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The method for quantization of constrained theories that was suggested originally by Faddeev and
Jackiw along with later modifications is discussed. The particular emphasis of this paper is to show how it
is simple to implement their method within the path integral framework using the natural geometric
structure that their method utilizes. The procedure is exemplified with the analysis of two models: a
quantum mechanical particle constrained to a surface (of which the hypersphere is a special case), and a
quantized Schrödinger field interacting with a quantized vector field for both the massive and the massless
cases. The results are shown to agree with what is found using the Dirac method for constrained path
integrals. We comment on a previous path integral analysis of the Faddeev-Jackiw method. We also discuss
why a previous criticism of the Faddeev-Jackiw method is unfounded and why suggested modifications of
their method are unnecessary.
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I. INTRODUCTION

The usual method of canonical quantization starts with a
Lagrangian L that depends on some generalized coordi-
nates qi and their time derivatives _qi. The canonical
momentum pi is identified in the usual way as

pi ¼
∂L
∂ _qi ; ð1:1Þ

and the Hamiltonian H is defined by a Legendre trans-
formation,

H ¼ pi _qi − L; ð1:2Þ

that eliminates the dependence on the generalized velocities
_qi in favor of the momenta pi. (Summation convention is
used here and throughout.) The canonical commutation
relations can be written down along with the Heisenberg
equations of motion that follow in a familiar way from the
classical Poisson bracket relations. The extension to quan-
tum field theory is straightforward. (See [1] for an early
textbook treatment.)
For many theories of interest there are no problems with

the implementation of the procedure just described; how-
ever, there are important classes of theories where the
method fails, for example in electromagnetism. It might not
be possible to solve (1.1) for the velocities _qi in terms of pi

and qi. Such theories are said to have a singular Lagrangian
and the resulting dynamics is called constrained. A sys-
tematic study of constrained dynamics was undertaken by
Dirac and his procedure is probably the most widely used.

(See [2] for Dirac’s own review of his method and
references to his original work.) Requirements of the
method include identifying all of the constraints in the
theory, and defining a new bracket, the Dirac bracket, to
replace the Poisson bracket. The constraints are classified
into two classes: first class, if the matrix formed by the
Poisson brackets between constraints is singular, and
second class otherwise. The extension of the path integral
method to Dirac’s theory of constrained systems was
presented by Faddeev [3] and Senjanovic [4]. Various
textbook treatments that discuss the Dirac method, as well
as other methods for constrained systems, include [5–8].
A clear and succinct account is given in [9].
As an alternative to the Dirac method Faddeev and

Jackiw [10] proposed an elegant analysis that can lead to
the correct quantum commutation relations without the
necessity of the full Dirac machinery. (See also [11].) We
will give a brief description of their method in the next
section. The Faddeev-Jackiw method has received consid-
erable attention since its inception. (A selected set of
references includes [12–17].) Almost all of the literature,
as in the original Faddeev-Jackiw paper [10], concentrates
on the canonical, rather than a path integral, approach. An
exception to this is [18] who discuss how to implement the
Faddeev-Jackiw method within the path integral approach.
The main purpose of the present paper is to clarify their
method slightly by noting that the Jacobian that arises in the
path integral measure from the Darboux transformation
may be specified in terms of the determinant of the
symplectic two-form that arises naturally in the Faddeev-
Jackiw method. Furthermore, this identification obviates
the need to know what the Darboux transformation actually
is as it allows any choice of integration variables to be used.
In Sec. III A we will apply this to the case of a particle
constrained to an arbitrary surface. This generalizes the
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hypersphere case considered by [13]. In Secs. III B and
III C we will consider a field theory example where a
Schrödinger field is coupled to both a massive and a
massless vector field. In both cases we will show how the
results agree with the path integrals found from using the
more conventional Dirac analysis. We will also comment
on some of the literature that is critical of the Faddeev-
Jackiw analysis suggesting that it is incomplete and must be
modified; our view is that no modifications of the Faddeev-
Jackiw analysis are necessary.

