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We study the dynamics of light quantum scalar fields in de Sitter space on superhorizon scales. We
compute the self-energy of an OðNÞ symmetric theory at next-to-leading order in a 1=N expansion in the
regime of superhorizon momenta, and we obtain an exact analytical solution of the corresponding Dyson-
Schwinger equations for the two-point correlator. This amounts to resumming the infinite series of nonlocal
self-energy insertions, which typically generate spurious infrared and/or secular divergences. The
potentially large de Sitter logarithms resum into well-behaved power laws from which we extract the
field strength and mass renormalization. The nonperturbative 1=N expansion allows us to discuss the case
of vanishing and negative tree-level square mass, which both correspond to strongly coupled effective
theories in the infrared.
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I. INTRODUCTION

Understanding the dynamics of quantum fields in curved
spacetime is a topic of general interest with important
applications to early Universe cosmology or black hole
physics. Prominent examples are the primordial density
fluctuations during inflation [1] and the Hawking/Unruh
radiation from (analog) black holes [2–4]. The case of de
Sitter space has attracted particular attention both because of
its relevance for inflationary cosmology and because it
provides a simple, maximally symmetric example where
the nontrivial aspects of the curved geometry come into play.
The investigation of quantum field dynamics on de Sitter

space has many facets. A general class of studies concerns
the solutions of the field equations of motion in a fully de
Sitter symmetric state. Renormalizability and the equiv-
alence principle select the so-called Chernikov-Tagirov-
Bunch-Davies (CTBD) state [5,6] out of the class of
Allen-Mottola α-vacua [7–9]. Topical questions include
the calculation of radiative corrections to the field dynamics
[10–28], the relevance of global coordinate systems as
compared to the (expanding) Poincaré patch, of interest for
inflationary cosmology [29–31], and the relation between
Lorentzian and Euclidean de Sitter spaces [32–37]. Other
studies concern other (possibly non–de Sitter invariant)
states, e.g., in the context of inflationary cosmology
[9,14,38], or in relation with the question of the quantum
stability of de Sitter space [8,29,31,34,39–42].
An important issue is the understanding of interacting

field theories. Not only are these more difficult to tackle
than in flat space for obvious technical reasons, but the

nontrivial gravitational field leads to specific effects with
no flat space analog. Striking examples are the pos-
sibility of curvature-induced phase transitions [10–12],
the decay of massive particles into themselves [43,44],
the generation of a nonvanishing photon mass [13,45,46],
and the radiative restoration of spontaneously broken
symmetries [22,47–51]. In the CTBD vacuum, light scalar
fields in units of the spacetime curvature exhibit large,
gravitationally enhanced quantum fluctuations on super-
horizon scales. Notably, this is at the origin of the scale
invariance of the (tree-level) power spectrum of primordial
density fluctuations in inflationary cosmology. However,
such large fluctuations are also responsible for the strong
infrared sensitivity of radiative corrections. Perturbation
theory typically exhibits infrared and secular (large time)
divergences [15–17,28]. The former are generic for mass-
less bosonic field theories [52] while the latter are char-
acteristic of nonequilibrium1 systems [53]. Both types of
(spurious) divergences signal a breakdown of the pertur-
bative expansion and need to be resummed.
Various resummation methods or genuine nonperturba-

tive approaches have been devised to deal with such
issues in de Sitter space. The most prominent one is the
stochastic effective theory put forward in Refs. [54,55].
This has been shown to correctly capture the nonperturba-
tive dynamics of superhorizon modes at leading order

1The nonequilibrium nature of (the Poincaré patch of) de Sitter
space stems for the cosmological expansion in standard comov-
ing coordinates.
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accuracy both in secular logarithms [17,46,56] and in
infrared enhancement factors [57,58]. More recent
approaches employ various quantum field theoretical tools
such as large-N techniques [22,25,48,59,60], renormaliza-
tion group methods [50,51,61,62], the Wigner-Weisskopf
approach [63,64], reduced density matrices [65], and sol-
utions of the Kadanoff-Baym equations (KBEs) [66,67]—
the nonequilibrium version of the Dyson-Schwinger
equations—and their Boltzmann limit [42,44,60,68–75].
In Ref. [74], we have studied the KBEs for the correlator

of anOðNÞ scalar field theory with quartic self-interactions
using the physical momentum representation of de Sitter
correlators [76–78]. We have obtained an exact analytical
solution for the two-point correlator in the regime of
superhorizon momenta when the self-energy is computed
at two-loop order in perturbation theory. The secular
divergences of perturbative calculations of the correlator
[15–17,28] are a mere artifact of expanding the latter in
terms of self-energy insertions at a finite order. Solving the
KBEs amounts to resumming the infinite series of such
self-energy insertions—and thus the associated large infra-
red logarithms—which results in a modified power law
behavior of the correlator. This is similar to the generation
of an anomalous dimension for critical systems in statistical
physics. From the (resummed) propagator, we could
compute various quantities of interest, such as the infrared
field strength and mass renormalization, at two-loop order.
The applicability of such perturbative computations is
limited to not too light fields. The cases of fields with
either vanishing or negative tree-level square mass
suffer from infrared divergences and require further
resummations.
In the present article, we generalize this approach to the

nonperturbative 1=N expansion at next-to-leading order
(NLO). The leading-order (LO) approximation resums the
infrared divergences of perturbation theory into a self-
consistent (local) mass term. This captures interesting
nontrivial physics, such as dynamical mass generation
and radiative symmetry restoration [22,48], or nonpertur-
bative quantum contributions to non-Gaussian correlators
[25,60]. The NLO approximation involves an infinite series
of nonlocal multiloop contributions to the self-energy. For
infrared momenta, the latter can be summed in a closed
form using the results of Ref. [60]. The NLO self-energy
has a similar form as the two-loop expression, however,
with different infrared power law exponents. This allows us
to obtain an exact analytical solution of the corresponding
KBEs in the infrared regime using the techniques devel-
oped in our previous work [74].
We thus obtain the complete spacetime structure of the

propagator for superhorizon momenta at NLO in the 1=N
expansion. As in the two-loop case, the infrared logarithms
of perturbation theory resum into a superposition of
well-behaved momentum power laws, which characterize
the decay of the field correlator at large spacetime

separations. We compute the leading infrared behavior
for deep superhorizon momenta, from which we extract the
field strength and mass renormalization. These receive
NLO corrections which are nonperturbative functions of
the field self-coupling. We study the cases of vanishing and
negative tree-level square mass, which both correspond to
effectively strongly coupled regimes in the infrared.
Finally, we compute the local field variance, which agrees
with the result of the stochastic approach at the same
approximation order.
The paper is organized as follows. Section II describes

the setup and briefly reviews the formulation of KBEs in
the p-representation [76]. We compute the self-energy at
NLO in the 1=N expansion in Sec. III and present the
solution of the corresponding KBEs in Sec. IV. The NLO
result requires the solution of an appropriate gap equation
for the local mass, which is described in Sec. V. We discuss
our analytical solution for the field correlator in various
regimes of interest in Sec. VI, and we conclude in Sec. VII.
Finally, some technical details and calculations are pre-
sented in Appendixes A–C.

