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We revisit Heisenberg’s model for nucleon-nucleon scattering which admits a saturation of the Froissart
bound. We examine its uniqueness, and find that up to certain natural generalizations, it is the only action
that saturates the bound. We find that we can extract also subleading behavior for σtotðsÞ from it, though that
requires a knowledge of the wave function solution that is hard to obtain, and a black-disk model allows the
calculation of σelasticðsÞ as well. The wave-function solution is analyzed perturbatively, and its source is
interpreted. Generalizations to several mesons, the addition of vector mesons, and curved space regimes are
also found. We discuss the relations between Heisenberg’s model and holographic models that are dual to
QCD-like theories.
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I. INTRODUCTION

In quantum field theory unitarity constrains the
asymptotic dependence of the total cross section of any
scattering process to be bounded by the well-known
Froissart bound [1,2],

σtotðsÞ ≤ Cln2
s
s0
; C ≤

π

m2
; ð1:1Þ

where s is Mandelstam’s dynamical variable and m is the
mass of the lightest particle that can be exchanged by the
scattering projectiles. In the case ofQCDm ¼ mπ is the pion
mass, and the bound is supposed to be saturated in the s →
∞ limit.1 However, being that the saturation of the bound is

governed by nonperturbative, IR, physics, attempts to
describe the saturation of the bound in QCD have not been
successful. Strikingly, nine years before the discovery of the
bound, and in fact even before the birth of QCD, Heisenberg
proposed a simple effective model for the maximal behavior
of σtotðsÞ, in terms of a Dirac-Born-Infeld (DBI) action for
the pion field, that gives an (almost) saturation of the
Froissart bound in the case of QCD [8].
The paper of Heisenberg [8] included two revolutionary

ideas: (i) the extraction of the dependence of the total cross
section on the Mandelstam s variable from the average
energy per pion determined from the classical energy
density of the scalar field; (ii) describing the dynamics
of the scalar field using the DBI action. The first idea is
obviously very different from the way one usually deter-
mines the cross section in perturbation theory. Instead of
computing Feynman diagrams of scattering amplitudes and
then from the amplitudes determining the cross section,
Heisenberg’s proposition was to derive the cross section in
a very simple manner from the following relation:
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1Note that experimentally, it is extremely difficult to distinguish

between a log2 s behavior and a small power law. In 2001, the
ParticleDataGroup (PDG) still presented the data for σtotðsÞ aboveffiffiffi
s

p ¼ 9 GeV as a fit to a small power law XABsϵ, with ϵ≃ 0.093
and XAB ∼ 10–35 mb (Table 38.2 in the 2001 PDG; see also
the 2000 PDG [3]). In the 2004 PDG (Ref. [4] Table 40.2), the fit
was instead ZAB þ Blog2ðs=s0Þ, now extending down toffiffiffi
s

p ¼ 5 GeV,which however (as already explained inRefs. [5,6]),
given that the fit was only 3 percent better (χ2=d:o:f of 0.971
instead of 1), can be seen as simply the coincidence of fitting
instead of Asϵ ≃ Aþ Aϵ log sþ Aϵ2=2log2sþ � � �, just the first
and the third terms, with the ratio≃ϵ2=2. Of course, then one finds
B ∼ 0.3 mb instead of π=m2

π ≃ 60 mb, but nevertheless
ZAB ∼ 18–65 mb, which now just seems like a big coincidence.
The improvement in the latest PDG from 2014 (Ref. [7], Table 50)
is minimal (χ2=d:o:f: of 0.96 for the same range), and one finds
B≡ π=M2 ∼ 0.27 mb implying M ∼ 2.1 GeV. The justification
behind this new fit was that in various models for nonperturbative
QCD, which of course include lots of assumptions, one can find a

coefficient B≃ π=M2
g, with Mg ∼OðGeVÞ a glueball-type mass.

Yet in the Froissart derivation m was really necessarily the pion
mass, and represented the truly asymptotic form of the cross
section. It is perfectly plausible that an approximately valid model
is written in terms of an effective Froissart boundwith a gluon-type
mass Mg, but the real behavior in the measured energy range is
∝ sϵ, which would be achieved if Mg ¼ MgðsÞ varies extremely
slowly with the scale. So we assume that the truly asymptotic
regime with coefficient π=m2

π has not been achieved yet [from the
experimental data cited above it would be achieved just over 1TeV,
such that ða fewTeV=9 GeVÞ0.093 ∼ 60 mb=XAB]. This interpre-
tation is more in linewith Froissart’s original derivation, sowewill
adopt it in this paper.
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hk0i ¼
ffiffiffi
s

p
e−mπbmax ;→ σtot ¼ πb2max ¼

π

m2
π
log2

s
hk0i2

;

ð1:2Þ
where hk0i is the energy per pion,mπ is its mass, and bmax is
the maximal impact parameter for which there is still an
interaction between the two nucleon projectiles. The
assumption of the model is that there is an “effective action”
for the scalar field that mediates the interaction from which
one can compute hk0i ¼ E

nwhereE is the total energy andn is
the number of the pions. Thus, the dependence of σtot on s
follows from the dependence of hk0i on s. A physical system
for which hk0i does not depend on s saturates Froissart’s
bound. The second original idea is to use a nonstandard
action to describe the dynamics of the pion field. In his paper
Heisenberg found that using an action of the scalar that is
based on the ordinary kinetic term (regardless of its
potential) cannot saturate the Froissart bound. In fact, it
will yield a constant cross section. However, using a DBI
action yields hk0i ∼ log s

m2
π
. This mild dependence of hk0i on

s means that the total cross section of the model is close to
that of the bound.
Experimental data of the total cross section of proton-

proton (and proton-antiproton) collisions is well estab-
lished in a very wide range of energies starting from
sub-GeV energies all the way to

ffiffiffi
s

p ¼ 7 in the TOTEM
experiment at the LHC and in fact even higher up to

ffiffiffi
s

p ¼
57 TeV from cosmic-ray observations. Figure 1 shows the
data points together with a fit based on Eq. (1.2) but with a
mass m≃ 1 GeV and not the pion mass [9]. Thus,
regardless of the Froissart bound, one would like to have
a theoretical model that resembles the behavior of Eq. (1.2)
since it seems to fit the experimental data quite well.
Needless to say there is no direct derivation from QCD that
can reproduce such a fit.
The goals of this paper are fourfold. (i) Since part of

Ref. [8] was written in a concise form, we elaborate the

discussion, perform several additional calculations and
provide some further evidence for the claims of the paper.
In particular we analyze the pion field including the
passage from the 1þ 1-dimensional solution to a full
four-dimensional one. The ratio of the elastic to total cross
section is derived using a black disk model. (ii) We examine
the uniqueness of the DBI action as an action that can
(almost) saturate the bound. We prove that only an action
with an infinite tower of higher powers of the derivative
term, as the DBI action admits, can do the job. (iii) We
propose and analyze several generalizations of Heisenberg’s
model. We add a general potential instead of only a mass
term, andwe analyze a sigmamodel with several scalars.We
examine the “highly effective action” of Ref. [10] for the
case of a single scalar in AdS5. For that case the ordinary
kinetic term in the square-root Lagrangian density under-
goes the following transformation: ∂μϕ∂μϕ → 1

ϕ4 ∂μϕ∂μϕ.

(iv) The last goal is to relate Heisenberg’s model to the DBI
action used in gauge/gravity duality and furthermore to two
different holographic approaches to the nucleon-nucleon
scattering.
One approach to the latter is based on a simple effective

model for QCD scattering at high energies: the Polchinski-
Strassler model [11] was developed in terms of a metric in a
cutoff AdS5 background, dual to glueball fields, and the
fluctuation of an IR brane (IR cutoff), dual to a pion field
[the model was extended to the phenomenological “hard-
wall” model with the addition (by hand) of extra fields in
the bulk in Ref. [12]]. Based on earlier work in Ref. [13], in
Ref. [14] it was shown that the saturation of the Froissart
bound can arise through scattering of gravitational shock
waves located on (or close to) the IR brane, with the
formation of a black hole on the IR brane. Then in Ref. [5]
it was shown that one can map exactly the description of the
saturation of the bound in the dual, through gravitational
shock-wave collision with black hole formation, with the
saturation of the bound in the Heisenberg model, through
pion field shock-wave collisions. This picture was used
further in Refs. [15–17] (see Ref. [18] for a review) to
describe the strongly-coupled Quark-Gluon Plasma fireball
obtained in heavy-ion collisions as the object dual to the
black hole formed on the IR brane.
In the second approach we relate Heisenberg’s DBI action

to the DBI that describes the fluctuation of the flavor branes
in confining the gravitational background and in particular in
the generalized Sakai-Sugimoto model [19,20]. We show
that the source of the scalar field in that model is the flavor
instanton density [21], that corresponds to the proton density.
The paper is organized as follows. In the next section we

review the model of Ref. [8] and elaborate on certain issues
by performing additional calculations. In Sec. III we
discuss the uniqueness of the DBI action used in
Ref. [8] for the saturation of the Froissart bound. We show
that to have a solution of the form ϕðsÞ ¼ A

ffiffiffi
s

p
, which is

what is needed to saturate the Froissart bound, one cannot
FIG. 1 (color online). The total cross section as a function of

ffiffiffi
s

p
for pp and pp̄ scattering.
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use an action with a finite series of higher derivatives and
only the infinite series that follows from the DBI action does
the job (thoughwe are not able to show that someother action
with an infinite number of higher-derivative terms could not
do the job also). In Sec. IV we consider various generaliza-
tions of the action used in Ref. [8]. First we add a potential
term in addition to the mass term. We then analyze a DBI
sigma model for several scalar fields. For the simple case of
replacing one kinetic term in the square root with a sum of
kinetic terms for several scalars the behavior is similar to the
original model. Next we discuss the case of a DBI action
associated with the AdS5 × S5 case. We show that for the
case of a single scalar field performing the determinant in the
DBI action yields a close cousin of the action used inRef. [8].
Another generalization discussed is the DBI for vector
mesons. Assuming here again a dependence only on the
coordinate s defined inEq. (2.3)we show that the behavior of
the vector mesons is similar to that of the scalar meson. In
Sec. V we discuss the “wave function” of the pion. First we
elevate the solution ϕðsÞ to ϕðs; rÞ. We argue that for
Heisenberg’s solution we have a shock-like behavior, where
Tþþ blows up at xþ ¼ 0, even thoughwedonot have a δðxþÞ
behavior. Next we consider a perturbative expansion around
r ¼ 0 and then a perturbative solution around the asymp-
totics r → ∞. Section VI is devoted to analyzing the sources
of the pion field. We first consider sources for the nonlinear
Born-Infeld theory of electrodynamics.We then in Sec. VI B
discuss in a similar manner the source of a scalar DBI theory.
Section VII deals with the original question behind this
paper, namely, the cross section of the nucleon-nucleon
scattering process. We discuss corrections away from the
Froissart bound.We then describe themodel of the black disk
and the corresponding ratio between the elastic and total
cross sections. Section VIII is devoted to an examination of
the relation between Heisenberg’model and the holographic
description of nucleon-nucleon scattering. We show that the
nucleon-nucleon scattering process takes the form of the
scattering of instantons of the flavored gauge fields that
reside on the flavor branes. We end this paper with a
summary and open questions.

II. HEISENBERG’S MODEL: A REVIEW
AND ELABORATIONS

In this section, we first review the work of Heisenberg in
modern language, and we perform some additional com-
putations that clarify some aspects of the model.
With a remarkable insight, Heisenberg considered a

nonlinear higher-derivative action for the pion, the DBI
action with a mass term inside the square root,

L ¼ l−4½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕÞ2 þm2ϕ2�

q
�: ð2:1Þ

The reasoning is that in the high-energy limit, many pions
(lowest-mass particles) will be created, so we need to

consider a pion field as the effective one, but this process is
both nonperturbative and high energy, and hence one needs
a nonlinear action. As we will soon see, a polynomial
interaction does not have the required properties, so the
DBI action is the natural one to consider.
In the high-energy limit, colliding hadrons will look like

pancakes due to Lorentz contraction, but moreover we
need to consider them as just sources for the pion field
surrounding them, that will also get Lorentz contracted and
look like a shock wave. Therefore the process considered
in the asymptotic regime is a collision of pion field
shock waves with the action (2.1). We look for (classical)
shock-wave solutions to the action (2.1). The equations of
motion are

−□ϕþm2ϕþ l4
½ð∂μ∂νϕÞð∂μϕÞ∂νϕþ ð∂μϕÞ2m2ϕ�

1þ l4½ð∂μϕÞ2 þm2ϕ2� ¼ 0:

ð2:2Þ

The crucial simplification that allowed Heisenberg to do
exact calculations is to consider that for a shock-wave
solution, only the physics near the shock is relevant, and by
focusing near that, we can ignore the dependence on
the two transverse dimensions y, z (with r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
),

and consider the 1þ 1-dimensional problem for time t and
the longitudinal direction x (along the direction of
propagation).
Then from Lorentz invariance, he considers only sol-

utions that depend on

s ¼ t2 − x2: ð2:3Þ

(Note that from now on, we will use s to denote this
variable only, and not the Mandelstam invariant, which will
be called ~s.) This requires some explanation. The first point
is that ϕ ¼ ϕðsÞ is boost invariant for boosts in x: under a
boost, we have xþ → eβxþ, x− → e−bx−. But why do we
need a boost-invariant solution? The fact that ϕ is a scalar
means that ϕ0ðx0þ; x0−Þ ¼ ϕðxþ; x−Þ, where x� ¼ t� x.
We could say that we find the solution ϕðxþ; x−Þ in a
reference system and then define the one in another
reference system by ϕ0ðx0þ; x0−Þ ¼ ϕðxþ; x−Þ, so any sol-
ution would work.
However, the essential point is that we use the ultra-

relativistic approximation, in which even though the pion is
massive, we consider that the source moves on a light cone,
xþ ¼ 0 or x− ¼ 0. As a result, we impose that ϕðxþ ¼
0Þ ¼ 0 or ϕðx− ¼ 0Þ ¼ 0. This in turn implies a power-law
behavior near the light cone, i.e. (for x− ¼ 0), ϕ ∝ ðx−Þq,
q > 0 for x− ∼ 0. But if we have an arbitrary dependence on
xþ, then in the boosted system ϕ0 would have a power of eβ
in front, unless we have the same power law for xþ, i.e.
unless ϕðxþ; x−Þ ¼ ϕðxþx−Þ ¼ ϕðsÞ.
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For ϕ ¼ ϕðsÞ, we have

ð∂μϕÞ2 ¼ −4s
�
dϕ
ds

�
2

; ð2:4Þ

the DBI action becomes

L ¼ l−4
"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4

�
−4s

�
dϕ
ds

�
2

þm2ϕ2

�s #
; ð2:5Þ

and its equation of motion becomes

4
d
ds

�
s
dϕ
ds

�
þm2ϕþ 8l4sðdϕdsÞ2

1þ l4½−4sðdϕdsÞ2 þm2ϕ2�

×

�
dϕ
ds

−
m2ϕ

2
þ 2s

d2ϕ
ds2

�
¼ 0: ð2:6Þ

However, by multiplying with the denominator (assuming
that it does not vanish), canceling and rewriting the terms
we are led to the form

4
d
ds

�
s
dϕ
ds

�
þm2ϕ ¼ 8sl4

�
dϕ
ds

�
2 ½dϕds þm2ϕ�
1þ l4m2ϕ2

: ð2:7Þ

When m ¼ 0, one can find an exact solution depending
on an arbitrary parameter a,

ϕ ¼ 1

a
log

�
1þ a2

2l4
sþ a

2l4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l4sþ a2s2

p �
; s ≥ 0;

ð2:8Þ

and ϕ ¼ 0 for s < 0.
When m ≠ 0, one can find a perturbative solution at

small s,

ϕ ¼
ffiffiffi
s

p
l2

ð1þ a sm2 þ � � �Þ; 0 ≤ s ≪ 1=m2; ð2:9Þ

and ϕ ¼ 0 for s < 0, as well as a solution at large s,

ϕ≃ γs−1=4m−1=2 cosðm ffiffiffi
s

p þ δÞ; s ≫ 1=m2: ð2:10Þ

At this point, Heisenberg notes that for the model to be
reasonable, we need ð∂μϕÞ2 to be a finite constant at
the position of the shock, s ¼ 0, since we need the
nonlinearities to play a role there. But for the free Klein-
Gordon (KG) equation, the result is infinite, which is also
unphysical.2 Thus the only possibility to correctly describe
the shock at s ¼ 0 is to have ð∂μϕÞ2 be a finite constant,

which leads to ϕ ∼ A
ffiffiffi
s

p
for s → 0. This, as we will show

below, is incompatible with an action with a canonical
kinetic term and a polynomial potential.

