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In this paper, we study the holographic Rényi entropy of a large interval on a circle at high temperature
for the two-dimensional conformal field theory (CFT) dual to pure AdS; gravity. In the field theory, the
Rényi entropy is encoded in the CFT partition function on n-sheeted torus connected with each other by a
large branch cut. As proposed by Chen and Wu [Large interval limit of Rényi entropy at high temperature,
arXiv:1412.0763], the effective way to read the entropy in the large interval limit is to insert a complete set

of state bases of the twist sector at the branch cut. Then the calculation transforms into an expansion of four-

point functions in the twist sector with respect to e By using the operator product expansion of the

twist operators at the branch points, we read the first few terms of the Rényi entropy, including the leading
and next-to-leading contributions in the large central charge limit. Moreover, we show that the leading
contribution is actually captured by the twist vacuum module. In this case by the Ward identity the four-
point functions can be derived from the correlation function of four twist operators, which is related to
double interval entanglement entropy. Holographically, we apply the recipe in [T. Faulkner, The
entanglement Rényi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221] and [T. Barrella et al.,
Holographic entanglement beyond classical gravity, J. High Energy Phys. 09 (2013) 109] to compute the
classical Rényi entropy and its one-loop quantum correction, after imposing a new set of monodromy
conditions. The holographic classical result matches exactly with the leading contribution in the field
theory up to e~**"® and [°, while the holographical one-loop contribution is in exact agreement with

next-to-leading results in field theory up to et
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I. INTRODUCTION

The entanglement entropy is an important notion in a
quantum many-body system [1,2]. Not only could it be
used to measure the effective degrees of freedom in the
system but it could also be taken as a quantum order
parameter, among its various applications. It is defined as
follows. Let A be a subsystem, and then the reduced density
matrix of A is obtained by tracing out the degrees of
freedom of its complement A“

(1.1)

where p is the density matrix of the whole system. Then the
entanglement entropy is defined to be the von Neumann
entropy of the reduced density matrix

pa = Trpep,

Sy = =Trpslogpy. (1.2)

Furthermore, for pure state p = |w)(y/|, the entanglement
entropy of the subsystem is equal to the one of its
complementary part
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and [* as well.

PACS numbers: 11.25.Tq, 11.10.Kk
SA = SAf N (1 3)
but for a thermal state the equality breaks down,

Sa # S (1.4)

because of the thermal effect. It is convenient to calculate
the entanglement entropy from the Rényi entropy, which is
defined to be

S, =- log Trp}. 1.5
n n—1 og lip A ( )
The entanglement entropy can be read from

Sprp = lin}Sn, (1.6)

if the limit n — 1 is well defined.

In quantum field theory, the entanglement entropy and
Rényi entropy are hard to compute because there are an
infinite number of degrees of freedom. In this case, the
entanglement entropy is defined with respect to a spatial
submanifold at a fixed time. By using the replica trick [3]
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the Rényi entropy can be transformed into the partition
function of n copies of field theory with the fields being
identified at the submanifold. It is usually a formidable task
to compute this partition function for a general field theory.
Even for two-dimensional (2D) conformal field theory
(CFT), which is expected to give more analytic results due
to the existence of infinite dimensional symmetries, the
exact results are limited. For 2D CFT, the Rényi entropy is
generally related to the partition function on a higher genus
Riemann surface. Besides a few universal results deter-
mined by the conformal symmetries [4], only the partition
functions of a free boson and fermion on a higher genus
Riemann surface have been known [5-10].

However, it is possible to expand the partition function
with respect to some modular parameters for a general CFT
in some cases. The two simplest nontrivial examples are the
case of two intervals on a complex plane and the case of
one interval on a torus. Generally, to calculate the partition
function, one can cut the Riemann surface at some cycles
and insert a complete set of state bases such that the full
Riemann surface changes into a surface without handle and
hole and the computation transforms into a summation of
multipoint correlation functions on a full complex plane. The
key point is to find the nice way to cut open the Riemann
surface such that the expansion series is well behaved. For a
general genus-g Riemann surface, we can always choose ¢
couples of A cycles and B cycles with a proper intersection
[11] and cut the Riemann surface at certain cycles. Different
choices on the cutting correspond to different ways of
expanding the partition function. Even though by the
modular invariance the different expansions should be equal
to each other, their convergent rates are different.

The simplest trivial example is the partition function on
a torus. One may quantize the theory along the thermal
direction or the spatial direction, which corresponds to
inserting the complete bases along the spatial cycle or
thermal cycle, and the partition function could be written as

Z= Ze_%(“*i”_ﬁ), or Z= Ze_%R(L"JFZ"_ﬁ). (1.7)
i

Because of the modular invariance, the two different
calculations give the same answer. At a low temperature
the quantization along the thermal direction leads to a better
convergent series while at a high temperature the spatial
quantization works better.

For the double-interval case, if the intervals are short,
one may take the operator product expansion (OPE) of the
twist operators to compute the Rényi and entanglement
entropy order by order with respect to a small cross ratio
[12,13]. Actually, taking OPE is equivalent to inserting a
complete set of bases at the cycles around the two intervals
on every sheet. In the Riemann surface for the nth Rényi
entropy of the double-interval case, there are n — 1 inde-
pendent couples of cycles denoted by A; and B;. As shown

PHYSICAL REVIEW D 92, 106001 (2015)
A B

......

-————
__________

-
Y.

FIG. 1 (color online). Canonical cycles for the double intervals.

in Fig. 1 for the n = 3 case, there are two couples of
independent cycles A;, B;, i = 1,2. In the small interval
limit, we can take the OPE of the twist operators at the
branch points of the first interval. This is equivalent to
cutting and inserting a complete set of state bases at A;
cycles enclosing the interval. This expansion is well
convergent for a small cross ratio. On the contrary, for a
large cross ratio, which means the intervals are large and
the branch points of two intervals are close to each other,
we must take the OPE of the second and third twist
operators, which is equivalent to cutting the Riemann
surface along the B; cycles enclosing the branch points
of separated intervals.

For the case of a single interval on a torus, the Riemann
surface is obtained by connecting n tori along the branch
cut. When the interval is not very large, one may cut the
spatial or thermal cycle and insert a complete set of bases to
compute the partition function [6,14], just as in the genus-1
case. Which cycles to cut depends on the temperature.
But for a high temperature and a very large interval, the
previous treatment is not good enough because the result-
ing expansion series is poorly behaved. Instead, it was
proposed in [7,15] that one should cut the cycle crossing
the branch cut. This requires the insertion of a complete set
of bases in the twist sector rather than the normal sector in
the n-copied CFT. This proposal has been checked for the
free compact and noncompact bosons, and it has been
applied to prove the universal relation between the thermal
entropy and the entanglement entropy.

The AdS/CFT correspondence provides another way to
compute the entanglement entropy in a CFT. For the
Einstein gravity, it was first proposed by Ryu and
Takayanagi [16,17] that the entanglement entropy could
be holographically given by the area of a minimal surface in

the bulk, which is homogeneous to A
Area(Z,)

Spp=——7—7-. 1.8

EE e (1.8)

The holographic entanglement entropy could be under-
stood as a generalized gravitational entropy [18,19]. In the
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higher dimension case, it is not clear if the holographic
entanglement entropy gives precisely the entanglement
entropy in the dual field theory. Nevertheless, for a 2D
CFT holographically dual to AdS; gravity, it has been
proved that the holographic computation is correct in
the semiclassical regime [20,21]. Therefore, the Rényi
entropy provides a new window to study the AdS;/CFT,
correspondence.

The AdS;/CFT, correspondence states that the quantum
gravity in AdS; spacetime is dual to a 2D CFT with a
central charge [22]

3l

ot (1.9)

Cc =

and a sparse light spectrum [21,23], where G is the three-
dimensional (3D) gravity coupling constant. Though a
precise definition of AdS; quantum gravity, possibly a
string theory, has not been well established, its semi-
classical limit has been much studied. As the classical
configurations in the AdS; gravity could be obtained as
the quotients of the global AdS; by the subgroup of the
isometry group SL(2,C), the path integral of semiclass-
ical AdS; gravity could be defined in principle. On the
other side, the explicit construction of dual CFT is not
known. Nevertheless, the large central charge limit of the
CFT, corresponding to the semiclassical gravity, is much
simplified. Under this limit, only the vacuum module
dominates the contribution to the CFT partition function
[21]. As a result, the partition function is universal in the
sense that it is very much restricted by the conformal
symmetry and is independent of the explicit construction
of the CFT. In this work, we are interested in the large
central charge limit of the Rényi entropy of 2D CFT.
From the AdS;/CFT, correspondence, the partition
function of the Riemann surface in the CFT should be
given by the partition function of the gravitational
configuration ending on the Riemann surface. In the
large central charge limit, the Rényi entropy can be
decomposed into the terms proportional to c,c?,1, ..,
which should correspond, respectively, to the classical,
quantum one-loop, two-loop, etc., parts of the gravita-
tional partition function [13].

In the field theory side, for a genus-g Riemann surface,
we need to choose g A; cycles to insert complete bases at
each cycle such that the expansion converges fast. Under
the large ¢ limit, the dominant contribution to the partition
function comes from the light primary states [21] and their
descendants. The heavy states give only nonperturbative
corrections of order O(e™*). Furthermore, among the light
spectrums only the vacuum module gives the linear ¢ order
result and the other modules give only higher order
corrections with respect to % [21]. Moreover, it turns out
that even for the next-to-leading correction with respect to
%, the first few terms in the expansion are captured only by
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the vacuum module [14,24,25]. The vacuum Verma module
consists of a primary identity operator and its descendants,
which could be constructed by the stress tensors 7(z) and
T(Z). In this work, we assume that for the field theory that
is dual to the pure gravity, we only need to insert the
vacuum module at each cycle.

Because of the replica symmetry, we always deal with a
CFT on an n-sheeted surface, which can be regarded as one
CFT with n copies of the original field with the fields in
different replicas being identified along the branch cut.
When we combine the n-sheeted surface’s field into one
CFT, we call it n-copied CFT' with nc central charge and
denote it as CFT,,. The original CFT is denoted as CFT;. If
we do not consider the monodromy condition of the fields
around the branch point, the n copies of the fields are
decoupled so that we have just a tensor product of n copies
of the fields. In this case, we call it the normal sector of
CFT,. In contrast, if we consider the twist monodromy
condition of the fields around the branch point, we get the
twist sector of CFT,. In both cases, we can classify the
states by the irreducible representations of its Virasoro
algebra Virl), defined by the stress tensor 7T(z) =
Py TU)(z). Under Vir(®), the twist (normal) sector states
can be decomposed into more than one irreducible module,
and the one with the lowest conformal dimension is called
the twist (trivial) vacuum module. Note that the twist
(trivial) vacuum module has a different meaning from the
vacuum module in the original CFT. For the partition
function of a CFT on an n-sheeted Riemann surface
resulting from the replica trick, we have two pictures to
compute it. One is to regard it as the one of CFT, on the
n-sheeted surface, and the other one is to regard it as the
correlator of twist operators in CFT,,.

On the bulk side, to calculate the partition function on a
higher genus Riemann surface holographically, one needs
to find the gravity configuration whose asymptotic boun-
dary is exactly the Riemann surface. To find the gravity
configuration, one can use the Schottky uniformization to
get the Riemann surface and then extend the uniformiza-
tion to the bulk. However, for one Riemann surface, there
may be more than one Schottky uniformization, and
different uniformizations give different gravity configu-
rations. Among all of the gravity configurations the one
with the least classical action dominates the partition
function in the large ¢ limit [20]. The contributions
from other configurations are suppressed as O(e™°).
Furthermore, the one-loop correction can be determined
by the functional determinant of the fluctuations around
the classical background [26] by using the heat kernel
method developed in [27,28]. Recently, by using the

'In the literature, this n-copied CFT is usually called orbifold
CFT. As in our following discussion we often use the tensor
product of n copies of CFT, and we would like to call it the
n-copied CFT.

106001-3



BIN CHEN AND JIE-QIANG WU

operator product expansion of the twist operators, the
holographic computation of the double-interval Rényi
entanglement entropy for the CFT has been checked
beyond the classical level [25,29-32]. Furthermore, for
the single interval on a circle at finite temperature, if the
interval is not very large, the holographic computation has
been confirmed to be in exact agreement with the field
theory computation [14], in which the thermal density
matrix is expanded level by level [33].

