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The effects of chiral imbalance and external magnetic field on pion superfluidity and color super-
conductivity are investigated in extended Nambu—Jona-Lasinio models. We take the Schwinger approach
to treat the interaction between the charged pion condensate and magnetic field at finite isospin density and
include simultaneously the chiral imbalance and magnetic field at finite baryon density. For the
superfluidity, the chiral imbalance and magnetic field lead to catalysis and inverse catalysis effects,
respectively. For the superconductivity, the chiral imbalance enhances the critical baryon density, and the
magnetic field results in a de Haas—van Alphan oscillation on the phase transition line.
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I. INTRODUCTION

Quantum systems in an external magnetic field exhibit
various unexpected and interesting features. In condensed
matter physics, quantum hall effect and fractional quantum
hall effect were discovered in two-dimensional electron
systems in the 1970s and 1980s [1-3]. More recently,
quantum spin hall effect was proposed to exist in special
two-dimensional electron systems with strong spin-orbit
couplings [4,5], and quantum anomalous hall effect was
found in a ferromagnetic material chromium-doped (Bi,Sb)
2Te3 in 2013 [6]. For a dense nonrelativistic system, the de
Haas—van Alphan oscillation was observed in some
thermodynamic systems [7,8]. In high energy physics, this
oscillation is found in nuclear and quark matters [9-12]. It
is beyond our expectation that the magnetic field reduces
the critical temperature of chiral symmetry restoration in
quantum chromodynamics (QCD), known as the inverse
magnetic catalysis [13-17].

In high energy heavy ion collisions, there might exist
charge asymmetry on the opposite sides of the reaction
plane, induced by the chiral magnetic effect [18-22].
Besides a very strong magnetic field (up to eB ~ 10m2
at the LHC energy) created in the early stage of heavy ion
collisions, the randomly generated chiral imbalance plays
also an important role in the hot medium. In neutron stars
where the magnetic field and baryon chemical potential are
both very large, chiral current can be induced along the
magnetic field by triangle anomalies [23-25]. The chiral
current will eventually cause chiral separation and generate
chiral imbalance which can be quite large in the two
hemispheres along the magnetic field. While the chiral
imbalance or instead chiral chemical potential us together
with the magnetic field B created by the spectators have
been widely investigated in the study of chiral symmetry
restoration [26-28] at finite temperature, it is still an open
question how the chiral imbalance and magnetic field affect
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pion superfluidity at finite isospin density and color super-
conductivity at finite baryon density.

The pion superfluidity in an external magnetic field was
studied in the Nambu—Jona-Lasinio (NJL) model [29],
linear sigma model [30] and lattice QCD [31]. When
charged pion condensate exists, u and d quark fields are
no longer the eigenstates of the quark propagator in flavor
space, and a direct extension from the case without magnetic
field B to the case with finite B by substituting the transverse
momenta with the Landau levels of u and d quarks is invalid.
The model calculation at hadron level shows a magnetic
catalysis which is inconsistent with the lattice simulation at
quark level. The color superconductivity in an external
magnetic field is not so complicated as pion superfluidity.
While the color condensates are also charged, the effective
charges of u and d quarks with red (green) and green (red)
colors are opposite to each other [12], when one takes the
interaction between quarks and massless gluons into
account. Thus, the color condensates can be effectively
treated as neutral in an external magnetic field.

We investigate in this paper both the chiral imbalance
and magnetic field effects on pion superfluidity and color
superconductivity in extended NJL models. Considering
the difficulty of treating the charged pion condensate in a
magnetic field, we study separately the chiral imbalance
effect and magnetic field effect, and for the latter we
employ the Schwinger approach to include the interaction
between the charged pion condensate and the magnetic
field. For the color superconductivity, we take into account
the chiral imbalance and magnetic field simultaneously.

II. PION SUPERFLUIDITY WITH CHIRAL

IMBALANCE

The Lagrangian density of the extended NJL model with
quark isospin chemical potential y; and chiral chemical
potential y5 is defined as

© 2015 American Physical Society
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L= W(la myg + > Lyt +/¢5}’075)V/

+ Gl(py)* + (piysTy)?], (1)

where y = (u, d)" is the two-flavor quark field, z; are Pauli
matrices in flavor space, m, is the current quark mass, and
G is the coupling constant with dimension GeV~2. In order
to study the bound states of the system, we introduce four
auxiliary fields ¢ = —2Gyy and &# = —2Gyriysty, and the
Lagrangian density becomes

L= 1/7[19— my — o — iys(t3my + T17s) +%7’073
c? —|—7r% +remy

+uﬂw4w— G , (2)

where the auxiliary fields are related to the physical fields
o,np =nyand 7, = (7, Fim)/V2,and 7, = (7, £ i)/
/2 are the raising and lowering operators in flavor space.