A. From the pion field to the nucleon-nucleon
cross section

The energy (Hamiltonian) density of the pion field is

H¼ π _ϕ−L¼ l−4þð∇ϕÞ2þm2ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕÞ2þm2ϕ2�

q − l−4; ð2:11Þ

and similarly the momentum density is

P ¼ π∇ϕ ¼
_ϕ∇ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l4½ð∂μϕÞ2 þm2ϕ2�
q : ð2:12Þ

Both densities have a denominator which is the square-root
term of the Lagrangian density. In the massless case, by
substituting the solution (2.8) into Eq. (2.11) we find that
the energy density diverges at s ¼ 0 due to the denominator
going to zero as a

ffiffiffi
s

p
=ð2l2Þ. Similarly, in the massive case,

by substituting the solution (2.9) into Eq. (2.11) we find the
same divergence due to the denominator going to zero at
s ¼ 0 as m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − 6aÞp

.
Now following Ref. [8] we assume that one can

introduce a small perturbation so that the denominator
can be taken as a nonvanishing constant. In this case we can
use the standard method of Fourier transforming Eq. (2.9)
over x to k, as

ϕðk; tÞ ¼ l−2
Z

t

0

dxeikx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
ð1þ am2ðt2 − x2Þ þ � � �Þ;

ð2:13Þ
which for a ¼ 0 (only the leading term) gives

ϕðk; tÞ≃ l−2
π

2

jtj
jkj ðJ1ðjkjjtjÞ þ iH1ðjkjjtjÞÞ; ð2:14Þ

where J1 is a Bessel function and H1 is a Struve function.
When expanded at large k, we obtain

ϕ − l−2i
jtj
jkj≃

ffiffiffiffiffi
−i

p
l−2

ffiffiffi
π

2

r
jtj1=2jkj−3=2e−ijkjjtj

×

�
1þ 3

8jkjjtj e
2ijkjjtj

�
: ð2:15Þ

Note that the nonoscillatory part of ϕ is not a radiative
piece, and hence is dropped.
However, as discussed above, in reality the shock wave

should have a finite thickness in
ffiffiffi
s

p
of the order of the

Lorentz-contracted 1=m, i.e.
ffiffiffi
s

p
0m ≡ ffiffiffi

s
p

min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
=m,

whichmeans that at sufficiently large t,ϕðk; tÞ should be cut

2The KG equation for ϕ ¼ ϕðsÞ is just d=dsðsdϕ=dsÞ ¼ 0,
with the solution ϕ¼Alogðs=s0Þ, which means ð∂μϕÞ2¼
−4sðdϕ=dsÞ2¼−4A2=s→∞.
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off at k0m ¼ 1=r0m ¼ γm, the relativistic mass of the pion.
With the assumption of a constant denominator we get

dE
dk

∝ k2ϕðkÞ2 ∼ const
k

; ð2:16Þ

where in the last equalitywe have substituted Eq. (2.15). But
this is valid only for k ≤ k0m.
Finally, the momentum k is identified with the momen-

tum of a pion k0, and moreover the classical field close to
the shock is identified with the classical limit of the field of
radiated pions in a hadron collision. Thus the radiated
energy E (identified through canonical quantization with
the pion field energy E) per unit frequency of radiated pions
is given by (denoting the constant by B)

dE
dk0

¼ B
k0

; m ≤ k ≤ k0m: ð2:17Þ

This integrates to

E ¼ B ln
k0m
m

¼ B ln γ; ð2:18Þ

and leads to a relation for the number of pions emitted for a
given energy, since dE ¼ k0dn, giving

dn
dk0

¼ B
k20

; m ≤ k0 ≤ k0m; ð2:19Þ

which integrates to

n ¼ B
m

�
1 −

m
k0m

�
: ð2:20Þ

Then the average emitted energy per pion is

hk0i≡ E
n
¼ m

lnðk0m=mÞ
1 −m=k0m

¼ m
ln γ
1 − 1

γ

≃m ln γ; ð2:21Þ

which is approximately constant (only logarithmic depend-
ence on the energy).
The last step in the Heisenberg model is to assume that

the emitted energy is proportional to the total energy of the
system,

ffiffiffi
~s

p
(here ~s is the Mandelstam variable), with the

constant of proportionality (ratio of emitted energy) being
approximately given by the pion wave-function overlap.
Since at large transverse distance r (¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
), the wave

function is small ϕl ≪ 1, and thus it satisfies the free
massive KG equation, with the solution ϕðrÞ ∼ e−mr, the
wave-function overlap is ∼e−mb, where b is the impact
parameter, i.e. the transverse separation between the
colliding hadrons at the impact point x ¼ 0. Then we have
approximately

E ∼
ffiffiffi
~s

p
e−mb: ð2:22Þ

The maximum impact parameter for which we have an
interaction, bmax, arises when the emitted energy equals the
average emitted energy per pion hk0i, so that it corresponds
to emitting just one pion. Then we have

ffiffiffi
~s

p
e−mbmax ¼ hk0i ⇒ bmax ¼

1

m
ln

ffiffiffi
~s

p

hk0i
⇒

σtot ¼
π

m2
ln2

ffiffiffi
~s

p

hk0i
: ð2:23Þ

We see then that the saturation of the Froissart bound arises
only if hk0i is approximately constant as a function of
energy.
Next we would like to compare this result with what one

gets for an “ordinary field theory” with a canonical kinetic
term and a polynomial potential of the form

L ¼ −
1

2
ð∂μϕÞ2 −

1

2
m2ϕ2 − λϕn: ð2:24Þ

The corresponding equation of motion resulting from it for
the ϕ ¼ ϕðsÞ ansatz,

4

�
s
d2ϕ
ds2

þ dϕ
ds

�
þm2ϕþ nλϕn−1 ¼ 0; ð2:25Þ

does not have ϕ ∼ A
ffiffiffi
s

p
as a solution, since the first bracket

is divergent, as it equals −A=2
ffiffiffi
s

p
, and the other terms give

zero, as they are positive powers of s. In fact, we can see
that the only way to satisfy the equation of motion at
leading order in s with a canonical kinetic term plus a
potential is for a potential that includes the logarithmic term
Λ lnðϕ=ϕ0Þ, since then in the equation of motion we have
Λ=ϕ, and we can solve the equation with A2 ¼ 2Λ. But it is
unclear how such a term could arise in the potential
(especially since it is unbounded from below at ϕ ¼ 0).
Now let us study for this class of theories the energy per

emitted pion. In a way similar to the one described above
we can prove that

dE
dk0

¼ B; m ≤ k0 ≤ k0m;⇒
dn
dk0

¼ B
k0

; m ≤ k0 ≤ k0m ⇒

hk0i ¼
E
n
≃ k0m
ln k0m

m

¼mγ
1

ln γ
∝

ffiffiffi
~s

p

ln
ffiffiffi
~s

p : ð2:26Þ

That means that we do not get the saturation of the Froissart
bound, but rather we get a constant σtotð

ffiffiffi
~s

p Þ.
In fact, we can check that the saturation of the bound is

obtained only for dE=dk0 ∝ 1=kn0, with n ≥ 1, whereas for
actions with polynomial potentials this is not satisfied. In
fact, as we saw, dE=dk0 ∝ 1=k0 was obtained from the
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behavior ϕ ∝
ffiffiffi
s

p
of the field near s ¼ 0, which was due to

the DBI form of the action.
In conclusion, we have two physical ways to restrict the

formof the action.AsHeisenberg argued,we need ð∂μϕÞ2 to
be a finite constant in order to describe the correct physics,
which restricts us to ϕðsÞ ∝ ffiffiffi

s
p

, arising only in DBI. On the
other hand, if we are to be able to saturate the Froissart bound
(which should happen, as Froissart argued), we again need
dE=dk0 ∝ 1=k0, which again requires the DBI action.

III. UNIQUENESS OF THE HEISENBERG
MODEL ACTION

In his paper [8], Heisenberg showed that an action based
on an ordinary kinetic term with any kind of a potential
term does not saturate the Froissart bound. We now seek to
check the uniqueness of Heisenberg’s choice of having the
DBI action as the action of the pion field. We have seen that
we need an action with higher derivatives. The question is
then can we have other higher-derivative actions? In
particular wewant to examinewhether one needs an infinite
series of any power of the derivative term or if it is enough to
have certain finite series. And furthermore if one needs an
infinite series is the DBI action used by Heisenberg unique?
We now examine this question, by considering

Lagrangians of the type Lðϕ; XÞ, where X ¼ ð∂μϕÞ2.

A. DBI truncated to first term

We will start by truncating the DBI Lagrangian from the
previous section (with m2ϕ2 promoted to 2V for more
generality) to the first interaction term, i.e.

L ¼ −
1

2
ð∂μϕÞ2 − VðϕÞ þ l4

8
½ð∂μϕÞ2 þ 2VðϕÞ�2

¼ −
1

2
ð∂μϕÞ2 − ~VðϕÞ þ l4

8
½ð∂μϕÞ2�2 þ

l4

2
ð∂μϕÞ2VðϕÞ;

ð3:1Þ

where ~VðϕÞ ¼ VðϕÞ − l4V2ðϕÞ=2, but for generality we
will consider arbitrary ~V.
Then the equation of motion is

−□ϕþ ~V 0ðϕÞ þ l4

2
ð∂μϕÞ2□ϕþ l4ð∂μϕÞð∂νϕÞð∂μ∂νϕÞ

þ l4ð∂2ϕÞVðϕÞ þ l4

2
ð∂μϕÞ2V 0ðϕÞ ¼ 0; ð3:2Þ

and for ϕ ¼ ϕðsÞ we get the equation of motion

4
d
ds

�
s
dϕ
ds

�
ð1 − l4VðϕÞÞ þ ~V 0ðϕÞ þ 8sl4

�
dϕ
ds

�
2

×

�
2
dϕ
ds

þ 3s
d2ϕ
ds2

−
V 0ðϕÞ
4

�
¼ 0: ð3:3Þ

We want to see whether a solution of the type ϕ ¼ A
ffiffiffi
s

p
near s ¼ 0 is possible. First we note that in this case, the
terms with V and V 0 are irrelevant (they are subleading), so
we will drop them for simplicity (we can add them for free
at the end). Then, substituting, we get the equation of
motion for the leading term

Affiffiffi
s

p
�
1þ A2l4

2

�
¼ 0; ð3:4Þ

so we see that for a real scalar field (as we want), when
A2 > 0, there is no solution.

B. Generalization with first derivative interaction

Next, we drop the irrelevant V terms and generalize by
writing an arbitrary coefficient for the interaction term,

L ¼ −
1

2
ð∂μϕÞ2 þ C½ð∂μϕÞ2�2; ð3:5Þ

giving the equation of motion

−□ϕþ 4Cð∂μϕÞ2□ϕþ 8Cð∂μϕÞð∂νϕÞð∂μ∂νϕÞ ¼ 0;

ð3:6Þ
and on ϕ ¼ ϕðsÞ, we get

4
d
ds

�
s
dϕ
ds

�
þ 64Cs

�
dϕ
ds

�
2 d
ds

�
s
dϕ
ds

�

þ 64Cs

�
dϕ
ds

�
2
�
dϕ
ds

þ 2s
d2ϕ
ds2

�
¼ 0: ð3:7Þ

Substituting the ansatz ϕ≃ A
ffiffiffi
s

p
, we get

Affiffiffi
s

p ð1þ 4CA2Þ þ 16CA2

�
A

2
ffiffiffi
s

p −
A

2
ffiffiffi
s

p
�

¼ 0: ð3:8Þ

Note that we have kept the last term, which is zero, for
reasons to be explained later.