PHYSICAL REVIEW D 92, 106001 (2015)

In this paper, we study the Rényi entropy of a large
interval on a circle at high temperature in the context of
AdS;/CFT, correspondence, extending our previous study
in [14]. In the large interval limit, the computations in both
the field theory and the bulk need to be developed
furthermore. On the field theory side, the study in [14]
showed that the perturbative series in the partition function
do not converge well. Actually, the classical part of the
Rényi entropy is just

1 D(n? -1
Sl classical = Eﬁlog sinh(22TY) + const — 5% sinh*(22Ty)e 4 TR
6 n 9 n-
—11 —2n% + 1309n*
+ 4sinh* (22Ty)cosh? (27 Ty)e 67TR + w : " cosh(16xTy)
11520n
—11 4 28n% + 1991* 77 = 346n* + 197n*
- 440 cosh(12zTy) — T cosh(8zTy)
—77 4+ 436n2 + 433n* —77 + 466n2 +907n*
- +aoon j " cosh(4zTy) + £ 200n 4+ i
1440n 2304n
+ O(e~107TRY, (1.10)

where y is the length of the interval. When the length of
the interval is comparable with the size of the circle y ~ R,
the expansion converges very slowly and is not good
anymore. This asks us to find another perturbative way to
compute the partition function more effectively and
reliably. In [7], we proposed to insert a complete twist
sector state through the branch cut and expand the Rényi

entropy with respect to e . In [7,15], we tested this
proposal and reconsidered the noncompact and compact
free scalars and found good agreements with direct
expansions of the partition functions. Now we are going
to consider the CFT with a holographic gravity dual, in the
large interval and high temperature limit. We only con-
sider the vacuum module of CFT; and its correspondents
in the twist sector of CFT,. After cutting through the
branch cut, the Riemann surface still has a nonzero genus,
and the four-point functions in the twist sector cannot be
calculated directly. Furthermore, we use the OPE of the
two twist operators at the branch points and compute the
correlation functions on the unfolded cylinder of length
np with the fields in the OPE at the different positions. We
manage to expand the result with respect to the comple-
mentary part of the interval length [. We calculate the
Rényi entropy up to order /* and er, including the
leading linear ¢, the c-independent, and 1/¢ parts. More-
over, we find that the leading contribution is actually
captured by the twist vacuum module. We support this
result not only by the argument using the large central
charge limit of the conformal blocks but also by direct
computation using the Ward identity. As a result, we
obtain the exact formula for the entanglement entropy.

For the holographic calculation, we follow the treatments
in [20,26], but basing on a different monodromy condition.
As shown in [34], the holographic entanglement entropy
for the large interval case is not read from the bulk geodesic
ending on the interval. Instead, it is the sum of the horizon
length and the geodesic of the complementary interval. This
fact suggests that there is a phase transition when the
interval becomes large, and the bulk gravitational configu-
ration for the large interval must be different. Instead of the
cycles used in [14], we choose another n cycles to be of
trivial monodromy. Among them, there is one cycle cross-
ing the branch cut n times, and the other n — 1 independent
ones crossing the branch cut and enclosing the comple-
mentary part of the branch cut in different sheets. As shown

in Fig. 2 for n = 3, we set Ai’s to be of trivial monodromy.
As a warm-up, we compute the classical holographic
entanglement entropy by using the new monodromy con-
ditions, and we obtain the result suggested in [34].
Furthermore, we compute the holographic Rényi entropy

(HRE) up to [° and e=#*T for classical contribution, and up

to 4 and e~ for one-loop quantum contribution. The

results are in perfect match with CFTs computation.

The remaining parts of the paper are organized as
follows. In Sec. II, we present the field theory computation.
After a brief review on the twist sector of the CFT,, we
focus on the vacuum module and compute the Rényi
entropy in the first few orders. In Sec. III, we show how
to do holographic computation with the new monodromy
condition. We obtain both the classical and one-loop
quantum results perturbatively. Up to the orders we are
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FIG. 2 (color online). Canonical cycles for the large interval at
high temperature: n = 3 case.

interested in, we find good agreements with the field
theory results. In Sec. IV, we end with conclusions and
discussions. We collect some technical details in the
Appendixes.

PHYSICAL REVIEW D 92, 106001 (2015)
II. FIELD THEORY CALCULATION

In this section, we present our computation on the large
interval Rényi entropy on a circle at high temperature in the
CFT which corresponds to pure AdS; gravity. By the replica
trick the Rényi entropy can be transformed into calculating
the partition function on a higher genus Riemann surface,
which is obtained by pasting » tori along a large branch cut.
In Fig. 3, we cut open the torus and show the branch cut
(interval). The horizontal line is the spatial direction of
length R, and the vertical line is the thermal direction of a
length f. The large interval is presented as double solid lines
between 7() and 7(-). In Fig. 3(b), we translate the
interval, and in Fig. 3(c), we unfold the branch cut and
get a cylinder of thermal length nf, with n cuts. We denote
the coordinate in Fig. 3(b) as « and the one in Fig. 3(c) as y,
and set the two branch points to be at j:% in Fig. 3(b).

As in our previous paper [7,15], we would cut
the Riemann surface through the branch cut, AW cycle
in Fig. 3(b), and insert complete bases in the twist sector of
CFT, at the cycle. The calculation transforms into a series
of four-point functions with two twist operators and two
operators in the twist sector. As the two branch points are
actually very close to each other, we may take the OPE for
the two twist operators, which amounts to an infinite
summation of local operators in the n-copied CFT.

Alternatively, we may unfold the Riemann surface as in
Fig. 3(c) and insert complete state bases of the normal
sector in single sheet CFT to do the computation. Changing
into the coordinate in Fig. 3(c), we find that the localized

e ———

a0 )
A 4 A

Al

70 70)

T

B

B

J

(a) n sheeted Riemann sur-
face

FIG. 3 (color online).

(b) translate the interval

(c) unfold the twist

Riemann surface for finite temperature Rényi entropy. The horizontal line denotes the spatial direction of unit

length, and the vertical line denotes the thermal direction of length f. (a) The Riemann surface for n cylinders connected by a branch cut,
which is denoted by a solid line 7 ()7~ In each sheet, there is a cycle A) along the imaginary time direction. However, there could also

be a cycle marked by AW, which crosses the branch cut and goes from one sheet to the next one » times until it goes back to the original
sheet. (b) The same as (a), just by shifting the branch cut to the boundary. 7~7 T denotes the complement of the original interval.
In (c) we unfold the twist. There are n copies of 77 ' cuts in the unfolded picture.
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operators in the jth copy in the OPE sit in the imaginary
axis

W =i(jp). (2.1)
In this way, each term in the expansion is a multipoint
correlation function on an infinite cylinder, with two
normal sector operators at the left and the right infinities
of the cylinder2 and n localized operators at y\/).

We calculate the leading terms for the Rényi entropy
expanded with respect to both e™» and /. The results in the
large ¢ limit actually include the leading contribution,
which is linear ¢, and the next-to-leading contribution,
which is of order one, and even the next-to-next-to-leading
contribution. We argue that only the descendants of the
twist vacuum, the states generated by acting the Virasoro
algebra Vir) of CFT, on the twist vacuum, contribute to
the leading c result. We confirm this fact by the analysis of
the classical conformal block expansion in the large ¢ limit.
We furthermore derive the first few leading linear ¢ terms
from the descendants by using the Ward identity on the
correlation functions of four twist operators, which could
be related to the one in the double-interval case. In the
n — 1 limit, we find that only the twist vacuum module has
anonvanishing contribution. This leads to the entanglement
entropy of the large interval, which is exactly the same as
the one from the holographic computation. However, when
we consider the next-to-leading contribution to the Rényi
entropy, we have to take the contributions from other states
in the twist sector into account.

A. Twist sector

In this subsection, let us give a brief review on the twist
sector in the CFT,,.. By the replica trick the Rényi entropy
can be transformed into the partition function of a single
copy CFT on an n-sheeted surface connected at the branch
cut. From the path integral, it is easy to see that the partition
function could be taken as the n copies of field theory, one
on each sheet, with fields on different sheets being related
at the branch cut. In this n-copied theory, the locality
requires us to introduce the twist field or antitwist field at
the branch points [4,35].

Let us show how the twist sector arises in a CFT,, with a
branch cut, following the discussion in [36]. As the twist
field is a local field, we consider simply the n-sheeted
surface connected by a single branch cut. As in Fig. 4, the
T+ denote the branch point located at z;, z, and the double
line denotes the branch cut. Now we study it as a CFT,,.
Considering an operator TU!)(z), it will change to
TU1+1(z) when it moves once around the branch point

2By the state-operator correspondence, the inserted normal
sector states can be transformed into two vertex operators at the

e . _2R
left and the right infinities with a factor e~ 2.
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FIG. 4 (color online). Branch cut.

7" along the circle (2). The point z = z; is a branch
singularity in the n-copied theory, which is a source of
stress tensor [4]

(@) = n(T0E) ~ ( —1) L e

n)(z—z)*

when z is close to z;. Independence on the branch cut
implies a local operator at the branch point. This local
operator is known as the twist operator, denoted as
7T (z;). It is a primary field, with conformal dimension
h =5 (n—1). In a similar way, we can get the antitwist
operators at the other branch point. Much information of
the CFT, is encoded in the twist operators. For example,
the partition function of an n-sheeted complex plane with
N intervals is determined by the 2N-point function of
the twist and antitwist operators on a complex plane.
Moreover, considering the operator-state correspondence,
the twist operator corresponds to the ground state in the
twisted sector of Hilbert space. Considering the OPE
of the twist field with other basic fields in the theory, we
will find other excited twist fields. Correspondingly,
we find the excited states in the twist sector, as we will
review soon.

Before our discussion of the twist sector and antitwist
sector states in the n-copied field theory, we show that the
OPE of a twist sector operator and an antitwist sector
operator give trivial sector operators in the n-copied field
theory. As argued above, the excited states in the twist
sector could be obtained by considering the monodromy of
the field moving around the branch point z; along the circle
(2) in Fig. 4. However, when we consider the OPE of the
operators in both the twist sector and the antitwist sector, by
the monodromy condition, the resulting states in the circle
(1) in Fig. 4 must be in the trivial sector. This fact has been
applied in the discussion of the OPE of two twist operators

106001-6



HOLOGRAPHIC CALCULATION FOR LARGE INTERVAL ...

in the short interval limit. In that case, the operators in the
expansion are in the tensor product of the normal sector of
the CFT in each sheet (which is just the trivial sector in the
CFT, picture), as shown in [12,25]. More generally, for the
excited states in the twist sector, their OPE should consist
of the trivial sector states.

Now, let us give a review on the twist sector states [14]
in the CFT, arising from the replica trick in calculating
the Rényi entropy. Let us work in the coordinate u in
Fig. 3(b). To expand the partition function, we need to

insert complete twist sector bases along the cycle A We
may temporarily forget about the geometric structure of the
torus and only consider the geometry and the monodromy

condition near the cycles AW, Moreover, as the vacuum
module dominates in the large central charge limit, we
focus on the twist sector from the vacuum module. For a
more complete discussion on other modules, please see
[14]. In the vacuum module, the fields are constructed
from the stress tensor. The monodromy condition on the
stress tensor is

TO(u+ip) =TV (), j=0,...n—-1 (2.3)
in the u coordinate, with T (u) = T (u), and
T(y +inp) = T(y), (24)

in the y coordinate. In the y coordinate, the n copies of
fields are unfolded as

T (u) = Ty ijp- (2.5)
Taking the conformal transformations
2xu
z=e€"r, (2.6)
2zy
w=em, (2.7)

the monodromies in the new coordinates z, w are,
respectively,

TU)(ze?) = TUH(2), (2.8)

T(we*™) = T(w). (2.9)
The states inserted at the A" cycle in Figs. 3(b) and 3(c)
can be described as the vertex operators being inserted at
the origin of z and w. As in [7], we can redefine the
operators in the z coordinate,

70 (z) = TU(z)e"™, k=0,1....n—1. (2.10)
j=1

and expand it as

PHYSICAL REVIEW D 92, 106001 (2015)
Ly

T69() =)

mez <

(2.11)

The operators L,(ff ) satisfy a commutation relation similar to

the Virasoro algebra. Among the operators 7(:¥) (z), 7% is
of special importance. It is the total stress tensor for the

whole n-copied theory, and {Lfﬁ))} are the generators of the
corresponding Virasoro algebra Vir().

