ exp
�
−
c
6
fðhð0Þi ; hð0Þp ; xÞ þOðc0Þ

�
;

ð2:49Þ
where

hð0Þi ¼ lim
c→∞

hi
c
;

hð0Þp ¼ lim
c→∞

hp
c
: ð2:50Þ

In the case at hand, we have the relation

hp ¼ Oðc0Þ; ht;i − ht ¼ Oðc0Þ; ð2:51Þ

so that the classical conformal blocks are the same for all
different terms in theexpansion.Taking into (2.49), it is easy to
prove that the four-point functions are independent of j in the
leadingorder, if jt; ji is aprimaryoperator.Moreover, even for
the two twist operators’ correlation on torus, one can also only
consider the twist module generated from jt; ji by VirðtÞ for
the linear c order. Other modules give only 1

c corrections.

D. Leading contribution from the twist vacuum module

As we showed above, it is only necessary to insert the
twist vacuum module to compute the leading c order Rényi
entropy. In this subsection, we use the Ward identity to
calculate the contribution from these terms explicitly. By
using theWard identity, all of the multicorrelation functions
for the descendant operators can be derived from that for
the primary operators. From the recursion relation

hOj
Ym
s¼1

TðwsÞ
Yn
t¼1

ϕðtÞðztÞi

¼
Xm
k¼2

hOj
�

c
2ðw1 − wkÞ4

þ 2TðwkÞ
ðw1 − wkÞ2

þ ∂TðwkÞ
w1 − wk

�

×
Y

s¼2∼m;s≠k
TðwjÞ

Yn
t¼1

ϕðjÞðzjÞi

þ
Xn
k¼1

hOj
Ym
s¼1

TðwjÞ
�
hkϕðkÞðzkÞ
ðw1 − zkÞ2

þ ∂ϕðkÞðzkÞ
w1 − zk

�

×
Y

t¼1∼n;t≠k
ϕðjÞðzjÞi; ð2:52Þ

where O in the bra denotes a primary operator in the
infinity. With proper contour integral and contraction, we

can derive any correlation function of the descendants of
the primary operators.
What we need to compute in the partition function are

the ratios

ht; i0jT −ðu1ÞT þðu2Þjt; i0i
htjT −ðu1ÞT þðu2Þjti

¼ ht; i0jT −ðz1ÞT þðz2Þjt; i0i
htjT −ðz1ÞT þðz2Þjti

:

ð2:53Þ
Here jt; i0i means the Virasoro descendants in the twist

vacuum module generated by acting Lð0Þ
−m, m > 0 on the

twist vacuum. And we have changed the coordinate into a
full complex plane by

z ¼ e
2π
β u; ð2:54Þ

so that the two inserting operators are at the origin and the
infinity, respectively. By the conformal transformation and
the Ward identity, all of the terms in (2.53) can be
calculated by the four-point functions, which are related
to the double interval mutual information. Actually, for the
simplest case, the contribution of the twist vacuum is
encoded in the correlation function of four twist operators
with two of them being inserted at the origin and the
infinity in the complex z plane. In general, the correlation
functions of four twist operators read

loghT þðz1ÞT −ðz2ÞT þðz3ÞT −ðz4Þi
¼ ðn−1ÞIðnÞ þ loghT þðz1ÞT −ðz4Þi

þ loghT −ðz2ÞT þðz2Þi

¼ ðn−1ÞIðnÞðx; x̄Þ− c
12

�
n−

1

n

�
logððz1− z4Þðz̄1− z̄4Þ

× ðz2− z3Þðz̄2− z̄3ÞÞ; ð2:55Þ

where

x ¼ z3 − z2
z3 − z1

z4 − z1
z4 − z2

ð2:56Þ

and IðnÞ is the mutual Rényi information. If we set one point
to infinity, then we have

loghtjT þðz1ÞT −ðz2ÞT þðz3Þi
¼ log lim

z4→∞
z

c
12
ðn−1

nÞ
4 z̄

c
12
ðn−1

nÞ
4 hT þðz1ÞT −ðz2ÞT þðz3ÞT −ðz4Þi

¼ ðn − 1ÞIðnÞðx; x̄Þ − c
12

�
n −

1

n

�
logððz2 − z3Þðz̄2 − z̄3ÞÞ;

ð2:57Þ

where

x ¼ z3 − z2
z3 − z1

: ð2:58Þ
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The perturbative computation of IðnÞ has been done in
[25,29]. We list them in Appendix D. With these results, we
can derive any fi0 for the descendants of the twist vacuum.
The first few lowest descendants in the twist vacuum

module are

jt; 10i ¼
�
c
12

�
n −

1

n

��
−1
2

Lð0Þ
−1 jti;

jt; 2; 10i ¼
�
c

�
2

3
n −

1

6n

��
−1
2

Lð0Þ
−2 jti;

jt; 2; 20i ¼ mðLð0Þ
−1L

ð0Þ
−1 þ aLð0Þ

−2Þjti; ð2:59Þ

where

a ¼ −
3ðn2 − 1Þ
8n2 − 2

;

m ¼
�
c2ðn2 − 1Þ2

72n2
þ c

ðn2 − 1Þð5þ 7n2Þ
24nð4n2 − 1Þ

�−1
2

: ð2:60Þ

Note that these states consist of a special set of excited
states in the twist sector, which are the descendants of twist
vacuum generated by Lð0Þ

−m. And their contributions to the
leading linear c order are, respectively,

~f10 ¼
ht; 10jT −ð− l

2
ÞT þðl

2
Þjt; 10i

htjT −ð− l
2
ÞT þðl

2
Þjti

¼ cðn2 − 1Þ3
�

π4

108β4n5
l4 þ ð−11 − 2n2 þ 19n4Þπ6

9720β6n9
l6 þOðl7Þ

�
þ
�
1þ ðn2 − 1Þπ2

3β2n2
l2 þOðl4Þ

�
þOðc−1Þ;

~f2;10 ¼
ht; 2; 10jT −ð− l

2
ÞT þðl

2
Þjt; 2; 10i

htjT −ð− l
2
ÞT þðl

2
Þjti

¼ cð−1þ n2Þ2
�ð−1þ 4n2Þπ4

54β4n5
l4 þ ð11 − 9n2 − 111n4 þ 289n6Þπ6

4860β6n9
l6 þOðl7Þ

�
þOðc0Þ;

~f2;20 ¼
ht; 2; 20jT −ð− l

2
ÞT þðl

2
Þjt; 2; 20i

htjT −ð− l
2
ÞT þðl

2
Þjti

¼ c2
�ðn2 − 1Þ6π8
23328β8n10

l8 þOðl9Þ
�
þ cð−1þ n2Þ3

�
π4

54β4n5
l4 þ ð−11 − 32n2 þ 49n4Þπ6

4860β6n9
l6 þOðl7Þ

�
þOðc0Þ: ð2:61Þ

The leading c contribution for the Rényi entropy reads

SðclassÞn ¼ πcR
6β

nþ 1

n
þ c

nþ 1

6n
log lþ cðnþ 1Þ

�
π2

36n3β2
l2 −

π4ðn6 þ 9n4 − 9n2 þ 11Þ
12960n7β4

l4

þ π6ð19n10 þ 85n8 − 125n6 þ 251n4 − 274n2 þ 188Þ
2449440n11β6

l6
�

þ cð−1þ nÞ2ð1þ nÞ3
�
−

π4

54β4n5
l4 −

ð−11 − 2n2 þ 19n4Þπ6
4860β6n9

l6
�
e−

2πR
β

þ cð−1þ nÞð1þ nÞ2
�
−
ð3n2 − 1Þπ4
18β4n5

l4 −
ð11þ n2 − 101n4 þ 209n6Þπ6

1620β6n9
l6
�
e−

4πR
β

þOðl7Þ þOðe−6πR
β Þ; ð2:62Þ

and

SðclassÞEE ¼ lim
n→1

Sclassn ¼ πcR
3β

þ c

�
π2l2

18β2
−

π4l4

540β4
þ π4l6

8505β4

�
þOðl8Þ; ð2:63Þ

for leading order of the expansion.
From the result, we find that in the entanglement entropy there is no finite size correction proportional to the powers of

e−
2πR
β . Such a correction, if it existed, should come from the four-point functions of the descendants

ht; i; ījT −ðu1ÞT þðu2Þjt; i; īiju ¼ ht; i; ījT −ðz1ÞT þðz2Þjt; i; īijz; ð2:64Þ
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where jt; i; īi is a state generated by a set of creation generators Lð0Þ
−r ~Lð0Þ

−r acting on the twist vacuum jti. Consider the Ward
identity

½Lr; T −ðu1; ū1Þ� ¼ ðrþ 1ÞhT ur1T −ðu1; ū1Þ þ urþ1
1 ∂T −ðu1; ū1Þ; ð2:65Þ

where

hT ¼ c
24

�
n −

1

n

�
: ð2:66Þ

In the right side of (2.65), because hT ¼ c
24
ðn − 1

nÞ, the first term is of order n − 1; because the four-point function is
constant when n ¼ 1, the second term should also be of order n − 1. Similarly when moving L−r to the left side, the
commutation term will contribute an n − 1. To calculate the correlation function, we move all of the annihilation operators
to the right side and then move the reduced creation operators to the left side. It turns out that the leading contribution terms
are at least of order ðn − 1Þ2. Therefore