C. Generalization to arbitrary powers

Next we consider on top of the previous interaction, an
arbitrary nth order interaction,

L ¼ −
1

2
ð∂μϕÞ2 þ C2½ð∂μϕÞ2�2 þ Cn½ð∂μϕÞ2�n; ð3:9Þ

with the equation of motion

−□ϕþ4C2ð∂μϕÞ2□ϕ

�
1þnCn

2C2

½ð∂μϕÞ2�n−2
�

þ8C2ð∂μϕÞð∂νϕÞð∂μ∂νϕÞ
�
1þnðn−1ÞCn

2C2

½ð∂μϕÞ2�n−2
�

¼ 0; ð3:10Þ
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and on the ansatz ϕ ¼ ϕðsÞ ¼ A
ffiffiffi
s

p
, we have

Affiffiffi
s

p þ 4C2A2
Affiffiffi
s

p
�
1þ nCn

2C2

ð−A2Þn−2
�

þ 16C2A2

�
A

2
ffiffiffi
s

p −
A

2
ffiffiffi
s

p
��

1þ nðn − 1ÞCn

2C2

ð−A2Þn−2
�

¼ 0: ð3:11Þ

We can finally generalize to a sum of arbitrary powers,

L ¼ −
1

2
ð∂μϕÞ2 þ

X
n≥2

Cn½ð∂μϕÞ2�n; ð3:12Þ

with the equation of motion

−□ϕþ□ϕ
X
n≥2

2nCn½ð∂μϕÞ2�n−1 þ ð∂μϕÞð∂νϕÞð∂μ∂νϕÞ

×
X
n≥2

4nðn − 1Þ½ð∂μϕÞ2�n−1 ¼ 0: ð3:13Þ

On the solution ϕ ¼ ϕðsÞ ¼ A
ffiffiffi
s

p
, we get

Affiffiffi
s

p
�
1þ

X
n≥2

2nCnð−1ÞnA2ðn−1Þ
�

þ
�

A
2

ffiffiffi
s

p −
A

2
ffiffiffi
s

p
�X

n≥2
8nðn − 1ÞCnð−1ÞnA2ðn−1Þ ¼ 0:

ð3:14Þ

For the DBI action, the coefficients, coming from the
expansion of

−ð1þ xÞ1=2 ¼ −1 −
x
2
−
1=2ð1=2 − 1Þ…ð1=2 − nþ 1Þ

1 · 2 ·… · ðnÞ xn;

ð3:15Þ

give therefore sgnðCnÞ ¼ ð−1Þn, meaning that the coef-
ficients inside the two brackets in Eq. (3.14) are all positive.
Moreover, from the arguments in Ref. [22], the signs
coming from the DBI action are the ones needed for
causality and locality of an action: any other sign for Cn

in the expansion of L ¼ P
n Cn½ð∂ϕÞ2�n was argued to lead

to violations of causality and locality (though note that the
metric convention in Ref. [22] is mostly minus, so all
coefficients Cn there are positive, but that corresponds to
alternating signs for us). Note also that in principle we
could imagine also having ð∂mϕÞn terms in the effective
action, though in our analysis we restrict to the case where
they are absent. We will just mention that Ref. [22] found
that having only those types of terms and Cn ¼ 0 is
problematic, as it leads to causality violation, but there
was no argument against having both kinds of terms. It will
be interesting to further analyze this possibility.

That means that for a general action with arbitrary Cn, at
any finite order in the terms, ϕ ¼ A

ffiffiffi
s

p
is not a solution.

But then the question is, how is it possible that the DBI
action has this as a solution? To answer that, we look at
Eq. (2.6), which is the equivalent of what we have here. On
the ansatz ϕ ¼ A

ffiffiffi
s

p
, we get from it

Affiffiffi
s

p þ 2l4A2

1 − A4l2

�
A

2
ffiffiffi
s

p −
A

2
ffiffiffi
s

p
�

¼ 0; ð3:16Þ

which at first seems not to have a solution, just like our
finite-order truncations, but looking more closely we see
that A2 ¼ l−4 is a solution, since then the second term is
0=0, and there is a solution, as seen by going to the form
(2.7). The essential fact is the existence of the factor

1

1 − x
¼ 1þ xþ x2 þ � � � þ xn þ � � � ð3:17Þ

for x ¼ 1, multiplying the ðA=2 ffiffiffi
s

p
− A=2

ffiffiffi
s

p Þ ¼ 0 term,
but not the nonzero term. Thus in the case of the finite
truncation, we have the ratio of the zero and nonzero terms
being

P
n≥28nðn − 1ÞCnð−1ÞnA2ðn−1Þ

1þP
n≥22nCnð−1ÞnA2ðn−1Þ → ∞; ð3:18Þ

which goes to infinity for an infinite number of terms,
allowing the solution.
In conclusion, the DBI action is the unique one satisfying

the physical requirement ϕðsÞ≃ A
ffiffiffi
s

p
near s ¼ 0 (it could

be that there are other derivative actions, with an infinite
number of terms, and the same signs as DBI for the
coefficients, but it is unlikely); however we can add a
potential inside or outside the square root without modi-
fying the result.

IV. GENERALIZATIONS

We first consider a simple generalization: instead of just
a mass term inside the square root, we consider a general
potential V, with Lagrangian

L ¼ l−4
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕÞ2 þ 2VðϕÞ�

q �
: ð4:1Þ

Its equation of motion is

−□ϕþ∂ϕVðϕÞþ l4
½ð∂μ∂νϕÞð∂μϕÞ∂νϕþð∂μϕÞ2∂ϕVðϕÞ�

1þ l4½ð∂μϕÞ2þ2VðϕÞ�
¼ 0; ð4:2Þ

and for a solution ϕ ¼ ϕðsÞ, we obtain (after the same
manipulations as in the Heisenberg case)
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4
d
ds

�
s
dϕ
ds

�
þV 0ðϕÞ¼ 8sl4

�
dϕ
ds

�
2 ½dϕdsþV 0ðϕÞ�
1þ2l4VðϕÞ : ð4:3Þ

It is easy to check that this equation has again the same small s
solution (2.9) for a ¼ 0, i.e. the leading term, since the terms
withV in the equation ofmotion are actually subleadingwith
respect to the others. This in turn leads to the same analysis of
Heisenberg, so this generalization is allowed.
We can also consider adding V outside the square root,

L ¼ l−4
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕÞ2�

q �
− VðϕÞ; ð4:4Þ

and we can again check that the same thing happens: the
solution ϕðsÞ¼l−2

ffiffiffi
s

p þ��� is still valid, since again the
terms with V in the equation of motion are subleading on
the solution.

A. Several mesons and sigma model

We can also consider N scalar fields, corresponding to
having several scalar mesons, ϕi, i ¼ 1;…; N and for
generality consider it in dþ 1 dimensions. A generalized
DBI model would be

L ¼ l−ðdþ1Þ
�
hðϕiÞ − fðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ldþ1½gijðϕkÞð∂μϕ

iÞð∂μϕ
jÞ þ 2VðϕiÞ�

q �
: ð4:5Þ

Then when hðϕiÞ ¼ gðϕiÞ ¼ 1, for small fields we keep only the leading term in the expansion of the square root, and
obtain the usual sigma model with a potential,

L2 ≈ −
1

2
gijðϕkÞð∂μϕ

iÞð∂μϕ
jÞ − VðϕiÞ: ð4:6Þ

The equations of motion of the action (4.5) are

l−ðdþ1Þ
�
∂ϕihðϕÞ − ∂ϕifðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ldþ1½gijðϕkÞð∂μϕ

iÞð∂μϕ
jÞ − 2VðϕiÞ�

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ldþ1½gijðϕkÞð∂μϕ

iÞð∂μϕ
jÞ − 2VðϕiÞ�

q

þ fðϕÞ
�
1

2
∂ϕi

gjkðϕÞð∂μϕ
jÞ∂μϕk − ∂ϕiVðϕÞ − ∂μ½gijðϕÞ∂μϕ

j�
�
− ∂μfðϕÞgijðϕÞ∂μϕ

j

−
1

2
lðdþ1Þ fðϕÞgijðϕÞ∂μϕ

j

1 − ldþ1½gijðϕkÞð∂μϕ
iÞð∂μϕ

jÞ − 2VðϕiÞ� ð∂μ½gijðϕÞð∂μϕ
iÞð∂μϕ

jÞ − 2VðϕiÞ�Þ ¼ 0: ð4:7Þ

To analyze this case, first note that Heisenberg already considered the case of several mesons with the DBI action, but that
meant that the sum was outside the square root,

L ¼ l−4
X
a

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕ

aÞ2 þm2
aϕ

2
a�

q �
: ð4:8Þ

That case worked in the same way as for a single meson. We now consider the generalization with the sum inside the square
root, and a sigma model metric,

L ¼ l−4

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4

�X
ab

GabðϕcÞð∂μϕ
aÞð∂μϕ

bÞ þ
X
a

m2
aϕ

2
a

�s 3
5; ð4:9Þ

where we can replace everywhere the mass terms with a
general potential, since as we already saw that does not
change anything.
Now in terms of the asymptotic value of the cross

section (the Froissart behavior), nothing changes, since
the maximum cross section is governed by the pion of

smallest mass, that has the largest wave function
at large distances, according to the mechanism
reviewed below. What does change is the value of
the cross section at intermediate energies, where now
we have cross sections for emissions of various scalar
mesons.
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The equations of motion coming from the action (4.9) are

−
�
4
d
ds

�
GabðϕÞs

dϕb

ds

�
þm2

aϕ
2
a

��
1þ l4

�
−4sGef

dϕe

ds
dϕf

ds
þm2

eϕ
2
e

��

− l4m2
eGab

�
−4s

dϕb

ds
dϕe

ds

�
ϕe − 8sl4Gab

dϕb

ds
d
ds

�
sGef

dϕe

ds
dϕf

ds

�
¼ 0: ð4:10Þ

The simplifications that occurred whenGab ¼ δab do not
occur anymore. However, the fields ϕa will also have in
general the interpretation of some brane coordinates in the
gravity dual descriptions of Sec. VIII. In the Heisenberg
case, we had a single field, corresponding to a single
coordinate transverse to the brane, but in general we can
have many. Then the origin of the coordinate, correspond-
ing to the position of the brane, must be a stable point.
Around it, we can expand the metric as Gab ¼ δabþ
OðjϕjÞ, and write an ansatz for the fields as

ϕa ¼ Aa
ffiffiffi
s

p
; ð4:11Þ

for s → 0. At s ¼ 0, the fields are at 0, i.e. the stable point
(the “IR brane” or IR cutoff of the gravity dual), and with
the metric expanded as above, we can check that the ansatz
is a solution of the equations of motion ifX

a

ðAaÞ2 ¼ 1=l4: ð4:12Þ

In order to understand the asymptotic cross sections, we
consider the behavior of the wave functions for large
transverse r. The large-r behavior of the cross section is
governed by the lightest meson, the pion. Indeed, the wave
functions go like ϕa ∝ e−mar at r → ∞. Therefore, if we are
in the asymptotic regime for the pion, ϕπ ∝ e−mπr, which
implies also jϕaj ≪ jϕπj ≪ l−1, then from the equations of
motion we can check that we also have ϕa ∝ e−mar, which
by the usual Heisenberg argument implies that

e−mπbπ ∼
hk0iffiffiffi

s
p ⇒ σtot ≃ σπ ≃ π

m2
π
ln2

� ffiffiffi
s

p
hk0i

�
;

e−maba ∼
hk0iffiffiffi

s
p ⇒ σa ≃ π

m2
a
ln2

� ffiffiffi
s

p
hk0i

�
≪ σtot; ð4:13Þ

where σa is the cross section for the production of mesons
a. Therefore in the asymptotic regime, all the σa should

behave like Froissart saturation, with corresponding coef-
ficients π=m2

a.

B. Anti–de Sitter case and curved-space
generalizations; solutions

In Sec. VIII we will discuss possible relations between
the Heisenberg model and a holographic description of the
nucleon-nucleon scattering. We have seen in the previous
subsection that a natural generalization of Heisenberg’s
model includes several scalars corresponding to several
mesons, and a sigma model for them. Here we discuss a
particular example of such a generalization which is a DBI
sigma model in anti–de Sitter (AdS) spacetime. This also
arises naturally in the context of gauge/gravity duality.
The DBI action on the flat worldvolume in dþ 1

dimensions, i.e. for a Dd-brane, takes the form

SDBI¼Td

Z
ddþ1σe− ~ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det½∂μXi∂νXjgijðXÞþ2πα0Fμν�

q
;

ð4:14Þ

where Td is the Dd-brane tension, ~ϕ is the dilaton, σμ are the
worldvolume coordinates,Xi i ¼ 1;…D are the target-space
coordinates and gijðXkÞ is themetric on that target space. The
dþ 1-dimensional DBI action describes in particular the
physics of Dd-branes. The D-brane action in fact also
includes a Chern-Simons (CS) term, but for our purposes,
the effect of that will be just to subtract

R
ddþ1σTd from the

above action.
Imposing dþ 1-dimensional Lorentz invariance, switch-

ing off the gauge fields,writingTd ¼ l−ðdþ1Þ, using the static
gauge σμ ¼ δIμXI for I ¼ 0; 1; 2; d, and defining the vector
~ϕ≡ Xi=lðdþ1Þ=2 ≡ ivi with i ¼ dþ 1;…; D, the DBI action
reduces to

SDd ¼ l−ðdþ1Þ
Z

ddþ1xe− ~ϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðημν ~gðϕÞ þ ldþ1∂μϕ

i∂νϕ
jgijðϕÞÞ

q
− 1

�
: ð4:15Þ

For the special case of the D3-brane moving in an AdS5 ×
S5 space (the space generated by a large number N of other
D3-branes), this action is the “highly effective action” for
the N ¼ 4 Super Yang-Mills (SYM) theory on D3-branes
written recently in Ref. [10], which takes the form

SD3 ∼
Z

d4xϕ4

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
ημν þ

∂μ
~ϕ · ∂ν

~ϕ

ϕ4

�s
− 1

3
5;
ð4:16Þ
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where now the dilaton is a constant, the target-space

coordinates are ~ϕ≡ vi with I ¼ 4;…; 9, and the metric
on the target space was taken to be

ds2 ¼ R2

�
ϕ2ηIJdxIdxJ þ

1

ϕ2
d~ϕ · d~ϕ

�
: ð4:17Þ

For the special case of a single scalar with ~ϕ ¼ 0, ~g ¼ 1,
using the identity

− det ½ημν þ gðϕÞ∂μϕ∂νϕ� ¼ 1þ gðϕÞ∂μϕ∂μϕ; ð4:18Þ

the action for a D-brane [Eq. (4.15)] reduces to the
Heisenberg-type action with a gðϕÞ, or a one-dimensional
sigma model action of the type (4.9).
For the case of several scalars, but with the metric

trivialized around the position of the brane, i.e. gijðϕÞ≃
gðϕÞδij, we have

− detðημν þ gðϕÞ∂μϕ
i∂νϕ

iÞ ¼ −
1

d!
ϵμ1…μdϵν1…νdðημ1ν1 þ gðϕÞ∂μ1ϕ

i∂ν1ϕ
iÞ…

ðημdνd þ gðϕÞ∂μdϕ
i∂νdϕ

iÞ ¼ 1

d!
½ϵμ1…μdϵ

μ1…μd þ dgðϕÞϵμν2…νdϵ
νν2…νd∂μϕ

i∂νϕ
i þ � � ��

¼ 1þ gðϕÞ∂μϕ
i∂μϕi þ g2ðϕÞð∂μ1ϕ

i∂ν1ϕ
iÞð∂μ2ϕ

j∂ν2ϕ
jÞδν1ν2μ1μ2

þ g3ðϕÞð∂μ1ϕ
i1∂ν1ϕ

i1Þð∂μ2ϕ
i2∂ν2ϕ

i2Þð∂μ3ϕ
i3∂ν3ϕ

i3Þδν1ν2ν3μ1μ2μ3 þ � � � ð4:19Þ

Then on the solution ϕ ¼ ϕðsÞ, we have

2ð∂μ1ϕ
i∂ν1ϕ

iÞð∂μ2ϕ
j∂ν2ϕ

jÞδν1ν2μ1μ2 ¼ ∂μ1ϕ
i∂μ1ϕi∂μ2ϕ

j∂μ2ϕj − ∂μ1ϕ
i∂μ1ϕj∂μ2ϕ

i∂μ2ϕj

¼ 16s2
dϕi

ds
dϕi

ds
dϕj

ds
dϕj

ds
− 162

dϕi

ds
dϕj

ds
dϕi

ds
dϕj

ds
¼ 0 ð4:20Þ

and we can easily see that for the higher terms the same
happens. Therefore on the solution ϕ ¼ ϕðsÞ, the presence
of higher-order terms inside the square root in the D-brane
DBI action (4.15) is not relevant, and we still have a sigma
model action like Eq. (4.9). That means that the Heisenberg
analysis is still valid in the case of the general DBI D-brane
action.