We may study the spectrum of the theory with respect to

Vir®, From the commutators between Lg,lf ) and LE)O),

k
LY, L) = —<m +—>L’,§1, (2.12)
n

we know that when the operators L,(qf )

with

act on a state, those

m>0,0<k<n, o m=00<k<n, (2.13)
decrease conformal dimension, so they are annihilation
operators; while those with

m <0, 0<k<n, (2.14)
increase the conformal dimension, so they are creation
operators. Therefore we can define the vacuum for the twist
sector to be

Lﬁf)|t>:0 form>0,0<k<n, or

m=0,0<k<n. (2.15)

The twist vacuum has the lowest conformal dimension

c 1
hv = ﬁ n <1 - ?> .
Acting with the creation operators on the twist vacuum we
can get all of the excited states in the twist sector.

There is a one-to-one correspondence between the twist
sector states in the CFT,, and the normal sector states in
the original one-sheet CFT. Actually the trivial mono-
dromy condition in the w coordinate suggests that the
mode expansion in the w coordinate for the field gives the
normal sector of the CFT. The conformal dimensions
between the twist sector states and the normal sector states
are related by

(2.16)

1 c 1
htwisl = ;hnormal + ﬁn (1 - ;) . (217)

On the cylinder, the energy of the state could be written as
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2w - nc
H= ? Liwist + Liwist — T

2r . c
= E (Lnormal + Lnormal - E) .

(2.18)
The % factor in the last equation is due to the fact that in the
y coordinate the length of the thermal cycle is nf. For
convenience, we will denote the states in the twist sector as
|2, i), corresponding to the state |i) in the original theory.

It turns out to be more useful to classify the states in the
twist sector by using the conformal symmetry in the
n-copied theory. The states should be decomposed into
different irreducible modules of the Virasoro algebra Vir(").
To show this decomposition we calculate the chiral
partition function for the twist sector

I w 1T 1 0 1 S|
me o g (o I ) iy

sl 522, 5¢N

(2.19)

In the second equation, we have used the fact that there is a
one-to-one correspondence between the twist sector states
in the CFT, and the normal sector states in the one-sheet
CFT, with their the conformal dimensions being related by
(2.17). For the vacuum module in the normal sector, the
descendants are generated by the Virasoro algebra L_, with
s > 2, so the product begins from s = 2. For a primary
operator with the conformal dimension £, if there is no
null state in its descendants, its contribution to the chiral
partition function is

> 1
Trg"|, = ¢" Hl —
s=1 q

(2.20)

s’

Considering this fact, the quantity in the parentheses of
(2.19) can be taken as a generating function for the primary

operators with respect to the Virasoro algebra. As explained

in [7], the operators Lg)nl in the z coordinate correspond to
the generators L_,, in the unfolded w coordinate with

mn > 1. As L_,,, do not generate null states in the normal

sector vacuum module, the operators Lg),z, do not generate
null states in the twist sector either. Therefore there is no
null state in the descendants of each primary states in the
twist sector. Expanding the function

1
h | |
q' - l> s
< 322%¢N 1 - qu

with respect to g, the coefficient before ¢" is the number
of the primary operator with conformal dimension A. It is
clear that in the twist sector there are many new primary
states and the number of the primary states increases

(2.21)

PHYSICAL REVIEW D 92, 106001 (2015)

exponentially with the conformal dimension. For example,
acting with the operators L(_"l_i) on the twist vacuum, the
resulting states that have conformal dimensions & = h,, ++
are the primary states, since they can be annihilated by the
operators L,(,? ), m > 0in Vir®, Among the modules in the

twist sector, the vacuum module generated by L,S? >, m<0

on the twist vacuum is the most important one in our
following discussion. We call this module the twist vacuum
module.

In the following discussion, we will meet another notion,
the normal sector, in the n-copied field theory. It is defined
with respect to the n-copied field theory without a branch
cut, or the tensor product of n copies of Hilbert space of the
normal sector of a single CFT. Moreover, as we only focus
on the vacuum module of the CFT, we call the tensor product
of the n-copied vacuum module as the trivial sector in the n-
copied field theory. Note that the stress tensor 70 is still a
well-defined quantity in the n-copied field theory without the
branch cut. Therefore we may classify the states in the trivial
sector by the Virasoro algebra Vir(®). In this case, we find
that there are exponentially increasing primary operators
with respect to Vir" in the trivial sector of the CFT,, as well.
Considering the chiral partition function, we have

o0 1 n
Trq" = <H 1— qS)

ad 1 ) 1
:slll—qs”l“’)(ﬂ(l—qf)"-l 1)
1

(2.22)

In the last equation, we decompose the whole partition

function into the contribution from different modules

with respect to Virl), Each module is generated by L(_O,E,,

m > 0 acting on the highest weight state. The first term
denotes the module generated from the vacuum state, with
zero conformal dimension, so the product starts from s = 2.
For the other primary operators, there are no null states
in their descendants. This is because the primary state has a
nonzero conformal dimension, and the states L™ |h)
have a nonzero norm. Considering [L,,L_,] =5r(r* —1) +
2rL, for r > 1, the commutator has a linear ¢ term. In the
large ¢ limit, all of the states have a nonzero norm. To read
the number of other primary states, we just need to expand
the quantity

(1-q) <ﬁ(1_1)_1— 1>, (2.23)

r=2 q

with respect to ¢, such that the coefficient before ¢" is just the
number of the primary states with a conformal dimension #.
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We can easily see that the number of the primary states
increases exponentially with their conformal weights. In the
following, we call the module generated from the vacuum a
trivial vacuum module, with respect to Vir),

B. Rényi entropy

As discussed previously, we can expand the partition
function by inserting complete twist sector bases in Fig. 3(b)
or complete normal sector bases in Fig. 3(c). The partition
function can be expanded as

Zy = Ze_h_k(hrj%t'i_”ﬁ)@v {17 ()T (us)

P

—Ze W) (1T ()T () |1 d)],. (2.24)

in the u coordinate, and in the second line we use (2.17).
And the thermal partition function reads

i1<ip

and the similar form for the antiholomorphic part V (u). In
the operator product expansion, we only consider the
vacuum module in each sheet and ignore the other modules.

In practice, it is more convenient to unfold the twist and
consider the correlation function in Fig. 3(c). After trans-
forming into the coordinate y, we find that the operators in
V(0) are localized at

TU(0) = T(y) (2.28)

|y=ijﬂ’

(1,117

PHYSICAL REVIEW D 92, 106001 (2015)

Zl — E e_ZIITR(hi+I_1i_ﬁ).

i

(2.25)

In the large c limit, we only need to consider the vacuum
module, which captures the perturbative effect. We list the
first few states in the vacuum module and their vertex
operators at the origin and the infinity in Appendix A.
Such states give the first few leading order contributions to
the Rényi entropy.

Each term in (2.24) is a four-point function with two twist
operators at the branch points and two operators in the twist
sector at the left and the right infinities.” For the CFT dual to
pure gravity, we do not know exactly the analytic form of this
correlation function. Nevertheless, when the twist operators
are very close, we may take the OPE of two twist operators

7 (- é) 7 @ ~ e, DY) 7(0),  (2.26)
where
—%azm(u))
=2V e (1 ) + 09) (2.27)
(-3

namely, the operators in different sheets are unfolded and
located at different positions in the cylinder. We may use the
OPE of the twist operators to compute the partition function
perturbatively. Now the partition function can be expanded
as amultipoint correlation function on the cylinder involving
n operators located at y = ijf3, and two vertex operators at
left and right infinities. We can furthermore take a conformal
transformation into the w coordinate and do the calculation in
a full complex plane. Formally, we still write

Z, = T ()T (1)) (Z

ii

= eén/fc e "

2V (0)]1) (£ 7(0)]1) <Z<

F ()T (). )
T )T ()

LilVO)lr.i) e, {t.ivO)ls.i)
{t[V(0)r) ) (Z {t[V(0)]z)

= i, (<r|v<o>|t> (= vai)e

e—z,f—/f(hiﬂ_li))

1)

1

(2.29)

The bases we insert when cutting the Riemann surface are in the Schrodinger picture. In (2.24), we change them into the Heisenberg

. . _2zRpy
picture, with a factor e” 7,

and the states now correspond to the vertex operators at the infinities.
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In the second line we take into (2.26), and the fact that the
holomorphic and antiholomorphic parts decompose. In this
case, the holomorphic and antiholomorphic parts are equal
to each other. The Rényi entropy is

1

z
n 187

1 c 1
i— ((logcn—6n<l —?> log!

2R 2 tog(dV(O)])
)

" onp np
_27/[_;Rhi
(6/3 +210g<zl:e )))

T (t.i[V(0)]r, i)
2l ( Vol €
(2.30)

Denote

(t,i]V(0)[#, 1)
(£.0[V(0)[2,0)

_ (il
Vo)),

fi= . (2.31)

where in the last equation, we change into the y coordinate.
Taking f; into (2.30), we get the first few terms of the nth
Rényi entropy,

cn+1
S, =- 1log n ngogl
ﬂLcn+1 2
— — log(t|V(0)|t
& n [ log(t[V(0)]7)

_4nR _6aR
F2e7 + fre
n—1

1 8zR 10zR
+ <f4,1 + fao— Ef%) e+ O0(e )>
+ 0( IOIIR)>‘

(2.32)

2n _ank _er 3
+ e 7 te /f+fe
n—1 2

The Rényi entropy is expanded with respect to ¢~ 7 and

¢ . The two expansion arguments are not independent. In
the above formula, we have actually done the computation
in Fig. 3(c). In other words, we have unfolded the twist and
consider the insertion of the normal sector states at the left
and the right infinities of the cylinder. Meanwhile to
calculate the analytic form of f;, we also take the OPE
of the twist operators, which is an expansion with respect to
the relative length of the two twist operators. Therefore, we
have two kinds of expansion, one from the normal sector
states and the other from the OPE of the twist operators.
This results in two different expansions in S,.

PHYSICAL REVIEW D 92, 106001 (2015)

The explicit expressions of f;’s can be found in
Appendix C. There are a few remarkable properties on f’s.
(1) First of all, the /> terms in f ;’s always take the form

i (— 2 2 . . .
é( 1;223)” . This is because the operator at /> order in

the OPE is the stress tensor T'(z) = Y.1_, TU)(z2),
whose correlation function is fixed by the Ward
identity.

(2) Second, for each f; there exist some exceptional
integers n at which f'; does not share a general formula
and take specific form. This fact forbids an analytic
continuation of the Rényi entropy to noninteger » in
order to calculate the entanglement entropy. It is
because in the OPE (2.26) there is always a term like

Z TUDT(2)

J1<J2

(2.33)

The correlation function involving such a term
includes the summation

$ i (n(h —j2)>.

Ji—j=1

(2.34)

When m < 0, the summation has a universal formula
for any integer n, while for m > 0, it is more
complicated. We can rewrite the sine function in
the summations as

. —_ 2rir( /l )
sm’”< 2 > E a.e .

If we take a summation for each term we find

(2.35)

2wirly—in) -1, for - €N (2.36)
Jl—zjz:le o n—1, forﬁeN’ '

which shows the nonanalytic origin.
(3) We notice that f; has no linear ¢ contribution for

nearly all of n but finite exceptions. Actually, when
,J) is primary, there is no linear ¢ term in f;. To
understand this effect, we can first transform into a z
coordinate and expand the four point function by
conformal blocks. Using the large ¢ conformal block
[21], there should be no linear ¢ contribution. For
nearly all of n but finite exceptions, |¢, j) is primary.
For example, when 7 is bigger than the conformal
dimension of | ), which is the corresponding state in
the normal sector, the state |7, j) is primary because

it can be annihilated by all of the Virasoro algebra

generators LS,?> with m > 0.

(4) Furthermore, we also notice that for the 7 in which f;
has no linear ¢ terms, f; always share a general

formula up to [*. As we discussed before, the
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nonanalytic property comes from correlation
functions

(. 41T )TV ()2, j). (2.37)

Because of the symmetry, the correlation function is a
sum of

. . .
sin” = (j1 = ). (2.38)

If there are some terms with m > O the final result
,j) is primary,

this cannot happen. Consider
DT )T (u)]r, j)
J1<J2

n—1

(£ 1T () TU (w)]r. j).

[NSREN]

Ji—j=1

Zb sin”™ = (j; — ja)- (2.39)

NIE

PHYSICAL REVIEW D 92, 106001 (2015)

On the other hand, we have

ZTJ] T2 ()

= T(u)? - 5 Z(T(/’) (). (2.40)

For the primary state, the correlation function
(t,j|T(w)?|t,j) can be fixed by the Ward
identity, and it is analytic for all n. The term
(t, j|(TY) (u))?|t, j) does not depend on j, and it is
also analytic, which means there is no m > 0 terms
in (2.39). It is not clear whether this property can
be extended to a higher order of OPE expansion
with respect to /.