SðclassÞn ¼ −
1

n − 1

�
πRc
6nβ

−
πRcn
6β

þ loghtjT −ðu1ÞT þðu2Þjtiju
�
þOðn − 1Þ

¼ −
1

n − 1

�
πRc
6β

�
1

n
− n

�
þ log

��
2π

β

�c
6
ðn−1

nÞhtjT −ðz1ÞT þðz2Þjtijz
��

þOðn − 1Þ

¼ ðnþ 1ÞπRc
6nβ

−
1

n − 1

�
log

��
2π

β

�c
6
ðn−1

nÞ 1

jz1 − z2jc6ðn−1
nÞ

�
þOðn − 1Þ2

�
þOðn − 1Þ

¼ ðnþ 1ÞπRc
6nβ

þ ðnþ 1Þc
6n

log sinh
πl
β
þOðn − 1Þ: ð2:67Þ

In the third equation we use the classical conformal block
[21], and the entanglement entropy is

SðclassÞEE ¼ πcR
3β

þ c
3
log sinh

πl
β
; ð2:68Þ

which matches with previous result (2.63) up to order l6.
This is the high temperature entanglement entropy for a
large interval, and it satisfies the relation

lim
ϵ→0

SEEðR − ϵÞ − SEEðϵÞ ¼ Sth: ð2:69Þ

III. HOLOGRAPHIC RÉNYI ENTROPY

In this section, let us calculate the entanglement entropy
and the Rényi entropy holographically up to one-loop
order. In the field theory, by the replica trick the Rényi
entropy can be transformed into the partition function on a
higher genus Riemann surface. Holographically, this par-
tition function can be computed in the semiclassical AdS
gravity in the large central charge limit. Based on the AdS/
CFT correspondence the gravity configurations must be the
classical solutions with the asymptotically boundary being
the Riemann surface [38]. Moreover, for the same Riemann
surface, there may be more than one gravitational solution.
The partition function is the summation of the classical
contributions and the quantum corrections at different

saddle points. Among different saddle points, the one with
the smallest action dominates the contribution, and other
saddle points give nonperturbative corrections of order e−c.
Therefore, in the large c limit we only need to consider
the saddle point with the smallest action. The regulated
on-shell action of this saddle point gives the classical
contribution, corresponding to the leading linear c result
in the field theory, while the one-loop determinant of the
fluctuations around the saddle point gives the quantum
correction, which corresponds to the order c0 results in the
field theory.
As in [20], we assume that only the handle-body solutions

contribute to the partition function. The handle-body
solutions could be obtained by extending the Schottky
uniformization of the Riemann surface to the bulk. In this
section we first give a brief review on the Schottky
uniformization and the on-shell action. Then we discuss
the monodromy condition for the n-sheeted torus pasted
along a single large interval to find the uniformization. We
compute the classical part of the HRE perturbatively.
Furthermore, after carefully studying the primitive class of
the Schottky group, we calculate the one-loop corrections
to the entropies, following the treatment in [28].

A. Schottky uniformization and the partition function

In three-dimensional AdS pure gravity, all solutions with
constant negative curvature are quotients of the AdS space.
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In terms of the Poincaré coordinates, the AdS space could
be described as an upper-half space with the metric,

ds2 ¼ dudūþ dξ2

ξ2
; ξ ≥ 0; ð3:1Þ

where u ¼ xþ iy is the coordinate of a complex plane. The
isometry group of AdS3 is PSLð2; CÞ [24]. The coordinates
u, ξ can be combined into a quaternion ζ ¼ uþ jξ, on
which the isometry group acting as

~ζ ¼ aζ þ b
cζ þ d

; ð3:2Þ

with ad − bc ¼ 1; a; b; c; d ∈ C. At the asymptotic boun-
dary ξ → 0, the transformation is just a linear Möbius
transformation on a complex plane,

u →
auþ b
cuþ b

: ð3:3Þ

Generally, the gravity solution can be written as AdS03=Γ,
where AdS03 is the global AdS3 with some fixed points
being removed and Γ is the discrete subgroup of
PSLð2; CÞ. The asymptotic boundary is Ω=Γ, where Ω
is a full complex plane with some fixed points being
removed. If we focus on the handle-body solutions, the
subgroup is just the Schottky group.
Every compact Riemann surface can be realized by the

Schottky uniformization. For a genus-g Riemann surface X,
its fundamental group π1ðXÞ is generated by 2g generators,

a1; a2;…; ag; b1; b2;…; bg ð3:4Þ

with constraints

Yg
i¼1

½ai; bi� ¼ 1; ½a; b� ¼ aba−1b−1: ð3:5Þ

One can always choose g loxodromic generators
L1; L2;…; Lg and a fundamental regain D bounded by
2g circles C1; C2;…; Cg and C0

1; C
0
2;…; C0

g, such that
LiðCiÞ ¼ C0

i. Identifying g pairs of circles by the gener-
ators, we obtain a quotient space, which is just a genus-g
Riemann surface. Here ai is just the image of CiðC0

iÞ under
the quotient map in the homology group; the group of
covering Ω → Ω=Γ is the smallest normal subgroup N
containing the elements ai’s; and the Schottky group is
isomorphic to π1ðXÞ=N . The Schottky uniformization
can be extended to the bulk, which is an automorphism
of the AdS3 space, with the ai cycles in the bulk being
contractable.
For one Riemann surface, there are more than one way

to choose the ai and bi cycles. Different choices of the
generators of the fundamental group correspond to

different realizations of the Schottky uniformization. Even
though different Schottky uniformizations describe the
same Riemann surface, their extensions to the bulk give
different gravity solutions.
The Schottky uniformization problem for a general

Riemann surface could be solved by considering the
differential equation

ψ 00ðuÞ þ 1

2
RðSÞðuÞψðuÞ ¼ 0; ð3:6Þ

where RðSÞðuÞ is the Schottky projective connection on a
marked Riemann surface. RðSÞðuÞ is uniquely determined
by the normal subgroup N . Namely it depends on the
choice of the generators. A ratio of the linearly inde-
pendent solutions of the above equation determines the
quotient map in the covering space Ω. More importantly,
it turns out that up to a normalization RðSÞ is just the
holomorphic stress tensor TðuÞ of the Liouville theory
[38], which is the regulated on-shell action of the bulk
solution of the AdS3 gravity. The explicit forms of the
stress tensor depend on ð3g − 3Þ complex accessory
parameters with respect to the holomorphic quadratic
differentials on the Riemann surface such that the
determination of the uniformization map is usually a
very difficult problem. However, for the Riemann surface
in computing the Rényi entropy, the uniformization
problem could be solved perturbatively in some cases
due to the replica symmetry. For the double interval case
[20], the stress tensor takes the form

RðSÞðuÞ ¼
X
i

Δ
ðu − uiÞ2

þ γi
u − ui

; ð3:7Þ

where

Δ ¼ 1

2

�
1 −

1

n2

�
; ð3:8Þ

and there is only one conformal invariant accessory
parameter. For the single interval on a torus, the stress
tensor takes the form [26]

RðSÞðuÞ ¼
X
i

ðΔ℘ðu − uiÞ þ γiζðu − uiÞÞ þ δ; ð3:9Þ

where ℘ is the doubly periodic Weierstrass function

℘

�
u;R;

i
T

�

¼ 1

u2
þ

X
ðm:nÞ≠ð0;0Þ

�
1

ðuþmRþ in
T Þ2

−
1

ðmRþ in
T Þ2
�

ð3:10Þ
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¼
X
m

π2T2

sinh2½πTðuþmRÞ� −
X
m≠0

π2T2

sinh2ðπmTRÞ þ
π2T2

3
;

ð3:11Þ

and

ζðuÞ ¼
X
m

πT coth½πTðuþmRÞ�

þ
X
m≠0

π2T2u
sinh2πmTR

−
π2T2u

3
: ð3:12Þ

To solve the problem, one has to impose the monodromy
condition on some cycles to fix the accessory parameters.
The different choices on the cycles with trivial mono-
dromy give different Schottky uniformization.
On the other hand, the regulated on-shell action of a

AdS3 gravity solution is the so-called Takhtajan-Zograf
action [38]. Moreover, the dependence of the action on the
moduli parameter has been studied in [39,40]. For the
gravitational configuration dual to the n-sheeted Riemann
surface, the action obeys the equation [20]

∂Sn
∂ui ¼ −

cn
6ðn − 1Þ γi: ð3:13Þ

This equation allows us to obtain the classical action
of the gravity solution corresponding to a Schottky uni-
formization. Among different uniformizations for the same
Riemann surface, the one leading to the least gravitational
action dominates the partition function.
Here let us focus on the case that there is a single interval

on a torus. Because the cycles around two branch points
are always of trivial monodromy, we have

γ1 ¼ −γ2: ð3:14Þ

For convenience, we redefine the functions and rewrite the
stress tensor as

RðSÞðuÞ ¼ Δ ~℘ðu − u1Þ þ Δ ~℘ðu − u2Þ þ γ ~ζðu − u1Þ
− γ ~ζðu − u2Þ þ ~δ; ð3:15Þ

where

~℘ðuÞ ¼
X∞

m¼−∞

π2T2

sinh2½πTðuþmRÞ� ;

~ζðuÞ ¼
X∞

m¼−∞
πT coth½πTðuþmRÞ�: ð3:16Þ

For the classical partition function, we need to calculate the
on-shell action of the gravity solution with proper boundary
terms as regulators. It turns out Eq. (3.13) is not enough to

determine the action completely. Besides the dependence
of the action on the accessory parameter, we have to take
into account its dependence on the size of the torus. In [14],
we proposed another differential relation on the partition
function, in addition to (3.13), in order to determine the size
dependence of the partition function completely,