1. Shock waves for a D-brane in curved space

Consider the action of a D3-brane moving in AdS5, i.e.
the “highly effective action” of Eq. (4.16) for a single scalar
ϕ and metric gðϕÞ ¼ ϕ−4,

L ¼ l−4

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂μϕÞð∂μϕÞ

ϕ4

s 3
5: ð4:21Þ

Its equation of motion on the ansatz ϕ ¼ ϕðsÞ is

sϕ00 þ ϕ0 − 2
s
ϕ
ðϕ0Þ2 − 2

s
ϕ4

ðϕ0Þ3 ¼ 0; ð4:22Þ

which is a special case of the more general form with an
arbitrary metric gðϕÞ,

sϕ00 þ ϕ0 þ 1

2

g0ðϕÞ
gðϕÞ sðϕ

0Þ2 − 2sgðϕÞðϕ0Þ3 ¼ 0; ð4:23Þ

for gðϕÞ ¼ 1
ϕ4.

It is easy to check that an exact solution for this nonlinear
equation is

ϕðsÞ ¼ 1ffiffiffi
s

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p : ð4:24Þ

Substituting the solution into the Lagrangian density
(4.21) we find that the square root vanishes and L ¼ l−4.
[The same holds for the solution of the massless
Heisenberg model where gðϕÞ ¼ 1.]
In fact one can use this property to find solutions for

other target-space metrics. For gðϕÞ ¼ l4−nðϕÞ−n, we get

L ¼ l−4 → 4sgðϕÞðϕ0Þ2 ¼ 1 → ϕðsÞ

¼ l−1ðl−2sÞ 1
2−n

�
2 − n
4

� 1
2−n
: ð4:25Þ

Furthermore, for a general metric gðϕÞ we find that the
solution for ϕðsÞ isZ

dϕ
ffiffiffiffiffiffiffiffiffi
gðϕÞ

p
¼ ffiffiffi

s
p

: ð4:26Þ

It is easy to check that this solution indeed solves the
equation of motion (4.23).

C. Introducing vector mesons

As we saw in Eq. (4.14), the DBI action on the
worldvolume of a Dd-brane has vector fields. In fact, in
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AdS/QCD approaches with probe branes, like for instance
the Sakai-Sugimoto model or the models of Sec. VIII, these
vectors on the gravitational side give rise on the dual field
theory side to towers of vector-meson states. We are
considering mainly a flat metric for the scalar fields (trivial
sigma model), which arises as an approximation in the IR

of the gravity dual, as we discussed. Then we must consider
the effect of the gravity dual metric (that drives the brane to
the stable point around which the metric is flat) to be to give
masses to the fields.
Therefore we consider the DBI action with a mass for the

vector inside the square root,

L ¼ l−4
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðηab þ l4∂aϕ∂bϕþ l2FabÞ þm2ϕ2 þM2

VA
2
a

q �

¼ l−4

2
641 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕÞ2 þm2ϕ2� þ l4

2
FabFab − l8

�
1

4
~FabFab

�
2

þM2
VA

2
a þ � � �

s 3
75 ð4:27Þ

where ~Fab ¼ 1
2
ϵabcdFcd.

For the vector wave functions AaðrÞ, like for the pion
field ϕðrÞ, we need to give some initial data (boundary
condition), and then the wave function is determined from
the equation of motion of the above action.
Let us consider first the case with no pions, just vector

mesons, i.e. ϕ ¼ 0. At sufficiently large rwe have again the
usual free field decay

AaðrÞ ¼ Aae−MVr; ð4:28Þ

and again, with the additional assumption that σV , the cross
section for the emission of V vector mesons, is obtained
when the emitted vector-meson energy (which we should
calculate) equals the average per vector-meson emitted
energy, i.e.

hk0iffiffiffi
s

p ¼ e−MVbmax ; ð4:29Þ

we obtain

σV ¼ πb2max: ð4:30Þ
Of course, the correct calculation would be the one

where we have both the pions and the vector-meson wave
functions, and then we can calculate σV as above.
The action for only vector mesons with massMV and no

pions is

L¼ l−4

2
41−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4

2
FabFab− l8

�
~FabFab

4

�2

þ l4M2
VA

2
a

s 3
5:

ð4:31Þ

We would like to restrict again the dependence of the
gauge fields to a dependence on ðt; xÞ and furthermore to
only an s dependence, but now with all four vector fields
Aa, with a ¼ 0; 1; 2; 3, since there is no gauge invariance
due to the fact that the vector mesons are massive ones.

Substituting Aa ¼ AaðsÞ in Fab, we find

FabFab ¼ 2½−ðF01Þ2 − ðF02Þ2 − ðF03Þ2 þF2
12 þF2

13�

¼ −8
�
s

�
dA2

ds

�
2

þ s

�
dA3

ds

�
2

þ
�
t
dA1

ds
þ x

dA0

ds

�
2

;

~FabFab ¼ 1

2
ϵabcdFabFcd

¼ 1

2
ϵ0123ð8F01F23 − 8F02F13 þ 8F03F12Þ

¼ 8

�
−8t

dA2

ds
x
dA3

ds
þ t

dA3

ds
x
dA2

ds

�
¼ 0; ð4:32Þ

so that the action for the ansatz AaðsÞ is

L ¼ l−4
�
1 −

�
1 − 4l4

�
s

�
dA2

ds

�
2

þ s

�
dA3

ds

�
2

þ
�
t
dA1

ds
þ x

dA0

ds

�
2
�

þ l4M2
VðA2

0 þ A2
1 þ A2

2 þ A2
3Þ
�

1=2
�
: ð4:33Þ

Note that in this action we can consistently truncate
A0 ¼ A1 ¼ 0, and then the DBI action for A2 and A3 are the
same as for two DBI pions of Heisenberg, for which we
already saw that we need the full nonlinear DBI action.

V. THE PION WAVE FUNCTION

The pion wave function should be a solution of the
equations of motion coming from the pion action.
Following Heisenberg, we have considered only the
1þ 1-dimensional case of ϕðsÞ that describes the physics
near the shock, at s ∼ 0, and the weak-field case ϕðrÞ,
spherically symmetric in the transverse coordinates, so a
function of only r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
.

Note that in general, we do not even need to have an
ansatz depending on both r and s, i.e. ϕðs; rÞ, but rather one
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depending independently on all four coordinates; however
considering ϕðs; rÞ is a simple way to start the analysis.

A. Possible generalizations to ϕðrÞ and ϕðs;rÞ
1. Static spherically symmetric solutions

Consider first spherically symmetric solutions depending
on all three coordinates, i.e. on r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

Moreover, we generalize to n space dimensions. The
Lagrangian (2.1) becomes

L ¼ l−4rn−1
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4ðϕ02 þm2ϕ2Þ

q �
; ð5:1Þ

and its equation of motion is�
ϕ00 þ n − 1

r
ϕ0 −m2ϕ

�
½1þ l4ðϕ02 þm2ϕ2Þ�

− l4ϕ02ðϕ00 þm2ϕÞ ¼ 0 ð5:2Þ

where 0 denotes differentiation with respect to r. After
simplifications, it is rewritten as

ϕ00 þ n − 1

r
ϕ0 −m2ϕ ¼ l4

ϕ02

1þ l4m2ϕ

�
2m2ϕ −

n − 1

r
ϕ0
�
:

ð5:3Þ

a. One-dimensional solution.—In n ¼ 1 space dimension,
the ansatz

ϕðrÞ ¼ A
1þ βr

ð5:4Þ

is an approximate solution. Indeed upon substituting this
ansatz into the equation of motion, we obtain

2β2 −m2ð1þ βrÞ2 ¼ 2β2

1þ ð1þβrÞ2
l4m2A2

; ð5:5Þ

after simplifying by a common factor A=ð1þ βrÞ3. The
ansatz satisfies the equation of motion, if β ≫ m and

2β2

l4m2A2
¼ m2; ð5:6Þ

and then it is valid even in the βr ∼Oð1Þ regime, since then
we can approximate

2β2

1þ ð1þβrÞ2
l4m2A2

≃ 2β2
�
1 −

ð1þ βrÞ2
l4m2A2

�
≃ 2β2 −m2ð1þ βrÞ2:

ð5:7Þ
In conclusion, the solution is

ϕðrÞ≃ A
1þ Arffiffi

2
p

m2l2
; ð5:8Þ

and as we can see, it is parametrized by A, and is valid
for A ≫ m3l2.
However, this solution is only valid in n ¼ 1 space

dimension.
At very large distances, the wave function in any

dimension becomes

ϕðrÞ ¼ Be−mr; ð5:9Þ
which is what Heisenberg considered as well.

2. Solutions of the form ϕðs;rÞ
A possible generalization that would include both the

ϕðsÞ near s¼0 and the ϕðrÞ near r→∞ is ϕðs; rÞ.
Substituting this ansatz into the DBI action, we obtain first

ð∂μϕÞ2 ¼ −4s
�
dϕ
ds

�
2

þ ϕ02; ð5:10Þ

and then for the Lagrangian

L ¼ l−4rn−1

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4

�
ϕ02 − 4s

�
dϕ
ds

�
2

þm2ϕ2

�s 3
5;

ð5:11Þ
where n is now the number of transverse space dimensions
(n ¼ 2 in the physical case). As before, we find the
equation of motion�
ϕ00 þn−1

r
ϕ0−m2ϕ−4

d
ds

�
s
dϕ
ds

��
½1þ l4m2ϕ2�

þ8l4s

�
dϕ
ds

�
2
�
dϕ
ds

þm2ϕ

�
−2m2l4ϕ02ϕ

þn−1

r
l4ϕ0

�
ϕ02−4

�
s
dϕ
ds

�
2
�

−4sl4
�
dϕ
ds

�
2

ϕ00−4l4ϕ02 d
ds

�
s
dϕ
ds

�
þ8l4s

dϕ
ds

ϕ0dϕ
0

ds
¼0;

ð5:12Þ

where the third line contains terms with mixed derivatives.
We can check that again at s≃ 0, ϕ ¼ A

ffiffiffi
s

p
is a solution,

but ϕ ¼ A
ffiffiffi
s

p
fðrÞ is not a solution at nonzero r, since

the leading terms in the equations of motion for such an
ansatz are

0≃ −4
d
ds

�
s
dϕ
ds

�
þ 8l4s

�
dϕ
ds

�
3

¼ −
Affiffiffi
s

p fðrÞ þ Affiffiffi
s

p A2l4f3ðrÞ; ð5:13Þ
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and this equation has as its only solution fðrÞ ¼ �1.
Therefore the solution at nonzero r and s≃ 0 must be
of the type

ϕ≃ A
ffiffiffi
s

p þ snfðrÞ; ð5:14Þ

where n ≥ 1.

B. Delta-function shock wave?

Before we continue with ϕðs; rÞ, we want to address the
issue of a possible delta function shockwave. In the gravity
dual theory, the gravitational shock waves that scatter are
delta-function shock waves [5,14], so one can ask whether
the same happens also in the field-theory picture.
We want then to try a delta-function ansatz for a

ϕ ¼ ϕðx−; rÞ, where x− ¼ ðx − tÞ= ffiffiffi
2

p
,

ϕðx−; rÞ ¼ δðx−ÞΦðrÞ: ð5:15Þ

The equations of motion for ϕðx−; rÞ in n ¼ 2 transverse
dimensions are

ϕ00 þ1

r
ϕ0−m2ϕ¼ l4

ϕ02

1þ l4m2ϕ

�
2m2ϕ−

1

r
ϕ0
�
: ð5:16Þ

Then for the delta-function ansatz, in the denominator on
the right-hand side of Eq. (5.16) the 1 is negligible with
respect to the ϕ2 term (since the whole term is proportional
to a delta function, so the denominator is relevant only on
the delta function, when the value is infinite), and the
equation becomes (after simplifying the common delta
function on both sides)

Φ00 þ 1

r
Φ0 −m2Φ ¼ 2

Φ02

Φ

�
1 −

1

2m2r
Φ0

Φ

�
: ð5:17Þ

But we can easily verify that this equation has no solutions
of the form Ae−mr at large distances, nor of Ar−p type, and
if we use Ae−aρ

p
we find that the only solution is p ¼ 2,

α ¼ −m2=2, i.e. Aem
2r2=2, which is clearly nonphysical.

We do have in fact the solution Aeimr, but it is a complex
solution for a real scalar, and A cosðmrÞ is not a solution
(the equation is nonlinear, so we do not have a super-
position principle). So the conclusion seems to be that this
case ϕ ¼ δðx−ÞΦðrÞ is unphysical.
In fact, there are someways around that. We can consider

a case when the ϕ resembles a delta function, but it has a
finite thickness, and the height of the delta function is not
only finite, but such that the 1 in the denominator of
Eq. (5.16) actually dominates, so we get the equation of
motion

Φ00 þ 1

r
Φ0 −m2Φ ¼ l4Φ02

�
2mΦ −

1

r
Φ0
�
: ð5:18Þ

Another possibility is to add by hand a source
ϕδðx−ÞfðrÞ to the action, leading to the modified equation
of motion

Φ00 þ 1

r
Φ0 −m2Φ

¼ 2
Φ02

Φ

�
1 −

1

2m2r
Φ0

Φ

�
þ l2mΦ

�
1þ Φ02

m2Φ2

�
3=2

fðrÞ;

ð5:19Þ

but we are still left with the issue of understanding the
source-free shock waves like Heisenberg’s.
Instead, we can notice that we do not really need a delta-

function shockwave in xþ; we only need Tþþ to become
infinite at xþ ¼ 0. Normally that happens because of a
δðxþÞ in Tþþ which implies also a δðxþÞ in the field (in the
case of the gravity dual, a delta function in the metric). But
in the case of the solution of Heisenberg, we just have an
energy density that blows up slowly near xþ ¼ 0.
Indeed, near s ¼ 0, we have [see Eq. (2.11)]

H≃ ϕ02

m
ffiffiffi
s

p ∼
l−4x2

ms3=2
; ð5:20Þ

which blows up at s ¼ 0. Moreover, we can calculate Tþþ,
which turns the x2 in the numerator into s, implying
Tþþ ≃ l−4=m

ffiffiffi
s

p
→ 0. That means that there is a source

at s ¼ 0, since Tþþ becomes infinite there, i.e. at xþ ¼ 0
and x− ¼ 0 (two plane waves, travelling in opposite
directions). In the next section we will study the source
of the pion field in more detail.