II. GENERAL SETTING: KBES
IN THE p-REPRESENTATION

We consider an OðNÞ scalar field theory on the expand-
ing Poincaré patch of de Sitter space in D ¼ dþ 1
dimensions. In conformal time −∞ < η < 0 and comoving
spatial coordinates X, the invariant line element reads (we
set the Hubble scale H ¼ 1)

ds2 ¼ η−2ð−dη2 þ dX · dXÞ: ð1Þ
The classical action is given by

S ¼
Z
x

�
1

2
φað□ −m2

dSÞφa −
λ

4!N
ðφaφaÞ2

�
; ð2Þ

with
R
x ¼

R
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

the invariant measure—gðxÞ is
the determinant of the metric—and where summation
over repeated indices a ¼ 1;…; N is understood. Here,
□ is the appropriate Laplace-Beltrami operator and m2

dS ¼
m2 þ ξR includes a possible coupling to the Ricci scalar
R ¼ dðdþ 1Þ. We consider a symmetric state such that
hφai ¼ 0 and the correlator G and the self-energy Σ are
diagonal, e.g., Gab ¼ δabG. In the rest of the paper we
assume a de Sitter invariant state given by the free field
CTBD vacuum in the remote past η → −∞.
The covariant inverse propagator is given by

G−1ðx; x0Þ ¼ G−1
0 ðx; x0Þ − Σðx; x0Þ; ð3Þ

where

iG−1
0 ðx; x0Þ ¼ ð□x −m2

dSÞδðDÞðx; x0Þ; ð4Þ
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with δðDÞðx; x0Þ ¼ δðDÞðx − x0Þ= ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

. Extracting a pos-
sible local part from the self-energy,2 one writes

Σðx; x0Þ ¼ −iσδðDÞðx; x0Þ þ Σ̄ðx; x0Þ; ð5Þ
where the local σ part is constant for a de Sitter invariant
state. We include it in a redefinition of the mass

M2 ¼ m2
dS þ σ ð6Þ

and define, accordingly, the propagator

iG−1
M ðx; x0Þ ¼ ð□x −M2ÞδðDÞðx; x0Þ; ð7Þ

in terms of which we have

G−1ðx; x0Þ ¼ G−1
M ðx; x0Þ − Σ̄ðx; x0Þ: ð8Þ

The aim of the present work is to solve this equation for G
when the self-energy (5) is computed at NLO in a 1=N
expansion. The main difficulty concerns the convolution
with the nonlocal kernel Σ̄ðx; x0Þ when inverting Eq. (8). To
this aim, we shall exploit the techniques developed in
Refs. [60,74,76], which rely on exploiting the de Sitter
symmetries in a physical momentum representation, the so-
called p-representation.
Exploiting the spatial homogeneity and isotropy in

comoving coordinates, one writes

Gðx; x0Þ ¼
Z

ddK
ð2πÞd e

iK·ðX−X0Þ ~Gðη; η0; KÞ: ð9Þ

De Sitter symmetries guarantee that the correlator admit the
following scaling form [76]:

~Gðη; η0; KÞ ¼ ðηη0Þd−12
K

Ĝðp; p0Þ; ð10Þ

where p ¼ −Kη and p0 ¼ −Kη0 are the physical momenta
associated with the comoving momentum K at times η and
η0, respectively. Similarly, the p-representation of the self-
energy is

~Σðη; η0; KÞ ¼ ðηη0Þdþ3
2 K3Σ̂ðp; p0Þ: ð11Þ

Solving the Schwinger-Dyson equation (8) for the
propagator G for a given self-energy Σ̄ in de Sitter
space can be viewed as an initial value problem with initial
data to be specified in the infinite past η → −∞. This can
be formulated by introducing a closed contour in time—
the so-called in-in or Schwinger-Keldysh formalism

[67]—which allows one to conveniently grab together
the various components of Green’s functions. Exploiting
the way time and momentum are tight together by gravi-
tational redshift in de Sitter spacetime, the time evolution
can be traded for a momentum evolution, with initial data to
be specified at p → þ∞. Introducing a closed contour Ĉ in
momentum, the propagator reads [76]

Ĝðp; p0Þ ¼ F̂ðp; p0Þ − i
2
signĈðp − p0Þρ̂ðp; p0Þ; ð12Þ

where F̂ and ρ̂ denote the p-representations of the statistical
and spectral two-point functions, respectively. Here, the
sign function is to be understood along the contour Ĉ; see
Ref. [76] for details. Notice the symmetry properties
F̂ðp; p0Þ ¼ F̂ðp0; pÞ and ρ̂ðp; p0Þ ¼ −ρ̂ðp0; pÞ. The (non-
local) self-energy Σ̂ðp; p0Þ admits a similar decomposition.
The Dyson-Schwinger equations expressed in the in-in

formalism are called the Kadanoff-Baym equations [66,67].
In the p-representation, they read [76]�
∂2
p þ 1 −

ν2 − 1
4

p2

�
F̂ðp; p0Þ þ

Z
∞

p
dsΣ̂ρðp; sÞF̂ðs; p0Þ

¼
Z

∞

p0
dsΣ̂Fðp; sÞρ̂ðs; p0Þ

ð13Þ

and�
∂2
p þ 1 −

ν2 − 1
4

p2

�
ρ̂ðp; p0Þ ¼

Z
p

p0
dsΣ̂ρðp; sÞρ̂ðs; p0Þ;

ð14Þ
where we introduced (the last equality defines ε)

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
−M2

r
≡ d

2
− ε: ð15Þ

In the following, we consider light fields in units of the
spacetime curvature, i.e., ε ≈M2=d ≪ 1.
As announced,momentum here plays the role of the time-

evolutionvariable. It is remarkable that theKBEs effectively
reduce to a (0þ 1)-dimensional dynamical problem in thep-
representation. In fact, the space dimensionality is com-
pletely hidden in the expression of the self-energy through
d-dimensional loop integrals. The statistical function F̂
encodes the information about the actual quantum state of
the system. Having in mind an adiabatic switch-on of
the interactions, the initial data corresponding to the
CTBD vacuum are given by F̂ðp; p0Þjp¼p0→þ∞ ¼ 1=2,
∂pF̂ðp; p0Þjp¼p0→þ∞ ¼ 0, ∂p∂p0F̂ðp; p0Þjp¼p0→þ∞ ¼ 1=2.
The nontrivial initial data for the spectral function is
determined by the equal-time commutation rela-
tions: ∂pρ̂ðp; p0Þjp¼p0 ¼ −1.

2One may have to include more complicated structures in the
local contribution to the self-energy when discussing ultraviolet
renormalization. For instance, in D ¼ 4, there appears a term
□xδ

ð4Þðx; x0Þ due to field-strength renormalization [15].
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III. THE SELF-ENERGY AT NLO

We now come to the calculation of the self-energy at
NLO in a 1=N expansion. This has been discussed in the
context of nonequilibrium quantum field theory in
Minkowski spacetime in Refs. [79,80]. In de Sitter space-
time the corresponding expressions have been derived in
the p-representation in Ref. [76]. Here, we briefly review
the material relevant for our present purposes.
The local contribution in Eq. (5) can be written in closed

form in terms of the exact propagator as

σ ¼ λ

6

�
1þ 2

N

�Z
q

F̂ðq; qÞ
q

; ð16Þ

where
R
q ¼ R

ddq=ð2πÞd. This is represented diagrammati-
cally in Fig. 1. The corresponding expression at NLO is
obtained by plugging the (yet unknown) NLO correlator on
the right-hand side and discarding terms of Oð1=N2Þ. As
we shall see below, this actually provides a self-consistent
equation for the so-called tadpole mass M defined in
Eq. (6). For now, we do not need the expression of M
and leave it as a free parameter in the calculation.
The nonlocal part of the self-energy reads, at NLO,