The order parameters of spontaneous chiral symmetry
breaking and isospin symmetry breaking are respectively
the expected values of the auxiliary fields (o) and (7.)
({my) = 0). Taking them to be real and constants, consid-
ering the relation between the chiral order parameter and
the dynamical quark mass (6) = m — mg, and denoting
(r) by A, the thermodynamic potential of the quark
system in mean field approximation can be expressed in
Euclidean space as

(m —my)? + A?
4G

1
_'87 Trln (ﬂE

Q=

—iysTA + > }’OT% +M570V5>
(3)

with g = iyopo — 7;p; and f = 1/T, where the trace is
taken over the quark spin, flavor, color, coordinate and
momentum. At zero temperature, the potential is explicitly
expressed as

(m —mp)* + A% mg)? + A? / &’p
Q= - N, E.. (4
G 2 )

where E; ;(p) = /& ;(p) + A? are the quasiparticle ener-

gies with &, ;(p) = \/(p + ius)* + m* + ju; /2, and N, =

3 is the color degrees of freedom. The two order parameters
o or m and A are determined by the minimum of the
thermodynamic potential, 9Q/0m = 0 and 0Q/IA =0,
which leads to the two coupled gap equations,
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We now discuss the effect of chiral imbalance on chiral
symmetry restoration and pion superfluidity. Since the NJL
model is not renormalizable, it is necessary to introduce a
momentum cutoff A to regulate the integrations in the gap
equations (5). Let us first consider the possible phases of the
system in chiral limit with vanishing current quark mass
mg = 0. In this case, there are only two parameters G and A
in the model; they are fixed to be G = 5.01 GeV~2 and A =
0.65 GeV by fitting the chiral condensate and pion decay
constant in vacuum with 7' = p; = ps = 0 [32]. As can be
seen from the gap equations (5), there always exists a trivial
solution m = 0 and A = 0, corresponding to the phase with
chiral symmetry and without pion condensation. The non-
trivial solutions are usually preferred by the system, as they
correspond to lower thermodynamic potentials. However, the
two gap equations with m, A # 0 contradict each other [33],
and there are only two possible nontrivial solutions: the phase
with spontaneous chiral symmetry breaking characterized by
m # 0 and A = 0 and the phase with spontaneous isospin
symmetry breaking described by A # 0 and m = 0. At finite
isospin chemical potential, the pion superfluidity phase with
A # 0 is always the ground state of the system [33].

In vacuum, the critical coupling constant to keep
spontaneous chiral symmetry breaking is G, = 7%/
(2N.A?). By scaling the coupling constant G by G,, the
gap equation for the nonzero pion condensate is reduced to

1] i/

where p, p;, s and A are all scaled by the cutoff A.
The scaled pion condensate is shown in Fig. 1 as a function
of scaled isospin chemical potential. As a first order phase

(6)
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FIG. 1 (color online). The pion condensate A as a function of
isospin chemical potential y; at fixed chiral chemical potential 5
in chiral limit. All the quantities are scaled by the momentum
cutoff A.
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FIG. 2. The pion condensate A as a function of chiral chemical
potential y5 at fixed isospin chemical potential y; in chiral limit.
All the quantities are scaled by the momentum cutoff A.

transition, the pion condensate A jumps up from zero to a
finite value at the critical isospin chemical potential y§ = 0.
While the condensate increases with increasing y; or y5 in the
general case, it drops down with increasing us when y; is
large enough; see the top right corner of Fig. 1. Considering
the fact that 4, in this case is already close to or even beyond
the cutoff A, this dropping down is probably an artifact of the
model. The y5 dependence of the condensate at fixed y; /A =
0.4 is shown in Fig. 2, which displays a monotonous increase.
Note that, while the pion condensate increases with chiral
imbalance at reasonable isospin density, the critical point of
pion superfluid is not affected by the chiral imbalance; it is
always located at y; = 0.