Here we just list the first few leading order results of the
Rényi entropy:

R 2P
S2——logcz+c< logl—l—ﬂ (ﬂ -

ap - \96p”

1843204

Al o 11744 s
- e ——0e
6444 644

Al 722 257014\ _am 3722 152% 1%\ am
D B P A P I R R AL P

20484 27 3844

e 3n22 2757414 ) 1
—_— e ——— e J— —
2B 384p* ¢

SzR

+O(P%) + O(e‘T)

42 " 2564

_2aR w2170 _4nk>

o — [
MRV oap ¢

Sy = —tert o Frogr+ 7R il
=—zc3tc —
R 9 94

24382 17714704

17714784

{ 16741 < 16221 8007*1*

+O(*) + 0(e™ ),

* 812 +59049ﬂ4

3, 167212 N 608741\ L
—_ — e 3 —_ _
2 27182 ' 656145 c

1 5 S5zR 5712
Sy =—zc4+c|=logl+—+ -

3 24 24p 2304

14155776

{ 11741 (2 5721 749741

2621445

+O(H) +0(e™F),

106001-11

3T g2 T 1474564*

. 57212 . 7197414 sk n 1
_ 7R, il
164> 16384p* c

(2.41)
1287*1* _om
— e’
65614+
4R 1+871'212+2807I4l4 sk
e 3 — P — e
2782 65614
4R 32741 2zt 64n* 14 =
3, _—e - e 3
65614 65614*
(2.42)
20897414 12674 1*  _om
_ e 7’
6144p*
2R 2+5ﬂ212+1375ﬂ4l4 s
e -\ =z e
3 328> 98304p°
k9574 s 237%% om
fp—-—— W ———p P
49152p* 81924
(2.43)
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In+1 aRn+1 2P (n+1) Fa*(n+1)(n® +9n* —9n* + 11)
Sy =-— loge, +c filgH-— >3 — 5
-1 6 64 36p°n 129604*n
Pra*(n+1)(n* +11)(3n* + 100> +227) 2 4 2722 (n* - 1)
226800p4n’ n—1 36°n
7 (n® — 120 = 3n* 4 24n3 + 13512 — 444n + 299) ok
B 54 !
e m*P(n* =1) 7*1*(n® — 18n° — 5n* + 361> + 8351 — 4626n + 6081) o
ﬁ2n3 36ﬂ4 7
3 27222 (n*=1) Pz*(5n% —120n° — 31n* + 2401 + 963512 — 72840n + 135111) _sak
+ E + ﬂZ 3 - 90 4 7 e "
12 7414 (2n% — 63n* — 672n% 4 733) o 7*(2n% = 217n* + 1148n* — 933) -
cn—1 94584 cn’ 630p*cn’
Fa*(2n8 — 427n* 4 13328n% — 40320n + 27417 2
Aty e 4”7 nE2TT) ) o)+ o(e ™) (2.44)
3156°n
for n > 4.

C. Classical limit of the conformal blocks

In the previous subsection, we claimed that for each f,
when |¢, j) is a primary state in n-copied theory, it has
no linear ¢ contribution. In this subsection, we clarify this
fact from the point of view of a large ¢ conformal block,
and furthermore we show that we only need to consider the
twist vacuum module to find the linear ¢ order entangle-
ment and Rényi entropies.

Let us study the four point function between two twist
operators and two vertex operators corresponding to |z, j) in
the twist sector, which is primary under the conformal
symmetry of the n-copied theory. By the conformal trans-
formation

(2.45)

the four-point correlation function can be transformed into
3T (=5) T+ (5)d)
3.] 2 2 ’.] u
2% _om &n _%) 2l
= p LT (e 7)TH(1
- (5 ) e

which can be expanded by the conformal blocks as

hy, hy,
ZchTA,hT Ch,.j.h,.j]:
P

1 J)

v

2zl
hyihyihy 1 —e ),

(nC,hT,hT, t,jo l‘j’ P

(2.46)
where nc is the central charge of the CFT,,, and CZ? n, 1s the

OPE coefficient from two primary operators with A; h,
conformal dimension to a primary operator with /s

conformal dimension. The first four conformal dimensions
in F are for the four external operators, two twist operators
and two operators in the twisted vacuum, and the last one
h,, is the conformal dimension of the primary field in the
propagator. In each replica, we consider only the vacuum
module in CFT, so the states in the propagator are in the
tensor product of n vacuum modules, which is the trivial
sector in the CFT,,.

One essential point is that the OPE coefficient is of order
c". The primary operators can be normalized as

1
—(Zl ZL (2.47)

(0(21)0(22)) =
In our case, each operator in the propagator is a combi-
nation of the stress tensors and their partial derivatives. If
the largest number of the stress tensors in the combination
is r, such an operator should be normalized by a factor of

order ¢™? in the large ¢ limit. The OPE coefficient C;’i T
equals the expectation value in the n-sheeted surface. To
compute it we need to transform into a full complex plane
w. We can decompose the transformation into two steps: the
first one transforms the z coordinate into an n-sheeted fan
with boundary condition

~ 27

TU) (wen) = TUTD (W); (2.48)
and the second step unfolds the n-sheeted fan into the full
complex plane. In the transformations, the number of the
stress tensors in the operators does not change, so the
expectation value is at most order ¢” in the large ¢ limit,

. . h, .
which means the OPE coefficient C/ - is at most order o
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h . :
[25]. For C.},, ,» we just need to insert two extra operators,

and it is still of order cP.

Furthermore, the leading contribution in the conformal
block F is the same in the large ¢ limit. As suggested in
[21,37],

Flehihyx) =exp|—< (O 1. x) + 0(c%) |

i

1° P’ 6
(2.49)
where
h
A% = lim —
c—0 C
© _ oy
hy’ = }H{.lo? (2.50)
In the case at hand, we have the relation
h, = o(c%), h,; —h, = 0(c%), (2.51)

so that the classical conformal blocks are the same for all
different terms in the expansion. Taking into (2.49), itis easy to
prove that the four-point functions are independent of j in the
leading order, if|#, j) is a primary operator. Moreover, even for
the two twist operators’ correlation on torus, one can also only
consider the twist module generated from |z, j) by Vir(") for
the linear ¢ order. Other modules give only % corrections.

D. Leading contribution from the twist vacaum module

As we showed above, it is only necessary to insert the
twist vacuum module to compute the leading ¢ order Rényi
entropy. In this subsection, we use the Ward identity to
calculate the contribution from these terms explicitly. By
using the Ward identity, all of the multicorrelation functions
for the descendant operators can be derived from that for
the primary operators. From the recursion relation

2T (wy)
(w = Wk)2

< I 7o) 1476

s=2~m,s#k
- - ™ (z4)
(0] T(w;
i kz:;< | s1:[1 (WJ) <(W1 - Zk)2 -

x IT V),

t=1~n,t#k

n aT(Wk)>

Wy — Wi

M) (Zk)>

W1 — Zk

(2.52)

where O in the bra denotes a primary operator in the
infinity. With proper contour integral and contraction, we
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can derive any correlation function of the descendants of
the primary operators.

What we need to compute in the partition function are
the ratios

(0T~ ()T ()|t 1) (0T (20)T " (z0) 1. 7)
(T~ ()T (up)l1) (T~ (20)T " (z2)]1)
(2.53)

Here

t,i') means the Virasoro descendants in the twist
vacuum module generated by acting L<_0,21, m > 0 on the
twist vacuum. And we have changed the coordinate into a
full complex plane by

2
=Uu
z=e’r",

(2.54)

so that the two inserting operators are at the origin and the
infinity, respectively. By the conformal transformation and
the Ward identity, all of the terms in (2.53) can be
calculated by the four-point functions, which are related
to the double interval mutual information. Actually, for the
simplest case, the contribution of the twist vacuum is
encoded in the correlation function of four twist operators
with two of them being inserted at the origin and the
infinity in the complex z plane. In general, the correlation
functions of four twist operators read

log(T* (21)7T(22)T " (23)7 ~(24))
= (n=1I" +1og(T*(21)T (z4))
+108(T(22)T *(22))
B c 1 o
=(n—1)I"(x,) -1 <n —;) log((z1 —2z4)(Z1 —24)

x(z2—23)(22—23)), (2.55)

where

73 — 22324 — 21
X=—

2.56
33— 2134 — 22 ( )

and 7 is the mutual Rényi information. If we set one point
to infinity, then we have

log(f|T7(21)7(22)7 " (23))
= log lim 27" 2" (T4 (2)) T(22) T (23) T~ (22))

74— 0
_ c 1 _
= (n = DI (x,%) = — ( n—=) log((z2 — 23) (22 — Z3)),
12 n
(2.57)
where
x=22"% (2.58)
73 — 1
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The perturbative computation of I has been done in ~ Where
[25,29]. We list them in Appendix D. With these results, we
can derive any f for the descendants of the twist vacuum. B 3(n*-1)
The first few lowest descendants in the twist vacuum a=- 8n2 -2 "
module are A (n? 1) (n? = 1)(5 + Tn?)\
c(,_N\\70 I\ e T e = (2:60)
1y = (55 (n=1) ) £90. " nlde” = 1)
12 n -
, 2 1 -4 0) Note that these states consist of a special set of excited
t,2,1') = (C <§ n-— @)) L5, states in the twist sector, which are the descendants of twist
) (0 ) vacuum generated by L<_0,,>1. And their contributions to the
= a . eading linear ¢ order are, respectively,
)y =m(LZ L] + L" )|t) (2.59)  leading li d ivel
|
5 VT DT Q)
AT (=T Ol
—11 = 2n* 4+ 19n*)7° (n* = 1)a? _
=c(n®*-1)>3 <108ﬂ4 - 57205 15+ 0(17)> + (1 + Wﬂ + 0(14)> +0(c™),
~ (2, V| T~ (=HTr B2, 1)
for = 7-
{77(= ) @l
—1 +4n*)n* (11 = 9n2 — 111n* + 289n%) x5
— 1 2)\2 ( 4 16 0 l7 0 0 ,
e(=1+m) < sape 486065° o) ) +0()
v (2. 2T (=9)T*(§)|1.2.2)
fax = T-(—OT
(T (=) T*3))
(n> = 1)z =t (=11 = 3212 + 49n*) 78
=c? (W[)’Snlo B+0()) +c(~1+n?)? Sap *+ 18605 +0(")) +0(c). (2.61)

The leading ¢ contribution for the Rényi entropy reads

7, 7 (n®+9n* —9n? + 11)

(class) ncRn+1 n+1 4
sietass) - 22 log 1 - I
R TR U e 1296017 4*
N 7°(19n10 + 851 — 125n° + 251n* — 274n% + 188)
244944001 0
4 11 —2n? + 19n* ) _uR
-1 2(1 3f T l4—( [6) e
Fe(=l+m (1+mn) ( 545 486051°
3n? - 1)z (11 + n? = 101n* + 209n°) 75
-1 1 2 _( l4 l6
Fel=l4nl+n) < 186*n° 1620572 >
+0(I") + 0(e™7), (2.62)
and
22 474 476
(class) . class ncR nl 1 7=l ]
S = limS _ — o(l°), 2.63
EE = MO 34 +C<18/32 sa0 85055 ) © () (263)

for leading order of the expansion.
From the result, we find that in the entanglement entropy there is no finite size correction proportional to the powers of

_2zR . P . . .
e~ 7. Such a correction, if it existed, should come from the four-point functions of the descendants

)T (22) (2.64)

”>Z’

D] = (8,

(.1,

“(u)TH(
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7 (0)

where |, 1, 1) is a state generated by a set of creation generators Lg)r) L% acting on the twist vacuum |7). Consider the Ward
identity
LT (uy.@))] = (r+ Dhgui T~ (uyity) + ;™ 0T (. iny), (2.65)
where
c 1
h -——. 2.66
7= \" n> (2.66)

In the right side of (2.65), because hy = 53 (n

constant when n = 1, the second term should also be of order n — 1. Similarly when moving L_

- %) the first term is of order n — 1; because the four-point function is

. to the left side, the

commutation term will contribute an n — 1. To calculate the correlation function, we move all of the annihilation operators
to the right side and then move the reduced creation operators to the left side. It turns out that the leading contribution terms

are at least of order (n — 1)2. Therefore

nRcn

S(class) _ 1 @ _
 n—-1\6np 68

n

1 nRce (1 2
:_n—1{6ﬁ <‘”>“°g<<ﬂ>
27\ =)

6nf _n—l{mg((ﬂ)

_ (n+1)zRc 1

_(n+1)zRc  (n+1)c
=T enp e

In the third equation we use the classical conformal block
[21], and the entanglement entropy is

class R l
S;-}; )= 7[36;6 + clog sinh — 5’

(2.68)
which matches with previous result (2.63) up to order °.
This is the high temperature entanglement entropy for a
large interval, and it satisfies the relation

— Sge(€) = S

limS g (R = ¢) (2.69)

III. HOLOGRAPHIC RENYI ENTROPY

In this section, let us calculate the entanglement entropy
and the Rényi entropy holographically up to one-loop
order. In the field theory, by the replica trick the Rényi
entropy can be transformed into the partition function on a
higher genus Riemann surface. Holographically, this par-
tition function can be computed in the semiclassical AdS
gravity in the large central charge limit. Based on the AdS/
CFT correspondence the gravity configurations must be the
classical solutions with the asymptotically boundary being
the Riemann surface [38]. Moreover, for the same Riemann
surface, there may be more than one gravitational solution.
The partition function is the summation of the classical
contributions and the quantum corrections at different

=D

log 1nhﬂl+0(n—l)

; log<r|:f-<u1>7+<u2>|r>|u} om-1)

<r|T-<zl>T+<zZ>|r>z)} L o(m-1)
1

ﬁ>+0(n—l) }—i—O(n—l)

|Z -2

(2.67)

|

saddle points. Among different saddle points, the one with
the smallest action dominates the contribution, and other
saddle points give nonperturbative corrections of order e™¢.
Therefore, in the large ¢ limit we only need to consider
the saddle point with the smallest action. The regulated
on-shell action of this saddle point gives the classical
contribution, corresponding to the leading linear ¢ result
in the field theory, while the one-loop determinant of the
fluctuations around the saddle point gives the quantum
correction, which corresponds to the order ¢” results in the
field theory.