Σ̂ðp; p0Þ ¼ λ

3N
ðpp0Þd−32

Z
q

r
q
ĜMðqp; qp0ÞÎðrp; rp0Þ;

ð17Þ

where r ¼ jeþ qj, with e an arbitrary unit vector, and
where the function Î resums the infinite series of bubble
diagrams represented in Fig. 2. It solves the following
integral equation3:

Îðp; p0Þ ¼ Π̂ðp; p0Þ − i
Z
Ĉ
dsΠ̂ðp; sÞÎðs; p0Þ; ð18Þ

where the momentum convolution on the right-hand side is
to be taken on the momentum contour Ĉ to account for the
in-in formulation of the problem and where Π̂ is the one-
loop bubble integral

Π̂ðp; p0Þ ¼ −
λ

6
ðpp0Þd−32

Z
q

ĜMðqp; qp0Þ
q

ĜMðrp; rp0Þ
r

;

ð19Þ

with r ¼ jeþ qj. Notice that we have used the propagator
GM in the NLO expressions (17)–(19). This is consistent
because the LO propagator is given byGM0

withM0 the LO
tadpole mass. Here, we shall keep GM in the intermediate
steps of the calculation for notational simplicity and
consistently expand the final expressions in 1=N.
Let us finally mention that Π̂, Î, and Σ̂ all have similar

decompositions as in Eq. (12) on the momentum contour Ĉ.
The product ĜMĜM in the expression (19) of the function Π̂
gives rise to the combinations F̂MF̂M − 1

4
ρ̂Mρ̂M for ΠF and

2F̂Mρ̂M for Πρ. Similarly, the product ĜMÎ in (17) yields
F̂MÎF − 1

4
ρ̂MÎρ for Σ̂F and F̂MÎρ þ ρ̂MÎF for Σ̂ρ. The

explicit integral equations satisfied by the components
ÎF and Îρ, obtained from Eq. (18), read

Îρðp; p0Þ ¼ Π̂ρðp; p0Þ þ
Z

p0

p
dsΠ̂ρðp; sÞÎρðs; p0Þ ð20Þ

and

ÎFðp; p0Þ ¼ Π̂Fðp; p0Þ −
Z

∞

p0
dsΠ̂Fðp; sÞÎρðs; p0Þ

þ
Z

∞

p
dsΠ̂ρðp; sÞÎFðs; p0Þ: ð21Þ

Let us recall the approximation strategy used in
Refs. [60,74] for the calculation of correlators for super-
horizon momenta p, p0 ≲ 1. For light fields in units of the
spacetime curvature, the relevant dynamics is dominated by
the gravitationally amplified superhorizon fluctuations, and
we shall neglect the effect of interactions for subhorizon
modes. We thus consider a free evolution up to a given
scale μ≲ 1 below which we fully take into account the field
self-interaction. In practice, this amounts to restricting the
convolution integrals4 in Eqs. (13) and (21) to

R
∞
p →

R
μ
p

FIG. 1. The local contribution to the self-energy Σðx; x0Þ; see
Eq. (5). The internal line in the diagram is given by the full
propagator Gðx; xÞ.

FIG. 2. A typical multiloop diagram contributing to the non-
local self-energy Σ̄ðx; x0Þ at NLO. The latter actually resums all
diagrams of similar topology with an arbitrary number n ≥ 1 of
bubbles in the upper part, as described by the integral equa-
tion (18) in the p-representation.

3This is directly related to the Dyson-Schwinger equation for
the four-point vertex in the large-N limit [60].

4The role of subhorizon modes in Eqs. (20) and (21) has been
studied in detail in Ref. [60]. They modify the result (24) and (25)
below by a simple renormalization factor of order unity.
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and
R
∞
p0 →

R μ
p0 . We obtain a closed set of integro-differential

equations which only involve two-point functions for
superhorizon momenta. One can show, using the method
developed in Ref. [60], that the dominant contribution to
the loop integrals in Eqs. (17) and (19) for p, p0 ≲ μ comes
from loop momenta qp, qp0, rp, rp0 ≲ μ. These integrals
can thus be evaluated by using the leading infrared behavior
of the propagator, that is,

F̂IR
M ðp; p0Þ ¼

ffiffiffiffiffiffiffiffi
pp0p Fν

ðpp0Þν ; ð22Þ

ρ̂IRM ðp; p0Þ ¼ −
ffiffiffiffiffiffiffiffi
pp0p

Pν

�
ln

p
p0

�
; ð23Þ

where Fν ¼ ½2νΓðνÞ�2=4π and PνðuÞ ¼ sinhðνuÞ=ν. The
one-loop bubble integral (19) has been computed in [60],
and the solution of the integral equation (18) for infrared
momenta has been obtained in closed form. The dominant
infrared behaviors of the statistical and spectral compo-
nents of the infinite series of bubbles Î read

ÎIRF ðp; p0Þ ¼ −
πρffiffiffiffiffiffiffiffi
pp0p Fν

ðpp0Þν̄−ε ; ð24Þ

ÎIRρ ðp; p0Þ ¼ πρffiffiffiffiffiffiffiffi
pp0p Pε

ν̄

�
ln

p
p0

�
; ð25Þ

where ε has been defined in Eq. (15),

πρ ¼
λFν

6ε

Ωd

ð2πÞd ≈
λ

3M2ΩDþ1

; ð26Þ

with Ωd ¼ 2πd=2=Γðd=2Þ, ν̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − πρ

q
, and where we

defined Pb
aðuÞ ¼ PaðuÞe−bjuj. Equations (24) and (25) are

valid provided πρ ≪ 1. More general expressions can be
found in [60]. Writing ν̄ ¼ d=2 − ε̄, we thus have
ε̄ ≈ εþ πρ=d ≪ 1.
As discussed in Ref. [60], the function Î is of the very

same form as the one-loop bubble Π̂ with the replacement
ν → ν̄. Formally expanding Eqs. (24) and (25) in πρ
generates the infinite series of bubble diagrams, each of
which brings an additional power of infrared (secular)
logarithms πρ lnðpp0Þ and πρ lnðp=p0Þ. The infinite series
of such infrared logarithms resum into the modified power
laws (24) and (25).
Using the expressions (22)–(25), we can evaluate the

dominant infrared behavior of the loop integrals in (17).
This is detailed in Appendix A. We obtain

Σ̂IR
F ðp; p0Þ ¼ −

σρ
ðpp0Þ3=2

Fν

ðpp0Þν−2γ ; ð27Þ

Σ̂IR
ρ ðp; p0Þ ¼ σρ

ðpp0Þ3=2 P
2γ
ν

�
ln

p
p0

�
; ð28Þ

where we defined γ ¼ ðεþ ε̄Þ=2 and

σρ ¼
π2ρ
N

�
1þ ε

2γ

�
: ð29Þ

We emphasize that, if it is justified to neglect relative
corrections of order ε, ε̄, and γ in numerical prefactors, one
should not do so in the exponents of the various power law
dependences in the momenta. Indeed, such corrections
become relevant at large values of jlnðp=p0Þj involved in
convolution integrals, as discussed in Refs. [60,74]; see
also [57,58].