In real case with finite current quark mass, the three
parameters of the model are fixed to be G = 4.93 GeV~2,
A =0.653 GeV and my = 5 MeV by fitting the pion mass
m, = 134 MeV, pion decay constant f, =93 MeV and
quark condensate (¢) = —2 x (0.25 GeV)? [32]. The iso-
spin chemical potential dependence of the two order
parameters is shown in Fig. 3. At us/A = 0, the superfluid
starts at the critical isospin chemical potential uf = m,
(u§/A = 0.21) [33]. With increasing us, the critical point
shifts towards the left but the pion condensate increases,
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FIG. 3 (color online). The chiral and pion condensates m and A
as functions of isospin chemical potential y; in real case. All the
quantities are scaled by the momentum cutoff A, and the solid,
dashed and dotted lines correspond to fixed chiral chemical
potential us/A =0, 0.2 and 0.3.
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FIG. 4. The chiral and pion condensates m and A as functions
of chiral chemical potential u5 at fixed isospin chemical potential
u; in real case. All the quantities are scaled by the momentum
cutoff A.

which indicates a catalysis effect. The quark mass keeps as
a constant in the normal phase at y; < u§ and drops down
monotonously in the pion superfluid. With increasing s,
the quark mass increases in the normal phase but decreases
in the superfluid. Suppose the chiral phase transition
happens at the same critical point as the pion superfluidity;
the us dependence of the quark mass shows an inverse
catalysis effect on the chiral phase transition. This is similar
to the lattice simulated magnetic field effect at finite
temperature [13—17]: The chiral condensate increases at
low temperature but the critical temperature is reduced. The
chiral imbalance effect on the two order parameters at fixed
isospin chemical potential is clearly shown in Fig. 4.

III. PION SUPERFLUIDITY WITH
MAGNETIC FIELD

Now we turn to the pion superfluidity in an external
magnetic field. The Lagrangian density of the NJL model is
written as

_{. H _ _ .
L= ll/(lB —my + —17073>1// + Gl(pw)* + (priyszy)?],

2
(7)

where D, = 0, + igA,, is the covariant derivative in flavor
space with electric charges ¢, = 2¢/3 and g, = —e /3 for u
and d quarks, and the potential A, = (0,0, Bx;,0) defines a
constant magnetic field along the x5 axis through B=V x A.
Since it is cumbersome to study pion superfluidity in an
external magnetic field in quark models, as mentioned in the
introduction, we derive here the phase transition line of pion
superfluid by using the Ginzburg-Landau (GL) approach.
Following the same procedure as in Sec. II, the thermody-
namic potential in Minkowski space is expressed as

0— (m_m0)2+A2+iTrln((iG“)_] —iysA )
—iysA* (iG,)™!
(8)

4G vV,
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where V, is the space-time volume, and (iG,)™' = iB,—  With the quark propagator in coordinate space
m =+ (u;/2)yo(f = u,d) is the inverse quark propagator at
mean field level. We now take Taylor expansion of € in
terms of the pion condensate A around the critical point and iG,(x.y) 0 0 —iysA,
keep only the first two terms, G,y =

0 iGy(x,y) ) \=irsA; 0
A? i (10)
Q= G- v, TrG,,G,, - 4 TrGXV] Gy,y,Gy,y,Gyox
= AA? + l_3 A* 9)
2 and the coefficients A and B in the GL approximation
|
A= gt TG )irsGaly. ojirse™ S ],
4G V4 ! :

. R . . —ie f‘l +f‘3 A" dx,,
B = —74 Tr [Gu(x’yl)WSGd(ylvyz)l}’SGu(yby3)175Gd(y3vx)WSe } (11)

Note that in the expression of the coefficients, we have taken into account the interaction between the charged pion
condensate and the magnetic field which is not included in the NJL model (7). It is introduced by a straight-line link [the
exponential in (11)] between two points A, and A}, and each condensate is linked only once. The quark propagators
G(x,y) can be evaluated with the Schwinger approach [34],

—i * Aldx
Gi(x,y)=e o J 4 "Se(x—y),

© ds s
_ —i[sm?*+4-(x2-x3-x2 Bj cot BY)] ps
Si(x) = —l/) 16(7”)28 50T 1"B; [COth Y172)