C. Perturbative solution near r ¼ 0

We now return to ϕðs; rÞ and consider the expansion near
r ¼ 0 of ϕðs; rÞ. We have found the equation of motion
(5.12), and the ansatz (5.14). We first plug this ansatz into
the equation of motion for n ¼ 1, but we find that while at
zeroth order we get zero for A ¼ l−2, at first order we do not
have a cancellation.
It means that we need to consider the next order in

ffiffiffi
s

p
,

namely n ¼ 3=2. Then we can check that the relevant terms
are only

−4
d
ds

�
s
d
ds

�
¼ −

Affiffiffi
s

p − 9f
ffiffiffi
s

p
;

þ8l4s

�
dϕ
ds

�
3

¼ A3l4ffiffiffi
s

p þ 9A2l4f
ffiffiffi
s

p þ � � � ; ð5:21Þ

but now we see that with A ¼ l−2 we cancel both zeroth-
order and first-order terms. Moreover, now we have other
terms in the equation of motion that contribute, in particular
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−m2ϕ − 4
d
ds

�
s
d
ds

�
l4m2ϕ2 þ 8l4sm2ϕ

�
dϕ
ds

�
2

¼ −m2A
ffiffiffi
s

p
− A3l4m2

ffiffiffi
s

p þ 2A3l4m2
ffiffiffi
s

p ¼ 0; ð5:22Þ

but these also cancel!
That means that we need to consider also the second

subleading term in the expansion in s of ϕðs; rÞ,

ϕ ¼ A
ffiffiffi
s

p þ s3=2fðrÞ þ s5=2gðrÞ; ð5:23Þ

and check the terms of order s3=2 in the equation of motion
as well. Incidentally, we can check that considering a power
sα smaller than 5=2 does not work either, since then again
only the two terms above contribute to the second sub-
leading order, the first giving −4α2gðrÞsα−1, and the second
giving þ6αgðrÞsα−1, so they only cancel for α ¼ 3=2,
which is excluded (it is the first subleading term).
Then we obtain

−4
d
ds

�
s
d
ds

�
¼ −

Affiffiffi
s

p − 9f
ffiffiffi
s

p
− 25gs3=2;

þ8l4s

�
dϕ
ds

�
3

¼ A3l4ffiffiffi
s

p þ 9A2l4f
ffiffiffi
s

p þ 27Al4f2s3=2

þ 15A2l4gs3=2 þ � � � ð5:24Þ

The other terms in the first line of Eq. (5.12) give to
order s3=2

s3=2
�
f00 þ n − 1

r
f0 −m2f −m4Aþ 47m2f

�
; ð5:25Þ

the terms in the second line do not contribute to this order,
and the terms in the third line give −A2l4f00s3=2. Summing
up all the contributions, and using the zeroth-order con-
dition A ¼ l−2, we obtain

s3=2
�
27l2f2 − 10gþ n − 1

r
f0 þ 46m2f −m4l−2

�
;

ð5:26Þ

and equating this to zero fixes gðrÞ to be

gðrÞ¼ 1

10

�
27l2f2ðrÞþn−1

r
f0ðrÞþ46m2fðrÞ−m4l−2

�
:

ð5:27Þ

The interpretation is that we can specify arbitrarily the
function fðrÞ, or in another way specify the function

�
s−3=2

dϕ
dr

�����
s¼0

; ð5:28Þ

which is an initial datum on the Cauchy surface s ¼ 0.
Once this is given, the rest of the function ϕ should be fixed
by the equation of motion.

D. Perturbative solution near r ¼ ∞
However, we are interested instead in the behavior at

large, but finite r, needed for the calculation of σtotðsÞ
through bmax.
We know that at small field and derivatives, the DBI

action reduces to the free massive scalar action. Indeed,
viewed as an expansion in l4, or in nonlinearities of the
field, the equations of motion reduce at zeroth order to the
free equation

ϕ00 þ n − 1

r
ϕ0 −m2ϕ − 4

d
ds

�
s
dϕ
ds

�
¼ 0; ð5:29Þ

and so, under the assumption that the s dependence is
subleading, and we can ignore the last term involving only
d=ds, we obtain at mr ≫ 1 the solution

ϕ≃ Ae−mr; ð5:30Þ
as expected. Note that the ϕ0 term in the equations of
motion is subleading in mr and it does not contribute to
this order.
But we can be more precise, since the exact solution to

the free equation of motion is known. If we had n ¼ 3, the
exact solution would be the Yukawa potential,

ϕðrÞ ¼ Ae−mr

r
: ð5:31Þ

For n ¼ 2, the exact solution is a bit more complicated.
We can write the equation of motion at nonzero mass m as

d2ϕ
dðimrÞ2 þ

1

imr
d

dðimrÞϕþ ϕ ¼ 0; ð5:32Þ

which matches the defining differential equations of the
Bessel functions at index ν ¼ 0,

d2Z0

dz2
þ 1

z
dZ0

dz
þ Z0 ¼ 0; ð5:33Þ

and therefore we have

ϕ ¼ Z0ðimrÞ: ð5:34Þ

We want to choose the Bessel function of imaginary
argument that decays exponentially at infinity. This is

K0ðmrÞ ¼ πi
2
Hð1Þ

0 ðimrÞ; ð5:35Þ

giving for the scalar
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ϕðrÞ ¼ AK0ðmrÞ: ð5:36Þ
The asymptotics at mr → ∞ give

ϕðrÞ≃ A

ffiffiffiffiffiffiffiffiffi
π

2mr

r
e−mr; ð5:37Þ

but we should also note the asymptotics at mr → 0, where

K0ðzÞ≃ − ln
z
2
I0ðzÞ≃ − ln

z
2
: ð5:38Þ

To find corrections to this free solution, we could think
of expanding the equations of motion in l4, or equivalently
the mass dimension of the remaining expression (once l4 is
removed), but besides the free terms above, all the other
terms are linear in l4, that is, of mass dimension seven with
respect to the rest.
We can instead take the ansatz that ϕ depends only on r,

and not on s, with a coefficient that is of the order of l4, i.e.

ϕ ¼ AK0ðmrÞ þ BgðrÞ; ð5:39Þ
and B ∝ l4. Then the full equation of motion reduces to

B
�
g00ðrÞ þ 1

r
g0ðrÞ −m2gðrÞ

�
¼ l4ϕ02

�
2m2ϕ −

1

r
ϕ0
�
:

ð5:40Þ
With the assumption that B ∝ l4 we can consider on the

right-hand side only the order-zero term with A, to obtain

B

�
g00ðrÞ þ 1

r
g0ðrÞ −m2gðrÞ

�

¼ ðmlÞ4A3

�
d

dðmrÞK0ðmrÞ
�

2

×

�
2K0ðmrÞ − 1

mr
d

dðmrÞK0ðmrÞ
�
: ð5:41Þ

However, even for that, we can only find the leading-order
solution at mr→∞. Then gðrÞ≃e−3mr=ðmrÞ3=2 solves the
equation to leading order, and we find the solution

ϕ≃ AK0ðmrÞ þ
�
π

2

�
3=2 m2l4A3

4

e−3mr

ðmrÞ3=2 ð5:42Þ

at mr → ∞.

VI. THE SOURCE FOR THE PION FIELD

In this section we would like to understand what is the
source of the pion field, which is supposed to represent the
nucleons. To do so, we first look at the original Born-Infeld
action for nonlinear electrodynamics, in terms of a field
strength Fμν, and apply the lessons learned to our DBI case,
first for a static solution, then for the shock wave.

A. The vector Born-Infeld case

In the original paper of Born and Infeld on nonlinear
electrodynamics [23], the issue of the source for solutions
of the nonlinear Maxwell field was explored, and in fact it
was the crucial motivation for the work: to obtain a smooth
“electron” solution to the equations of motion, free of
singularities.
The BI Lagrangian can be written as

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F −G2

p
− 1; ð6:1Þ

where we defined

F≡ 1

b2
ð~B2 − ~E2Þ; G≡ 1

b2
ð~B · ~EÞ: ð6:2Þ

Using these definitions we can define quantities analogous
to the quantities defined for electromagnetism in a medium,
namely

~H ≡ b2
∂L
∂ ~B ¼

~B −G~Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F −G2

p ;

~D≡ b2
∂L
∂ ~E ¼

~E −G~Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F −G2

p : ð6:3Þ

The equations of motion and Bianchi identities of the BI
Lagrangian, that correspond to Maxwell’s equations of the
linear theory, are

~∇ × ~Eþ ∂0
~B ¼ 0; ~∇ · ~B ¼ 0;

~∇ × ~H − ∂0
~D ¼ 0; ~∇ · ~D ¼ 0: ð6:4Þ

The Hamiltonian density can be written as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P −Q2

p
− 1; ð6:5Þ

where

P ¼ 1

b2
ð ~D2 − ~H2Þ; Q ¼ 1

b2
ð ~D · ~HÞ: ð6:6Þ

The inverse relations for the fields are obtained from the
Hamiltonian as

~B ¼ b2
∂H
∂ ~H

¼
~H þQ~Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P −Q2

p ;

~E ¼ b2
∂H
∂ ~D ¼

~DþQ~Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P −Q2

p : ð6:7Þ

At zero magnetic field, ~B ¼ ~H ¼ 0, the equations of
motion and Bianchi identities reduce to
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~∇ × ~E ¼ 0; ~∇ · ~D ¼ 0; ð6:8Þ

and we also find Q ¼ 0, P ¼ ~D2=b2, G ¼ 0, F ¼ −~E2=b2.

Then ~∇ · ~D ¼ 0 reduces to

d
dr

ðr2DrÞ ¼ 0; ð6:9Þ

which admits a nontrivial solution of the form

De ¼
e
r2
; ð6:10Þ

the same as in Maxwell theory. More precisely, the solution
is at r ≠ 0, which means that we have actually

~∇ · ~D ¼ 4πeδ3ðrÞ; ð6:11Þ
which gives the integral formula (from Gauss’s law)

4πe ¼
Z
Σr

Drσ ¼
Z
Σr

d~S · ~D: ð6:12Þ

So from the point of view of ~D (the field in the medium

in electromagnetism, where ~D ¼ ϵ0 ~Eþ ~P and ~∇ · ~D ¼ 0 in
the absence of external sources, and otherwise just includes
the charges external to the medium) the sources are point-
like as in Maxwell theory.
For a static system we have ~E ¼ − ~∇A0, where A0 is the

zero component of the gauge field vector potential, and it is

related to ~D by

~D¼
~Effiffiffiffiffiffiffiffiffiffiffi
1− ~E2

b2

q ⇒
e
r2

¼Dr ¼
Erffiffiffiffiffiffiffiffiffiffiffi
1−E2

r
b2

q ¼ −A0
0ðrÞffiffiffiffiffiffiffiffiffiffiffiffi

1−A02
0

b2

q ; ð6:13Þ

which implies for the electric field E

−Er ¼ A0
0 ¼ � e=r20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r4=r40
p ; ð6:14Þ

where

r0 ¼
ffiffiffi
e
b

r
ð6:15Þ

is a radius related to the radius of the electron. We then also
obtain the electric potential

A0ðrÞ ¼
e
r0
f

�
r
r0

�
; ð6:16Þ

where

fðxÞ ¼
Z

∞

x

dyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y4

p ; ð6:17Þ

and we obtain that fð0Þ≃ 1.8541 and A0 ≃ 1.8541e=r0.

The finite maximum of the electric field ~E is obtained
at r ¼ 0, and equals e=r20 ¼ b, as expected, since L ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~E2=b2

q
.

As in electromagnetism, we can regard the total chargeQ

in the material as either
R
dV ~∇ · ~D or

R
dV ~∇ · ~E with the

difference that the former expression counts only the
outside charge introduced, whereas the latter expression
counts all the charge, including the polarization response of
the material, which tends to spread out the charge density.
Also now, we can define 4πρ ¼ ~∇ · ~E and find after an

easy calculation that

ρ ¼ e
2πr30

1

ðr=r0Þð1þ ðr=r0Þ4Þ3=2
ð6:18Þ

and we see that this charge density is spread out, going as
1=r7 at r → ∞, but only as 1=r at r → 0. We can also verify
the fact that its integral gives the same result as the integral
of Dr, namely e.

B. The scalar DBI action and its source

1. Static scalar DBI results

A similar thing happens for the scalar DBI action. We
start by reviewing the construction of the static scalar
solutions paralleling the nonlinear electrodynamics solu-
tions, as presented in Ref. [24].
On static solutions, ∂tϕ ¼ 0, the scalar DBI action

reduces to

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~F2

q
; ð6:19Þ

where

~F≡ ~∇ϕ; ð6:20Þ

where ϕ is the DBI scalar. Note then that this action is the

same as the vector BI action above for the case ~B ¼ 0, just
with a different sign inside the square root. Therefore we
can follow the same analysis, and first define

~C ¼ ∂L
∂ ~F ¼

~Fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~F2

p : ð6:21Þ

In terms of it, the equation of motion is

~∇ · ~C ¼ 0; ð6:22Þ

which is solved by

Cr ¼
e
r2
; ð6:23Þ
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so that really we have ~∇· ~C¼4πe in three spatial dimen-
sions. Therefore the solution for the scalar is given by

Fr ¼ ∂rϕ ¼ e=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2=r4

p ; ð6:24Þ

which is called the “catenoid.” The solution has a horizon-
like structure at r ¼ ffiffiffi

e
p ≡ r0, due to the fact that it has the

interpretation (in the case it is the action of a D-brane) of
one half of a D-brane–anti-D-brane solution connected by a
throat.