II. FADDEEV-JACKIW METHOD

The starting point of the Faddeev-Jackiw method [10] is
the Lagrangian written in first-order form. We will also
make use of [12,13]. If we call the canonical variables ξα,
then we assume that the Lagrangian takes the general first-
order form

L ¼ AαðξÞ_ξα þ LvðξÞ: ð2:1Þ

The term LvðξÞ is assumed to contain no time derivatives of
the variables ξα, and it is easy to see that it is the negative of
the Hamiltonian. The first term in (2.1), that we will refer to
as the symplectic part of the Lagrangian, is the main focus
of interest. If the original form of the Lagrangian is not first
order in time derivatives, it is always possible to introduce
some auxiliary fields that enable it to be written in the form
(2.1); usually the normal canonical momenta can be used to
do this. The canonical variables ξα will then consist of a
combination of the original coordinates qi along with some
auxiliary fields and canonical momenta. We will illustrate
this in the examples of the next section. The function AαðξÞ
that occurs in (2.1) is referred to as the canonical one-form.
The equations of motion that follow from (2.1) (the

Euler-Lagrange equations) read

Fαβ
_ξβ ¼ −

∂Lv

∂ξα ; ð2:2Þ

where

Fαβ ¼
∂
∂ξα Aβ −

∂
∂ξβ Aα: ð2:3Þ

Fαβ defined by (2.3) is clearly antisymmetric and gives the
components of what Faddeev and Jackiw [10] call the
symplectic two-form. The Euler-Lagrange equations (2.2)
are invariant under the “gauge transformation” Aα → Aα þ
∂
∂ξα Θ for arbitrary Θ. This invariance clearly corresponds to
the freedom to add a total time derivative to the Lagrangian
which does not affect the equations of motion.
If det Fαβ ≠ 0, it follows that we can invert Fαβ in (2.2)

to obtain

_ξα ¼ −ðF−1Þαβ ∂Lv

∂ξβ : ð2:4Þ

In this case the original Lagrangian is not singular and the
usual quantization procedure follows without difficulty.
There are no constraints in this case as all of the canonical
variables have an evolution equation.
On the other hand if det Fαβ ¼ 0, then we cannot invert

Fαβ to obtain (2.4). In this case some of the canonical
variables do not have an evolution equation and the
Lagrangian is singular; this means that constraints are
present. If det Fαβ ¼ 0, then Fαβ necessarily has some zero
modes (eigenvectors that correspond to a null eigenvalue).
There may be more than one linearly independent zero
mode. Call the zero modes zαI , where I runs over a range
that includes all of the linearly independent zero modes that
are found for Fαβ. By definition,

zαI Fαβ ¼ 0: ð2:5Þ

Contraction of both sides of (2.2) with zαI leads to the
conditions

ΩI ¼ zαI
∂Lv

∂ξα ¼ 0: ð2:6Þ

The ΩI are the constraints of the theory and they are found
by first evaluating the zero modes of the symplectic
two-form.
The next stage in the analysis is to introduce the

constraints into the Lagrangian by means of some
Lagrange multipliers λI and to replace (2.1) with

L0 ¼ Lþ λIΩI: ð2:7Þ

The new term that is added on, λIΩI, is now viewed as part
of the symplectic part of the Lagrangian with the canonical
variables extended to ðξα; λIÞ. The constraints now give
some extra components to the canonical one-form which
now has components ðAα;ΩIÞ. This is better motivated if
instead of adding on λIΩI to the Lagrangian we incorporate

the constraints in the form [13] _λIΩI . There is no harm in
doing this since the Lagrange multipliers are arbitrary and
if the constraint holds, so must its time derivative.
Nevertheless there is no need to do so and we will adopt
(2.7). From the new canonical one-form we construct the
new symplectic two-form F0

αβ as in (2.3) but now including
the new components of the connection one-form as well as
the new additions to the canonical variables described
above. We now either find det F0

αβ ¼ 0 or else det F0
αβ ≠ 0.

If det F0
αβ ≠ 0, then the procedure terminates as we can

invert F0
αβ as we did in (2.4). If det F0

αβ ¼ 0, then there
must be more zero modes present. We now just repeat the
steps (2.5)–(2.7) with more Lagrange multipliers added to
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the set of canonical variables and the canonical one-form
extended by taking the extra components to correspond
to any new constraints that are found. This procedure is
iterated until either an expression is found for the canonical
two-form that is not singular (in other words no nontrivial
zero modes are present for the canonical two-form), or else
the equations (2.6) hold identically without any new
constraints found. In the first case the procedure terminates.
In this latter case the symplectic two-form remains singular
with the zero modes corresponding to gauge symmetries of
the original theory [14,15]. These are dealt with by the
usual procedure of adding in gauge conditions which are
fixed by additional Lagrange multipliers. Provided that the
gauge symmetries are properly dealt with, the symplectic
two-form is nonsingular and the process terminates. The
example discussed in Sec. III C will illustrate this.
Suppose that we have arrived at a nonsingular symplectic