1
X |:m+£(XO—X3 —Bsf((xl +X2) COtB}‘FXZl _XIZ)) (12)
with B} = qgsB, £, = v,X,,, X, = 7,x, and x3 = x} + x3, where A’jﬁ = (Fu1/(245).0,0,0) + A* are effective potentials

for u and d quarks, and the integration in the exponential from y to x is along a straight line. With the known quark
propagators, the coefficients can be expressed in terms of the functions Sy,

1 N T . M .
A=t iy [ o TeRmS, (- y)irse 0 Soly = i)
Ne [ 4 4 4
B:—IV— d(x yl)d ( yZ)d (yZ_y3)

4
x Trle #0008, (x = yy )iyse F0030) S, (y) = yy)iyse 02008, (yy = y3)ipse 00008, (y3 = x)iys],  (13)

where the Wilson lines in the quark propagators are exactly canceled by the interaction between the charged pion
condensate and the magnetic field, and therefore the gauge invariance is guaranteed. For convenience we transfer from the
coordinate space to the energy-momentum space and switch on the temperature. The quark propagators in Euclidean space
are then given as [35]

SE(w,.k) = —i / dse Tt BBD) (g 4 m — i(kyy — kyy) tanh BS)(1 = iy, tanh BY) (14)
0

with the Matsubara frequency w,, = (2n + 1)zT(n € Z) of fermions. From the GL theory, the condition A = 0 determines
the second order phase transition line of the pion superfluidity. After a straightforward calculation, we obtain
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&Pk N . M .
CTZ / 2 Tr {S{f (wn + l?,k> iysSE (a),, - zf,k)zys}
4NTZ/ /ds/dtRsta)n,)
u
. {<m ok + (3) R )14 £0)0) 1.1 = A6 - 750} (15)
with f,(s) = tanh BS, f,(¢) = tanh B!, transverse momentum k3 = k} + k3 and

R(S, tw,, k) _ e—s[mz+(w,,+i,‘41/2)2+k§+k2lf (8)/B3)—t[m>+(w,—iu;/2)? +k2+k2lfd( >/B:1], (16)

where the integrations over s, ¢ and k are divergent and a regularization scheme is needed. We take the way given in
Refs. [28,34] and absorb all the divergence into the vacuum term which is then regularized by the three-momentum cutoff
A. In this way the convergent coefficient .4 includes a vacuum part A, and two magnetic field dependent parts Az, and Ap,,

1
A:E+AQ+AB1+AB2,

) -6 )

N. oo 1 2
¢ Kdk s
pE TP A El) 1+ BT

N_.A?
272

-AO:_

A (%) (ﬁ) s 2\/(1+(’X)2)K(('K)2_([)2)

u
O A e ey Ty )
*(’" Fentet 1)( R >/B;‘1>}’
Ap == 3/22 / -+ itk (1-17) Ef 2(%;)(@ 2)/3) f;g(; 2)/ gf)(?s)

+(m + o2+ () + ) fu(H5rs )fd(%s):| (17)

fu5 )/B“rfd( 5°5)/ By

with E; (k) = V'k* + m® + iu; /2. It should be remarked that there is an implicit condition m > y;/2 here, which makes the
integrations over s convergent in ultraviolet domain and which is guaranteed at small pion condensate where the dynamical
quark mass m is relatively large. This condition is only due to the Schwinger approach itself for introducing the proper-time
integral and there is no such restriction with Ritus method [36].

The derivation of the coefficient B is more tedious. After a careful calculation, we finally obtain its explicit expression,

d’k
B:4NCTZ/W/dsdtds’dt’R(s, t,w,, K)R(s', ¢, ®,,Kk)

{3 o+ 18 )2+ (o + (e PLY 14,1+ L)1+ 101+ )

=

+ k(1= fa(s) (1= £ = f2(0) (1 = f3(7))

+ k3 (4@ + 5 +m?)(1+ () fa(0)(1 = f2(s)(1 = f2(7))
— ((@p)* + k5 +m*) (1 = f () fu(s) (A = f2(0) (1 = f3(7))

— (@) + K5+ m?) (1 = fa(0) fa())(1 = fols)(1 —f%(S’))]} (18)
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with the effective frequencies w! = w, + iy;/2 and w? = w, — iu;/2. It is not necessary to numerically calculate the
coefficient B3, if we only focus on the phase transition line of the pion superfluid. What we are interested in here is its sign
which determines the order of the phase transition and thus the validity of the GL approach. Keeping in mind the symmetry
between s(z) and s'(#') in the integrations, we have the inequality