∂Sn
∂R ¼ c

12π

n
n − 1

βð~δ − ~δn¼1Þ: ð3:17Þ

With Eqs. (3.13) and (3.17), we can determine the partition
function completely.
From the holographic entanglement entropy of one

single interval in the black hole background [34], there
should be a phase transition when the interval becomes
large enough. This means that for a very large interval one
should impose a different set of monodromy conditions,
which leads to different Schottky uniformization. To
support our choice on the monodromy conditions for the
large interval case, we will compute in the following
the holographic entanglement entropy and compare it with
the result in [34].
Let us first review the holographic computation in the

short interval case. We set the branch cut at ½u1; u2�. At a
high temperature, the thermal cycle should be of trivial
monodromy, and the wave function transforms as

ψ

�
uþ i

T

�
¼ −ψðuÞ: ð3:18Þ

If we transform into the z coordinate, there is no minus sign
in the monodromy condition. As discussed in [26], to
compute the holographic entanglement entropy we only
need to study the solution near n ¼ 1 and expand the wave
function and the parameters with respect to n − 1 as

ψðuÞ ¼ ψ ð0ÞðuÞ þ
X∞
i¼1

ðn − 1Þiψ ðiÞðuÞ; ð3:19Þ

γ ¼
X∞
i¼1

ðn − 1ÞiγðiÞ; ð3:20Þ

~δ ¼ −2π2T2 þ
X∞
i¼1

ðn − 1Þi ~δðiÞ; ð3:21Þ

with

ψ ð0ÞðuÞ ¼ AeπTu þ Be−πTu: ð3:22Þ

Expanding the trivial monodromy condition with respect to
ðn − 1Þ, we have

ψ ðiÞ
�
uþ i

T

�
¼ −ψ ðiÞðuÞ; ð3:23Þ
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at each order. With proper redefinition of A and B in
Eq. (3.22), we can also set

ψ ðjÞð0Þ ¼ ψ 0ðjÞð0Þ ¼ ψ ðjÞ
�
i
T

�
¼ ψ 0ðjÞ

�
i
T

�
¼ 0;

for j ¼ 1; 2;…: ð3:24Þ

Taking the expansions of the wave function and the
parameters into the equation, we find the following
equation at the leading order:

ψ ð1Þ00 ðuÞ − π2T2ψ ð1ÞðuÞ þ 1

2
mðuÞψ ð0ÞðuÞ ¼ 0; ð3:25Þ

where

mðuÞ ¼ ~℘ðu − u1Þ þ ~℘ðu − u2Þ þ γð1Þ ~ζðu − u1Þ
− γð1Þ ~ζðu − u2Þ þ ~δð1Þ: ð3:26Þ

We get the solution

ψ ð1ÞðuÞ ¼ e−uπT

2πT

Z
u

0

erπTmðrÞψ ð0ÞðrÞdr

−
euπT

2πT

Z
u

0

e−rπTmðrÞψ ð0ÞðrÞdr: ð3:27Þ

Furthermore, considering the last two equations in (3.24),
we get

Z
1

0

m

�
is
T

�
ds ¼ 0;

Z
1

0

e2πism

�
is
T

�
ds ¼ 0: ð3:28Þ

Solving these equations, we find

~δð1Þ ¼ 0;

γð1Þ ¼ 2πT coth πTðu2 − u1Þ: ð3:29Þ

Taking ~δ and γ into Eqs. (3.13) and (3.17), we obtain the
classical entanglement entropy

SðclassicalÞEE ¼ c
6
log sinh2πTðu2 − u1Þ þ const; ð3:30Þ

which is the geodesic length in the bulk connecting two
branch points.
On the other hand, for the large interval case, we choose

another n cycles of trivial monodromy. To compare with the
small interval case, we set the branch cut at ½0; u1�⋃½u2; R�.
Among n trivial cycles, there is one cycle that goes across
the branch cut for n times. This cycle is denoted as ~Að1Þ in
Figs. 2 and 3. There are other n − 1 independent cycles
enclosing ½u1; u2�, the complementary part of the large
interval. These cycles are denoted as ~AðiÞ, i > 1 in Fig. 2.

As in the small interval case, we expand the wave function
and parameter with respect to ðn − 1Þ,

ψ ¼ ψ ð0ÞðuÞ þ
X∞
i¼1

ðn − 1Þiψ ðiÞðuÞ; ð3:31Þ

~δ ¼ −
2π2T2

n2
þ
X∞
i¼1

ðn − 1Þi ~δðiÞ; ð3:32Þ

γ ¼
X∞
i¼1

ðn − 1ÞiγðiÞ; ð3:33Þ

and the zeroth order wave function is

ψ ð0Þ ¼ A0eπT
n u þ B0e−πT

n u: ð3:34Þ

The monodromy condition for the cycle ~Að1Þ is

ψ

�
uþ in

T

�
¼ −ψðuÞ: ð3:35Þ

where uþ in
T means that the argument goes across the

branch cut for n times. Expanding the wave function with
respect to n − 1, we find the same differential equa-
tion (3.25) at the leading order, and the same ~δð1Þ and
γð1Þ as in the short interval case. The only difference comes
from ~δð0Þ ¼ − 2π2T2

n2 . Taking them into Eqs. (3.13) and
(3.17), we obtain the classical entanglement entropy of
the large interval

SðclassicalÞEE ¼ c
6
log sinh2πTðu2 − u1Þ þ

c
3
πTR: ð3:36Þ

Namely, the holographic entanglement entropy (HEE) of a
very large interval is the sum of HEE of its complementary
interval and the horizon length of a static Banados-
Teitelboim-Zanelli black hole. This is exactly the result
suggested in [34].

B. Holographic Rényi entropy: Classical part

In this subsection we develop a systematic way to solve
the monodromy problem and calculate holographically the
classical Rényi entropy for the large interval on a circle at
high temperature. We need to solve the equation

ψ 00ðuÞ þ 1

2
RðSÞðuÞψðuÞ ¼ 0; ð3:37Þ

by tuning the parameters γ and ~δ such that the two solutions
for the second order differential equation have trivial
monodromy along the appointed cycles ~AðiÞ. For conven-
ience, we take a conformal transformation
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z ¼ e
2πu
β ; ð3:38Þ

and define some useful parameters

zR ¼ e−2πTR; z1 ¼ e2πTu1 ; z2 ¼ e2πTu2 : ð3:39Þ

The torus is transformed into a solid annulus with the inside
and outside circles being identified. The branch cut is at
½1; z1�⋃½z2; 1

zR
�, the ~Að1Þ cycle is the one that goes around

the origin for n times, and the ~AðiÞ, i > 1 cycles are those
enclosing ½z1; z2� in different sheets. With the conformal
transformations,

z → z · zmR ; ð3:40Þ

we can cover the full complex plane with a series of annuli.
To study the monodromy problem for the large interval

and high temperature case analytically, we can take a
Laurent or Taylor expansion of the wave function about the
origin and branch point and also take an expansion with
respect to some parameters. Let us first consider the
expansion about the origin. Because of the monodromy
condition, we may rewrite the wave function as

ψ ð1;�Þ ¼ z
1
2
ð1�1

nÞfð�ÞðzÞ; ð3:41Þ

where fð�Þ should be single valued in the region z2zR <
jzj < z1 with its Laurent expansion being convergent.
Assuming the wave function and the parameters can be
expanded with respect to zR and z as

fð�Þðz; zR; z1; z2Þ ¼
X∞
r¼0

fð�Þ
r ðz; z1; z2ÞzrR; ð3:42Þ

γ ¼
X∞
r¼0

γrzrR; δ ¼
X∞
r¼0

δrzrR; ð3:43Þ

fð�Þ
r ðz; z1; z2Þ ¼

X∞
n¼−r

fð�Þ
r;n ðz1=z2Þðz=z2Þn; ð3:44Þ

with the normalization as

fð�Þ
0 ¼ 1;

fð�Þ
r;0 ¼ 0 for r > 0; ð3:45Þ

we find that fð�Þ
r;n and δr can be solved order by order

depending on γr. As z1 ≃ z2, the coefficients fð�Þ
r;n are of

order 1 and

zrRz
−n
2 zn ¼

�
z2zR
z

�
r
�
z
z2

�
rþn

; r ≥ 0; n ≥ −r;

ð3:46Þ

so the wave function should be convergent in the
region z2zR < z < z1.
Next we consider the wave function around ½z1; z2�. The

wave function around z1 and z2 can be written as

ψ ð2;�Þ ¼ ðz − z1Þ12ð1�1
nÞðz − z2Þ12ð1∓1

nÞgð�Þðz; z1; z2; zRÞ:
ð3:47Þ

The prefactors encode the information of the monodromy,
and gð�Þ is single valued around each of the branch points
so that it is analytic in the region jz−z2j<minfjz2zR−z1j;
jz1zR−z2jg. In this region, the wave function is convergent,

and the function gð�Þ can be expanded with respect to zR,
ðz − z2Þ, and ðz1 − z2Þ,

gð�Þðz; z1; z2; zRÞ ¼
X∞
r¼0

gð�Þ
r ðz; z1; z2ÞzrR; ð3:48Þ

gð�Þ
r ðz; z1; z2Þ ¼

X∞
n¼0

gð�Þ
r;n ðz1; z2Þðz − z2Þn; ð3:49Þ

gð�Þ
r;n ðz1; z2Þ ¼

X∞
m¼0

gð�Þ
r;n;mðz2Þðz1 − z2Þm; ð3:50Þ

with normalization

gð�Þ
0;0 ¼ 1;

gð�Þ
r;0 ¼ 0 for r > 0; ð3:51Þ

and the parameters can be expanded as

γ0 ¼
X∞
n¼−1

γ0;nðz1 − z2Þn;

γr ¼
X∞
n¼0

γr;nðz1 − z2Þn; for r > 0;