IV. SOLUTION OF THE KBES IN THE INFRARED

It is remarkable that the NLO self-energy, Eqs. (27) and
(28), has the very same form5 as the two-loop one obtained
in [74] up to the expression of σρ and with the replacement
ε → γ. This is rooted in the fact that the two-loop self-
energy can be written as Σ2−loop ∝ G3

M ∝ ΠGM, with Π the
one-loop bubble defined in Eq. (19). Now, the NLO self-
energy assumes a similar form with the one-loop bubble
replaced by the infinite series of bubble diagrams, that is,
Π → I; see Eq. (17). As mentioned above this simply
amounts to a modified exponent ν → ν̄. The calculation of
the loop integral in Eq. (17) is then essentially the same as
in the two-loop case; see Appendix A.
This observation actually allows us to directly use the

results of our previous work [74] for the solution of the
KBEs (13) and (14). There, we had shown that, for
superhorizon momenta p, p0 ≲ μ, these reduce to a single
integro-differential equation for a function of one variable,
which can be solved exactly by analytical means. Here, we
simply quote the relevant results and refer the reader to
Ref. [74] for details.
The statistical and spectral components of the correlator

read, for p, p0 ≲ μ,

F̂IRðp; p0Þ ¼
ffiffiffiffiffiffiffiffi
pp0p

Fν

�
cþ

ðpp0Þν̄þ−γ þ
c−

ðpp0Þν̄−−γ
�
; ð30Þ

and

ρ̂IRðp; p0Þ ¼ −
ffiffiffiffiffiffiffiffi
pp0p

ρ

�
ln

p
p0

�
; ð31Þ

with

5More precisely, we obtain the same expressions as Eqs. (19)
and (20) in Ref. [74], with sðuÞ ¼ e−ðν−2γÞu and σðuÞ ¼ P2γ

ν ðuÞ.
We check that by setting γ → ε in the present Eq. (29), we recover
the large-N limit of the two-loop expression of σρ; see Eq. (21) of
Ref. [74].
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ρðuÞ ¼ cþP
γ
ν̄þðuÞ þ c−P

γ
ν̄−
ðuÞ

≈ cþPν̄þ−γðuÞ þ c−Pν̄−−γðuÞ; ð32Þ

where the approximate expression in the second line
is valid for juj ≳ 1. Here, cþ þ c− ¼ 1, with, up to
corrections6 OðN−2Þ,

c− ¼ σρ
16ν2γ2

≈
σρ

4d2γ2
; ð33Þ

and

ν̄� ¼ ν� � σρ
8νν�γ

≈ ν� � σρ
2d2γ

; ð34Þ

where ν� ¼ ν� γ, and where we neglected terms
Oðε=N; γ=NÞ in the final expressions.
As we already observed in the two-loop approximation

[74], we find that the NLO propagator (30)–(32) is
essentially described by a linear superposition of two free
massive field propagators with masses m� defined as

ν̄� − γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
−m2

�

r
≡ d

2
− ε�: ð35Þ

Notice that mþ < m−. Expanding the above solution in
powers of σρ formally corresponds to the infinite series of
nonlocal self-energy insertions and generates arbitrary
powers of infrared logarithms σρ lnðpp0Þ or σρ lnðp=p0Þ.
These correspond to the infrared secular logarithms
obtained in strict perturbative calculations of the field
correlator [15–17,28]. Again, the summation of these
contributions through the KBEs yields well-behaved infra-
red power laws with modified exponents ν → ν̄� − γ.
Going back to spacetime variables, the NLO correlator
can be written

Gðx; x0Þ ¼ cþGmþðzÞ þ c−Gm−
ðzÞ; ð36Þ

where GmðzÞ is the propagator of a free scalar field with
mass7 m ≪ 1 and z≡ zðx; x0Þ is the de Sitter invariant
distance between the points x and x0; see Appendix B.
The solution (30)–(32) is expressed in terms of the

tadpole mass M. The latter has to be determined
self-consistently from the gap equation (6), with the
expression (16).

V. DETERMINATION OF THE TADPOLE
MASS AT NLO

The tadpole diagram (16) involves the correlator in the
coincidence limit8 Gðx; xÞ ¼ hφ2ðxÞi=N. The latter is
dominated by the strongly amplified superhorizon fluctua-
tions and can be evaluated using the expression (30). This
yields

hφ2ðxÞi
N

¼
Z

ddp
ð2πÞd

F̂ðp; pÞ
p

≈
FνΩd

ð2πÞd
�

cþ
d − 2ðν̄þ − γÞ þ

c−
d − 2ðν̄− − γÞ

�

≈
1

ΩDþ1M2

�
1þ 1

N

π2ρ
2d2εγ

þOðN−2Þ
�
: ð37Þ

The NLO gap equation (6) thus reads

M2 ¼ m2
dS þ

λ

6ΩDþ1M2

�
1þ 2

N

�
1þ ðγ0 − ε0Þ2

ε0γ0

��
;

ð38Þ

where we have used πρ=ð2dÞ ≈ γ − ε and where the sub-
script 0 indicates that the corresponding quantity is evalu-
ated at LO. Equation (38) is solved as

M2

M2
0

¼ 1þ 2

N
λeffð1þ λeff þ λ2effÞ

ð1þ λeffÞ2
; ð39Þ

where

M2
0 ¼

m2
dS

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

dSÞ2
4

þ λ

6ΩDþ1

s
ð40Þ

is the LO solution [22] (notice that M2
0 > 0) and where we

introduced the effective coupling

λeff ¼
λ

6ΩDþ1M4
0

: ð41Þ

The relevance of the latter stems from the observation that
the effective potential for light scalar fields on superhorizon
scales is described by an effective zero-dimensional field
theory [50,51]. Equation (41) corresponds to the dimen-
sionless effective coupling of such a theory at LO in the
1=N expansion.

6The actual solution of theKBEs [74] yields c� ¼ ð~ν� νÞ=ð2~νÞ
and ν̄� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 � 2γ ~νþ γ2

p
, where ~ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ σρ=ð4γ2Þ

q
.

7Recall that the present definition of the square mass includes a
possible nonminimal coupling to the Ricci scalar.

8The ultraviolet divergence of the latter can be absorbed by a
standard renormalization of the parameters of the Lagrangianm2,
ξ, and λ in D ≤ 4. The choice of CTBD vacuum guarantees that
the required counterterms are the same as in Minkowski space;
see, e.g., [22,60,81]. We shall disregard these aspects here and
focus on the IR contribution.
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VI. DISCUSSION

Let us now discuss some of the peculiar features of the
NLO propagator obtained above. In particular, we consider
the regime of deep infrared momenta and the corresponding
behavior of the field correlator at large spacetime separa-
tions as well as the field variance, given by the correlator in
the coincident limit. The latter can be compared to the
results from other methods such as the stochastic approach
or the Euclidean de Sitter approach. We shall examine the
relevant quantities in various regimes of parameters from
the case of light but massive fields, where perturbation
theory applies, to the cases of either zero or negative tree
level square mass, described by an effective strongly
coupled regime.