(1= fals)( = £5() = (L= fu(s)fu(s)) (1 = f3(1) (1 = f5(t))

Fa(®) (1= fiuls)) (1 = fils))

(1= fa(ENBA+ fuls)fa(t) = (1 + fals) (1= £5(0) = (1+ f53(1) (1 = £ils))]

FaO)* (1= fi(s") (1 = f3(£)) 2 0. (19)

Then using the condition m > y,; /2 for small condensate A and the fact of small ratio InR /ReR, the coefficient 5 is found
to be positive definite around the transition line of the pion superfluid. Thus, the transition from normal phase to pion
superfluidity with nonvanishing magnetic field is proved to be of second order.

The phase transition line of the pion superfluid A = 0 is coupled with the dynamical quark mass m which should be
evaluated consistently with the gap equation for the chiral phase transition. Following the Schwinger approach and taking
the vacuum regularization scheme adopted above, we have the gap equation

41+ fu(s)fal)
= (1= falt

> (1= fu(s")
=2(1+ fu(s)

)
)

f=u,d
~m—-my N.m A? A A? N.m © 1 2
= G — 3 A l—i—W—mln (Z—i— 1"‘? + ”2 ; A kdk\/m1+€E“(k)/T
N.m [ods __, T pp -\ [(q,sB m pp —L\ [qusB
¢ — e M |9, = — e wr? —1 D =—i—=, e «? -1 R 20
471'ZA 52 ° [ 3<2+14T ¢ ><fu(s) T\ e 70 (20)

where 95(z, ¢) is the third Jacobi theta function obtained by
working out the summation over the Matsubara frequency.

We now show the phase diagram of pion superfluidity in
an external magnetic field. We adopt the same set of
parameters of the model as given in Sec. II. The phase
diagram in y; — B plane at zero temperature is shown in the
upper panel of Fig. 5. The two solid lines are the phase
transition lines of pion superfluidity in chiral limit with
mq = 0 and real case with my = 5 MeV. The normal phase
without pion condensate is under the corresponding line,
and the pion superfluidity phase is above the line. In both
cases, the critical isospin chemical potential x§ increases
with the strength of the magnetic field B, which indicates
clearly the effect of inverse magnetic catalysis on the pion
superfluidity. This is consistent with the lattice QCD result
[31]. Note that the above analytic and numerical results
depend on the condition m > u;/2. To check if this
condition is satisfied, we show in the lower panel of

0.6 T T T T T

11(GeV)

. . . 2 1 1 1 I I
Fig. 5 the dynamic quark mass m, as a function of the 0 %Ao 01 02 03 04 05 06

magnetic field on the phase transition line. By comparing it
with the upper panel, there is always m, > uf/2.

The phase diagram in y; — T plane is shown in the upper
plane of Fig. 6 in real case with my = 5 MeV. The phase
transition line at a fixed magnetic field separates the normal
phase at low yu; and the pion superfluidity at high y;. The

VeB (GeV)

FIG. 5 (color online). The phase diagrams of pion superfluid
in u; — B plane (upper panel) and the quark mass m,. on the
phase transition line (lower panel) in chiral limit (mq = 0)
and real case (mg =5 MeV).
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FIG. 6 (color online). The phase diagrams of pion superfluid in
u; — T plane (upper panel) and the quark mass m,. on the phase
transition line (lower panel) at fixed magnetic field and in real
case with my =5 MeV.

increasing critical isospin chemical potential xf with the
magnetic field indicates again the inverse catalysis effect on
the pion superfluidity. While the temperature dependence
of uf is very smooth at low temperature, it goes up quickly
at high temperature. The quark mass on the phase transition
line is shown in the lower panel of Fig. 6. It decreases with
temperature due to the gradual chiral symmetry restoration.
The small triangle structure in the intersection region shows
the de Haas—van Alphan oscillation [7,8] induced by the
interplay among the field, chemical potential and temper-
ature. The reason why the de Haas—van Alphan oscillation
does not show up at low temperature is that the gap
equation (20) only depends on yu; weakly now as the third
Jacobi theta function 95(z, ¢) ~ 1 in the forth term on the
right-hand side.