As in [20], we assume that only the handle-body solutions
contribute to the partition function. The handle-body
solutions could be obtained by extending the Schottky
uniformization of the Riemann surface to the bulk. In this
section we first give a brief review on the Schottky
uniformization and the on-shell action. Then we discuss
the monodromy condition for the n-sheeted torus pasted
along a single large interval to find the uniformization. We
compute the classical part of the HRE perturbatively.
Furthermore, after carefully studying the primitive class of
the Schottky group, we calculate the one-loop corrections
to the entropies, following the treatment in [28].

A. Schottky uniformization and the partition function

In three-dimensional AdS pure gravity, all solutions with
constant negative curvature are quotients of the AdS space.
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In terms of the Poincaré coordinates, the AdS space could
be described as an upper-half space with the metric,

dudi + d&
& 7

where u = x + iy is the coordinate of a complex plane. The

isometry group of AdS; is PSL(2, C) [24]. The coordinates

u, ¢ can be combined into a quaternion { = u + j&, on
which the isometry group acting as

ds? = £>0, (3.1)

aZ_,’—i—b

¢ 3.2
¢= cé’ +d’ (3:2)
with ad — bc = 1,a,b, c,d € C. At the asymptotic boun-
dary & — 0, the transformation is just a linear Mobius

transformation on a complex plane,

au+b
cu+b’

u —

(3.3)

Generally, the gravity solution can be written as AdS} /T,
where AdS/ is the global AdS; with some fixed points
being removed and I' is the discrete subgroup of
PSL(2,C). The asymptotic boundary is Q/I', where Q
is a full complex plane with some fixed points being
removed. If we focus on the handle-body solutions, the
subgroup is just the Schottky group.

Every compact Riemann surface can be realized by the
Schottky uniformization. For a genus-g Riemann surface X,
its fundamental group 7 (X) is generated by 2g generators,

al,az,...,ag; b],bz,...,bg (34)
with constraints
g
[1la:. [a.b] = aba™'b™'.  (3.5)

i=1

One can always choose ¢ loxodromic generators
Ly,L,,....L, and a fundamental regain D bounded by
2g circles Cy,Cs,...,C, and C},Cy,...,Cy, such that
L;(C;) = C!. Identifying g pairs of circles by the gener-
ators, we obtain a quotient space, which is just a genus-g
Riemann surface. Here ¢; is just the image of C;(C}) under
the quotient map in the homology group; the group of
covering Q — Q/I" is the smallest normal subgroup N
containing the elements a;’s; and the Schottky group is
isomorphic to z(X)/N. The Schottky uniformization
can be extended to the bulk, which is an automorphism
of the AdS; space, with the a; cycles in the bulk being
contractable.

For one Riemann surface, there are more than one way
to choose the a; and b; cycles. Different choices of the
generators of the fundamental group correspond to

PHYSICAL REVIEW D 92, 106001 (2015)

different realizations of the Schottky uniformization. Even
though different Schottky uniformizations describe the
same Riemann surface, their extensions to the bulk give
different gravity solutions.

The Schottky uniformization problem for a general
Riemann surface could be solved by considering the
differential equation

1

v (u) + 5 RO (u)w(u) =0,

. (3.6)

where R(S)(u) is the Schottky projective connection on a
marked Riemann surface. R(S)(u) is uniquely determined
by the normal subgroup A. Namely it depends on the
choice of the generators. A ratio of the linearly inde-
pendent solutions of the above equation determines the
quotient map in the covering space Q. More importantly,
it turns out that up to a normalization RS is just the
holomorphic stress tensor 7(u) of the Liouville theory
[38], which is the regulated on-shell action of the bulk
solution of the AdS; gravity. The explicit forms of the
stress tensor depend on (3g—3) complex accessory
parameters with respect to the holomorphic quadratic
differentials on the Riemann surface such that the
determination of the uniformization map is usually a
very difficult problem. However, for the Riemann surface
in computing the Rényi entropy, the uniformization
problem could be solved perturbatively in some cases
due to the replica symmetry. For the double interval case
[20], the stress tensor takes the form

where

1 1
A==(1=-=, 3.8
2 ( n2> (38)
and there is only one conformal invariant accessory
parameter. For the single interval on a torus, the stress
tensor takes the form [26]
R (u) = u;)) + 8,

S (g - ;) + 7 (3.9)

i

where @ is the doubly periodic Weierstrass function

i
;Rv_
(k)

1 1
— -

+mR+ ) (mR+ )

+

(m.n)#(0,0) |:
(3.10)
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7272 7272 727T?
:Z'hZT R_Z'hz R) T 3
o sinh?*[zT (u + mR)] £ sinh*(zmTR)
(3.11)
and
C(u) = T coth[zT (u+ mR)]
7*T%u 2Ty
- . 3.12
+Zsinh2ﬂmTR 3 ( )

m#0

To solve the problem, one has to impose the monodromy
condition on some cycles to fix the accessory parameters.
The different choices on the cycles with trivial mono-
dromy give different Schottky uniformization.

On the other hand, the regulated on-shell action of a
AdS; gravity solution is the so-called Takhtajan-Zograf
action [38]. Moreover, the dependence of the action on the
moduli parameter has been studied in [39,40]. For the
gravitational configuration dual to the n-sheeted Riemann
surface, the action obeys the equation [20]

as, cn

ou;  6(n— 1)}’5-

(3.13)

This equation allows us to obtain the classical action
of the gravity solution corresponding to a Schottky uni-
formization. Among different uniformizations for the same
Riemann surface, the one leading to the least gravitational
action dominates the partition function.

Here let us focus on the case that there is a single interval
on a torus. Because the cycles around two branch points
are always of trivial monodromy, we have

71 = =72 (3.14)
For convenience, we redefine the functions and rewrite the
stress tensor as

RO (u) = Ap(u = uy) + Ap(u = up) +7E(u — uy)

—yC(u = uy) + 8, (3.15)
where

- - n*T?

plu) = m;w sinh?[zT(u 4+ mR)]’

E(u) = i aT coth[zT (u + mR)]. (3.16)

m=—0o0

For the classical partition function, we need to calculate the
on-shell action of the gravity solution with proper boundary
terms as regulators. It turns out Eq. (3.13) is not enough to
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determine the action completely. Besides the dependence
of the action on the accessory parameter, we have to take
into account its dependence on the size of the torus. In [14],
we proposed another differential relation on the partition
function, in addition to (3.13), in order to determine the size
dependence of the partition function completely,

A ¢ n ~

oR ~ Toan =170~ 01

(3.17)

With Egs. (3.13) and (3.17), we can determine the partition
function completely.

From the holographic entanglement entropy of one
single interval in the black hole background [34], there
should be a phase transition when the interval becomes
large enough. This means that for a very large interval one
should impose a different set of monodromy conditions,
which leads to different Schottky uniformization. To
support our choice on the monodromy conditions for the
large interval case, we will compute in the following
the holographic entanglement entropy and compare it with
the result in [34].

Let us first review the holographic computation in the
short interval case. We set the branch cut at [uy, u,]. At a
high temperature, the thermal cycle should be of trivial
monodromy, and the wave function transforms as

l//(u + %) — y(u).

If we transform into the z coordinate, there is no minus sign
in the monodromy condition. As discussed in [26], to
compute the holographic entanglement entropy we only
need to study the solution near n = 1 and expand the wave
function and the parameters with respect to n — 1 as

(3.18)

y(u) = w0 ) + Y (=1 w), (3.19)

P
y = Z(n —1)iy, (3.20)

i1

6=-2T>+» (n—1)"3", (3.21)

i=1

with

w0 (u) = Ae™™ + Be ", (3.22)

Expanding the trivial monodromy condition with respect to
(n—1), we have

(3.23)
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at each order. With proper redefinition of A and B in
Eq. (3.22), we can also set

forj=1,2,.... (3.24)
Taking the expansions of the wave function and the
parameters into the equation, we find the following
equation at the leading order:

" 1
W () = 2720 () + S m(y ) =0, (3.25)
where
m(u) = Hlu—uy) + Hlu = uz) +yVE(u —uy)
— W& (u = uy) + 5. (3.26)
We get the solution
e—uﬂT u
w0 =S [ e ar
euer u - )
- 271'TA e "m(r)y (r)dr. (3.27)

Furthermore, considering the last two equations in (3.24),
we get

1 i I i
/ m (f> ds = 0, / sy <5> ds=0. (3.28)
0 T 0 T

Solving these equations, we find

s =0,

v = 22T coth 2T (uy — uy). (3.29)
Taking 5 and y into Egs. (3.13) and (3.17), we obtain the
classical entanglement entropy

Sg‘“ical) = glog sinh®zT (uy — u;) + const,

(3.30)
which is the geodesic length in the bulk connecting two
branch points.

On the other hand, for the large interval case, we choose
another n cycles of trivial monodromy. To compare with the
small interval case, we set the branch cut at [0, u;]|J[u,, R].
Among n trivial cycles, there is one cycle that goes across
the branch cut for n times. This cycle is denoted as AW in
Figs. 2 and 3. There are other n — 1 independent cycles
enclosing [u;, u,|, the complementary part of the large

interval. These cycles are denoted as AD > 1in Fig. 2.
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As in the small interval case, we expand the wave function
and parameter with respect to (n — 1),

=y 0w+ > - D, (331)
i=1

~ 2727 & ~(;
5=-"1 +;(n— 1)is®, (3.32)
7= (n— 1)y, (3.33)
i=1
and the zeroth order wave function is
©) — A7,2u 1~y
w =Alen" 4+ Blemn, (3.34)
The monodromy condition for the cycle AW g
in
l//<u + %) = —y(u). (3.35)

where u —l—iT" means that the argument goes across the
branch cut for n times. Expanding the wave function with
respect to n—1, we find the same differential equa-

tion (3.25) at the leading order, and the same 5 and
y(D as in the short interval case. The only difference comes
from 5 = _2,;2_2T2_ Taking them into Eqgs. (3.13) and
(3.17), we obtain the classical entanglement entropy of
the large interval

S(classical) _ ¢

o = glog sinh®xT (uy — uy) + %ﬂ'TR. (3.36)

Namely, the holographic entanglement entropy (HEE) of a
very large interval is the sum of HEE of its complementary
interval and the horizon length of a static Banados-
Teitelboim-Zanelli black hole. This is exactly the result
suggested in [34].