A. Deep infrared momenta and large
spacetime separations

The dominant contribution to the regime of deep infrared
momenta p; p0 ≪ μ and/or large momentum (time) sepa-
ration jlnðp=p0Þj ∝ jt − t0j ≫ 1 [where t ¼ − lnð−ηÞ is the
cosmological time] is governed by the term with the lowest
massmþ on the right-hand side of either Eq. (30) or (32). In
this regime, the NLO propagator reduces to that of a
renormalized massive field

F̂IRðp; p0Þ ≈
ffiffiffiffiffiffiffiffi
pp0p ZFνIR

ðpp0ÞνIR ; ð42Þ

ρ̂IRðp; p0Þ ≈ −
ffiffiffiffiffiffiffiffi
pp0p

ZPνIR

�
ln

p
p0

�
; ð43Þ

where Z ¼ cþ ¼ 1 − c− and, denoting m2þ ¼ m2
IR,

νIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
−m2

IR

r
: ð44Þ

The field renormalization factor is completely due to the
NLO nonlocal self-energy and reads, in terms of the
effective coupling (41),

Z ¼ 1 −
σρ

4d2γ2
≈ 1 −

1

2N
λ2effð3þ 2λeffÞ
ð1þ λeffÞ3

: ð45Þ

Similarly, the contribution to the infrared mass due to
nonlocal self-energy insertions is

m2
IR

M2
¼ 1 −

σρ
2d2εγ

≈ 1 −
1

N
λ2effð3þ 2λeffÞ
ð1þ λeffÞ2

: ð46Þ

Taking into account the NLO tadpole contribution, we
finally obtain

m2
IR

M2
0

¼ 1þ 1

N
λeffð2 − λeffÞ
ð1þ λeffÞ2

: ð47Þ

We see that the factor Z < 1 controls the amplitude of the
deep infrared fluctuations in momentum space, whereas
m2

IR controls the momentum dependence of the correlator
and, in turn, its behavior at large spacetime separation, as
described in Appendix B.

B. Field variance

Another quantity of interest is the field correlator in the
coincidence limit, which measures the local field variance,
Gðx; xÞ ¼ hφ2ðxÞi=N. The latter can be characterized in
terms of an effective mass mdyn, defined as [33,69]

hφ2ðxÞi
N

≡ 1

ΩDþ1m2
dyn

; ð48Þ

in analogy with the expression for a free massive field. In
fact, such a square mass is nothing but the curvature of the
effective potential of the dimensionally reduced theory
[51]. We have already evaluated the field variance in
Eq. (37). This yields, for the contribution of nonlocal
self-energy insertions,

m2
dyn

M2
¼ 1 −

2

N
λ2eff

1þ λeff
: ð49Þ

Including the contribution from the NLO tadpole mass,
we get

m2
dyn

M2
0

¼ 1þ 2

N
λeff

ð1þ λeffÞ2
: ð50Þ

This expression can be compared to the result of the
stochastic approach, where the local field fluctuations can
be computed at all orders of perturbation theory with
leading infrared logarithmic accuracy [17]. For light fields,
this is equivalently given by the variance of the zero mode
on Euclidean de Sitter space [33]. We present the calcu-
lation of the field variance at NLO in the 1=N expansion in
the stochastic and Euclidean de Sitter approaches in
Appendix C, which completely agree with Eq. (50).
We emphasize that the result (50) differs from what one

would obtain by evaluating the field variance only from the
deep IR behavior, Eq. (42). Indeed, this would lead to
hφ2ðxÞi=N → Z=ðΩDþ1m2

IRÞ. The term ∝ c− in Eq. (37) is
needed to get the correct variance. However, we mention
that the ratio m2

IR=Z turns out to be numerically close to
m2

dyn for arbitrary λeff. The dimensionless quantities Z,
m2

IR=M
2
0, m

2
IR=ðZM2

0Þ, and m2
dyn=M

2
0 are plotted against the

effective coupling λeff in Fig. 3. Notice the hierarchy
m2

IR < m2
dyn < m2

IR=Z. It is important to notice that all
these square masses are equal to M2

0 at LO and that their
differences are entirely due to the nonlocal self-energy.
Since neither the LO nor the NLO tadpole square masses
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M2
0 and M2 are observable, it is interesting to consider

ratios of physical quantities such as

m2
IR

m2
dyn

¼ 1 −
1

N
λ2eff

ð1þ λeffÞ2
; ð51Þ

m2
IR

Zm2
dyn

¼ 1þ 1

2N
λ2eff

ð1þ λeffÞ3
; ð52Þ

whose deviation from unity is entirely an effect of resuming
the large infrared logarithms from nonlocal self-energy
insertions. The ratios (51) and (52) are plotted against λeff
in Fig. 4.
Finally, we note that all the NLO corrections computed

in this sections, Eqs. (45), (47), (50), (51), and (52), exhibit
a nontrivial dependence in the (effective) coupling and are
actually bounded functions of the latter due to nonpertur-
bative 1=N corrections. The NLO results thus remain valid
for arbitrarily large effective couplings. We shall now
discuss the various cases of interest, from the weak
coupling, perturbative regime to the strongly coupled one.

C. Perturbative regime

Perturbation theory makes sense whenever the quadratic
part of the action (2) gives the dominant contribution
to physical observables. This corresponds to the case of
light but massive field, with

ffiffiffi
λ

p
≪ m2

dS ≪ 1 [57,58,61].
In that case, one has M2

0 ¼ m2
dS½1þ λ̄0 − λ̄20 þOðλ̄30Þ�,

λeff ¼ λ̄0½1 − 2λ̄0 þOðλ̄20Þ� ≪ 1, where we defined

λ̄0 ¼
λ

6ΩDþ1ðm2
dSÞ2

: ð53Þ

We get

Z ¼ 1 −
3λ̄20
2N

ð54Þ

and

m2
IR ¼ m2

dS

�
1þ

�
1þ 2

N

�
λ̄0 −

�
1þ 7

N

�
λ̄20 þOðλ̄30Þ

�
;

ð55Þ

m2
dyn ¼ m2

dS

�
1þ

�
1þ 2

N

�
λ̄0 −

�
1þ 6

N

�
λ̄20 þOðλ̄30Þ

�
:

ð56Þ

These expressions agree with the two-loop results of
Ref. [74] at the relevant order in 1=N, as they should.9

D. Massless case

More interesting for our present purposes are theories
with very small tree-level mass, such that λ̄0 ≫ 1, or with
negative tree-level mass, m2

dS < 0. Both cases correspond
to strongly coupled effective theories in the infrared, as
measured by the effective coupling (41); see Fig. 5. We first
consider the light mass case. It is well known that, even for
massless fields, the scalar self-interactions generate a
nonvanishing effective mass. At LO the latter is M2

0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ð6ΩDþ1Þ

p
and the effective coupling λeff ≈ 1. We thus

get, at NLO,

FIG. 3 (color online). The dimensionless quantities (from
bottom to top) Z, m2

IR=M
2
0, m2

dyn=M
2
0, and m2

IR=ðZM2
0Þ as

functions of the dimensionless effective coupling λeff for
N ¼ 4. The two lower curves asymptote to 1 − 1=N, whereas
the two upper ones asymptote to 1. Deviations from unity are due
to both local and nonlocal 1=N corrections.

FIG. 4 (color online). The dimensionless ratios of physical
quantities m2

IR=m
2
dyn (lower curve) and m2

IR=ðZm2
dynÞ (upper

curve) as functions of the dimensionless effective coupling λeff
for N ¼ 4. These asymptote to 1 − 1=N and 1, respectively, at
large coupling. Deviations from unity are entirely due to nonlocal
1=N corrections.