2. The DBI scalar shock wave

In the spirit of the model of Ref. [8] we now consider a
four-dimensional scalar field ϕðr; sÞ. In particular ϕðsÞ can
be recast from a 1þ 1-dimensional action which for the
massless case reads

L ¼ l−4

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4l4s

�
dϕ
ds

�
2

s 3
5: ð6:25Þ

We define first the analog of the electric field from the
Born-Infeld paper,

Es ¼ 2
ffiffiffi
s

p dϕ
ds

: ð6:26Þ

In terms of it, the Lagrangian becomes

L ¼ l−4
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

s

q �
; ð6:27Þ

just like the BI vector case. Then we also define the analog
of the electric induction,

Ds ¼
∂L
∂Es

; ð6:28Þ

which gives

Ds ¼
Esffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l4E2
s

p : ð6:29Þ

The equation of motion (the analog of Maxwell’s
equation) is

d
ds

ð ffiffiffi
s

p
DsÞ ¼ 0; ð6:30Þ

which is solved by

Ds ¼
Affiffiffi
s

p ; s > 0: ð6:31Þ

Causality then requires that we have Ds ¼ 0 for s < 0.
Then by inverting DsðEsÞ we get

Es ¼
Dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l4D2
s

p ¼ A=
ffiffiffi
s

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4A2=s

p : ð6:32Þ

But sinceDs ¼ 0 for s < 0, we also have Es ¼ 0 for s < 0,
which means that really,

Ds ¼
Affiffiffi
s

p θðsÞ; Es ¼
AθðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ l4A2

p : ð6:33Þ

We can also integrate the above to find that ϕ is given by

ϕ ¼
Z

ds
Es

2
ffiffiffi
s

p ¼ A
2

Z
ds

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ l4A2Þ

p
¼ A log

� ffiffiffi
s

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ l4A2

p

l2A

�
; ð6:34Þ

at s > 0 and 0 at s < 0 which has the same structure
as Eq. (2.8).
This reduces at small s to

ϕðsÞ≃ l−2
ffiffiffi
s

p
θðsÞ; ð6:35Þ

which is the same solution as Heisenberg’s. Note that the
constant A determining Ds is arbitrary, even though ϕðsÞ
near s ¼ 0 is completely determined.
Then the electric field is a step function,

Es ¼ 2
ffiffiffi
s

p dϕ
ds

≃ l−2θðsÞ; ð6:36Þ

and the electric induction is

Ds ¼
Affiffiffi
s

p θðsÞ: ð6:37Þ

Plugging this back into the equation of motion forDs, for

the analog of ρext ¼ ~∇ · ~D we really have,

d
ds

ð ffiffiffi
s

p
DsÞ ¼

d
ds

ðAθðsÞÞ ¼ AδðsÞ: ð6:38Þ

So as in the BI case, there is a source term, which is a
delta function when viewed from the point of view of the
inductionDs (i.e., it is an “external source” to the medium).
The value of the charge, A, is arbitrary, even though ϕðsÞ
near s ¼ 0 is completely determined.
We can also define the equivalent of the ~∇ · ~E ¼ ρ, the

total charge (including the one due to the “polarization of
the medium”), which is spread out. We define the density

ρ ¼ d
ds

ð ffiffiffi
s

p
EsÞ ¼ A

d
ds

� ffiffiffi
s

p
θðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ l4A2
p

�

¼ l4A2

2
ffiffiffi
s

p ðsþ Al4A2Þ3=2 θðsÞ: ð6:39Þ
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Note that we dropped a term coming from the derivative
of θðsÞ, proportional to ffiffiffi

s
p

δðsÞ, since this is zero. We see
that this charge drops at infinity as 1=s2, and at 0 only as
1=

ffiffiffi
s

p
, and integrates to the same total value as the one

defined via Ds,

A
ffiffiffi
s

p
θðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ l4A2
p

����∞
0

¼ A: ð6:40Þ

In conclusion, there is an “external source” located at
s ¼ 0 (the shock’s position), with an arbitrary charge, but
the “in-medium” source is spread out, over an s of the order
of l4A2.

VII. THE CROSS SECTION

We can now finally consider the calculation of cross
sections arising from the Heisenberg model.

A. Corrections away from the Froissart limit

The first issue to address is of a systematic expansion away
from the limit of Froissart bound saturation. It is clear that by
considering a ϕðrÞ that is not yet completely dominated by
the e−mr term, we can find corrections to the Froissart
behavior of the cross section. If we have an exact wave
function,we can obtain a σtotð~sÞ thatwould be different in the
leading behavior, like a power law σtotð~sÞ ∝ ~sα, appearing
before the onset of Froissart saturation.

1. Corrections to leading behavior

We first consider corrections to the e−mr behavior of
ϕðrÞ, which were found in Eq. (5.42), with the free part
being asymptotically (5.38). The e−3mr behavior is sub-
leading with respect to the 1=

ffiffiffi
r

p
in the first factor, so we

consider

ϕðrÞ ∝ e−mrffiffiffiffiffiffi
mr

p : ð7:1Þ

Then as usual, the emitted energy is proportional to
ϕðbÞ ffiffiffi

~s
p

, and when it gets down to hk0;πi (the average
per pion emitted energy), we reach bmax. Thus

ffiffiffi
~s

p e−mπbmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bmaxmπ

p ≃ hk0;πi; ð7:2Þ

giving

bmax ≃ 1

mπ
ln

ffiffiffi
~s

p

hEπi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð ffiffiffi

~s
p

=hk0;πiÞ
q

≃ 1

mπ
ln

ffiffiffi
~s

p

hk0;πi
−

1

2mπ
ln

�
ln

ffiffiffi
~s

p

hk0;πi
�
; ð7:3Þ

and σtotð~sÞ ¼ πbmaxð~sÞ2.

Here we should make a comment on the gravity dual
calculation. In Ref. [14], the leading behavior for σtot ¼
πb2max was obtained, and it is easy to find from the result in
that paper (see Eq. 4.16 of that reference and below it) that
since one obtains an Aichelburg-Sexl shockwave profile
ΦðrÞ ∝ e−mr=

ffiffiffiffiffiffi
mr

p
that exactly matches the Heisenberg

model profile found here [Eq. (5.37)], the subleading
correction for the gravity dual cross section also exactly
matches Eq. (7.3), with the correct coefficient. In Ref. [25],
the same result was found from the gravity dual, with a 1=4
coefficient instead of our 1=2, but that is due to their naive
starting point adopted from Ref. [13], of considering static
point masses, and then making them traceless by hand,
instead of considering the more rigorous AS shock-wave
scattering that are correctly generated by ultrarelativistic
photons and are full nonlinear solutions (as needed for the
calculation of the position of the dual black hole horizon),
as was explained in Ref. [14]. Taking these correct shock
waves does not affect the leading cross section, but it affects
the coefficient of the subleading term.

2. Possible new regime

But besides the small corrections to the Froissart
saturation regime above, we can in principle have also a
situation where a new regime for σtotð~sÞ appears.
To avoid the leading Froissart behavior, we must avoid

the exponential e−mr for r ¼ bmax, so we need to have
mπbmaxð~sÞ < 1. This can indeed exist in some energy
regime ~s, for small mass m ¼ mπ ≪ l−1.
Since the scale l in Heisenberg’s DBI action can

presumably be identified with ΛQCD, and ΛQCD ∼ 2mπ ,
the corrections of order ðmlÞ2 ∼ ðmπ=ΛQCDÞ2 ¼ 1=4 are
small, so it could be a good approximation.
But ifml ≪ 1, there is a regime where the wave function

is linear, and when solving for ϕðrÞ from the equation of
motion we never get into the nonlinear regime. That means
that the full solution to the free equation, ϕ ¼ AK0ðmrÞ, is
exact. At distances r ≪ m−1, we obtain

ϕðrÞ≃ −A ln
mr
2

: ð7:4Þ

Then the condition for bmax at energies ~s for which the
above ϕðrÞ are still in the linear regime is

ffiffiffi
~s

p �
−
1

2
lnðmπbmaxð~sÞÞ

�
¼ hk0;πi; ð7:5Þ

giving

bmaxð~sÞ ¼
1

mπ
e−2

hk0;π iffiffi
~s

p
⇒

σtotð~sÞ ¼ πbmaxð~sÞ2 ¼
π

m2
π
e−4

hk0;π iffiffi
~s

p
; ð7:6Þ
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for
ffiffiffi
~s

p
> hk0;πi, which gives a mildly increasing depend-

ence, that could be easily mistaken for a small power law or
the log2 behavior of Froissart saturation.
In conclusion, such a new energy regime could appear in

QCD just before the onset of Froissart saturation, but it
would be hard to distinguish experimentally from the small
power-law (“soft Pomeron”) behavior, or from the Froissart
saturation behavior.

B. Black disk model and ratio of elastic
to total cross section

Until now we have discussed the total cross section, or in
the case of several mesons, also individual meson cross
sections. But we want now to discuss also the elastic cross
section. For that however, we need a quantum amplitude,
whose forward part gives the total cross section, and whose
absolute value squared gives the elastic cross section. Note
that there are QCD models that try to describe the Froissart
behavior and perhaps the total elastic cross section, like
black disk eikonal ones [26], dynamical gluon mass ones
[27], QCD minijet ones [28] (also emphasizing the effect of
soft gluons and the IR dynamics, as done here), or Ref. [29].
But in these QCD cases, it was crucial that one could say
something about the quantum amplitude itself.
Since we do not have a quantum amplitude, only a total

cross section, we can engineer an amplitude that gives this
total cross section, and from it calculate the elastic
amplitude. The simplest model is a black disk eikonal
amplitude, with S matrix S ¼ eiδ and ImðδÞ ¼ ∞ for b ≤
bmaxð~sÞ and with δ ¼ 0 for b > bmaxð~sÞ. This reproduces
the cross section πbmaxð~sÞ2.
For the scattering of massless states, we have in general

1

~s
Að~s; tÞ ¼ −i

Z
d2bei~q·~bðeiδðb;~sÞ − 1Þ

¼ i
Z

bmaxð~sÞ

0

bdb
Z

2π

0

dθeiqb cos θðeiδ − 1Þ; ð7:7Þ

where ~b is the impact parameter (transversal), and its
Fourier conjugate is ~q, with ~q2 ¼ t.
For the black disk eikonal,

1

~s
Að~s; tÞ ¼ 2πi

bmaxð~sÞffiffi
t

p J1ð
ffiffi
t

p
bmaxð~sÞÞ: ð7:8Þ

The total cross section is found from

1

~s
ImAelasticð~s; t ¼ 0Þ ¼ σtotðk1; k2 → anythingÞ; ð7:9Þ

and it is easy to calculate that for the black disk eikonal we
get σtot ¼ πbmaxð~sÞ2.
We should note here that most of the time, like

for instance in Ref. [26], the black disk eikonal model
starts with a partial amplitude alðkÞ ¼ ðe2iδlðkÞ − 1Þ=ð2iÞ,

suggested by the partial-wave expansion, which is a factor
of 2 smaller than Eq. (7.7). After the normalization of the
cross section is properly taken into account, this leads to
σtot ¼ 2πb2max and, since σtot ∼ Ima, but σel ∼ jaj2, so a
rescaling of a leads to a rescaling of σel=σtot, to σel ¼ πb2max.
But our model, also used for instance in Ref. [14], is
physically different, since we considered simply, as usual,
the amplitude as the Fourier transform of the T-matrix, and
S ¼ 1þ iT ¼ eiδ. This leads to σtot ¼ πb2maxð~sÞ, which we
believe is a model more deserving of the name black disk, as
the total cross section equals the classical one. Then, as we
shall see, we obtain σel=σtot ≃ 1=4, instead of 1=2.
In the case that the particles are massive with mass m

instead, the 1=~s is replaced by 1=ð2pCMECMÞ. But if
m1 ¼ m2 ¼ m, ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
CM þm2

p
¼ ffiffiffi

~s
p

, so we have

2ECMpCM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sð~s − 4m2Þ

q
: ð7:10Þ

On the other hand, for the differential cross section, we
have the center-of-mass formula

dσel
dΩ

����
CM

¼ jAj2
64π2E2

CM
; ð7:11Þ

and the relativistically invariant differential cross section is

dσ
dt

¼ jAð~s; tÞj2
16π ~sð~s − 4m2Þ : ð7:12Þ

For the black disk eikonal, we obtain

σelastic ¼
4π2b2maxð~sÞ~sð~s − 4m2Þ

16π~sð~s − 4m2Þ
Z

dt
t
½J1ð

ffiffi
t

p
bmaxð~sÞÞ�2;

ð7:13Þ

and since σtot ¼ πb2maxð~sÞ, we get

σelastic
σtot

¼ 1

4

Z
dt
t
½J1ð

ffiffi
t

p
bmaxðsÞÞ�2: ð7:14Þ

It remains to define the range of integration for t, given ~s.
In the center-of-mass system,

~s ¼ E2
CM;

t ¼ ð~pCM − ~kCMÞ2 ¼ k2CM þ p2
CM − 2kCMpCM cos θ;

ð7:15Þ

where ~pCM and ~kCM are momenta of the same particle,
before and after the collision in the center of mass. Then the
range of integration for t, given ~s, which fixes pCM and
kCM, is
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t ∈ ½ðpCM − kCMÞ2; ðpCM þ kCMÞ2�: ð7:16Þ

But pCM¼kCM and
ffiffiffi
~s

p
=2¼ECM=2¼E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
CMþm2

p
,

meaning that

pCM ¼ kCM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s
4
−m2

r
; ð7:17Þ

and then the range of integration of t is

t ∈ ½0; ~s − 4m2�; ð7:18Þ
so that finally

σelastic
σtot

¼ 1

4

Z
~s−4m2

0

dt
t
½J1ð

ffiffi
t

p
bmaxð~sÞÞ�2: ð7:19Þ

By using the recurrence relations for JνðxÞ, we do the
integral and obtain

σelastic
σtot

¼ 1

4
½1 − ðJ0ðjbmaxð~sÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s − 4m2

p
ÞÞ2

− ðJ1ðjbmaxð~sÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s − 4m2

p
ÞÞ2�: ð7:20Þ

At large z,

J0ðzÞ≃
ffiffiffiffiffi
2

πz

r
cosðz − π=4Þ;

J1ðzÞ≃
ffiffiffiffiffi
2

πz

r
cosðz − 3π=4Þ ¼

ffiffiffiffiffi
2

πz

r
sinðz − π=4Þ; ð7:21Þ

so that finally we obtain

σelastic
σtot

≃ 1

4

�
1 −

2

πbmaxð~sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s − 4m2

N

p �
ð7:22Þ

where we put mN for a nucleon or nucleus mass, corre-
sponding to the case when we collide nucleons or nuclei.
Then from the Heisenberg model bmaxðsÞ≃ 1=mπ lnðs=s0Þ,
so that the sought-for ratio is

σelastic
σtot

≃ 1

4

�
1 −

2mπ

π lnð~s=s0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s − 4m2

N

p �
; ð7:23Þ

asymptoting very fast to 1=4.
This compares very well with the experimental results

from the TOTEM experiment [30].

VIII. HEISENBERG MODEL AND HOLOGRAPHY

In Sec. III C we described a sigma model in AdS space.
This can be directly related to another holographic model,
the “hard-wall” model, which is an AdS background
chopped off at a certain value of the radial coordinate.
This scenario is addressed in the following subsection. We
then present an alternative approach that includes a system-
atical analysis of the relations between Heisenberg’s model
and the holographic description of a proton-proton

scattering. This in fact involves two steps. In the first we
will establish the relations between the DBI action used in
Heisenberg’s model and the DBI action that emerges as the
action of flavor branes in confining backgrounds. The
second step is to lay out the holographic dual of scattering
of baryons and to relate it to the extraction of the cross
section from Heisenberg’s model. The two steps are
described in the second and third subsections of this section.