B. Holographic Rényi entropy: Classical part

In this subsection we develop a systematic way to solve
the monodromy problem and calculate holographically the
classical Rényi entropy for the large interval on a circle at
high temperature. We need to solve the equation

1
y" (u) + 5 RS (wy(u) = 0, (3.37)
by tuning the parameters y and & such that the two solutions
for the second order differential equation have trivial
monodromy along the appointed cycles A" For conven-
ience, we take a conformal transformation
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z=e’, (3.38)
and define some useful parameters

—22TR

R=e , 7 = le:Tul’

27T uy

p=e (3.39)
The torus is transformed into a solid annulus with the inside
and outside circles being identified. The branch cut is at

1. z1]Ulz2. 2 -], the AW cycle is the one that goes around

the origin for n times, and the AD P> cycles are those
enclosing [z}, z,] in different sheets. With the conformal
transformations,
z—z-2F, (3.40)
we can cover the full complex plane with a series of annuli.
To study the monodromy problem for the large interval
and high temperature case analytically, we can take a
Laurent or Taylor expansion of the wave function about the
origin and branch point and also take an expansion with
respect to some parameters. Let us first consider the
expansion about the origin. Because of the monodromy
condition, we may rewrite the wave function as
(1L+) = Z%(li%)f(i)(z), (3.41)
where f*) should be single valued in the region z,zz <
|z] < z; with its Laurent expansion being convergent.
Assuming the wave function and the parameters can be
expanded with respect to zp and z as

fPzran) =Y [ a.a)h  (342)
r=0

=> 12k 5= 52k (3.43)
r=0 =
) =Y A @/2)E/n). (344)
with the normalization as
fo! =1,
%5 =0 forr>o, (3.45)

we find that f&i,,) and 6, can be solved order by order

depending on y,. As z; == z,, the coefficients fﬁ) are of
order 1 and
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72 r(z r+n
k%" = <M> (—) . r>0, nx-r,
Z 22

(3.46)

so the wave function should be convergent in the
region z,zp < z < Z3.

Next we consider the wave function around [z;, z,]. The
wave function around z; and z, can be written as

) D= 29 (2,21 22, 20).

(3.47)

p?H = (z— )%

The prefactors encode the information of the monodromy,
and ¢g\*) is single valued around each of the branch points
so that it is analytic in the region |z—z,| <min{|z,zz—2z],
|§—;—z2|}. In this region, the wave function is convergent,
and the function g*) can be expanded with respect to z,
(2= 22), and (21 — 22),

9P @z 2.28) = D98 (2. 21.22) 2 (3.48)
r=0
g<r Z thz gr Zl,Zz Z - ZQ)", (3.49)
n=0
g (21:22) = 3 gham(z2)(z1 — 22)". (3.50)
m=0
with normalization
+
95).0> =1
g5 =0 forr>0, (3.51)
and the parameters can be expanded as
Z Yon(z1 —22)",
n=-—1
= thn(zl - Z2)n’ for r > 0’
n=0
5,, = Zér,n(zl —_ Zz)n. (352)

I
=}

n

Taking in the previous result on §,, we can solve all of the
parameters and coefficients order by order. We list the
solutions of y and 6 to the first few lowest orders in
Appendix E. Integrating Eqgs. (3.13) and (3.17) we get the
classical part of nth Rényi entropy
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c(n+1)

PHYSICAL REVIEW D 92, 106001 (2015)

72 T?

c
S, = gnTR p + o log(u; —uy) + c(n+1) <—36n3 (uy — u,)?
at(n® 4+9n* =92 +11)T*
- ( 7 ) (u; — u2)4
12960n

N 781910 + 851 — 125n° + 251n* — 274n> + 188)T°

6

2449440n'!

7[8

58786560001
— 126067n* + 58213)T8(u; — u2)8>
ol
54n°

+c(n—1)*(n+ 1)3<

78(4187n® — 572n° — 4218n* — 1412n* + 4607)T8

5(19n* =202 = 11)T°
(“1—u2)4— (19n z )

(uy — uy)

(4187n'* 4 12787n'? — 22521n'% + 5591918 — 10007915 + 143481n*

(uy = u2)6

4860n°

12247200n13

(ul _ M2)8> e—27rTR

(3n? - 1T
+e(n=1)(n+1)? <—(18n5)(”1 —up)*
7°(209n° — 101n* + n* + 11)T° 6
- 16201° (11 = u2)
8
~ 55350075 (18004110 — 10455 1n° — 17506n° 4 43798n*
T

— 645512 — 4607)TS (1, — u2>s> TR L 0((u; = 1,)10) + O(e-57TF),

Recalling u; — u, = [, we find that the classical HRE S,, is
in complete agreement with the field theory result (2.67) up
to order % and e~**TR,

C. Holographic Rényi entropy: One-loop correction

In the previous subsection, we calculated the on-shell
action for the gravity solution, which gives the classical
part of the HRE and entanglement entropy. In this
section, we derive the one-loop quantum correction to
the HRE by computing the functional determinants for
the fluctuations around the corresponding classical
background. As proposed in [24], for a handle-body
solution realized as quotient space by a Schottky group I
in pure AdS; gravity, the one-loop partition function is
given by [28]

Zl—loop = —ZZIOg(l - Q;/n)’

yEP m=2

(3.54)

where P denotes the primitive conjugate class of the

Schottky group, and q;t 1 denotes the eigenvalues of the
Schottky group element y C SL(2,C), with |¢g,| < 1. A
group element is primitive if it cannot be written as
y=p" for n > 1.

(3.53)

To read the one-loop partition function, we need to find
the corresponding SL(2,C) elements for every Schottky
generator and the primitive elements constructed from
them. To study the corresponding SL(2,C) elements in
the Schottky group, we need to study the monodromy
around the cycles. We can solve the wave function in
different charts covering the Riemann surface. If two charts
have an overlap, there is an SL(2,C) transformation
between the solutions in the overlap. For each cycle there
are a series of charts covering it so that the Schottky group
elements are the multiplication of a series of SL(2,C)
transformations. The crucial point is to study the SL(2, C)
transformation between the solutions in two overlapping
charts. Since we only want to calculate the lowest order
terms with respect to the modular parameters, we may
expand different wave functions in the overlap, such that to
each order there are only a finite number of terms in the
expansion. Comparing the coefficients of two different
expansions, we can read the SL(2, C) transformation to the
fixed order.

Since y(1*) is expanded at z = 0 and y>%) is expanded
at z = 2, there is no direct way expanding the two wave
function in the same region. In the case at hand, to study the
Schottky transformation we need another wave function,
connecting w1 and w?. For convenience, we will write
the wave function in the new coordinate
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74 eﬂT(u]+u2)

t=t, T (3.55)
with
enT(uz—ul) -1
= T (3.56)
which set
= 0—-1t= —to,
=001 =1 (3.57)
The new wave function can be expanded as
(1) = (14 ro>%<li%><r ~ )17
h,, (8, 10)2%, 3.58
o o (58)
with
o(t, %) ZhOr to)t
r>0
w(ttg) = > hy,(t)t". form>0, (3.59)
r>0,r#2m
and
hm.r(tO hm r, st (360)
s=0
Now the convergent region for the expansion is
—27TR T (uy—usy)
+e
tol <11 < ltol| ey (3:61)
|
l1 1
308 (1 —p 34
Hy = (_2lo)%e%”7(“1+”2) e (;l N

The explicit expression of the matrix elements of 7 are
listed in Appendix F.

Similarly, we can rewrite the wave function y/(3) in terms
of the u# coordinate and compare the expansion coefficients
of ) and y(!) in the region zzz, < |z| < z,. We read the
transformation
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We can solve the wave function order by order with respect
to zp and ¢.

To study the transformation between y3%) and >+
rewrite y(>*) in terms of the  coordinate

Ve = v (5)

1
— (=2¢ 2T (uy+uy)

e TP o

(14 DR (1 = TGy e
(3.62)

with convergent region
—27TR T (uy—uy)

11 > 1o te (3.63)

e”T(”2—'41) — ¢ 2aTR :

By comparing the coefficients in the expansions of two
wave functions in the overlapping region

e~ 27TR 4 eﬂT(Mz—Ml) —2xTR 4 eﬂT(u]—uz)

lo ol (uy=u) _ ,=27TR <l <ol o~ 27TR _ pnT(uy=uy) |’
(3.64)
we get
(2-) (3-)
yN v
< <2+>> =H,- ( (3+)>, (3.65)
w v
where
" < e ) (3.66)
1 N\t o ) :
(1402 (1= 300 T T
[
where
1
wC™ 0
H, = (—21‘0)%((Z1Z2) | ) (3.68)
0 (2122)#C*

The perturbative expansions of the matrix elements C~ and
C* are listed in Appendix G. Because y(+) 3+ p(1-)
(7)) share the same monodromy condition around the
cycle encircling the origin, the transformation matrix H, is
diagonal.
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With these wave functions we can get the Schottky
generators for the cycle A% i>1. To transform the
arguments between different sheets, we need another group
element that denotes the action of circling around the
branch point #; or the origin counterclockwise. Under such
action, the wave function gets an extra phase so that the
transformation matrix is

—27:1% 0
M= (e ) )
0 6‘27”5

With these transformation elements, we can build the
(i41)

(3.69)

Schottky generators for the A cycle as
L;=M~""HM ' 'H{'M~, (3.70)
with i =1,...,n— 1. Ignoring the commutator in the

fundamental group, they correspond to the thermal cycles
in the (i + 1)th sheet in the homology group.

The other Schottky generator corresponds to the hori-
zontal cycle in the first sheet. To find the new generator,
we need to discuss two other couples of the wave functions
to cover the cycle. Under a self-mapping conformal
transformation

~ 2122
=,
Z

(3.71)

the energy momentum tensor does not change, so the wave
functions under the conformal transformation are

w5 () = (15 () <%) -
Z

= (=1)73(z,2) 20T {1 + Zarzr], (3.72)
r#0
which is convergent in
m< |7 <L, (3.73)
<R
and
65)(3) = o) (2 393
yPH @) =y 5z ) = EDETE). (374)
which is convergent at
1z —z1] <min{z1 —zzzR,Z—l—Zl}. (3.75)
<R
Taking a conformal transformation
== (3.76)
<R
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it is easy to see that the solutions y(!) and y* share the
same convergent region, and 1//(1> transforms as

~ 0z - +L 1141 -
1+ _ 1+ n 5514y, E r
l//( )(Z) - l//< )<Z) (82) ZR2 ZZ( ) 1 = Cer .
(3.77)

Comparing the coefficients of the leading terms, we find

1
<w0~->> _ (z;ﬂ(—l)%(zlza-ﬁ 0 )
1, o il
v 0 F=DHaz)h
() 1 W(4-_)

X .

(o) (o)

The other wave functions y®) are related to w®) by the

conformal transformation (3.76). Therefore we get the
transformation

W(4~_) _ H—l l//(s’_)
p) 2 y(5:+) '

Considering the relation (3.74), we have the transformation

(ZJIE:;Z)_(‘I’_%(? é)(‘;’éi) (3.80)

With these results, we obtain the generator

(3.78)

(3.79)

5= 1 1
0 27 (=1)(z120)
0 1 0 1
X H2‘1 Hl_l
1 0 1 0
CH)\C g 0
=H, <( ) °r l )Hl—l
0 cHCe) 'y
= H,NH{'. (3.81)

Up to now, we have built all of the Schottky generators
L;,i =1,...,n. To calculate the one-loop correction to the
partition function, we need to find all of the primitive
elements up to a conjugate. Even though there are infinite
primitive conjugate classes, only a finite number of them
contribute at each order of the expansion with respect to
(uy —up) and z)/". In this work, we are satisfied to
calculate the one-loop correction up to order (u; — u,)*
and z/".

The Schottky group elements can be classified into
two classes. In the first class, the group elements are

generated by
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L; with (3.82)

i<n,

and their inverses. They are similar to the ones in the double
interval case as shown in [26]. The simplest one is

Mi- IH M- (k+1>H1_1M_(i+k>.
(3.83)

Yik =LiLip1-- Ly =

With this block, all of the group elements in this class are
generated by (3.82) and their inverses as

p
Vi kg = M™ (H M* Hy\M* HY
j=1

1>M"”. (3.84)

The other class involves L, which can be written as

L, =H,N'H{' ~H M'H{", (3.85)

with

ni L
K =—log((C*)"'Czz™).

> (3.86)

As they take the similar form as (3.84), all the elements take
the general form of (3.84). However, in (3.84), there are
nonprimitive elements, and some of them are conjugate to
each other.

In the large interval limit, the asymptotic forms of the
group elements are, respectively,

HIN(—ztO)%e%nTwlwz)( 220 2}?), (3.87)

). (3.88)

2 24
Then a group element in (3.84) has an asymptotic form

2
n2 P ﬁ( ka ka )
yklskZ .... kzpsm 41‘0 en e n

s=2

n

2

[NSTI ST

_n
Hl—l ~ (—21‘0) ze—iﬂT(ulﬂtz) < 2

—e 2,’,”k1 2mk]
X _ eTkl ; (3.89)
whose nonzero eigenvalue is
1 nz P 21) 2mk mk
= (5 ) TIes -0+ o). (350
410) -5
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Considering the large interval property for 7,

7T

fo~7(“2‘“1)7 (3.91)

we find that the one-loop contribution to the partition
function is

Zl —loop __

Zlog (1-g¢g

As the leading order contribution to the one-loop partition

=¢+q¢+0(qg". (3.92)

is at order tgp , we only need to consider the terms for p < 1,
if we are only interested in the result up to order [*.
Furthermore, in (3.84), there may be some k’s that give the

same terms as (3.86). Such terms are of order z,;%, where m
is the number in (3.84). Their leading contributions are of

4m/n

order z, /. If we only consider one-loop contributions up

to order zj ", we only need to consider m < 1.