IV. COLOR SUPERCONDUCTIVITY WITH
CHIRAL IMBALANCE AND MAGNETIC FIELD

We discuss now color superconductivity including
simultaneously the chiral imbalance and magnetic field
effects. The Lagrangian density of the extended NJL model
with baryon chemical potential pp, chiral chemical poten-
tial us and external magnetic field B is defined as

L =yliy*(D, — igTsGY) — mg + upyo + usyorsly
+ Gs[(@y)* + (wiysty)?]
+ Gp(ipceesysy) (iweesysye), (21)

PHYSICAL REVIEW D 92, 105030 (2015)

where weo=Cy’ and W=y 'C are charge-
conjugate spinors with C = iy,y¢, &; and (€3),, = €3
are respectively the antisymmetric matrices in flavor and
color spaces with indexes i, j = (u,d) and a,b = (r, g, D),
the term —yiglg Gfiy// 2 accounts for the interaction
between quarks and massless gluons [37,38] with Ag
being the eighth Gell-Mann matrix, and the coupling
constants Gg and Gp in the scalar and diquark channels
are related to each other by the Fierz transformation G =
3Gg/4 [39].

Using the “rotated” charge operator 0=00Q® 1.-1,®
23/(2v/3), a massless Ugy(1) field Aﬂ = A, cosf +
Gsinf and a massive gluon field G = GScos6 —
A, sin 0 are obtained [12]. By neglecting the massive gluon
field and replacing the massless field with an external
magnetic field A, = (0,0,Bx;,0) as @ is small, the
following simplified Lagrangian is derived,

L= lp[iy"f)” — mg + pgYo + HsYoYslW

+ Gs[(pw)? + (Firsy)’]

+ Gp (i ceesysy) (ipeesysyc) (22)
with [)” =0, + iQeA; and Q = diag(qur Gug- qubs dar-
Qag» 9ap) = diag(1/2,1/2,1,-1/2,-1/2,0) in the flavor
and color spaces.

Introducing the auxiliary fields
0 = _2GS¢/W7
= -2Ggyiysty,
A, = —2Gpiyceesysy,
Ap = —2Gpipeesysyc, (23)

the Lagrangian density becomes

L= ll_'[iJ’”Dﬂ —my— o —iysT- T+ pgyo + Hsyorslw

1 . . o’ + x?

5 [Acieesysy e + Abiceesysy] — 4Gy
AA;

— . 24
4Gp (24)

In mean field approximation, supposing constant conden-
sates (o) = m —my, (m) =0 and (A.) = (A}) = A,, we
have the partition function

2= [ oo [ s

- (W”Dﬂ —m+ ugyo + UsYoYs)w

1 . .
3 A (ipeesysye + ll//c€€3751//)} } (25)
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where the functional integrations over y and  can be
accomplished in the Nambu-Gorkov space. With the help
of the charge projectors

diag(0,0,0,1,1,0), g=-1/2
diag(0,0,0,0,0,1), =0

P, — .g( ) q (26)
diag(1,1,0,0,0,0), ¢=1/2
diag(0,0,1,0,0,0), ¢ = I,

the bispinors in Nambu-Gorkov space are defined as

B, = (7, ). mz(y‘f) 27)

with w, = Py, and the partition function becomes

~ [ tapliavlexp{ i [ om0l S
_%Zq:\iquq\pq} } 28)

where the inverse fermion propagators in Nambu-Gorkov
space are defined as

(% o) e

q
i(Dy)™! —iAT2hysP -y

( ) o

—iA yhysP, i(Dy)~!

=

(29)

with i(DF)™"(x) = iy”bﬂ —m % ugyo + usyoys and the
second Gell-Mann matrix 4, in color space. After integrat-
ing out the bispinors and eliminating the double counting,
the thermodynamic potential Q = —-7/VInZ can be
expressed as

(m — mo)

2
Q- c TrinS,. (30
4G, 2v4Zrn (30)

For ¢ = 0, 1, the trace can be worked out easily [26],

Qo +

:‘Z{ (§3>

i,Jj

EO
{ +Thn(1+ <E?+juB>/T)]

E" o
+Z[7+T1n(1 +e <E,-+MB)/T)]}, (31)

n,ps
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where 3, =3 oa, [ 92 with a, = (2 = 8,9)/2 is
the summation over the Landau level and the integration

over the longitudinal momentum in the external magnetic
field, and the quasiparticle energies are defined as