δr ¼
X∞
n¼0

δr;nðz1 − z2Þn: ð3:52Þ

Taking in the previous result on δr, we can solve all of the
parameters and coefficients order by order. We list the
solutions of γ and δ to the first few lowest orders in
Appendix E. Integrating Eqs. (3.13) and (3.17) we get the
classical part of nth Rényi entropy
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Sn ¼
c
6
πTR

nþ 1

n
þ cðnþ 1Þ

6n
logðu1 − u2Þ þ cðnþ 1Þ

�
π2T2

36n3
ðu1 − u2Þ2

−
π4ðn6 þ 9n4 − 9n2 þ 11ÞT4

12960n7
ðu1 − u2Þ4

þ π6ð19n10 þ 85n8 − 125n6 þ 251n4 − 274n2 þ 188ÞT6

2449440n11
ðu1 − u2Þ6

−
π8

5878656000n15
ð4187n14 þ 12787n12 − 22521n10 þ 55919n8 − 100079n6 þ 143481n4

− 126067n2 þ 58213ÞT8ðu1 − u2Þ8
�

þ cðn − 1Þ2ðnþ 1Þ3
�
−
π4T4

54n5
ðu1 − u2Þ4 −

π6ð19n4 − 2n2 − 11ÞT6

4860n9
ðu1 − u2Þ6

−
π8ð4187n8 − 572n6 − 4218n4 − 1412n2 þ 4607ÞT8

12247200n13
ðu1 − u2Þ8

�
e−2πTR

þ cðn − 1Þðnþ 1Þ2
�
−
π4ð3n2 − 1ÞT4

18n5
ðu1 − u2Þ4

−
π6ð209n6 − 101n4 þ n2 þ 11ÞT6

1620n9
ðu1 − u2Þ6

−
π8

4082400n13
ð180041n10 − 104551n8 − 17506n6 þ 43798n4

− 6455n2 − 4607ÞT8ðu1 − u2Þ8
�
e−4πTR þOððu1 − u2Þ10Þ þOðe−6πTRÞ: ð3:53Þ

Recalling u1 − u2 ¼ l, we find that the classical HRE Sn is
in complete agreement with the field theory result (2.67) up
to order l6 and e−4πTR.

C. Holographic Rényi entropy: One-loop correction

In the previous subsection, we calculated the on-shell
action for the gravity solution, which gives the classical
part of the HRE and entanglement entropy. In this
section, we derive the one-loop quantum correction to
the HRE by computing the functional determinants for
the fluctuations around the corresponding classical
background. As proposed in [24], for a handle-body
solution realized as quotient space by a Schottky group Γ
in pure AdS3 gravity, the one-loop partition function is
given by [28]

Z1−loop ¼ −
X
γ∈P

X∞
m¼2

logð1 − qmγ Þ; ð3:54Þ

where P denotes the primitive conjugate class of the

Schottky group, and q
�1

2
γ denotes the eigenvalues of the

Schottky group element γ ⊂ SLð2; CÞ, with jqγj < 1. A
group element is primitive if it cannot be written as
γ ¼ βn for n > 1.

To read the one-loop partition function, we need to find
the corresponding SLð2; CÞ elements for every Schottky
generator and the primitive elements constructed from
them. To study the corresponding SLð2; CÞ elements in
the Schottky group, we need to study the monodromy
around the cycles. We can solve the wave function in
different charts covering the Riemann surface. If two charts
have an overlap, there is an SLð2; CÞ transformation
between the solutions in the overlap. For each cycle there
are a series of charts covering it so that the Schottky group
elements are the multiplication of a series of SLð2; CÞ
transformations. The crucial point is to study the SLð2; CÞ
transformation between the solutions in two overlapping
charts. Since we only want to calculate the lowest order
terms with respect to the modular parameters, we may
expand different wave functions in the overlap, such that to
each order there are only a finite number of terms in the
expansion. Comparing the coefficients of two different
expansions, we can read the SLð2; CÞ transformation to the
fixed order.
Since ψ ð1;�Þ is expanded at z ¼ 0 and ψ ð2;�Þ is expanded

at z ¼ z2, there is no direct way expanding the two wave
function in the same region. In the case at hand, to study the
Schottky transformation we need another wave function,
connecting ψ ð1Þ and ψ ð2Þ. For convenience, we will write
the wave function in the new coordinate
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t ¼ t0
zþ eπTðu1þu2Þ

z − eπTðu1þu2Þ ; ð3:55Þ

with

t0 ¼
eπTðu2−u1Þ − 1

eπTðu2−u1Þ þ 1
; ð3:56Þ

which set

z ¼ 0 → t ¼ −t0;

z ¼ ∞ → t ¼ t0: ð3:57Þ

The new wave function can be expanded as

ψ ð3Þ�ðtÞ ¼ ðtþ t0Þ12ð1�1
nÞðt − t0Þ12ð1∓1

nÞ

×
X∞
m¼0

1

ðtþ t0Þmðt − t0Þm
hmðt; t0ÞzmR ; ð3:58Þ

with

h0ðt; t0Þ ¼
X
r≥0

h0;rðt0Þtr;

hmðt; t0Þ ¼
X

r≥0;r≠2m
hm;rðt0Þtr; for m > 0; ð3:59Þ

and

hm;rðt0Þ ¼
X∞
s¼0

hm;r;sts0: ð3:60Þ

Now the convergent region for the expansion is

jt0j < jtj < jt0j·
���� e−2πTR þ eπTðu1−u2Þ

e−2πTR − eπTðu1−u2Þ

����: ð3:61Þ

We can solve the wave function order by order with respect
to zR and t0.
To study the transformation between ψ ð3�Þ and ψ ð2�Þ, we

rewrite ψ ð2�Þ in terms of the t coordinate

ψ ð2�ÞðtÞ ¼ ψ ð2�ÞðzÞ
�∂z
∂t
�

−1
2

¼ ð−2t0Þ12e1
2
πTðu1þu2Þ 1

ð1þ t0Þ12ð1�1
nÞð1 − t0Þ12ð1−∓1

nÞ

× ð1þ tÞ12ð1�1
nÞð1 − tÞ12ð1∓1

nÞg�ðzÞjz¼eπTðu1þu2Þtþt0
t−t0

;

ð3:62Þ

with convergent region

jtj > t0
e−2πTR þ eπTðu2−u1Þ

eπTðu2−u1Þ − e−2πTR
: ð3:63Þ

By comparing the coefficients in the expansions of two
wave functions in the overlapping region

t0
e−2πTR þ eπTðu2−u1Þ

eπTðu2−u1Þ − e−2πTR
< jtj < jt0j·

���� e−2πTR þ eπTðu1−u2Þ

e−2πTR − eπTðu1−u2Þ

����;
ð3:64Þ

we get

�
ψ ð2−Þ

ψ ð2þÞ

�
≡H1 ·

�
ψ ð3−Þ

ψ ð3þÞ

�
; ð3:65Þ

where

H1 ¼ ð−2t0Þ12e1
2
πTðu1þu2Þ

0
B@

1

ð1þt0Þ
1
2
ð1−1nÞð1−t0Þ

1
2
ð1þ1

nÞ
0

0 1

ð1þt0Þ
1
2
ð1þ1

nÞð1−t0Þ
1
2
ð1−1nÞ

1
CA ·

�
T−− T−þ

Tþ− Tþþ

�
: ð3:66Þ

The explicit expression of the matrix elements of T are
listed in Appendix F.
Similarly, we can rewrite the wave function ψ ð3Þ in terms

of the u coordinate and compare the expansion coefficients
of ψ ð3Þ and ψ ð1Þ in the region zRz2 < jzj < z1. We read the
transformation

�
ψ ð3−Þ

ψ ð3þÞ

�
≡H2 ·

�
ψ ð1−Þ

ψ ð1þÞ

�
; ð3:67Þ

where

H2 ¼ ð−2t0Þ12
� ðz1z2Þ 1

4nC− 0

0 ðz1z2Þ− 1
4nCþ

�
: ð3:68Þ

The perturbative expansions of the matrix elements C− and
Cþ are listed in Appendix G. Because ψ ð1;þÞ ψ ð3;þÞ (ψ ð1;−Þ

ψ ð3;−Þ) share the same monodromy condition around the
cycle encircling the origin, the transformation matrix H2 is
diagonal.
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With these wave functions we can get the Schottky
generators for the cycle ~AðiÞ, i > 1. To transform the
arguments between different sheets, we need another group
element that denotes the action of circling around the
branch point u1 or the origin counterclockwise. Under such
action, the wave function gets an extra phase so that the
transformation matrix is

M ¼
�
e−2πi

1
n 0

0 e2πi
1
n

�
: ð3:69Þ

With these transformation elements, we can build the
Schottky generators for the ~Aðiþ1Þ cycle as

Li ¼ Mi−1H1M−1H−1
1 M−i; ð3:70Þ

with i ¼ 1;…; n − 1. Ignoring the commutator in the
fundamental group, they correspond to the thermal cycles
in the ðiþ 1Þth sheet in the homology group.
The other Schottky generator corresponds to the hori-

zontal cycle in the first sheet. To find the new generator,
we need to discuss two other couples of the wave functions
to cover the cycle. Under a self-mapping conformal
transformation

~z ¼ z1z2
z

; ð3:71Þ

the energy momentum tensor does not change, so the wave
functions under the conformal transformation are

ψ ð4;�Þð~zÞ ¼ ψ ð1;�ÞðzÞ
�∂z
∂ ~z
�

−1
2

¼ ð−1Þ−1
2ðz1z2Þ� 1

2n ~z
1
2
ð1∓1

nÞ
�
1þ

X
r≠0

ar ~zr
�
; ð3:72Þ

which is convergent in

z2 < j~zj < z1
zR

; ð3:73Þ

and

ψ ð5;�Þð~zÞ ¼ ψ ð3;�ÞðzÞ
�∂z
∂ ~z
�

−1
2 ¼ ð−1Þ−1

2ψ ð3;∓Þð~zÞ; ð3:74Þ

which is convergent at

j~z − z1j < min

�
z1 − z2zR;

z1
zR

− z1

�
: ð3:75Þ

Taking a conformal transformation

~z ¼ z
zR

; ð3:76Þ

it is easy to see that the solutions ψ ð1Þ and ψ ð4Þ share the
same convergent region, and ψ ð1Þ transforms as

ψ ð1;�Þð~zÞ ¼ ψ ð1;�ÞðzÞ
�∂z
∂ ~z
�

−1
2

z
� 1

2n
R ~z

1
2
ð1�1

nÞ
�
1þ

X
r≠0

ar ~zr
�
:

ð3:77Þ

Comparing the coefficients of the leading terms, we find

�
ψ ð1;−Þ

ψ ð1;þÞ

�
¼
 
z
− 1
2n

R ð−1Þ12ðz1z2Þ− 1
2n 0

0 z
1
2n
Rð−1Þ

1
2ðz1z2Þ 1

2n

!