Here we list the possible primitive conjugate classes,
whose contributions to the one-loop partition function are
of order no higher than (1, — u,)* or z3/".

(1) The group element classes with no L,, including

L;L; - L, and their inverses. Their eigen-
values are
272
1 7T 1
gn = (= u)? + Ouy = u)?,

4n* sin* 22
(3.93)

with degeneracy 2(n —
partition function are

m). Their contributions to the

:
._.

Z(l—loop) 2

Zlog 1_ (Qm )

(n* = 1)(n® + 11)

- u2)4

" 2268001
x (3n* 4+ 101> 4 227)(u,

-+ O(Ml - Mz)s.
(2) The elements L, and L;', both of which have
eigenvalue
) = (Cc.czN2zy" (3.94)

The resulting contributions are
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z170r =2 log(1 - (¢2))
r=2

PHYSICAL REVIEW D 92, 106001 (2015)

2(=1+ n?
= 2{27;/” [1 + <74”1)7%2(”1 —u,)?

3n3

(=11 = 60n + 1522 + 12013 — 9n* — 60n° + 5n)

27017

+0@w+o«m—mfﬂ

ﬂ'4T4(M] - M2)4

-1 2
+ Z;g/” |:1 +7( tn >7[2T2(M1 - M2)2

n3

(=11 = 90n + 15n% + 1801 — 9n* — 90n° + 5n°)

18017

+ 0 = 1)) + 0a)| + 0 .

It is clear that the result is expanded with respect to u; — u,,

1/n
Zg, and ZR/ .

(3) The elements with all kinds of generators include
(Ly-+-Ly) " Ly(Ly -+ Ly)
= Mj'“H]Mj'NM_jZHl_lM‘fZ“
= M1 (H]Mjl—ijHl—]Mjl—jz)M—(lerl),
(3.96)

with m = j; — j, # 0. Their eigenvalues are

2mim
2T (uy — uy)? en
qm = "

n* sin? 2

x (1426 24" + O(zg) + Oz ") z¢ ",
(3.97)

with degeneracy 2n. The contributions to the parti-
tion function are, respectively,

—_

(]
[]s

ZS[ 1—loop) —

—2n log(1 = (ga))")

||
[S)

1r

”4

3
Il

~
&

4 2/n 1

=2n e (’41—“2) 2R 45

X (=251+360n—110n>+n*)  (3.98)

I—loop __
S2 —_—

3 15
_ <2 +Z”2T2(ul —up)* + %”474(”1 - u2)4) Z?e/z +0((uy = u)) + O(Ziz?)‘

”4T4(Zl - 22)4

(3.95)
77,'4T4 3/n 1
+7(141 — u)*4zy 15
x (—1901 + 14401 — 260n% + n*),  (3.99)
for n > 3, and
4d 4
1-1 7T (u) — uy) 3
Zg oop) _ 4(#2 (ZR _ 4223/2)>,
(3.100)

for n = 2, and

44 4
1—1 T (ul—uz) 16 2/3 128
Z °°P>:6(T<—3z,{ +5-x ) )

(3.101)

for n = 3.
Taking into account all of the contributions, we obtain the
one-loop correction to the nth holographic Rényi entropy.
For n = 2, we have

384

1 25
——— 1Ty — uy)* — (2 + Eﬂsz(ul —up)? + T (uy — u2)4> 7R

(3.102)
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For n = 3, we find

PHYSICAL REVIEW D 92, 106001 (2015)

oo 16 16 800
Sé loop = — 177147 ﬂ'4T4(M1 - M2)4 - <1 +Eﬂ'2T2(ul - M2)2 + 590497T4T4(M1 — M2)4>Z§g/3
8 272 2 280 44 4 5 4/3
|\ 1+ =T (uy —uy)* + — 7T (u; — uy)* |z + O((uy — uz)?) + O(z"). (3.103)
27 6561
And for n > 3, we obtain
1—loo 7T4T4
Sy 0% = —m(n + 1)(n? + 11)(3n* + 10n% + 227) (uy — u,)*
1 4(n2 -1)
— 2 N T 2T2 _ 2
n—1{< g T )
299 — 444n 4 135n% + 24n° — 3n* — 12n° + n® n
- 7 24T (uy - u2)4> Zi/
2(n? -1
+ <2 + QHZTZ(IM - u2)2
n
6081 — 4626 835n% 4+ 36n° — 5n* — 181° 6
B n -+ n +7n n n’+n ﬂ4T4(u1—u2)4 Z;/"
18n
+0((u —1,)%) + O(Z¢"). (3.104)

For all the cases, the holographic results are in perfect
match with the ones in the field theory up to the order we
are interested in.

IV. CONCLUSION AND DISCUSSION

In this work, we completed our study on the Rényi
entropy of a large interval on a torus in the light of
AdS;/CFT, correspondence. In the case that the interval
is not so large, we may expand the density matrix in the
CFT level by level and compute the entropy perturba-
tively; while on the bulk side, we can follow the
prescription in [26] and take into account the size
dependence [14] to read the HRE, which is in good
agreement with the CFT computation. However, when
the interval is large, the problem becomes quite difficult.
On the field side, the perturbative prescription used in
the short interval case breaks down, and we have to find
another effective way to compute the partition function.
On the bulk side, the dual gravitational configurations
are different from the ones in the short interval case, as
indicated in the study in [34].

To overcome these difficulties, we developed a
new prescription and treatment in both field theory
and dual gravity. On the field theory side, we proposed
in [7] to insert a complete set of state bases in the twist
sector of orbifold CFT to compute the large interval
Rényi entropy. We applied this proposal in this
paper and focused on the vacuum module of the CFT

|

dual to the pure AdS; gravity. We found that the leading
linear ¢ contributions were dominated by the twist
vacuum module and the subleading ones got contribu-
tions from all the twist states. This allows us to read
the leading contributions by applying the Ward identity
to the correlation function of four twist operators,
two at the branch points and the other two at the
left and the right infinities of the cylinder. We did
find the holographic entanglement entropy suggested
in [34].

On the gravity side, we suggested a new set of
monodromy conditions on the cycles to construct the
Schottky generators and corresponding gravitational
configurations. To check the validness of the mono-
dromy condition, we computed the holographic entan-
glement entropy and reproduced successfully the
expected value. We read the classical part of the
HRE by integrating two differential equations (3.13)
and (3.17), one encoding the dependence of HRE on
the moduli parameter of the Schottky space and the
other on the size of the torus. Moreover, we discussed
carefully the one-loop correction to the HRE, following
the treatment in [26]. We found good agreements of
classical contribution and one-loop quantum correction
to the HRE with the leading and subleading large ¢
results in the field theory, up to the first few orders. For
the classical part, the agreement is up to e™**'R and [©
orders, while for the quantum part, the agreement is up

_6aTR
to e~ n and [* orders.
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The study in this work presents another piece of
evidence to strongly support the holographic computa-
tion of the entanglement entropy in the context of the
AdS;/CFT, correspondence. Taking into account the
accumulated evidence on the HRE in the cases including
double-interval and single short interval on the torus,
it suggests that the holographic computation is exact
perturbatively not only at the classical level but also
at the one-loop quantum level. Furthermore, our field
theory study shows that there are actually 1/c¢ correc-
tions in the partition function when the Riemann surface
is of genus higher than 1. It would be interesting to see
if the agreement could go beyond the one-loop level
[28,41] or even nonperturbatively.

Our study could be generalized to other cases. In
particular, it is interesting to study the higher spin Rényi
entropy of the single interval on a torus by direct field
theory computation [42-46] and Wilson line prescription
in the bulk [47-49].

The study of holographic entanglement entropy may
shed light on the AdS; quantum gravity [24,50]. There
are two essential questions on the quantum AdS;
gravity. One is on the precise definition of the quantum
gravity, string theory, or something else. The other is on
the construction of the dual CFT. There is ample
evidence, for example, the work in [24], that the dual
CFT might not exist. However, the results in this work
and other related ones suggest that there exists an
equivalence between the semiclassical AdS; gravity
including the pure gravity sector and the large central
charge limit of a 2D CFT, which has a sparse light
spectrum [21,23,51-53]. In our study, it turns out that
in the large central charge limit, the vacuum module
dominates the contribution to the partition function. It is
not clear when the states in the sparse light spectrum
begin to contribute. Moreover, the regulated on-shell
action of the gravitational configuration in the AdS;
gravity is a Liouville theory. This raises the issue if the
dual CFT could be a Liouville CFT. For a recent study
on this issue, see [54]. It would be interesting to see
if it is possible to prove the equivalence by using the
Liouville theory.4
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APPENDIX A: STATES IN THE VACUUM
MODULE

In this section, we list some low-lying excited states in
the vacuum module. We focus only on the holomorphic
sector. For the antiholomorphic sector, it is similar to the
holomorphic one. The first few excited states up to level 4
are, respectively,

2) = \/%L—2|0>’
3) = \/;L_3|O),
[4,1) = \/114—4|0>9

¢z 11 \2 3
T P (AN TN

The corresponding vertex operators at the origin and the
infinity take the forms, respectively,

Ly, = T(W)l=o
= WATW)])ye s
L3 — 0T (w)l,—0
- —wOT(w) — 4w T (w)

|W—>OO’

1
Ly— 2 PT(w) |0

- %wgazT(w) + 5w’ dT (w)
+ 10wOT (w)

|W—>OO’

3 3
L_2L_2 — gL_4 - T<W)2 - EazT(wﬂw:O
- wh (3 T(W)2 ‘- %62T(w)) |w—>00'

APPENDIX B: CONFORMAL
TRANSFORMATION FOR :T2(z):

In the calculation, we need the conformal transformation
of :T?(z):, which is not a primary operator. Under a
conformal transformation z — w(z), we have

10 =100 () + 5 B
where
oz =23 (%) (82)

is the Schwarzian derivative and the prime denotes the
derivative with respect to z. For :7%(z):, we have
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dz
T (z): = j{m _IZT(zl)T(Z)
c W// 4 W// 2 w/// W/// 2 W// W//// W/////
= —225| — 480 — | ——-100{ — ) —180——+36
1440 < <w’> * (w’) w <w’) wow + w )

2T (w)(w)? (—1 (W—)2 + %W—> T OTow) w2

4 \w 3w 2w
+ T2 (W) (W)* + T(w)(w’)zf{w, 2+ <C {w, z})z.
6 12

Especially for the conformal transformation
w = e%y s (B4)

we have
ow\ 2 7>
0)=700(55) - e

211 4 10 ow\2 =2 ow\ 3 Ow\ 4

APPENDIX C: CORRELATION FUNCTIONS f;

In this computation of the Rényi entropy by inserting the twist sector states, we need to compute the correlation functions
f:. Here we list the results for the first few ones needed in the relation (2.32):

-1 \n? —11 +20n> — 18n* + 8n° 8t
log(t|V(0)[1) = ( —|—2n3)7z 12+( +20n n4+7 n® +n®)x 4
726%n 259205 n
(=2497 + 2160n* + 294n* + 40n° + 3n®)z*
+ 15360057 *+0(P), (Cl1)
(1 2(=1+ n?)z? p_ (299 — 444n + 1351 + 24n3 — 3n* — 12n° + n%)7* 4
P 3423 54p°n7
1 (733 — 672n* — 63n* + 2n%)7*
—-— *+0(P) f 1,2
c 94557 +O(P) forn#
=1 forn=1
=t n’ 257 1 3z*
= I 1+ P4+ — I*+0(P) fi =2, C2
“Tgpt T ( Tt T e ) cTaggr! TOW) form (€2)
(14 (=1 + n*)n? 2o (6081 — 4626n + 835n* + 36n° — 5n* — 1813 + n®)z* l4
i p*n’ 364%n’
1 (=933 + 1148n% — 217n* + 2n%)z*
- 305 +O0(P) forn#1,3
1 forn=1

I*+0(P) forn=3, (C3)