EY(p) =/ (p + ius)* + m?,
2
El(ps) = \/(1 [2neB + p? + in) rm? (32)

For ¢ = £1/2, the trace can be evaluated exactly, due to
the same sign of the pusyyys terms and the same electric
charge in the diagonal terms of S,. Following a similar
procedure as in Ref. [40], we get

Qup+Qup==) > [El;+2Tn(1+e /T
i,j==+ n,p3

(33)

with the quasiparticle energies

E(ps) = \ (B (py) + jus) + 82 (34)

For simplicity, we consider in the following only the
case at zero temperature 7 = 0 and in chiral limit with
my = 0. In this case, the thermodynamic potential can be
simplified as

m> A2

Q=——r -
4G5 4G,

ij=+

E:l n //l n n
+ Z [TH(Ei — ) +7B9(ﬂ3 —E7) + Ei.j:| }

n.ps

2 0 - £9)

(35)

with the unit step function 6(x). To remove the divergence
in the integrations, we use here the Pauli-Villars regulari-
zation scheme [41], which is much softer than the hard
three-momentum cutoff and works better in the case with a
nonzero chiral imbalance, in comparison with the vacuum
regularization used in Sec. III. From the numerical results
shown below, the Pauli-Villars regularization will greatly
suppress the artificial oscillation of the quark mass in
external magnetic field [12]. In this way, the regularized
version of the thermodynamic potential is given as
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m?
Q= fi
4Gg 4GD jzi;
d3p g? 0 KB 0
| [ s (ot =) + 0 - )
+ XS oter ) + o e vy, |} o)
n.ps3
with f; =32 -6l + 1 and the regularized quasiparticle
energies
E(Lp) = \/(E}(p))* + IA%,
€1l p3) = \/ (E}(p3))* + 1N,

&1, p3) = /(€2 p3) + jus) + A2 (37)

The chemical potential and magnetic field dependence of
the order parameters m(ug, us, B) and A.(up,ps, B) is
controlled by the minimum of the thermodynamic potential
0Q/0m = 0 and 9Q/0A,. = 0 which lead to the two gap
equations

=Sl [ ot -

i.j==% [=0
54/2+J'/43
)
n,p3 5:'1/ 5?1

Sy L %)

i,j=*x [=0 n,p3 lJ

Note that with the Pauli-Villars regularization we used, the
thermodynamic potential (36) is still divergent, but the gap
equations (38) we are interested in are convergent. In fact,
the quantity Q corresponds to the pressure except for a sign,
and only the pressure relative to the vacuum can be
measured. While Q(ug, us, B) is divergent, the physical
potential Q(up, us, B) —(0,0,0) is convergent.

It is easy to see that a trivial solution of the gap equations
is m = A, = 0, which corresponds to the phase with both
chiral and color symmetries. The phase with both chiral and
color symmetry breaking described by m, A, # 0 does not
exist, due to the conflict between the two gap equations in
chiral limit. The possible nontrivial solutions include the
normal phase with m # 0, A, =0 and the color super-
conductor with m =0, A, # 0.

We choose the Pauli-Villars parameters as
A =0.859 GeV, GgA> = 2.84 and G|, = 3Gg/4 [41,42].
Let us first look at the chiral imbalance effect on color
superconductivity, shown in Fig. 7 at yup = 0.4 GeV and
B = 0. Since the diquark condensate can be expressed in
terms of chiral quarks as

PHYSICAL REVIEW D 92, 105030 (2015)

025f  pp=04GeV

VeB =0

0.20F
S
[5]
S 015
<

0.10

0.05F

000 1 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5

1s5(GeV)

FIG. 7. The color condensate A. as a function of chiral
imbalance ys at fixed baryon chemical potential up = 0.4 GeV
and vanishing magnetic field B = 0.

A, = =2Gpi(Pceesysy)
=2Gp(wiraroeesyswy) + (Wrravoeesyswr)).  (39)

the two condensed quarks are with the same chirality, and
therefore the chiral imbalance should enhance the color
condensate.