A. The relation to the holographic “hard-wall” model

The remarkable fact is that, even though the Heisenberg
model was proposed before string theory was discovered,
the DBI action used by Heisenberg emerges naturally in
holographic models of QCD since it relates to the effective
action of open strings. In the simplest model for high-
energy QCD scattering introduced by Polchinski and
Strassler, one considers an AdS5 space,

ds2 ¼ r2

R2
d~x2 þ R2

dr2

r2
; ð8:1Þ

cut off at an rmin ¼ R2Λ, with Λ identified with the (pure)
QCD scale (glueball scale). It was soon realized that one
can think of the IR cutoff as a dynamical IR brane (like in
the Randall-Sundrum model), and the appropriately nor-
malized fluctuation in the position rmin, the scalar ∼ϕ, can
be identified with the pion in QCD. But the action for the
fluctuation in the position of a brane is exactly the DBI
action!
The only nontrivial part of the action is the potential for

the brane position, which can appear, depending on the
mechanism, either inside or outside the square root.
The picture of high-energy scattering is also similar in the

gravity dual [5,14–18]. In a purely gravitational theory, we
have gravitational shock-wave collision, happening near the
IRcutoff, creating a blackholeon the IRcutoff, beingmapped
to the pion field shock-wave collisions creating a fireball. But
more precisely, when we consider also the fluctuation of the
IR cutoff giving the pion, we have the same picture, of pion
field shock waves colliding and creating a fireball.
Note that the presence of an infinite number of higher-

derivative terms in the DBI action is, from the QCD point of
view, related to the chiral symmetry (chiral perturbation
theory), whereas in the gravity dual this symmetry becomes
geometrized, and the action is determined by themotion of a
D-brane in a symmetric background. In the hard-wallmodel,
this is somewhat obscured, as we only have the translational
symmetry broken by the position of the D-brane.

B. The DBI action of flavor branes in confining
backgrounds

Heisenberg’s model assumes that the scalar fields that are
in charge of the interaction between nucleons are governed
by a DBI action in flat spacetime. Holography provides
dual string descriptions to certain strongly coupled gauge
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dynamical systems. As was mentioned above, the DBI
action is a basic tool in the toolkit of string theories. Thus,
an obvious question to ask is whether one can relate
Heisenberg’s model to a holographic description of pro-
ton-proton scattering, and in what way. To answer this
question one has to address first the issue of what is the
holographic laboratory dual of QCD in its confining phase.
The basic AdS5 × S5 string theory, the dual of N ¼ 4

SYM is clearly not the right setup. It is both conformal and
maximally supersymmetric. One has to deform the geomet-
rical background in such away that the isometry group is not
SOð4; 2Þ × SOð6Þ but rather only the four-dimensional
Poincaré symmetry. Obviously the desired background
should be equipped with a scale which breaks scale
invariance. To check whether a given background corre-
sponds to a boundary confining field theory, one should
investigate the stringy dual of the Wilson line. A necessary
condition for a “confining background” is that any rectan-
gular Wilson line along one of the space directions and the
time direction should admit a confining area-law behavior.
In Ref. [31] it was shown that this is achieved provided that
either gttgxxðuÞ has a nonvanishing minimum value or that it
does not vanish at the value of the radial coordinate uwhere
gttguuðuÞ → ∞, and where gtt, gxx and guu are the metric
components along time, the space direction of the Wilson
line, and the radial direction respectively. Not surprisingly
the AdS5 × S5 background does not obey this requirement.
A close cousin of this background that does admit confine-

ment is the “hard-wall model” discussed in the previous
subsection where one, by hand, chops off the radial direction
to be u ≥ uΛ where uΛ is a scale in the bulk that corresponds
to ΛQCD of the boundary confining gauge theory. This
however is not a solution of the equations of motion.
A prototype confining background that is a solution is

the AdS5 background with one spatial coordinate compac-
tified [32] on a circle in such a way that the two-
dimensional manifold spanned by the radial direction
and the circle has a cigar-like geometry. It is easy to check
that upon imposing antiperiodic boundary conditions for
fermions, the only massless fields of the dual large-Nc
gauge theory are only the gauge fields and all their
supersymmetric partners become massive. In that way
supersymmetry is broken and the dual field theory is that
of pure large-Nc gauge theory in three spacetime dimen-
sions. To get a gravity model dual of four-dimensional
confining large-Nc gauge theory, one can compactify the
near-horizon background of a large number of D4 branes
[33] rather than the AdS5 × S5 model which is the back-
ground of a large number of D3 branes. In fact the dual
gauge theory is an effective confining theory with energies
smaller than 1

R where R is the radius of the compact circle
which maps into the mass of the dual glueballs. There are
several other solutions of the ten-dimensional supergravity
equations of motion that admit confinement but with no
loss of generality we will discuss here only this model.

To incorporate in the gravity side the quark degrees of
freedom one introduces Nf flavor D-branes. For Nf ≪ Nc
one can neglect the backreaction of the flavor brane on the
bulk and hence treat them as probe branes. In the Sakai-
Sugimoto model [19] a stack of Nf D8 and a stack of Nf

anti-D8 branes are placed so that asymptotically at large
radial direction the transverse direction to their worldvo-
lumes is along the compact circle x4.
In the IR in the region of the tip of the cigar the two stacks

of branes have to merge into each other hence breaking the
originalULðNfÞ × URðNfÞ chiral symmetry into a diagonal
subgroup of UDðNfÞ. In the original model, the U-shaped
braneswere in an antipodal setupu0 ¼ uΛ; see the right panel
of Fig. 2. This was generalized (see the left panel) to
incorporate an additional parameter u0 ≠ uΛ [20] which,
as will be shown below, is crucial for coupling the protons to
pions in theholographic picture. The physics of the degrees of
freedom that resides on the flavor branes, namely theUðNfÞ
gauge fields and the scalars in the adjoint of theUðNfÞ group,
is described by a DBI action. In fact the action also includes,
on top of the DBI action, a CS term. That is obviously where
Heisenberg’s model and holography meet. The action on the
flavor branes in the Sakai-Sugimoto model reads

SDBI ¼ T8

Z
d9σe− ~ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½∂μXi∂νXjgijðXÞ þ 2πα0Fμν�

q
;

ð8:2Þ
where the dilaton ϕ, the metric gij and the Ramond-Ramond
(RR) four-form are given by [20]

ds2 ¼
�

u
RD4

�
3=2

½−dt2 þ δijdxidxj þ fðuÞdx24�

þ
�
RD4

u

�
3=2

�
du2

fðuÞ þ u2dΩ2
4

�

F4 ¼
2πNc

V4

ϵ4; eϕ ¼ gs

�
u

RD4

�
3=4

;

R3
D4 ¼ πgsNcl3s ; fðuÞ ¼ 1 −

�
uΛ
u

�
3

; ð8:3Þ

FIG. 2 (color online). On the right side we have the antipodal
setup of the Sakai-Sugimoto model where u0 ¼ uΛ. On the left
side we have the generalized nonantipodal setup.
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where x4 is the coordinate of the compactified circle, V4 is
the volume of the unit four-sphere Ω4 and ϵ4 is its
corresponding volume form. Upon inserting the metric and
the dilaton one finds, according to the general analysis in
Sec. IV B,

SDBI ¼ ~T8

Z
dtd3xdx4ϕ4

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðϕÞ þ

�
RD4

ϕ

�
3
�
∂μϕ∂μϕþ 1

fðϕÞ ð∂x4ϕÞ2
�s
;

ð8:4Þ

where ~T8 ¼ T8Ω4=gs and to connect to the rest of the
paper we denoted the radial coordinate u by ϕ.
The fluctuations of ϕ translate using the dictionary of

holography to scalar mesons. To extract the spectrum of the
latter one considers first a profile of the flavor brane given
by ϕclðx4Þ. One then introduces the fluctuations of ϕ in the
following form:

ϕðx4; xμÞ ¼ ϕclðx4Þ þ
X
n

δϕnðxμÞζnðx4Þ: ð8:5Þ

The lowest mode of the fluctuating field ϕ0 should be
identified with the scalar field ϕðxμÞ in the Heisenberg
model. Next one expands the DBI action to quadratic order
in ϕ, integrates over the x4 direction, and derives a massive
spectrum for the δϕnðxμÞ. Herewe do not want to expand the
square root but rather maintain the full tower of derivatives
of the field. The outcome of the integration of the ζnðx4Þwill
bemass terms of the formm2

nϕ
2 plus terms higher order inϕ.

We assume here that the truncation to only the mass term in
the expansion of the DBI action can be translated to having a
mass term in the four-dimensional DBI itself. In that case the
action takes the form

SDBI¼ ~T8

Z
dtd3xϕ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðϕÞþ

�
RD4

ϕ

�
3

½∂μϕ∂μϕþm2ϕ2�
s

:

ð8:6Þ

The equation of motion that is associated with the action
(8.6) for them ¼ 0 case can bewritten in the following form:�
1−

�
uΛ
ϕ

�
3
��

8− 5

�
uΛ
ϕ

�
3

þ
�
RD4

ϕ

�
3

× ð∂μϕ∂μϕ− 2ϕ∂μ∂μϕÞ
�

þ 8

�
RD4

ϕ

�
3∂μϕ∂μϕ− 2

u3ΛR
3
D4

ϕ6
ð∂μϕÞ2− 2

R6
D4

ϕ6
½ð∂μϕÞ2�2

þ 2

�
RD4

ϕ

�
6

ϕ∂μϕ½−ð∂μϕÞ∂ν∂νϕþð∂νϕÞ∂μ∂νϕ� ¼ 0:

ð8:7Þ

We leave the investigation of the relation between the
solution of the DBI action given here and the DBI in flat
spacetime used in the Heisenberg model to a future
investigation.
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FIG. 4 (color online). ϕðtÞ as a function of t for m
l ¼ 1.
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FIG. 3 (color online). ϕðtÞ as a function of t for m
l ¼ 0.1.
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FIG. 5 (color online). ϕðtÞ as a function of t for m
l ¼ 5.
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C. A holographic description of the
proton-proton scattering

So far we have discussed the holographic laboratory and
its relation to the DBI action applied in Heisenberg’s
model. Next we would like to see what is the relation
between the cross section of a proton-proton scattering in
Heisenberg’s model and the corresponding cross section in
a holographic setup that is associated with a confining
theory equipped with flavor degrees of freedom. Here for
concreteness we will use the generalized Sakai-Sugimoto
model. A stringy realization of a baryon in this model [34]
is that of a baryonic vertex made out of a D4 brane that
wraps the four-cycle and is connected by Nc strings to the
Nf probe flavor branes [35]. A priori the baryonic vertex
could have been located in the generalized Sakai-Sugimoto
model in any place below the flavor brane, but in Ref. [36]
it was shown that in fact it must be immersed on the flavor
brane. The interaction between two protons in this setup is
that of two baryonic vertices each connected to Nc strings
that stretch on the flavor branes. The scattering of such two
objects is obviously very complicated. Instead it was shown
in Ref. [21] that one can view the baryon as a flavored
gauge instanton. This follows from the fact that the
wrapped D4 brane is a point on the four-dimensional part
of the worldvolume of the flavor brane which is spanned by
the ordinary three space coordinates and the radial direc-
tion. Alternatively it can be shown by expanding the flavor
gauge DBIþ CS actions, keeping only the leading-order
UðNfÞYMþ CS action. The five-dimensional action takes
the form

S ¼ SYM þ SCS;

SYM ≈
Z

d4x
Z

dz
1

2g2YMðzÞ
trðF 2

MNÞ;

SCS ¼
Nc

16π2

Z
Â∧trF2 þ Nc

96π2

Z
A∧F̂2; ð8:8Þ

where near the bottom of the U-shaped flavor branes we
have

1

2g2YMðzÞ
¼ NcλMKK

216π3

�
ζ þ 8ζ3 − 5

9ζ
M2

KKz
2 þOðM4

KKz
4Þ
�
:

ð8:9Þ

Here F is the UðNfÞ gauge field, and A and Â denote the
gauge one-forms associated with the SUðNfÞ and Uð1Þ
subgroups respectively. We made a coordinate transforma-
tion from ðxμ; x4Þ to to a five-dimensional conformal metric

ds2 ¼ ðuðzÞRD4
Þ3=2ð−dt2 þ dx2i þ dz2Þ, ζ ¼ u0

uΛ
. Based on this

action it was further shown that the static properties
extracted from this model are similar to those derived
from the Skyrme model.

Next we would like to examine to what extent
Heisenberg’s treatment of the scattering of a proton on a
proton translates into a scattering process of two instantons
in the holographic laboratory. The interaction of the latter
can be divided into three zones [37]. In the far zone when
the distances between the two instantons is much larger
than the inverse of the dual of ΛQCD the interaction is
dominated by the exchange of the lightest meson. In the
isoscalar channel it was found that the repulsion, due to the
exchange of vector mesons, is stronger than the attraction,
due to the exchange of scalar mesons, since the lightest
meson on the latter type is heavier than the lightest vector
meson. In the isovector channel it is obvious that the
lightest meson is the pion and the exchange of it yields an
attraction. In the near zone, using the solution that carries
instanton number two, one finds that there is only a
repulsive hard core interaction. In the intermediate zone
there is a repulsion due to the interaction of the instanton
density with the Uð1Þ of the UðNfÞ flavor gauge group.
However, as was shown in Ref. [38] there is also an
attractive force due to the interaction of the instanton
density with the scalar field associated with the fluctuation
of the D8 branes. The action of this scalar takes the form

Sϕ ¼ SDBI þ
Nc

16π2

Z
d4x

Z
dzCðzÞ

× trðΦFMNFMNÞ þ � � � ; ð8:10Þ

where CðzÞ measures the ratio of the attractive to the
repulsive forces

Fa

Fr
¼ C2ðzÞ ¼ 1 − ζ−3

9

�
u0
uðzÞ

�
8

≤
1

9
< 1: ð8:11Þ

Note that for self-dual (instanton) configurations,
Tr½FMNFMN � ¼ Tr½F∧F� and hence the scalar field that
originates from the brane fluctuations couples to the
instanton density, namely to the proton density.
Thus, in a holographic description of the interaction

between two protons, both in the intermediate as well as in
the far zone, the interaction is mediated by a scalar field that
is governed by a DBI action. The DBI action (8.4) is not the
one Heisenberg used but rather a DBI of a scalar in a curved
background. The source of the scalar field and its coupling
to the proton given in Eq. (8.10) is different from the source
of the scalar field discussed in Sec. V, but a fixed gauge
field profile will generate a function fðrÞ in the action as in
Eq. (5.19), or an implicit external source as in Eq. (6.37).