two-form. We will use a and b as labels here and write the
nonsingular symplectic two-form as Fab to denote that the
canonical variables and the canonical one-form have been
extended as described above. The crucial observation made
by Faddeev and Jackiw [10] is that Darboux’s theorem
can be invoked so that the canonical variables ξa can be
redefined to some new canonical variables ξ0a such that the
symplectic part of the Lagrangian becomes 1

2
ωabξ

0a _ξ0b.
Here ωab is the usual constant symplectic matrix which is
necessarily even dimensional and takes the block form

ωab ¼
�
0 −I
I 0

�
; ð2:8Þ

with I the identity matrix. Equivalently we can take the
symplectic part of the Lagrangian in the standard form
Pα

_Qα, where Pα and Qα are interpreted as canonically
conjugate coordinates. (See a nice proof of this in [11].)
Because ωab and Fab just differ by a change of canonical
coordinates we have

Fab ¼
∂ξ0c
∂ξa

∂ξ0d
∂ξb ωcd: ð2:9Þ

In practice finding the Darboux transformation might be
very difficult, although the constructive proof given by
Jackiw [11] shows that it exists. A nontrivial example that
shows an alternative but presumably equivalent procedure
to obtain the symplectic part of the Lagrangian in the
standard canonical form is given by [17].
However if we adopt the path integral approach, it is not

necessary to find the Darboux transformation. This is
where we differ from [18]. Because we know that the
Darboux transformation reduces the symplectic form to
Pα

_Qα ¼ 1
2
ωabξ

0a _ξ0b the formal expression for the path
integral measure will be

dμ ¼
Y
a

½dξ0a� ¼
�Y

α

½dPα�
��Y

α

½dQα�
�
: ð2:10Þ

If we now perform the transformation from the canonical
variables ξ0a back to the original set ξa, the measure will
pick up a Jacobian factor:

dμ ¼
�Y

a

½dξa�
�
J; ð2:11Þ

where

J ¼ det

�∂ξ0a
∂ξb

�
: ð2:12Þ

This is noted by [18] and the result is left in this form with
the implication that to evaluate the measure fully we need to
know the explicit Darboux transformation. However this is
not the case. The Jacobian is easily evaluated in terms of the
symplectic two-form from (2.9):

J ¼ ðdet FabÞ1=2: ð2:13Þ
The functional measure now becomes simply

dμ ¼
�Y

a

½dξa�
�
ðdet FabÞ1=2: ð2:14Þ

This means that we can use any set of canonical variables
that we like once we have a nonsingular two-form. There is
no need to know the form of the Darboux transformation
explicitly. The only appeal to Darboux’s theorem is to
justify the form of the path integral measure in (2.10). If
desired, the factor of ðdet FabÞ1=2 in the measure can be
exponentiated by introducing an integration over real scalar
Grassmannian variables.
It is worth noting that Jackiw [11] writes down (2.14) in

the case where the original theory is nonsingular. The point
here is that (2.14) holds even for a singular theory if the
Faddeev-Jackiw procedure in the form advocated by [13] is
followed. Because the Faddeev-Jackiw method does not
require any real distinction between Dirac’s classification
into first and second class constraints the measure given in
(2.14) subsumes both; that is, (2.14) will reproduce both the
Faddeev [3] and Senjanovic [4] form for the path integral.
In the next section wewill look at three examples and verify
that this is the case. We also note that the example
contained in [18] is too simple to show this as it involved
no constraints and a unit Jacobian.