×

�
0 1

1 0

��
ψ ð4;−Þ

ψ ð4;þÞ

�
: ð3:78Þ

The other wave functions ψ ð5Þ are related to ψ ð3Þ by the
conformal transformation (3.76). Therefore we get the
transformation

�
ψ ð4;−Þ

ψ ð4;þÞ

�
¼ H−1

2

�
ψ ð5;−Þ

ψ ð5;þÞ

�
: ð3:79Þ

Considering the relation (3.74), we have the transformation

�
ψ ð5;−Þ

ψ ð5;þÞ

�
¼ ð−1Þ−1

2

�
0 1

1 0

��
ψ ð3;−Þ

ψ ð3;þÞ

�
: ð3:80Þ

With these results, we obtain the generator

Ln ¼ H1H2

 
z
− 1
2n

R ð−1Þ12ðz1z2Þ− 1
2n 0

0 z
1
2n
Rð−1Þ

1
2ðz1z2Þ 1

2n

!

×

�
0 1

1 0

�
H−1

2

�
0 1

1 0

�
H−1

1

¼ H1

 
ðCþÞ−1C−z

− 1
2n

R 0

0 CþðC−Þ−1z 1
2n
R

!
H−1

1

≡H1NH−1
1 : ð3:81Þ

Up to now, we have built all of the Schottky generators
Li; i ¼ 1;…; n. To calculate the one-loop correction to the
partition function, we need to find all of the primitive
elements up to a conjugate. Even though there are infinite
primitive conjugate classes, only a finite number of them
contribute at each order of the expansion with respect to
ðu1 − u2Þ and z1=nR . In this work, we are satisfied to
calculate the one-loop correction up to order ðu1 − u2Þ4
and z3=nR .
The Schottky group elements can be classified into

two classes. In the first class, the group elements are
generated by

BIN CHEN AND JIE-QIANG WU PHYSICAL REVIEW D 92, 106001 (2015)

106001-22



Li with i < n; ð3:82Þ

and their inverses. They are similar to the ones in the double
interval case as shown in [26]. The simplest one is

γi;k ¼ LiLiþ1 � � �Liþk ¼ Mi−1H1M−ðkþ1ÞH−1
1 M−ðiþkÞ:

ð3:83Þ

With this block, all of the group elements in this class are
generated by (3.82) and their inverses as

γk1;k2;…;k2p;m ¼ Mm

�Yp
j¼1

Mk2j−1H1Mk2jH−1
1

�
M−m: ð3:84Þ

The other class involves Lr
n, which can be written as

Lr
n ¼ H1NrH−1

1 ∼H1Mk0H−1
1 ; ð3:85Þ

with

k0 ¼ ni
2π

logððCþÞ−1C−z
− 1
2n

R Þ: ð3:86Þ

As they take the similar form as (3.84), all the elements take
the general form of (3.84). However, in (3.84), there are
nonprimitive elements, and some of them are conjugate to
each other.
In the large interval limit, the asymptotic forms of the

group elements are, respectively,

H1 ∼ ð−2t0Þ12e1
2
πTðu1þu2Þ

 
− n

2t0
n
2t0

− n
2t0

n
2t0

!
; ð3:87Þ

H−1
1 ∼ ð−2t0Þ−1

2e−
1
2
πTðu1þu2Þ

 
− n

2
n
2

− n
2

n
2

!
: ð3:88Þ

Then a group element in (3.84) has an asymptotic form

γk1;k2;…;k2p;m ∼
�
n2

4t0

�
pY2p
s¼2

ðe2πi
n ks − e−

2πi
n ksÞ

×

 
−e−2πi

n k1 e−
2πi
n k1

−e2πi
n k1 e

2πi
n k1

!
; ð3:89Þ

whose nonzero eigenvalue is

q−
1
2 ¼

�
n2

4t0

�
pY2p
1¼2

ðe2πi
n ks − e−

2πi
n ksÞð1þOðt0ÞÞ: ð3:90Þ

Considering the large interval property for t0

t0 ∼
πT
2
ðu2 − u1Þ; ð3:91Þ

we find that the one-loop contribution to the partition
function is

Z1−loop
q ¼

X∞
s¼2

logð1 − qsÞ ¼ q2 þ q3 þOðq4Þ: ð3:92Þ

As the leading order contribution to the one-loop partition
is at order t4p0 , we only need to consider the terms for p ≤ 1,
if we are only interested in the result up to order l4.
Furthermore, in (3.84), there may be some k’s that give the

same terms as (3.86). Such terms are of order z
−m

n
R , where m

is the number in (3.84). Their leading contributions are of
order z4m=n

R . If we only consider one-loop contributions up

to order z3=nR , we only need to consider m ≤ 1.
Here we list the possible primitive conjugate classes,

whose contributions to the one-loop partition function are
of order no higher than ðu1 − u2Þ4 or z3=nR .
(1) The group element classes with no Ln, including

LiLiþ1 � � �Liþm−1 and their inverses. Their eigen-
values are

qð1Þm ¼ π2T2

4n4
1

sin4 πm
n

ðu1 − u2Þ2 þOðu1 − u2Þ3;

ð3:93Þ

with degeneracy 2ðn −mÞ. Their contributions to the
partition function are

Zð1−loopÞ ¼
Xn−1
m¼1

2ðn −mÞ
X∞
r¼2

logð1 − ðqð1Þm ÞrÞ

¼ π4T4

226800n7
ðn2 − 1Þðn2 þ 11Þ

× ð3n4 þ 10n2 þ 227Þðu1 − u2Þ4
þOðu1 − u2Þ5:

(2) The elements Ln and L−1
n , both of which have

eigenvalue

qð2Þ ¼ ðCþC−1
− Þ2z1=nR : ð3:94Þ

The resulting contributions are
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Z1−loop ¼ 2
X∞
r¼2

logð1 − ðqð2ÞÞrÞ

¼ 2

�
z2=nR

�
1þ 2ð−1þ n2Þ

3n3
π2T2ðu1 − u2Þ2

−
ð−11 − 60nþ 15n2 þ 120n3 − 9n4 − 60n5 þ 5n6Þ

270n7
π4T4ðu1 − u2Þ4

þOðzRÞ þOððu1 − u2Þ5Þ
�

þ z3=nR

�
1þ ð−1þ n2Þ

n3
π2T2ðu1 − u2Þ2

−
ð−11 − 90nþ 15n2 þ 180n3 − 9n4 − 90n5 þ 5n6Þ

180n7
π4T4ðz1 − z2Þ4

þOððu1 − u2Þ5Þ þOðzRÞ
�
þOðz3

n
RÞ
�
: ð3:95Þ

It is clear that the result is expanded with respect to u1 − u2,
zR, and z1=nR .
(3) The elements with all kinds of generators include

ðL1 � � �Lj1Þ−1LnðL1 � � �Lj2Þ
¼ Mj1þ1H1Mj1NM−j2H−1

1 M−j2þ1

¼ Mj1þ1ðH1Mj1−j2NH−1
1 Mj1−j2ÞM−ðj1þ1Þ;

ð3:96Þ

with m ¼ j1 − j2 ≠ 0. Their eigenvalues are

qð3Þm ¼ −
π2T2ðu1 − u2Þ2

n4
e
2πim
n

sin2 πm
n

× ð1þ 2e
2πim
n z1=nR þOðzRÞ þOðz1=nR Þz1=nR ;

ð3:97Þ

with degeneracy 2n. The contributions to the parti-
tion function are, respectively,

Zð1−loopÞ
n ¼ 2n

Xn−1
m¼1

X∞
r¼2

logð1− ðqð3Þm ÞrÞ

¼ 2n

�
π4T4

n8
ðu1−u2Þ4z2=nR

1

45

× ð−251þ360n−110n2þn4Þ ð3:98Þ

þ π4T4

n8
ðu1 − u2Þ44z3=nR

1

45

× ð−1901þ 1440n − 260n2 þ n4Þ; ð3:99Þ

for n > 3, and

Zð1−loopÞ
2 ¼ 4

�
π4T4ðu1 − u2Þ4

28
ðzR − 4z3=2R Þ

�
;

ð3:100Þ

for n ¼ 2, and

Zð1−loopÞ
3 ¼6

�
π4T4ðu1−u2Þ4

38

�
−
16

9
z2=3R þ128

9
zR

��
;