9The effective coupling introduced in Ref. [74] is
λ̄ ¼ λ̄0ð1þ 2=NÞ.
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Z ¼ 1 −
5

16N
ð57Þ

and

m2
IR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

6ΩDþ1

s �
1þ 1

4N

�
; ð58Þ

m2
dyn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

6ΩDþ1

s �
1þ 1

2N

�
: ð59Þ

E. Negative square mass case

Finally, in the case of a negative tree-level square mass,
the apparently broken symmetry gets radiatively restored
by the strong, gravitationally amplified superhorizon fluc-
tuations [22,47,48]. For λ̄0 ≪ 1, one has M2

0 ≈
λ=ð6ΩDþ1jm2

dSjÞ ¼ λ̄0jm2
dSj and the effective infrared

theory is strongly coupled: λeff ≈ 1=λ̄0 ≫ 1. We obtain

Z ¼ 1 −
1

N
ð60Þ

and

m2
IR ¼ λ̄0jm2

dSj
�
1 −

1

N

�
; ð61Þ

m2
dyn ¼ λ̄0jm2

dSj
�
1þ 2

N
λ̄0

�
: ð62Þ

VII. SUMMARY AND PERSPECTIVES

Quantum field theoretical calculations in curved space-
times are technically involved as compared to their
Minkowski counterparts because of the nontrivial sym-
metries of the background geometry. Even the calculation
of the basic two-point correlator of a self-interacting scalar
field in the maximally symmetric de Sitter space is a
notoriously difficult task due to the nontrivial convolution/
memory integrals involving the nonlocal self-energy. For
cosmological spacetimes, the problem can be cast in the
form of a nonequilibrium, initial value setup [82]. A strict
perturbative expansion in powers of self-energy insertions
leads to spurious secular divergences typical of nonequili-
brium systems [53]. Solving the integro-differential KBEs
is formally equivalent to resumming the infinite series of
self-energy insertions and yields a well-defined late-time
behavior. Together with Refs. [74], the present work
provides techniques to formulate and solve KBEs in de
Sitter spacetime in the case of light fields. Related work for
massive fields or for non–de Sitter invariant states can be
found in Refs. [42,44,68–73].
In the present article, we have computed the two-point

correlator of an OðNÞ scalar field in the regime of super-
horizon momenta at NLO in a 1=N expansion. Remarkably
the solution can be obtained in closed analytical form. This
resums the spurious infrared and secular divergences of
perturbation theory into a well-defined expression. The
nonperturbative 1=N expansion allows us to compute
various quantities of interest, such as the infrared field
strength and mass renormalization, or the local field
variance, for arbitrary values of the field self-coupling.
In particular, this is a valid approximation scheme for the
cases of either vanishing or negative tree-level square mass,
which correspond to effectively strongly coupled regimes
not accessible by perturbative means.
The local field variance hφ2ðxÞi obtained here fully

agrees with the result of either the stochastic or the
Euclidean de Sitter approaches—which are in fact equiv-
alent for what concerns this observable [32,33]—as well as
the recently proposed nonperturbative renormalization
group approach of Refs. [50,51]. Our result further gives
the full spacetime structure of the correlator for non-
coincident points at large spacetime separations. To the
best of our knowledge, this has never been computed
before. It would be of definite interest to perform such a
calculation in, say, the stochastic effective theory for a
comparison. More generally, it would be interesting to
make a precise link between the present approach and the
stochastic theory, e.g., along the lines of Refs. [57,58,83].
Interesting extensions of the present work include the

generalization of the techniques developed here to other
types of (e.g., fermionic or gauge) fields and/or to theories
with more complicated (e.g., derivative) interactions.
Also of interest is the study of other spacetime geometries,
such as quasi–de Sitter space and general cosmological

FIG. 5 (color online). The dimensionless effective coupling
(41) as a function of the tree-level square mass m2

dS for λ ¼ 10−1

inD ¼ 3þ 1 dimensions. Large positive values ofm2
dS in units offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ=ð6ΩDþ1Þ
p

≈ 0.025 correspond to perturbatively small effec-
tive couplings, whereas small or large negative values correspond
to λeff ≈ 1 and λeff ≫ 1, respectively.
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spacetimes, or black hole geometries, of interest for
the question of radiative corrections to the Hawking
radiation [84].

APPENDIX A: SELF-ENERGY AT NLO

Here, we compute the nonlocal contribution (17) to the
NLO self-energy. As explained before, the multiloop nature
of the NLO approximation can be captured by the function
Îðp; p0Þ. The latter resums the infinite series of bubble
diagrams and eventually takes a similar form as a propa-
gator with modified infrared exponent; see Eqs. (24) and
(25) [we refer the reader to Ref. [60] for details concerning
the calculation of the functions ÎFðp; p0Þ and Îρðp; p0Þ].
The remaining momentum (loop) integral in Eq. (17) can
thus be treated using the methods developed in Ref. [60].
For external momenta p, p0 ≲ μ, it is dominated by internal
(loop) momenta such that qp, qp0 ≲ μ, which imply rp,
rp0 ≲ μ. We can effectively limit the momentum integration
to a sphere of radius minðμ=p; μ=p0Þ and use the leading
infrared behaviors (22)–(25) of the integrands.
We first evaluate the statistical part of the self-energy

Σ̂F. In this case the integrand is proportional to
F̂IR
M ÎIRF − ρIRM ÎIRρ =4 ≈ F̂IR

M ÎIRF . Here, the neglect of the ρ-
components is justified by the infrared power laws in
Eqs. (22) and (24), which results from the amplification of
infrared fluctuations. The ρ-components are not ampli-
fied.10 We thus get

Σ̂IR
F ðp; p0Þ ≈ −

λF2
νπρ

3Nðpp0Þ3=2þβ

Z
q

1

q2νr2ðν̄−εÞ
; ðA1Þ

where β ¼ ν − 2γ ¼ ν̄ − 2ε and r ¼ jeþ qj, with e an
arbitrary unit vector. The remaining integral is rapidly
convergent such that one can safely set the upper bound to
infinity. It can then be evaluated, e.g., using the method of
Feynman parameters,

Z
q

1

q2νr2ðν̄−εÞ
¼ Ωd

2ð2πÞd
ΓðεÞΓð2γÞ
Γðεþ 2γÞ

Γðνþ εÞΓðν̄ − 2εÞ
ΓðνÞΓðν̄ − εÞ

≈
Ωd

ð2πÞd
�
1

2ε
þ 1

4γ

�
; ðA2Þ

where we have neglected relative corrections of Oðε; γÞ in
the last line. We finally get

Σ̂IR
F ðp; p0Þ ¼ −

σρFν

ðpp0Þ3=2þβ
; ðA3Þ

where σρ is defined in Eq. (29).
The integrand for the spectral component Σ̂ρ involves the

combination F̂IR
M ÎIRρ þ ρIRM ÎIRF . For p < p0, it reads

Σ̂IR
ρ ðp; p0Þ

¼ λFνπρ
3N

ðpp0Þd−32

×
Z
jqj≤ μ

p0

�P ν̄ðln p
p0Þ

ðpp0Þν
�
p
p0

�
ε 1

q2ν
þ
Pνðln p

p0Þ
ðpp0Þν̄−ε

1

q2ðν̄−εÞ

�
:

ðA4Þ

The remaining integrals are trivially performed,

Z
jqj<μ=p0

1

q2α
¼ Ωd

ð2πÞdðd − 2αÞ
�
μ

p0

�
d−2α

: ðA5Þ

Repeating the same calculation for p > p0, we finally
obtain

Σ̂IR
ρ ðp; p0Þ ¼ λ

3N

Fνπρ

ðpp0Þ32
Ωd

ð2πÞd
�P2ε

ν̄ ðln p
p0Þ

2ε
þ
P2γ

ν ðln p
p0Þ

4γ

�

≅
σρ

ðpp0Þ3=2 P
2γ
ν

�
ln

p
p0

�
; ðA6Þ

where we have neglected relative corrections of Oðε; γÞ in
the constant factors11 and where we have used P2γ

ν ðxÞ ≈
Pν−2γðxÞ ¼ P ν̄−2εðxÞ ≈ P2ε

ν̄ ðxÞ for jxj≳ 1 in obtaining the
last expression.
Equations (A3) and (A6) are the results quoted in the

text, Eqs. (27) and (28).