IX. SUMMARY AND OPEN QUESTIONS

As was explained in the Introduction, in this paper we
addressed four aspects of Heisenberg’s model of the
scattering of nucleons.
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(i) We elaborated on, and gave further supporting
evidence for the model. We made an analysis of
the energy of the scalar field, and the conditions
under which we obtain the (almost) saturation of the
Froissart bound. We have analyzed what happens
when we go from a 1þ 1-dimensional solution to a
3þ 1-dimensional one ϕðs; rÞ. We have understood
the implicit source in the Heisenberg solution by
analogy with the electromagnetic Born-Infeld ac-
tion: there is an “external” δðsÞ source that is “spread
out” by the medium. One can also consider δðx−Þ
shock-wave solutions by adding an explicit source in
the Lagrangian. By using a perturbative ϕðs; rÞ, we
have obtained corrections away from the maximal
Froissart saturation behavior, as well as a new
regime for σtotðsÞ.

(ii) We examined the uniqueness of the DBI action in
terms of giving the (almost) saturation of the bound.
We have found that, perhaps surprisingly, no action
with a potential interaction, or with a finite number
of higher-derivative terms can do the job. The DBI
action can do the job, though we have not been able
to prove that another action with an infinite number
of higher-derivative terms cannot do the job as well.

(iii) We proposed and analyzed several generalizations of
the Heisenberg model. We added a general potential
inside the square root, instead of just the mass term
and we considered a sigma model with several scalar
mesons. We considered a “curved-space” generali-
zation inspired by holography, in particular the
“highly effective action” of Ref. [10] for the case
of single scalar in AdS5, when we replace ∂μϕ∂μϕ
by 1

ϕ4 ∂μϕ∂μϕ. By considering a “black disk” type of

amplitude in the sense of Ref. [14], we have
obtained also a value for the ratio of the elastic to
the total cross section, σel=σtot that asymptotically
goes to 1=4. We note that the more common model
in for instance Ref. [26] would give 1=2, but the
experimental evidence points towards 1=4.

(iv) We have considered the relation of the Heisenberg
model and the DBI action he considered to two
holographic approaches to proton-proton (or nu-
cleon-nucleon) scattering: a simple hard-wall model,
and a more precise model based on flavor branes in
confining backgrounds.

In this paper we have just explored the tip of the iceberg.
There are a handful of additional open questions that are
awaiting further investigation. Here we list a few of them.

(i) Probably the most interesting topic related to realistic
high-energy scattering is performing a precise com-
parison between the results of Heisenberg’s model
and experimental data of high-energy scattering of
nucleons and of nuclei. One can deduce the scattering
total cross section and the ratio between the elastic
and total cross sections not only for the asymptotic

range of energies as was discussed in Sec. VII A. In
Sec. IV we analyzed several possible generalizations
of the model, and in Sec. VIII we discussed the
relation to certain holographic models. These devia-
tions from the original model can also be confronted
with experimental data. One would like to extract the
values of the parameters of the various models that
admit the best fit to the data, in particular the mass of
the scalar particle that mediates the interaction which
we referred to as the “pion” in this paper.

(ii) It is well known that there are two approaches for
phenomenologically fitting the experimental data.
One is based on the Froissart bound, namely σtot ∼
log2ðsÞ and the other on an exchange of Reggeons
and Pomerons between the two scattering nucleons.
In this case one uses a relation of the form
σtot ∼ as−0.47 þ bs0.08. Both approaches yield a rea-
sonable fit (see Ref. [6] for a possible way to connect
the gravity dual picture of gravitational shock-wave
scattering to the soft Pomeron behavior). Thus, a
natural question to ask is what is the relation
between the two models? In Sec. VIII we have
attempted to relate the model to a holographic model
of scattering of nucleons. The latter is an approxi-
mated picture of a fully stringy description of the
scattering process. The exchange of a Reggeon and a
Pomeron seems closely related to an exchange of an
open and a closed string. Hence one may be able to
find a direct relation between the two approaches.

(iii) One natural generalization of the model that was
not discussed here but in fact is quite common in
implementing the DBI action in holography is the
non-Abelian DBI model. To incorporate the (flavor)
non-Abelian nature of the pions is the analog of
using Nf probe flavor branes rather than a single
one in holographic models. In both cases the non-
Abelianization will provide further structure. A first
attempt with the non-Abelian model was presented
in Ref. [24].

(iv) Describing the scattering of two nucleons as a
scattering of two shock waves is clearly only an
approximation and one may attempt to introduce a
correction beyond the shock-wave limit. Similarly
one can introduce corrections to the black diskmodel.
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APPENDIX A: AN ALTERNATIVE METHOD OF
DETERMINING THE SCALAR FIELD ENERGY

The Hamiltonian density was given in Eq. (2.11). It reads

H ¼ p _ϕ − L ¼ l−4 þ ð∇ϕÞ2 þm2ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4½ð∂μϕÞ2 þm2ϕ2�

q − l−4: ðA1Þ

To determine the Hamiltonian density in momentum
space namely HðkÞ is a nontrivial task for the DBI action
since we cannot simply, as is done for ordinary free field
theories, substitute the Fourier transform of the field into

Eq. (A1) since the fields appear also in the denominator. In
the case when upon substituting the classical solution ϕðsÞ
into the denominator the latter is a constant one can use the
usual method. But as was shown in Sec. II this is not the
case for the DBI action and hence one has to adopt another
approach. Here we suggest such an alternative. We define
the Fourier transform of H as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðx;tÞ

p
¼
Z

dkffiffiffiffiffiffi
2π

p ½e−ikx ~F ðk;tÞþeikx ~F �ðk;tÞ�
2

ðA2Þ

and substitute it into the energy, so that

E ¼ 1

2π

Z
dx

Z
dk

½e−ikx ~F ðk; tÞ þ eikx ~F �ðk; tÞ�
2

Z
dp

½e−ipx ~F ðp; tÞ þ eipx ~F �ðp; tÞ�
2

¼
Z

dk
½2 ~F ðk; tÞ ~F �ðk; tÞ þ ~F ðk; tÞ ~F ð−k; tÞ þ ~F �ðk; tÞ ~F �ð−k; tÞ�

4
: ðA3Þ

For the theory of a free massless scalar in two spacetime
dimensionsHðx; tÞ ¼ 1

2
½ð∂xϕÞ2 þ ð∂0ϕÞ2�. In this case it is

easy to see that ~F ðk; tÞ ¼ ffiffiffi
k

p
aðkÞ where the field ϕðx; tÞ

has a Fourier transform ϕðx; tÞ ¼ R
dk 1ffiffiffiffiffiffi

2πk
p ½aðkÞe−ikx þ

a†ðkÞeþikx�. In the case of a massive free scalar field we

get ~F ðk; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

pp
aðkÞ. In these cases the only

contributions to Eq. (A3) will be from the ~F ðk; tÞ ~F �ðk; tÞ
term. For the general case one has to first determine ~F ðk; tÞ
and then E is given by Eq. (A3).
Following this approach we now have to find the Fourier

transform of
ffiffiffiffiffiffiffiffiffiffi
HðsÞp

. We cannot find an exact analytic
expression for either for the massless case or for the massive
one. From the analysis of the energy as an integral over s one
finds that themain contribution to the energy comes from the
region of small s. Thus we can get an approximation of
the dependence of the energy on γ using the the leading order
in s expression of

ffiffiffiffiffiffiffiffiffiffi
HðsÞp

∼ 1
l2

ffiffiffi
m

p t
s3=4

¼ 1
l2

ffiffiffi
m

p t
ðt2−x2Þ3=4. Its

Fourier transform reads

TF½
ffiffiffiffiffiffiffiffiffiffi
HðsÞ

p
� ∼ 1

l2
ffiffiffiffi
m

p

ffiffiffi
24

p ffiffiffiffiffijkj4
p

K−1
4

�
jkjffiffiffiffiffi
− 1

t2

p 	
ð− 1

t2Þ5=8ðt2Þ3=4Γð34Þ
: ðA4Þ

Expanding this expression in 1
k we get

ffiffiffi
π

p
e
− jkjffiffiffiffi

− 1

t2

p �
1 −

ffiffiffiffiffi
− 1

t2
3
p
32jkj

�
ffiffiffi
24

p ð− 1
t2Þ3=8ðt2Þ3=4Γð34Þ

ffiffiffiffiffijkj4
p : ðA5Þ

Substituting this expression in the energy and taking the
integration region to be γm > k > m we finally get that

E ∼
ffiffiffiffiffiffi
γm

p
: ðA6Þ

The reason that this result does not match the result found in
Sec. II is that we took a crude approximation of

ffiffiffiffiffiffiffiffiffiffi
HðsÞp

.
Obviously this approximation can be systematically
improved by improving the approximation of

ffiffiffiffiffiffiffiffiffiffi
HðsÞp

.

APPENDIX B: SCALAR SOLUTIONS IN 0þ 1
DIMENSIONS

Here for completeness we write down solutions of the
Heisenberg action in 0þ 1 dimensions. The equations of
motion in this case are

ϕ̈þm2ϕþ lð _ϕÞ2 ϕ̈ −m2ϕ

1 − l½ð _ϕÞ2 −m2ϕ2� ¼ 0: ðB1Þ

For the massless case the equation reduces to ϕ̈ ¼ 0 and
hence the solution takes the form ϕ ¼ atþ b. For the
massive case the solution takes the form

yðxÞ ¼
isnðim ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lc1 þ 1
p

xþ im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc1 þ 1

p
c2j lc1

lc1þ1
Þffiffi

l
p

m
;

yðxÞ ¼ −
isnðiðm ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lc1 þ 1
p

xþm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc1 þ 1

p
c2Þj lc1

lc1þ1
Þffiffi

l
p

m
:

ðB2Þ

The solution takes the form in Figs. 3–5 for various
values of m

l ¼ 0.1; 1; 5.
For the one-dimensional case the Hamiltonian density

(2.11) is the Hamiltonian and hence we can write a first-
order differential equation which is its conservation in time
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instead of the equation of motion. The Hamiltonian for this
case reads

Hl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l½ð _ϕÞ2 −m2ϕ2�

q ½1þ lm2ϕ2Þ� − 1: ðB3Þ

Thus the first-order differential equation is

ð _ϕÞ2¼HðlHþ2Þ
ðlHþ1Þ2 þm2

�
1−

2

ðlHþ1Þ2
�
ϕ2−

lm4ϕ4

ðlHþ1Þ2 ;

ðB4Þ

or in an integral formZ
dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðlHþ2Þ
ðlHþ1Þ2 þm2ð1 − 2

ðlHþ1Þ2Þϕ2 − lm4ϕ4

ðlHþ1Þ2
q ¼ tþ c:

ðB5Þ

APPENDIX C: SCALAR SOLUTIONS IN 1þ 1
DIMENSIONS: STATIC AND DEPENDING

INDEPENDENTLY ON xþ AND x−

Before discussing a genuine two-dimensional case let us
check the equation for a (soliton) static solution. For that
case the equation takes the form

∂2
xϕ −m2ϕ − l2ð∂xϕÞ2

∂2
xϕþm2ϕ

1þ l2½ð∂xϕÞ2 þm2ϕ2� ¼ 0:

ðC1Þ
This equation admits an analytic solution similar to the one
of the one-dimensional case, namely

yðxÞ ¼
isnðim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2c1 − 1

p
xþ im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2c1 − 1

p
c2j l2c1

l2c1−1
Þ

lm
;

yðxÞ ¼ −
isnðiðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2c1 − 1

p
xþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2c1 − 1

p
c2Þj l2c1

l2c1−1
Þ

lm
:

ðC2Þ

This soliton solution is similar to the solution of the one-
dimensional case discussed above. It can be seen from the

equations of motion that the map l → −l2 and m2 → −m2

maps the one-dimensional equation to the solitonic two-
dimensional one.
We next consider the truly two-dimensional case,

thought of as an approximation for the four-dimensional
system of colliding shock waves in the limit of zero width
for the shock wave, and in a limit of azimuthal symmetry in
the plane of the shock. It is convenient in two dimensions to
use light-cone coordinates x� ¼ t� x, with

∂þ ¼ ∂xþ ¼ 1

2
ð∂t þ ∂xÞ; ∂− ¼ ∂x− ¼ 1

2
ð∂t − ∂xÞ:

ðC3Þ
In these light-cone coordinates

∂μϕ∂μϕ ¼ ð _ϕÞ2 − ðϕ0Þ2 ¼ 4∂þϕ∂−ϕ;

∂μ∂μϕ ¼ ϕ̈ − ϕ00 ¼ 4∂þ∂−ϕ: ðC4Þ

We now define the following coordinates:

s ¼ t2 − x2 ¼ xþx−; q ¼ x−

xþ
: ðC5Þ

For these coordinates we find that

∂μϕ∂μϕ ¼ þ4

�
sð∂sϕÞ2 −

q2

s
ð∂qϕÞ2

�
;

∂μ∂μϕ ¼ þ4

�
∂sðs∂sϕÞ −

q
s
½∂qðq∂qϕÞ

�
; ðC6Þ

and also

ð2ð∂μϕÞð∂νϕÞð∂μ∂νϕÞ ¼Þ∂μϕ∂μð∂νϕ∂νϕÞ

¼ 16

�
sð∂sϕÞ3 þ 2s2ð∂sϕÞ2∂2

sϕþ q2

s
ð∂qϕÞ2ð∂sϕÞ

− 2q2ð∂sϕÞð∂qϕÞð∂q∂sϕÞ þ 2
q3

s2
ð∂qϕÞ3

þ 2
q4

s2
ð∂qϕÞ2ð∂2

qϕÞ
�
: ðC7Þ

Substituting Eqs. (C6) and (C7) into the equation of motion
(2.2) we get that for the variables s and q the equation of
motion takes the form

4

�
∂sðs∂sϕÞ −

q
s
∂qϕ −

q2

s
∂2
qϕ

�
þm2ϕ

¼ 4l4m2ϕ
½sð∂sϕÞ2 − q2

s ð∂qϕÞ2�
1þ l4½m2ϕ2 − 4½sð∂sϕÞ2 − q2

s ð∂qϕÞ2��
− 8l4

½sð∂sϕÞ3 þ 2s2ð∂sϕÞ2∂2
sϕþ q2

s ð∂qϕÞ2ð∂sϕÞ
1þ l4½m2ϕ2 − 4½sð∂sϕÞ2 − q2

s ð∂qϕÞ2��

þ −2q2ð∂sϕÞð∂qϕÞð∂q∂sϕÞ þ 2 q3

s2 ð∂qϕÞ3 þ 2 q4

s2 ð∂qϕÞ2ð∂2
qϕÞ

1þ l4½m2ϕ2 − 4½sð∂sϕÞ2 − q2

s ð∂qϕÞ2��
: ðC8Þ
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For the special case of ϕðs; qÞ ¼ ϕðsÞ the equation of motion reduces to

4∂sðs∂sϕÞ þm2ϕ ¼ 4l4sð∂sϕÞ2
m2ϕþ 2½ð∂sϕÞ þ 2s∂2

sϕ�
1þ l4½m2ϕ2 − 4½sð∂sϕÞ2��

; ðC9Þ

which is the same as Eq. (2.6), so it reduces to the equation of motion of Heisenberg.
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