ð3:101Þ

for n ¼ 3.
Taking into account all of the contributions, we obtain the
one-loop correction to the nth holographic Rényi entropy.
For n ¼ 2, we have

S1−loop2 ¼ −
1

2048
π4T4ðu1 − u2Þ4 −

�
2þ 1

2
π2T2ðu1 − u2Þ2 þ

25

384
π4T4ðu1 − u2Þ4

�
zR

−
�
2þ 3

4
π2T2ðu1 − u2Þ2 þ

15

256
π4T4ðu1 − u2Þ4

�
z3=2R þOððu1 − u2Þ5Þ þOðz2RÞ: ð3:102Þ
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For n ¼ 3, we find

S1−loop3 ¼ −
16

177147
π4T4ðu1 − u2Þ4 −

�
1þ 16

27
π2T2ðu1 − u2Þ2 þ

800

59049
π4T4ðu1 − u2Þ4

�
z2=3R

−
�
1þ 8

27
π2T2ðu1 − u2Þ2 þ

280

6561
π4T4ðu1 − u2Þ4

�
zR þOððu1 − u2Þ5Þ þOðz4=3R Þ: ð3:103Þ

And for n ≥ 3, we obtain

S1−loopn ¼ −
π4T4

226800n7
ðnþ 1Þðn2 þ 11Þð3n4 þ 10n2 þ 227Þðu1 − u2Þ4

−
1

n − 1

��
2þ 4ðn2 − 1Þ

3n3
π2T2ðu1 − u2Þ2

−
299 − 444nþ 135n2 þ 24n3 − 3n4 − 12n5 þ n6

27n7
π4T4ðu1 − u2Þ4

�
z2=nR

þ
�
2þ 2ðn2 − 1Þ

n3
π2T2ðu1 − u2Þ2

−
6081 − 4626nþ 835n2 þ 36n3 − 5n4 − 18n5 þ n6

18n7
π4T4ðu1 − u2Þ4

�
z3=nR

�

þOððu1 − u2Þ5Þ þOðz4=nR Þ: ð3:104Þ

For all the cases, the holographic results are in perfect
match with the ones in the field theory up to the order we
are interested in.

IV. CONCLUSION AND DISCUSSION

In this work, we completed our study on the Rényi
entropy of a large interval on a torus in the light of
AdS3=CFT2 correspondence. In the case that the interval
is not so large, we may expand the density matrix in the
CFT level by level and compute the entropy perturba-
tively; while on the bulk side, we can follow the
prescription in [26] and take into account the size
dependence [14] to read the HRE, which is in good
agreement with the CFT computation. However, when
the interval is large, the problem becomes quite difficult.
On the field side, the perturbative prescription used in
the short interval case breaks down, and we have to find
another effective way to compute the partition function.
On the bulk side, the dual gravitational configurations
are different from the ones in the short interval case, as
indicated in the study in [34].
To overcome these difficulties, we developed a

new prescription and treatment in both field theory
and dual gravity. On the field theory side, we proposed
in [7] to insert a complete set of state bases in the twist
sector of orbifold CFT to compute the large interval
Rényi entropy. We applied this proposal in this
paper and focused on the vacuum module of the CFT

dual to the pure AdS3 gravity. We found that the leading
linear c contributions were dominated by the twist
vacuum module and the subleading ones got contribu-
tions from all the twist states. This allows us to read
the leading contributions by applying the Ward identity
to the correlation function of four twist operators,
two at the branch points and the other two at the
left and the right infinities of the cylinder. We did
find the holographic entanglement entropy suggested
in [34].
On the gravity side, we suggested a new set of

monodromy conditions on the cycles to construct the
Schottky generators and corresponding gravitational
configurations. To check the validness of the mono-
dromy condition, we computed the holographic entan-
glement entropy and reproduced successfully the
expected value. We read the classical part of the
HRE by integrating two differential equations (3.13)
and (3.17), one encoding the dependence of HRE on
the moduli parameter of the Schottky space and the
other on the size of the torus. Moreover, we discussed
carefully the one-loop correction to the HRE, following
the treatment in [26]. We found good agreements of
classical contribution and one-loop quantum correction
to the HRE with the leading and subleading large c
results in the field theory, up to the first few orders. For
the classical part, the agreement is up to e−4πTR and l6

orders, while for the quantum part, the agreement is up
to e−

6πTR
n and l4 orders.
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The study in this work presents another piece of
evidence to strongly support the holographic computa-
tion of the entanglement entropy in the context of the
AdS3=CFT2 correspondence. Taking into account the
accumulated evidence on the HRE in the cases including
double-interval and single short interval on the torus,
it suggests that the holographic computation is exact
perturbatively not only at the classical level but also
at the one-loop quantum level. Furthermore, our field
theory study shows that there are actually 1=c correc-
tions in the partition function when the Riemann surface
is of genus higher than 1. It would be interesting to see
if the agreement could go beyond the one-loop level
[28,41] or even nonperturbatively.
Our study could be generalized to other cases. In

particular, it is interesting to study the higher spin Rényi
entropy of the single interval on a torus by direct field
theory computation [42–46] and Wilson line prescription
in the bulk [47–49].
The study of holographic entanglement entropy may

shed light on the AdS3 quantum gravity [24,50]. There
are two essential questions on the quantum AdS3
gravity. One is on the precise definition of the quantum
gravity, string theory, or something else. The other is on
the construction of the dual CFT. There is ample
evidence, for example, the work in [24], that the dual
CFT might not exist. However, the results in this work
and other related ones suggest that there exists an
equivalence between the semiclassical AdS3 gravity
including the pure gravity sector and the large central
charge limit of a 2D CFT, which has a sparse light
spectrum [21,23,51–53]. In our study, it turns out that
in the large central charge limit, the vacuum module
dominates the contribution to the partition function. It is
not clear when the states in the sparse light spectrum
begin to contribute. Moreover, the regulated on-shell
action of the gravitational configuration in the AdS3
gravity is a Liouville theory. This raises the issue if the
dual CFT could be a Liouville CFT. For a recent study
on this issue, see [54]. It would be interesting to see
if it is possible to prove the equivalence by using the
Liouville theory.4
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APPENDIX A: STATES IN THE VACUUM
MODULE

In this section, we list some low-lying excited states in
the vacuum module. We focus only on the holomorphic
sector. For the antiholomorphic sector, it is similar to the
holomorphic one. The first few excited states up to level 4
are, respectively,

j2i ¼
ffiffiffi
2

c

r
L−2j0i;

j3i ¼
ffiffiffiffiffi
1

2c

r
L−3j0i;

j4; 1i ¼
ffiffiffiffiffi
1

5c

r
L−4j0i;

j4; 2i ¼
�
c2

2
þ 11

5
c

�
−1
2

�
L−2L−2 −

3

5
L−4

�
j0i: ðA1Þ

The corresponding vertex operators at the origin and the
infinity take the forms, respectively,

L−2 → TðwÞjw¼0

→ w4TðwÞjw→∞;

L−3 → ∂TðwÞjw¼0

→ −w6∂TðwÞ − 4w5TðwÞjw→∞;

L−4 →
1

2
∂2TðwÞjw¼0

→
1

2
w8∂2TðwÞ þ 5w7∂TðwÞ

þ 10w6TðwÞjw→∞;

L−2L−2 −
3

5
L−4 → ∶TðwÞ2∶ − 3

10
∂2TðwÞjw¼0

→ w8

�
∶TðwÞ2∶ − 3

10
∂2TðwÞ

�
jw→∞:

APPENDIX B: CONFORMAL
TRANSFORMATION FOR ∶T2ðzÞ∶

In the calculation, we need the conformal transformation
of ∶T2ðzÞ∶, which is not a primary operator. Under a
conformal transformation z → wðzÞ, we have

TðzÞ ¼ TðwÞ
�∂w
∂z
�

2

þ c
12

fw; zg; ðB1Þ

where

fw; zg ¼ w000

w0
3

2

�
w00

w0

�
2

ðB2Þ

is the Schwarzian derivative and the prime denotes the
derivative with respect to z. For ∶T2ðzÞ∶, we have

4We would like to thank the anonymous referee for pointing
out this possibility.
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∶T2ðzÞ∶ ¼
I

dz1
z1 − z

Tðz1ÞTðzÞ

¼ c
1440

�
−225

�
w00

w0

�
4

þ 480

�
w00

w0

�
2 w000

w0 − 100

�
w000

w0

�
2

− 180
w00

w0
w0000

w0 þ 36
w00000

w0

�

þ 2TðwÞðw0Þ2
�
−
1

4

�
w00

w0

�
2

þ 2

3

w000

w0

�
þ ∂TðwÞðw0Þ3 3

2

w00

w0

þ ∶T2ðwÞ∶ðw0Þ4 þ TðwÞðw0Þ2 c
6
fw; zg þ

�
c
12

fw; zg
�

2

: ðB3Þ

Especially for the conformal transformation

w ¼ e
2π
nβy; ðB4Þ

we have

TðyÞ ¼ TðwÞ
�∂w
∂y
�

2

−
π2

6n2β2
c;