APPENDIX B: PROPAGATOR
IN SPACETIME

Here, we consider the spacetime structure of the NLO
propagator obtained in the present work, Eqs. (30)–(32).
The latter can be written as a linear superposition of two
free massive propagators with masses m� ≪ 1. We thus
consider first the spacetime structure of the propagator of a
free light scalar field in its CTBD vacuum. In general, this
can be expressed exactly in terms of a hypergeometric
function [5,6] but the case of a light field yields a much
simpler form, both in the coincidence limit and at large
spacetime separations, that we now discuss.
The statistical propagator of a scalar field with mass

m ≪ 1 receives contributions ∼1=m2 which are generated
by the infrared power law (22). Let us first consider the case
of large spacelike separations, with spatial comoving
distance jX −X0j2 ≫ η2 þ η02. In that case, the oscillating
phase in Eq. (9) effectively cuts off the momentum integral
at KjX −X0j ≲ 1, and it is fully justified to use the leading

10This is a usual feature of the strong (classical) field
regime [67].

11As mentioned in the text, it is justified to neglect such
corrections in numerical factors [for instance, με ¼ 1þOðεÞ],
but not in the momentum dependences since the functions Σ̂F and
Σ̂ρ are to be involved in convolution integrals involving large
values of, e.g., lnðp=p0Þ.
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infrared behavior of the correlator for jKηj, jKη0j ≪ 1,
given by Eq. (22). Using Eqs. (9), (10), and (22), we have

FIR
m ðx; x0Þ ≈ ðηη0ÞεFν

Z
ddK
ð2πÞd

eiK·ðX−X0Þ

K2ν

≈
1

ΩDþ1m2

�
ηη0

jX −X0j2
�

ε

; ðB1Þ

where ν ¼ d=2 − ε, with ε ≈m2=d, and where we used

Z
ddK
ð2πÞd

eiK·X

Kd−2ε ¼
1

ð4πÞd=2
ΓðεÞ

Γðd=2 − εÞ
�

2

jXj
�

2ε

ðB2Þ

≈
1

ð4πÞd=2Γðd=2Þ
1

εjXj2ε : ðB3Þ

In the case of large timelike separations
jX −X0j2 ≪ η2 þ η02, the phase factor eiK·ðX−X0Þ ≈ 1 in
the relevant integration region and the integral in (9) must
effectively be cut off at K ≤ min ð μjηj ; μ

jη0jÞ for the use of the
leading infrared form (22)—which yields the 1=m2 con-
tribution to the correlator in spacetime—to be justified. For
large time separation, i.e., jt − t0j ¼ j lnðη=η0Þj ≫ 1, we can

replace the upper bound by K2 ≲ μ2

η2þη02, and we obtain

FIR
m ðx; x0Þ ≈ 1

ΩDþ1m2

�
ηη0

η2 þ η02

�
ε

¼ 1

ΩDþ1m2
e−εjt−t0j;

ðB4Þ

where we used

Z
ddK
ð2πÞd

θðΛ − KÞ
Kd−2ε ¼ Ωd

ð2πÞd
Λ2ε

2ε
¼ 1

ð4πÞd=2Γðd=2Þ
Λ2ε

ε
:

ðB5Þ

Of course, the correlator is a function of the de Sitter
invariant

z ¼ −η2 − η02 þ jX −X0j2
2ηη0

ðB6Þ

¼ − coshðt − t0Þ þ jX −X0j2
2

etþt0 : ðB7Þ

The expressions (B1) and (B4) simply rewrite, up to
relative corrections OðεÞ,

FIR
m ðx; x0Þ ≈ 1

ΩDþ1m2jzjε for jzj ≫ 1 ðB8Þ

in the relevant limits of large spacelike or timelike
separations. The leading 1=m2 behavior (B8) can also be

obtained directly from the expression of the exact propa-
gator in terms of hypergeometric functions [57].
Finally, we note that the expression (B8) also holds in the

coincidence limit z → 1, for which

FIR
m ðx; xÞ ≈ η2εFν

Z
ddK
ð2πÞd

θðμ − jKηjÞ
K2ν ≈

1

ΩDþ1m2
: ðB9Þ

Using the above considerations, we conclude that the
NLO statistical propagator obtained in the present paper
[Eq. (30)] behaves as

FIRðx; x0Þ ≈ 1

ΩDþ1

�
cþ

m2þjzjεþ
þ c−
m2

−jzjε−
�

ðB10Þ

for large spacetime separations jzj ≫ 1. In the coincidence
limit we have

FIRðx; xÞ ≈ 1

ΩDþ1

�
cþ
m2þ

þ c−
m2

−

�
; ðB11Þ

which reproduces the second line of Eq. (37) up to relative
corrections Oðm2

�Þ.

APPENDIX C: THE FIELD VARIANCE

This appendix is devoted to the calculation of the local
field variance hφ2ðxÞi=N at NLO in the 1=N expansion in
both the stochastic and the Euclidean de Sitter approaches.

1. Stochastic approach

In the stochastic approach, the long wavelength part of a
light quantum field is treated as a slowly evolving classical
stochastic field—owing to the strong gravitational enhance-
ment of superhorizon modes—sourced by a white Gaussian
random noise representing the quantum short wavelength
(subhorizon) degrees of freedomwhich constantly cross out
the horizon.12 Neglecting spatial gradients, this is described
by the following Langevin equation [33,55]:

∂tφaðtÞ þ
1

d
∂φa

VðφðtÞÞ ¼ ξaðtÞ; ðC1Þ

where t ¼ − lnð−ηÞ is the cosmological time, VðφÞ is the
relevant potential for superhorizon modes [51], and the
Gaussian random noise is characterized by the correlator

hξaðtÞξbðt0Þi ¼
2

dΩDþ1

δabδðt − t0Þ: ðC2Þ

12This approach neglects the self-interactions of subhorizon
modes as well as the interaction between sub- and superhorizon
modes, which is similar in spirit to the approximation strategy
employed in the present work.
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Here, the precise numerical prefactor depends on the
(quantum) state of the subhorizon modes. The above
(standard) expression assumes the CTBD vacuum.
The Langevin equation (C1) can be turned into a Focker-

Planck equation for the probability distribution ϱðt;φÞ of
the stochastic process. The latter admits an attractor
solution at late times, given by [55]

lim
t→∞

ϱðt;φÞ ∝ e−ΩDþ1VðφÞ: ðC3Þ

The late-time expectation value of any local observable
OðφÞ is then given by

hOðφÞi ¼
R
dNφOðφÞe−ΩDþ1VðφÞR

dNφe−ΩDþ1VðφÞ : ðC4Þ

In the case of interest here, where the potential is13

VðφÞ ¼ m2
dS

2
φaφa þ

λ

4!N
ðφaφaÞ2; ðC5Þ

the field variance can be written as

hφaφbi ¼ −
δab
N

∂α lnZðα; βÞ; ðC6Þ

where we introduced the notations α ¼ ΩDþ1m2
dS=2 and

β ¼ ΩDþ1λ=24 and where we defined, introducing the
change of integration variable χ ¼ φ2=N,