III. EXAMPLES

A. Particle constrained to a surface

Consider a particle in D-dimensional Euclidean space.
Its position can be specified by D Cartesian coordinates qi

with i ¼ 1;…; D. The usual Lagrangian is
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L ¼ 1

2
_qi _qi − VðqÞ; ð3:1Þ

where VðqÞ is some potential. The Kronecker delta can be
used to raise and lower indices. This is clearly a non-
singular system. Suppose that we now constrain the particle
to an arbitrary surface specified by the equation fðqÞ ¼ 0.
For example, fðqÞ ¼ qiqi − 1 describes a sphere of dimen-
sion ðD − 1Þ which is the example studied in [13]. To
incorporate the requirement that the particle be constrained
to the surface a Lagrange multiplier σ is used. We write

L ¼ 1

2
_qi _qi − VðqÞ þ σfðqÞ; ð3:2Þ

in place of (3.1).
The first step in the procedure is to write L in the first-

order form. Define the canonical momentum in the usual
way by

pi ¼
∂L
∂ _qi ¼ _qi: ð3:3Þ

We then have the first-order form of the theory given by

L ¼ pi _qi þ σfðqÞ − 1

2
pipi − VðqÞ: ð3:4Þ

It is convenient to treat σfðqÞ as part of the symplectic part
of the Lagrangian and to take

Lv ¼ −
1

2
pipi − VðqÞ; ð3:5Þ

as in (2.1). The canonical variables are ξα ¼ ðqi; pi; σÞ.
Because there must be an even number of them this means
that there must be some constraints present.
To save introducing cumbersome index sets it is con-

venient to use the canonical coordinates themselves as
component labels. We will define the components of the
canonical one-form to be Aξα in place of Aα, and the
symplectic two-form to have components Fξαξβ in place
of Fαβ. From (3.4) we have

Aqi ¼ pi; ð3:6Þ

Api
¼ 0; ð3:7Þ

Aσ ¼ fðqÞ: ð3:8Þ

From (2.3) the components of the symplectic two-form turn
out to be, keeping the index order ξα ¼ ðqi; pi; σÞ and
ξβ ¼ ðqj; pj; σÞ,

Fξαξβ ¼

0
B@

0 −δji f;i
δij 0 0

−f;j 0 0

1
CA: ð3:9Þ

Here we have abbreviated f;i ¼ ∂fðqÞ=∂qi. It is clear that
det Fξαξβ ¼ 0 so that the theory is singular with some zero
modes. From (2.5) it can be shown that there is one zero
mode given by

zξ
α ¼ ð0; f;i; 1Þ: ð3:10Þ

From (2.6), noting that ∂L=∂σ ¼ 0, we find the constraint

Ω ¼ f;ipi ¼ 0: ð3:11Þ

This constraint has a simple physical interpretation: the
particle momentum is tangent to the surface (its normal
derivative vanishes). We could have saved a bit of work by
noting that this must hold at the start and enforcing it with
another Lagrange multiplier but it is good to show how the
procedure works. This constraint also is required to
preserve the condition that the original constraint
fðqÞ ¼ 0 be preserved in time (so that its time derivative
vanishes).
We now modify L by including a Lagrange multiplier λ

for the constraint Ω ¼ 0 in (3.11):

L ¼ pi _qi þ σfðqÞ þ λf;ipi þ Lv: ð3:12Þ

(We could choose _σ and _λ in place of σ and λ here if desired,
but as we stated above this is not really necessary.) The
canonical coordinates may now be extended to include the
new Lagrange multiplier: ξα ¼ ðqi; pi; σ; λÞ. (We will use
the same symbol for ξα here as we used before rather than
introduce some new name for the variable and some new
indexing set; this is an advantage of the notation that we
have adopted in which the coordinates themselves are used
to label components.) In addition to (3.6)–(3.8) we now
have an extra component to the canonical one-form:

Aλ ¼ f;ipi: ð3:13Þ

The components of the canonical two-form now become,
with ξα ¼ ðqi; pi; σ; λÞ and ξβ ¼ ðqj; pj; σ; λÞ,

Fξαξβ ¼

0
BBBBB@

0 −δji f;i f;ikpk

δij 0 0 f;i

−f;j 0 0 0

−f;jkpk −f;j 0 0

1
CCCCCA
: ð3:14Þ

This time there are no nontrivial solutions to (2.5) for the
zero modes. [We will verify this by calculating the nonzero
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determinant of (3.14) below.] We now have a nonsingular
symplectic two-form and the process terminates.
In order to compute the determinant of the symplectic

two-form in (3.14) we will consider the general block form
structure

Fξαξβ ¼
�
A B

C D

�
; ð3:15Þ

where A andD are square matrices, but B andC need not be
square. The identity (see [19] for example)