The baryon chemical potential dependence of the two
order parameters m and A, of chiral restoration and color
superconductivity at fixed chiral imbalance and magnetic
field is shown in Fig. 8. The system is in normal phase with
chiral symmetry breaking (m # 0) at low up and color
superconductivity phase (A, # 0) at high ug. The chiral
condensate keeps as a constant in the normal phase,
suddenly jumps down to zero at the critical baryon chemical
potential y§, and remains zero in the color superconductivity
phase. In contrast, the color condensate remains zero in the
normal phase, suddenly jumps up to a nonzero value at ug,
and then increases with g in the color superconductivity
phase. The two phase transitions at the critical point ug are
both of first order. With increasing chiral imbalance, both the
chiral and color condensates are enhanced, but the critical
point shifts towards right. This indicates a stronger catalysis

07— T

01F VeB =03GeV

0.0 0.1 0.2 0.3 0.4 0.5
1p(GeV)

FIG. 8 (color online). The chiral and color condensates m and
A, as functions of baryon chemical potential 5 at fixed magnetic
field eB = 0.3 GeV and chiral imbalance ps5 = 0 (solid lines),
0.2 GeV (dashed lines) and 0.4 GeV (dot-dashed lines).
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FIG. 9 (color online). The chiral and color condensates m
(upper panel) and A, (lower panel) as functions of magnetic field
B at fixed baryon and chiral chemical potentials g and ps.

effect of chiral imbalance on the chiral condensate than on
the color condensate.

The magnetic field effect is shown in Fig. 9. While the de
Haas—van Alphan oscillation for quark mass m is not
observed, which is consistent with the results in
Refs. [27,28,43], the oscillation shows up for color con-
densate A, atany combination of chiral and baryon chemical
potentials, similar to the results in Refs. [10-12]. We point
out the similarity between the two chemical potentials in the
gap equation for color superconductivity. In this phase with
m =0 and A, # 0, the excitation energy becomes

2
E(ps3) = \/(,/neB + 3+ ips +jﬂ3) + A% (40)

and we can introduce two combined chemical potentials
u+ = |ps = pp| instead of up and us. In this way, there
should be no difference between the case with (up # 0,
us = 0) and the case with (up = 0, s # 0). The discrep-
ancy between the line with (up, us) = (0.4,0) GeV and the
line with (ug, us) = (0,0.4) GeV shown in the lower panel
of Fig. 9 is due to the Pauli-Villars regularization which
makes us different from g by introducing two large masses

A and v/2A. However, the regularization mainly leads to a
global shift between the two lines; it does not change the
structure of the magnetic field dependence.

Finally, we show in Fig. 10 the phase diagram of chiral
restoration and color superconductivity in the plane of
baryon chemical potential and magnetic field at fixed chiral
imbalance. As can be seen, the de Haas—van Alphan
oscillation for the critical baryon chemical potential uj

PHYSICAL REVIEW D 92, 105030 (2015)
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FIG. 10 (color online). The phase diagram of chiral restoration
and color superconductivity in pp — B plane at fixed chiral
chemical potential ps.

shows up clearly at vanishing chiral imbalance. Such
oscillation for chiral phase transition has been observed
and well explained in Ref. [9]. At large chiral chemical
potential ps = 0.4 GeV, the critical baryon chemical
potential is almost a constant u§ = 0.35 GeV; the oscil-
lation is washed away by the strong chiral imbalance.

V. CONCLUSIONS

The phase transitions with chiral imbalance and magnetic
field in strongly interacting quark matter are investigated at
finite isospin and baryon densities. In the frame of extended
NJL models, we focused on the magnetic effects on the pion
superfluidity and color superconductivity and the related de
Haas—van Alphan oscillations. For pion superfluidity, due to
the problem of mixed quark propagators at different Landau
levels, we treated the chiral imbalance and external magnetic
field separately and take into account the interaction
between the charged pion condensate and the magnetic
field in the GL approach. For color superconductivity, we
self consistently studied the chiral imbalance and magnetic
field effects on the order parameters of chiral restoration and
color superconductivity.

For the pion superfluidity, the critical value of isospin
chemical potential is suppressed by the chiral imbalance
but enhanced by the external magnetic field, indicating
respectively a catalysis and an inverse catalysis effect. The
latter is consistent with the lattice simulated magnetic
effect. For the color superconductivity, the chiral imbalance
leads to a weaker catalysis effect compared to chiral
symmetry breaking, and the magnetic field results in a
de Haas—van Alphan oscillation on the phase transition
line. However, the oscillation is washed away when the
chiral imbalance is strong enough.
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