Zðα; βÞ ¼ NN=2

2

Z
∞

0

dχe−NfðχÞ; ðC7Þ

with

fðχÞ ¼ αχ þ βχ2 −
�
1 −

2

N

�
ln χ
2

: ðC8Þ

The 1=N expansion of the integral (C7) is equivalent to a
saddle-point expansion. The saddle point χ ¼ χ̄ is defined
as f0ðχ̄Þ ¼ 0, which is solved as

χ̄ ¼ −
α

4β
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α

4β

�
2

þ 1

4β

�
1 −

2

N

�s
: ðC9Þ

The LO solution is, thus,

χ̄0 ¼
−αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4β

p
4β

¼ 1

αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4β

p ; ðC10Þ

and we shall only need the NLO correction

χ̄ ¼ χ̄0 −
1

N
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ 4β
p þOðN−2Þ: ðC11Þ

The NLO result for the integral (C7) is given by the
Gaussian integration around the saddle point,

lnZðα; βÞ
N

¼ const − fðχ̄Þ − 1

2N
ln f00ðχ̄0Þ þOðN−2Þ;

ðC12Þ

from which it follows, using the definition f0ðχ̄Þ ¼ 0, that

−
∂α lnZðα; βÞ

N
¼ χ̄ þ ∂αχ̄0

2N
f000ðχ̄0Þ
f00ðχ̄0Þ

þOðN−2Þ: ðC13Þ

The calculation of each individual part is straightforward.
We obtain

hφ2i
N

¼ χ̄0

�
1 −

2

N
β

α2 þ 4β

�

¼ 1

ΩDþ1M2
0

�
1 −

2

N
λeff

ð1þ λeffÞ2
�
; ðC14Þ

where we used the definitions (40) and (41) in obtaining the
second line. This exactly agrees with the result of the
present work from the solution of the KBEs, Eqs. (48)
and (50).

2. Euclidean de Sitter space

For light scalar fields with nonderivative interactions, it
has been shown in Refs. [32,33] that the effective theory of
the field zero mode on the D-dimensional unit sphere SD
(Euclidian de Sitter space) is equivalent to the stochastic
prescription (C4) for what concerns the calculation of the
local field fluctuations. Still, it is instructive to compute
explicitly the variance of the zero mode at NLO in the 1=N
expansion directly in Euclidean de Sitter space.
The line element is now given by (in D-dimensional

spherical coordinates)

ds2 ¼ dθ2 þ sin2θdΩd: ðC15Þ

As in the main text, we consider the symmetric phase in
which hφai ¼ 0 and where two-point functions are diago-
nal in OðNÞ space, e.g., Gab ¼ δabG. The Euclidean KBEs
reads

ð−□x þm2
dSÞGðx; x0Þ þ

Z
y
Σðx; yÞGðy; x0Þ ¼ δðDÞðx; x0Þ;

ðC16Þ
13Here, the square mass and coupling parameters are to be

understood as the effective (renormalized) ones at the horizon
scale μ ≈ 1 [51].
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where □x is the appropriate Laplace-Beltrami operator,R
y ¼

R
dDy

ffiffiffiffiffiffiffiffiffi
gðyÞp

, and δðDÞðx; x0Þ ¼ δðDÞðx − x0Þ= ffiffiffiffiffiffiffiffiffi
gðxÞp

.
The NLO self-energy is given- by14

Σðx; x0Þ ¼ λðN þ 2Þ
6N

Gðx; xÞδðDÞðx; x0Þ

þ λ

3N
Gðx; x0ÞIðx; x0Þ; ðC17Þ

where the function Iðx; x0Þ resums the infinite series of
bubble diagrams, as in Fig. 2. It solves the integral equation

Iðx; x0Þ ¼ Πðx; x0Þ þ
Z
y
Πðx; yÞIðy; x0Þ; ðC18Þ

with the one-loop bubble

Πðx; x0Þ ¼ −
λ

6
G2ðx; x0Þ: ðC19Þ

On the D-dimensional sphere, the field can be decom-
posed as

φaðxÞ ¼
X
~L

φa;~LY ~LðxÞ; ðC20Þ

where ~L ¼ ðL; LD−1;…; L1Þ is a vector of integer numbers
with L ≥ LD−1 ≥ � � � ≥ jL1j and where the D-dimensional
spherical harmonics satisfy

□xY ~LðxÞ ¼ −LðLþD − 1ÞY~LðxÞ ðC21Þ

and are normalized as

Z
x
Y�

~L
ðxÞY ~L0 ðxÞ ¼ δ~L;~L0 : ðC22Þ

The zero mode is the constant Y~0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
ΩDþ1

p
, with ΩDþ1

the volume of the unit sphere SD.
The variance of the zero mode of a free scalar field is

∝ 1=m2
dS. Hence, the zero mode of light fields in units of

the sphere radius undergo strong fluctuations and must be
treated nonperturbatively. Following Refs. [32,33], the
dominant contributions to the corresponding effective
theory is obtained by simply discarding all nonzero modes.

The contributions of the latter can then be controlled by
perturbative means. In particular, we write

φaðxÞ ¼ φ̄a þ φ
̬
aðxÞ → φ̄a; ðC23Þ

with φ̄a ¼ φa;~0Y~0 ¼
R
x φaðxÞ=ΩDþ1. Accordingly, we only

retain the constant contributions to the various two-point
functions involved in the KBEs (C16), that is,

Gðx; x0Þ ¼ ḠþG
̬
ðx; x0Þ → Ḡ; ðC24Þ

and similarly for Σðx; x0Þ, Iðx; x0Þ, and Πðx; x0Þ.
The previous NLO expression in the zero-mode sector

are then

Σ̄ ¼ λ

6

�
1þ 2

N

�
Ḡ

ΩDþ1

þ λ

3N
Ḡ Ī; ðC25Þ

with

Ī ¼ Π̄þ ΩDþ1Π̄ Ī ¼ Π̄
1 − ΩDþ1Π̄

; ðC26Þ

where Π̄ ¼ − λ
6
Ḡ2. We have, finally,

Σ̄ ¼ λ

6

Ḡ
ΩDþ1

�
1þ 2

N
1

1þ λ
6
ΩDþ1Ḡ2

�
: ðC27Þ

Similarly the KBEs (C16) in the zero-mode sector read

m2
dSḠþ ΩDþ1Σ̄ Ḡ ¼ 1

ΩDþ1

; ðC28Þ

which can be rewritten as

2αḠþ 4βḠ2

�
1þ 2

N
1

1þ 4βḠ2

�
¼ 1 ðC29Þ

using Eq. (C27) and the definitions α ¼ ΩDþ1m2
dS=2 and

β ¼ ΩDþ1λ=24 introduced in the previous subsection.
This is easily solved at NLO in 1=N,

Ḡ ¼ hφ̄2i
N

¼ Ḡ0

�
1 −

2

N
β

α2 þ 4β

�
; ðC30Þ

with the LO solution

Ḡ0 ¼
1

αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4β

p : ðC31Þ

As expected, Eqs. (C30) and (C31) reproduce the stochastic
result of the previous subsection and, therefore, the solution
of the KBEs in Lorentzian de Sitter spacetime obtained in
the present paper.

14Here, both the local and the nonlocal contributions involve
the full propagator G. Strictly speaking this corresponds to the
1=N expansion at NLO in the two-particle-irreducible formalism
[79,80]. The standard NLO contributions are obtained from the
latter by systematically expanding the propagator around its LO
expression, as we do below.
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