∶TðyÞ2 ≔
�
c2

36
þ 11c

90

�
π4

n4β4
þ
�
−
c
3
þ 10

3

�
TðwÞ

�∂w
∂y
�

2 π2

n2β2
þ 3∂TðwÞ

�∂w
∂y
�

3 π

nβ
þ ∶TðwÞ2∶

�∂w
∂y
�

4

: ðB5Þ

APPENDIX C: CORRELATION FUNCTIONS f i

In this computation of the Rényi entropy by inserting the twist sector states, we need to compute the correlation functions
fi. Here we list the results for the first few ones needed in the relation (2.32):

loghtjVð0Þjti ¼ c

�
−
ð−1þ n2Þπ2

72β2n3
l2 þ ð−11þ 20n2 − 18n4 þ 8n6 þ n8Þπ4

25920β4n7
l4
�

þ ð−2497þ 2160n2 þ 294n4 þ 40n6 þ 3n8Þπ4
453600β4n7

l4 þOðl5Þ; ðC1Þ

f2 ¼
�
1þ 2ð−1þ n2Þπ2

3β2n3
l2 −

ð299 − 444nþ 135n2 þ 24n3 − 3n4 − 12n5 þ n6Þπ4
54β4n7

l4
�

−
1

c
ð733 − 672n2 − 63n4 þ 2n6Þπ4

945β4n7
l4 þOðl5Þ for n ≠ 1; 2

¼ 1 for n ¼ 1

¼ c
π4

128β4
l4 þ

�
1þ π2

4β2
l2 þ 25π4

768β4
l4
�
þ 1

c
3π4

128β4
l4 þOðl5Þ for n ¼ 2; ðC2Þ

f3 ¼
�
1þ ð−1þ n2Þπ2

β2n3
l2 −

ð6081 − 4626nþ 835n2 þ 36n3 − 5n4 − 18n5 þ n6Þπ4
36β4n7

l4
�

−
1

c
ð−933þ 1148n2 − 217n4 þ 2n6Þπ4

630β4n7
þOðl5Þ for n ≠ 1; 3

1 for n ¼ 1

c
128π4

6561β4
l4 þ

�
1þ 8π2

27β2
l2 þ 280π4

6561β4
l4
�
þ 1

c
32π4

6561β4
l4 þOðl5Þ for n ¼ 3; ðC3Þ
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f4;1 ¼
�
1þ 4ð−1þ n2Þπ2

3β2n3
l2 −

ð201919 − 108120nþ 14115n2 þ 240n3 − 39n4 − 120n5 þ 5n6Þπ4
135β4n7

l4
�

−
1

c
2ð83213 − 136080nþ 55020n2 − 2163n4 þ 10n6Þπ4

4725β4n7
l4 þOðl5Þ for n ≠ 1; 2; 4

1 for n ¼ 1

c
5π4

64β4
l4 þ

�
1þ π2

2β2
l2 þ 473π4

1920β4
l4
�
þ 1

c
3π4

320β4
l4 þOðl5Þ for n ¼ 2

c
125π4

4096β4
l4 þ

�
1þ 5π2

16β2
l2 þ 2261π4

49152β4
l4
�
þ 1

c
99π4

40960β4
l4 þOðl5Þ for n ¼ 4; ðC4Þ

f4;2 ¼
�
1þ 4ð−1þ n2Þπ2

3β2n3
l2 −

ð299 − 456nþ 135n2 þ 48n3 − 3n4 − 24n5 þ n6Þπ4
27β4n7

l4
�

−
1

c
2ð124247 − 166320nþ 43260n2 − 1197n4 þ 10n6Þπ4

4725β4n7
l4 þOðl5Þ for n ≠ 1; 2

1 for n ¼ 1

c
π4

64β4
l4 þ

�
1þ π2

2β2
l2 þ 337π4

1920β4
l4
�
þ 1

c
57π4

320β4
l4 for n ¼ 2: ðC5Þ

APPENDIX D: MUTUAL RÉNYI INFORMATION FOR THE DOUBLE INTERVALS

In this appendix, we list the Rényi mutual information for the double intervals, which has been computed in [25]. In terms
of small cross ratio x, the leading and next-to-leading contributions are, respectively,

Itreen ðx; x̄Þ ¼ cðn − 1Þðnþ 1Þ2x2
288n3

þ cðn − 1Þðnþ 1Þ2x3
288n3

þ cðn − 1Þðnþ 1Þ2ð1309n4 − 2n2 − 11Þx4
414720n7

þ cðn − 1Þðnþ 1Þ2ð589n4 − 2n2 − 11Þx5
207360n7

þ cðn − 1Þðnþ 1Þ2ð805139n8 − 4244n6 − 23397n4 − 86n2 þ 188Þx6
313528320n11

þOðx7Þ þ c:c: ðD1Þ

I1−loopn ðx; x̄Þ

¼ ðnþ 1Þðn2 þ 11Þð3n4 þ 10n2 þ 227Þx4
7257600n7

þ ðnþ 1Þð109n8 þ 1495n6 þ 11307n4 þ 81905n2 − 8416Þx5
119750400n9

þ ðnþ 1Þð1444050n10 þ 19112974n8 þ 140565305n6 þ 1000527837n4 − 167731255n2 − 14142911Þx6
1046139494400n11

þOðx7Þ þ c:c: ðD2Þ

APPENDIX E: THE ACCESSORY PARAMETERS

After imposing the monodromy condition, the accessory parameters γ and δ can be solved order by order. Here we just
list the expansion coefficients of the first few orders

γ0;−1 ¼ −
2πðn − 1Þðnþ 1ÞTz2

n2
; γ0;0 ¼ −

πðn − 1Þðnþ 1ÞT
n2

;

γ0;1 ¼
πðn − 1Þ2ðnþ 1Þ2T

6n4z2
; γ0;2 ¼ −

ð−1þ nÞ2ð1þ nÞ2πT
12n4z22

;
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γ0;3 ¼
πðn − 1Þ2ðnþ 1Þ2ð229n4 − 2n2 − 11ÞT

4320n8z32
;

γ0;4 ¼ −
πðn − 1Þ2ðnþ 1Þ2ð109n4 − 2n2 − 11ÞT

2880n8z42
;

γ0;5 ¼
πðn − 1Þ2ðnþ 1Þ2ð62999n8 − 1724n6 − 9537n4 − 86n2 þ 188ÞT

2177280n12z52
;

γ0;6 ¼ −
πðn − 1Þ2ðnþ 1Þ2ð20159n8 − 716n6 − 3993n4 − 86n2 þ 188ÞT

870912n12z62
;

γ0;7 ¼
πðn − 1Þ2ðnþ 1Þ2T
15676416000n16z72

ð299803787n12

−12840306n10 − 72253947n8 − 2555548n6 þ 5564373n4 þ 67854n2 − 58213Þ
γ1;0 ¼ 0; γ1;1 ¼ 0; γ1;2 ¼ 0;

γ1;3 ¼
πðn − 1Þ3ðnþ 1Þ3T

18n6z32
; γ1;4 ¼ −

πðn − 1Þ3ðnþ 1Þ3T
12n6z42

;

γ1;5 ¼
πðn − 1Þ3ðnþ 1Þ3ð439n4 − 2n2 − 11ÞT

4320n10z52
;

γ1;6 ¼ −
πðnþ 1Þ3ð199n7 − 597n6 þ 595n5 − 193n4 − 17n3 þ 35n2 − 33nþ 11ÞT

1728n10z62
;

γ1;7 ¼
πðnþ 1Þ3T

32659200n14z72
ð4110527n11 − 12331581n10 þ 12268009n9 − 3919811n8

−541434n7 þ 1115726n6 − 1053566n5 þ 354954n4 þ 371n3 − 12409n2 þ 13821n − 4607Þ;
γ2;0 ¼ 0; γ2;1 ¼ 0; γ2;2 ¼ 0;

γ2;3 ¼
πðn − 1Þ2ðnþ 1Þ2ð3n2 − 1ÞT

6n6z32
;

γ2;4 ¼ −
πðn − 1Þ2ðnþ 1Þ2ð3n2 − 1ÞT

4n6z42
;

γ2;5 ¼
πðn − 1Þ2ðnþ 1Þ2ð1469n6 − 521n4 þ n2 þ 11ÞT

1440n10z52
;

γ2;6 ¼ −
πðn − 1Þ2ðnþ 1Þ2ð749n6 − 281n4 þ n2 þ 11ÞT

576n10z62
;

γ2;7 ¼
πðnþ 1Þ2T

10886400n14z72
ð17287061n12 − 34574122n11 þ 10493170n10 þ 13587782n9 − 6779897n8

−27988n7 þ 404292n6 − 780596n5 þ 383843n4 þ 12910n3 − 11062n2 þ 9214n − 4607Þ;

δ0 ¼ −
2π2T2

n2
; δ1;0 ¼ δ1;1 ¼ δ1;2 ¼ δ1;3 ¼ 0;

δ1;4 ¼
π2ðn2 − 1Þ3T2

36n6z42
; δ1;5 ¼ −

π2ðn − 1Þ3ðnþ 1Þ3T2

18n6z52
;

δ1;6 ¼
π2ðn2 − 1Þ3ð1039n4 − 2n2 − 11ÞT2

12960n10z62
;

δ1;7 ¼ −
π2ðn2 − 1Þ3ð439n4 − 2n2 − 11ÞT2

4320n10z72
;
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δ1;8 ¼
π2ðn − 1Þ3ðnþ 1Þ3ð15726467n8 − 116492n6 − 641778n4 − 1412n2 þ 4607ÞT2

130636800n14z82
;

δ1;9 ¼ −
π2ðn − 1Þ3ðnþ 1Þ3ð4472147n8 − 45932n6 − 253698n4 − 1412n2 þ 4607ÞT2

32659200n14z92
;

δ1;10 ¼
π2ðn − 1Þ3ðnþ 1Þ3T2

47029248000n18z102
ð7132759447n12 − 93106446n10

−515825187n8 − 4929908n6 þ 16057833n4 þ 73554n2 − 78893Þ;
δ2;0 ¼ δ2;1 ¼ δ2;2 ¼ δ2;3 ¼ 0;