1287* 4 872 5 2807* 4 1 327
c i) 1 5+ )+ I
65614 27p 6561 c6561p
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For=(1+ 4(=1+ n?)z? 2 (201919 — 1081207 + 14115n% + 240n° — 39n* — 120n° + 5n%)7* A
e 3% 13560
12(83213 — 1360801 + 5502002 — 2163n* + 10n°)z*
- *+0(P) f 1,2,4
c 47255 +O(P) forn#
1 forn=1
57 7> 47374 1 3z
Fy(1+ 22 )+~ P+ 0 forn=2
64 +< g +19mm4:>+c3mm4 +O(F) forn
1257% 52 22617 1 9974
ot 1 2 B I+ 05 forn=4, C4
“ 2096/ +(+mw +@wm4) c20060p° T o) form (C4)
4(=1+n®)x* , (299 —456n + 135n* + 48n — 3n* — 24n° + n®)z* ,
Jaa =1+ 2.3 I~ = 47 !
’ 3p°n 27pn
12(124247 — 166320n + 432602 — 1197n* + 10n5)*
12 66320n + 3301; 97n* + 10n°)x B4 O(F) forn#1,2
c 47256°n
1 forn=1
P 7 3377 1 577
S opr 1+ P 4) 4= I forn=2. Cs
o4 'F( ot Moo >'+c32w% orn (C5)

APPENDIX D: MUTUAL RENYI INFORMATION FOR THE DOUBLE INTERVALS

In this appendix, we list the Rényi mutual information for the double intervals, which has been computed in [25]. In terms
of small cross ratio x, the leading and next-to-leading contributions are, respectively,

cn=1)(n+1)%% cn=1n+17>2x> c(n-1)(n+1)2(1309n* —2n> — 11)x*

1122, ) =

288n° 288n° 414720n"
N c(n—=1)(n+1)*(589n* —2n> — 11)x°
207360n’
c(n—=1)(n+1)*(805139n8 — 4244n5 — 23397n* — 861> + 188)x° ;
.C. D1
" 313528320n"! O Fec (B

17 (x, %)
(n+ 1)(n*> + 11)(3n* + 10n* + 227)x*
7257600n7
n (n+ 1)(109n8 +1495n° + 11307n* + 8190512 — 8416)x5
1197504001°
n (n+ 1)(1444050n10 +19112974n8 + 140565305n° 4 1000527837n* — 1677312551 — 14142911))(6
1046139494400
+ O0(x7) +c.c. (D2)

APPENDIX E: THE ACCESSORY PARAMETERS

After imposing the monodromy condition, the accessory parameters y and § can be solved order by order. Here we just
list the expansion coefficients of the first few orders

2n(n—=1)(n+ 1)Tz, an—1)(n+ 1T
Yo-1 = — B ) Y00 = — 3 )
n n
a(n—1)2(n+1)T (=14 n)*(1 +n)?aT
Y01 = 4 ) Yoo = — ) )
6n°z, 12n"z;
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a(n—=1)2(n+1)2(229n* = 2n* - 11)T

703 =

4320n%73 7

~ m(n=1)2(n+1)*(109n* — 2n* — 11)T
o4 ="~ 2880182 ’

x(n = 1)2(n + 1)2(62999n° — 172406 — 9537n* — 8662 + 188)T
Yo5 = 21772801123 ’

 x(n=1)%(n + 1)2(20159n° — 7166 — 3993n* — 86> + 188)T
Yos =~ 8709121125 ’
yon = E = VR0 DT 00 3987,12

156764160001'°7]
—12840306n'0 — 7225394718 — 2555548n5 + 5564373n* + 67854n° — 58213)

710 = 0, Y11 = 0, Y12 =0,

a(n=13(n+1)T a(n—=13(n+1)T
713 = 6.3 ) Y14 = — 6.4 )
18n°z 12n°z
~a(n—1)*(n+1)*(439n* — 207 — 11)T
V15 = 432011073 ’
~ a(n+1)*(199n" - 597n6 +595n° = 193n* — 17n° + 351> = 33n + 11)T
o= 17281028 ’
z(n+1)°T 1 10 9 8
Yig = (411052701 — 12331581210 + 122680097° — 3919811

32659200147}
—541434n” + 1115726n° — 1053566n° + 354954n* + 371n3 — 12409n> + 13821n — 4607),

Y20 =0, Y21 =0, Y22 =0,
a(n=12(n+1)2Gn>-1)T

723 =

61823 ’
a(n—=1)>2(n+ ) (3n? - 1)T
V24 =~ 4nd7
_ﬂ(l’l—l)z( +1)? (1469n6—521n4+n2+11)T
V25 = 1440n10 5 ’
~m(n=1)%(n+ 1)*(749n° —281n4 +n?+11)T
Tas =" 57611028 ’
a(n+1)°T

T )TE 17087061012 — 3457412201 + 1049317000 + 135877821° — 67798970
127 = 10886400n1%2 7( " n +10493170n7 + " 9897n

—27988n” + 404292116 — 780596n° + 383843n* + 129101 — 110621 + 9214n — 4607),
27272

50:—7, 010="011 =612 =0613=0,
22 (n — 1372 (=13 + 1312
Oy =——F7—75—, 015 =— ,
14 36n°z% 1 18n%23
2*(n? = 1)3(1039n* — 2n> — 11)T?
b = 1296011028 ’
7 (n® = 1)%(439n* — 2n*> — 11)T?
b7 == 432017 ’
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72 (n—1)3(n+1)3(15726467n® — 11649215 — 641778n* — 1412n> + 4607)T?

5o = ,
'8 130636800123
s _m(n=1)(n+ 1)(4472147n’ - 4593200 253698114 — 14120% + 4607)T?
S 32659200142
2 -1 3 1 3T2
8110 = (n=1)(n+1) (7132759447n'2 — 931064460

47029248000n'87 10
—515825187n® — 4929908”6 + 16057833n* + 73554n2 — 78893),
020 =06y = 02p = 06,3 =0,
> (n? = 1)2(3n* = 1)T?

Sy = :
24 6nﬁz§L
*(n? = 1)2(3n* - 1)T?
52.5 == - 3 6.5 )
n Zz
7% (n?> = 1)2(3269n° — 1121n* + n* + 11)7?
br6 = 10,6 ’
2160n
7*(n? — 1)%(1469n° — 521n4 +n?+11)T?
Or7 =~ 10,7 g
720n
5 72 (n* = 1)2(56156801n'0 — 20579551n% + 40454n° 4 681358n* — 64551 — 4607)T?
28 = 217728001478 '
5 72 (n? — 1)2(17031281n'0 — 64322711 + 5174n° + 293278n* — 6455n> — 4607)T?
20 54432001147 ’
2 -1 T2
8y 10 = — (2 — 1) (28908872157n'* — 11219722453n'?

78382080007 8710
—-16128831n!" + 654870399118 —219922091° — 17014839n* + 188883n> + 78893).

Collecting all these coefficients and changing back to the u coordinate, we find

1 1 1
Yo = <F_ 1) p— + (n* - 1)”2T2{ (_W) (uy — uy)

N 22T (n® + 9n* — 9n? + 11) ( y
up—u
540n° b
ATH(19n10 + 8518 — 12510 + 251n* — 274n% + 188) ]
+ |- ) () = )
68040n
71'6T6

T (41870 + 1278702 — 22521010 + 5591918 — 1000796
+ 1224720000 187 F " e " "

11434810 — 126067n2 + 58213) (g — )7 + O((uy — u2)8)},
272
+7I4T4(4187n —572n% — 4218n* — 1412n% + 4607)
255150n'*
4(3n*-1)
N

(u 1‘”2)5

(uy —uz)” + O((u; — M2)8>}’

ry =T (n* - 1)2{ (uy = up)?
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| PTA2090° 1010 41 4+ 11)
45p10
24T (180041110 — 10455178 — 1750606 + 43798n* — 645512 — 4607)
+ 85050n1% (1 = 1)

(uy - M2)5

7

+0((i -~ )"},

4 4 20T (190 =202 — 11)
9.6 (ul - MZ) + 10
9n 405n
n T4 (4187nd — 57218 — 4218n* — 1412n% + 4607)
510300n'4

8, = n°T%(n? — 1)3{ (uy — uy)®

8

(uy — uy)

+0(( - ) }.

8(3n* —1)
3n®
272 6 4., 2
| 47T2(200n 13;2}(;1 LR LI PR
7*T*(180041n'0 — 1045511 — 17506n° + 43798n* — 6455n% — 4607)
* 8505004

52 — JT6T6(I’12 _ 1)2{ (u] _ M2)4

6

8

(U —uy)

+O0((u; — uz)g)}.

APPENDIX F: T MATRIX
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In this section, we list the leading order terms in the expansion of the 7" matrix in the Schottky transformation. For any

matrix element, we may expand it as
(69 [e]
T=2_ ) Ttk

r=0 n=-1

There are relations among the matrix elements
Trn = (=)"T5,

T+t =T

|n—>—n ’

T==T

_+’
n—-—n-

For the matrix element 777, its expansion coefficients are, respectively,

. n - 1
TO,—IZ_E’ 00 = 75,
_ n* —6n3 —5n% + 6n + 4
Ty =— 3 ’
36n
T _ —Sn*+6n*+n>—6n+4
02— 36n° |
T — —547n8 + 3300n” + 1450n° — 4320n° + 489n* + 900n> — 2600n> + 1201 + 1208
03 —

32400n7
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2563n® — 450017 4 230n° + 4320n° — 4521n* 4 27001 — 280n> — 25201 + 2008

Toa =~ 324007 ’

Tys = —W (35130102 — 2154138n!! — 4827270 + 3021438n° — 1320165n® — 4438 14n”
+ 21651795 — 76704615 + 202692n* + 32575203 — 151855202 + 178081 + 602272),

Tys = m (=1573097n'2 + 3334842n'! — 63640510 — 3026142n° + 4008417n® — 3258234n
92966575 + 1999494n5 — 2853228n* + 2430792n° — 110796002 — 14807521 + 1232608),

o — L (_500204179n16 + 3117021000115 + 239603780n'* — 4477586640n13

7 7 5143824000011
1289890280612 + 23660280011 — 333914374070 4 19228099201° — 16092486197°

—247284600n" + 2744490640n° — 889423920n° + 1223043536n* + 325780800n° — 2411735680n>
+ 12080640n + 754291456),
4(n®>-1)
3n
T73 = (4(12+5n - 23n% — 10n® — 2n* 4 5n° + 13n°)) /(45n7),
2(13n° — 12n° = 24n* + 2413 +9n? — 12n + 2)

Tio =Tig=Ti;=0.  Tyj=

14 — 7 27}’1,7 ’
1
Ts =—ccrco (—101693n10 —116760n° — 3331718 + 27552017 + 2673611° — 2016001°
’ 85050n
—58831n* + 436801 — 130168n> — 840n + 56648),

4(n®>-1)

" )
_ 4(62n° + 75n° + 14n* — 901> — 112n% + 151 + 36)
23~ 45n°

o =T =T, =0, Iy =

APPENDIX G: C MATRIX
For the matrix elements C* and C~, their expansions are similar

=200 G ©1)

r=0 n=0

and
C"=C|ymacp (G2)
Here we list the ones for C™:

Con=Co3=Cp5=Cy7 =0,

3 2
_ _ —n’ =2n"+n+2
Coo =1, Con = g

6n’
- — —67n" — 140n° 4 114n° + 48n* — 6313 + 180n> + 16n — 88
. 1080n7 ’
1
Cy ———————(—4919n'" — 10570n'° + 10681n° — 322n® — 6053n” + 17546n°

06 = 136080n!1
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—2893n° + 2506n* + 38721 — 15176n* — 688n + 6016),

1
Cog = = (—6094181n'5 — 13347880n'* + 15437132n'% — 4050896n'% — 8054742n"!

08 = 54494400011

+24501840n'0 — 8606276n° + 13161728n% + 5132627n" — 23387240n° + 59050561 — 13379568n*
— 4416704n° + 2395328012 + 6970881 — 7451264),

4(n®>-1)
Cio=Ci,=C3=Ci5=0, Cry=— 7,
1,0 11 13 1.5 12 3.2
- — 2(83n% — 90n° — 42n* + 180n> — 93n? — 90n + 52)
14— 135n° ’
1
Cig= 7010010 (363771110 —42252n° — 3653518 + 7249217 — 18685n° 4 2772n° + 12259n*
’ n
—54012n% + 13288n% + 210001 — 6704),
_ _ _ _ 41
Cz,o = C2,1 = C2,3 =0, Cz,z = T

G =

B 2(149n° — 90n° — 102n* + 1801 — 991> — 90n + 52)

45n°
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