δ2;4 ¼
π2ðn2 − 1Þ2ð3n2 − 1ÞT2

6n6z42
;

δ2;5 ¼ −
π2ðn2 − 1Þ2ð3n2 − 1ÞT2

3n6z52
;

δ2;6 ¼
π2ðn2 − 1Þ2ð3269n6 − 1121n4 þ n2 þ 11ÞT2

2160n10z62
;

δ2;7 ¼ −
π2ðn2 − 1Þ2ð1469n6 − 521n4 þ n2 þ 11ÞT2

720n10z72
;

δ2;8 ¼
π2ðn2 − 1Þ2ð56156801n10 − 20579551n8 þ 40454n6 þ 681358n4 − 6455n2 − 4607ÞT2

21772800n14z82
;

δ2;9 ¼ −
π2ðn2 − 1Þ2ð17031281n10 − 6432271n8 þ 5174n6 þ 293278n4 − 6455n2 − 4607ÞT2

5443200n14z92
;

δ2;10 ¼
π2ðn2 − 1Þ2T2

7838208000n18z102
ð28908872157n14 − 11219722453n12

−16128831n10 þ 654870399n8 − 21992209n6 − 17014839n4 þ 188883n2 þ 78893Þ:

Collecting all these coefficients and changing back to the u coordinate, we find

γ0 ¼
�
1

n2
− 1

�
1

u1 − u2
þ ðn2 − 1Þπ2T2

��
−

1

3n4

�
ðu1 − u2Þ

þ
�
π2T2ðn6 þ 9n4 − 9n2 þ 11Þ

540n8

�
ðu1 − u2Þ3

þ
�
−
π4T4ð19n10 þ 85n8 − 125n6 þ 251n4 − 274n2 þ 188Þ

68040n12

�
ðu1 − u2Þ5

þ π6T6

122472000n16
ð4187n14 þ 12787n12 − 22521n10 þ 55919n8 − 100079n6

þ143481n4 − 126067n2 þ 58213Þðu1 − u2Þ7 þOððu1 − u2Þ8Þ
�
;

γ1 ¼ π4T4ðn2 − 1Þ3
�

4

9n6
ðu1 − u2Þ3 þ

π2T2ð19n4 − 2n2 − 11Þ
135n10

ðu1 − u2Þ5

þ π4T4ð4187n8 − 572n6 − 4218n4 − 1412n2 þ 4607Þ
255150n14

ðu1 − u2Þ7 þOððu1 − u2Þ8Þ
�
;

γ2 ¼ π4T4ðn2 − 1Þ2
�
4ð3n2 − 1Þ

3n6
ðu1 − u2Þ3
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þ π2T2ð209n6 − 101n4 þ n2 þ 11Þ
45n10

ðu1 − u2Þ5

þ π4T4ð180041n10 − 104551n8 − 17506n6 þ 43798n4 − 6455n2 − 4607Þ
85050n14

ðu1 − u2Þ7

þOððu1 − u2Þ8Þ
�
;

δ1 ¼ π6T6ðn2 − 1Þ3
�

4

9n6
ðu1 − u2Þ4 þ

2π2T2ð19n4 − 2n2 − 11Þ
405n10

ðu1 − u2Þ6

þ π4T4ð4187n8 − 572n6 − 4218n4 − 1412n2 þ 4607Þ
510300n14

ðu1 − u2Þ8

þOððu1 − u2Þ9Þ
�
;

δ2 ¼ π6T6ðn2 − 1Þ2
�
8ð3n2 − 1Þ

3n6
ðu1 − u2Þ4

þ 4π2T2ð209n6 − 101n4 þ n2 þ 11Þ
135n10

ðu1 − u2Þ6

þ π4T4ð180041n10 − 104551n8 − 17506n6 þ 43798n4 − 6455n2 − 4607Þ
85050n14

ðu1 − u2Þ8

þOððu1 − u2Þ8Þ
�
:

APPENDIX F: T MATRIX

In this section, we list the leading order terms in the expansion of the T matrix in the Schottky transformation. For any
matrix element, we may expand it as

T ¼
X∞
r¼0

X∞
n¼−1

Tr;ntn0z
r
R: ðF1Þ

There are relations among the matrix elements

T−þ
r;n ¼ ð−1ÞnT−−

r;n ; ðF2Þ

Tþþ ¼ T−−jn→−n; ðF3Þ

Tþ− ¼ T−þjn→−n: ðF4Þ

For the matrix element T−−, its expansion coefficients are, respectively,

T−−
0;−1 ¼ −

n
2
; T−−

0;0 ¼ −
1

2n
;

T−−
0;1 ¼ −

n4 − 6n3 − 5n2 þ 6nþ 4

36n3
;

T−−
0;2 ¼ −5n4 þ 6n3 þ n2 − 6nþ 4

36n5
;

T−−
0;3 ¼ −547n8 þ 3300n7 þ 1450n6 − 4320n5 þ 489n4 þ 900n3 − 2600n2 þ 120nþ 1208

32400n7
;
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T−−
0;4 ¼ −

2563n8 − 4500n7 þ 230n6 þ 4320n5 − 4521n4 þ 2700n3 − 280n2 − 2520nþ 2008

32400n9
;

T−−
0;5 ¼ −

1

28576800n11
ð351301n12 − 2154138n11 − 482727n10 þ 3021438n9 − 1320165n8 − 443814n7

þ 2165179n6 − 767046n5 þ 202692n4 þ 325752n3 − 1518552n2 þ 17808nþ 602272Þ;

T−−
0;6 ¼ 1

28576800n13
ð−1573097n12 þ 3334842n11 − 636405n10 − 3026142n9 þ 4008417n8 − 3258234n7

þ 929665n6 þ 1999494n5 − 2853228n4 þ 2430792n3 − 1107960n2 − 1480752nþ 1232608Þ;

T−−
0;7 ¼ 1

51438240000n15
ð−500204179n16 þ 3117021000n15 þ 239603780n14 − 4477586640n13

þ 2898902806n12 þ 236602800n11 − 3339143740n10 þ 1922809920n9 − 1609248619n8

− 247284600n7 þ 2744490640n6 − 889423920n5 þ 1223043536n4 þ 325780800n3 − 2411735680n2

þ 12080640nþ 754291456Þ;

T−−
1;−1 ¼ T−−

1;0 ¼ T−−
1;2 ¼ 0; T−−

1;1 ¼ 4ðn2 − 1Þ
3n

;

T−−
1;3 ¼ ð4ð12þ 5n − 23n2 − 10n3 − 2n4 þ 5n5 þ 13n6ÞÞ=ð45n5Þ;

T−−
1;4 ¼ −

2ð13n6 − 12n5 − 24n4 þ 24n3 þ 9n2 − 12nþ 2Þ
27n7

;

T−−
1;5 ¼ −

1

85050n9
ð−101693n10 − 116760n9 − 33317n8 þ 275520n7 þ 267361n6 − 201600n5

− 58831n4 þ 43680n3 − 130168n2 − 840nþ 56648Þ;

T−−
2;−1 ¼ T−−

2;0 ¼ T−−
2;2 ¼ 0; T−−

2;1 ¼ 4ðn2 − 1Þ
n

;

T−−
2;3 ¼ 4ð62n6 þ 75n5 þ 14n4 − 90n3 − 112n2 þ 15nþ 36Þ

45n5
:

APPENDIX G: C MATRIX

For the matrix elements Cþ and C−, their expansions are similar

C− ¼
X∞
r¼0

X∞
n¼0

C−
r;nzrRt

n
0 ðG1Þ

and

Cþ ¼ C−jn→−n: ðG2Þ

Here we list the ones for C−:

C−
0;1 ¼ C−

0;3 ¼ C−
0;5 ¼ C−

0;7 ¼ 0;

C−
0;0 ¼ 1; C−

0;2 ¼
−n3 − 2n2 þ nþ 2

6n3
;

C−
0;4 ¼

−67n7 − 140n6 þ 114n5 þ 48n4 − 63n3 þ 180n2 þ 16n − 88

1080n7
;

C−
0;6 ¼

1

136080n11
ð−4919n11 − 10570n10 þ 10681n9 − 322n8 − 6053n7 þ 17546n6
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− 2893n5 þ 2506n4 þ 3872n3 − 15176n2 − 688nþ 6016Þ;

C−
0;8 ¼

1

244944000n15
ð−6094181n15 − 13347880n14 þ 15437132n13 − 4050896n12 − 8054742n11

þ 24501840n10 − 8606276n9 þ 13161728n8 þ 5132627n7 − 23387240n6 þ 5905056n5 − 13379568n4

− 4416704n3 þ 23953280n2 þ 697088n − 7451264Þ;

C−
1;0 ¼ C−

1;1 ¼ C−
1;3 ¼ C−

1;5 ¼ 0; C−
1;2 ¼

4ðn2 − 1Þ
3n2

;

C−
1;4 ¼

2ð83n6 − 90n5 − 42n4 þ 180n3 − 93n2 − 90nþ 52Þ
135n6

;

C−
1;6 ¼

1

17010n10
ð36377n10 − 42252n9 − 36535n8 þ 72492n7 − 18685n6 þ 2772n5 þ 12259n4

− 54012n3 þ 13288n2 þ 21000n − 6704Þ;

C−
2;0 ¼ C−

2;1 ¼ C−
2;3 ¼ 0; C−

2;2 ¼
4ðn2 − 1Þ

n2
;

C−
2;4 ¼

2ð149n6 − 90n5 − 102n4 þ 180n3 − 99n2 − 90nþ 52Þ
45n6

:
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