�
A B

C D

�
¼

�
A 0

C I

��
I A−1B

0 D − CA−1B

�
ð3:16Þ

can be used, assuming that A−1 exists, to see that

det
�
A B

C D

�
¼ ðdet AÞ½detðD − CA−1BÞ�: ð3:17Þ

In the case of (3.14) we have

A ¼
�
0 −I
I 0

�
; ð3:18Þ

D ¼
�
0 0

0 0

�
; ð3:19Þ

B ¼
�
f;i f;ikpk

0 f;i

�
; ð3:20Þ

C ¼ −BT: ð3:21Þ

If we now use (3.17), it can be shown that

det Fξαξβ ¼ ðf;if;iÞ2: ð3:22Þ

According to (2.14) the path integral measure is

dμ ¼
�Y

i

½dqi�
��Y

i

½dpi�
�
½dσ�½dλ�ðf;if;iÞ: ð3:23Þ

The Lagrangian was given in (3.12). The partition function
can be found by performing the integration over the
Lagrange multiplier fields σ and λ to be

Z ¼
Z �Y

i

½dqi�
��Y

i

½dpi�
�
j∇fj2δðfðqÞÞδðp ·∇fÞ

× exp

�
i
Z

dt

�
pi _qi −

1

2
pipi − VðqÞ

��
: ð3:24Þ

This formal result agrees precisely with that of Kashiwa
[20] whose analysis was based on the Dirac formalism.

Note that a more precise discretized version of the path
integral is given in [20].
An alternative form for the partition function Z can be

given if we first integrate over pi, then over σ and then over
λ to leave Z in the form of a configuration space path
integral:

Z ¼
Z �Y

i

½dqi�
�
j∇fjδðfðqÞÞ

× exp

�
i
Z

dt
�1
2
_qiGij _qj − VðqÞ

��
; ð3:25Þ

where

Gij ¼ δij −
f;if;j
j∇fj : ð3:26Þ

The standard definition for a Gaussian functional integral
has been used to obtain this.

B. Schrödinger field coupled to
a massive vector field

We now consider the case of a Schrödinger field Ψ
coupled to a vector field Bμ that we will assume is massive.
The Lagrangian density is

L ¼ i
2
ðΨ†D0ψ − ðD0ΨÞ†ψÞ − 1

2m
ðDΨÞ†ðDΨÞ − VΨ†Ψ

−
1

4
WμνWμν −

1

2
m2BμBμ: ð3:27Þ

Here the gauge covariant derivative is defined by

Dμ ¼ ∂μ þ ieBμ; ð3:28Þ

and we use a spacetime metric with signature
ð−;þ;þ;…;þÞ. The number of spatial dimensions that
we will call N is arbitrary. The Lagrangian is just the
integral of (3.27) over the spatial dimensions. The field
strength Wμν is the usual one:

Wμν ¼ ∂μBν − ∂νBμ: ð3:29Þ

(The usual notation of Aμ for the vector field and Fμν for
the field strength are eschewed to avoid confusion with the
canonical one-form and the symplectic two-form.) The
usual local gauge transformation

Ψ → e−ieθΨ; ð3:30Þ

Ψ† → eieθΨ†; ð3:31Þ

Bμ → Bμ þ ∂μθ ð3:32Þ
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is only a symmetry of the theory described by (3.27) if
m2 ¼ 0. We will defer this case until the next section, so
that the theory is not locally gauge invariant.
The Faddeev-Jackiw method requires the Lagrangian to

be written in first-order form. The Schrödinger part that
involvesΨ is already first order. The vector field part can be
written in first-order form by introducing the components
of the canonical momenta for the spatial components of the
vector field:

πi ¼ _Bi − ∂iB0: ð3:33Þ

(Note that with our choice of metric signature Bi ¼ Bi and
B0 ¼ −B0.) By separating off the sums over the time and
spatial coordinates the first-order form of the Lagrangian
density reads

L ¼ πi _Bi þ
i
2
Ψ† _Ψ −

i
2
_Ψ†Ψþ Lv; ð3:34Þ

where

Lv ¼ −eB0Ψ†Ψ −
1

2m
ð∂iΨ†Þ∂iΨ −

e2

2m
BiBiΨ†Ψ

þ ie
2m

BiðΨ†∂iΨ − ∂iΨ†ΨÞ − VΨ†Ψ −
1

2
πiπi

− πi∂iB0 −
1

4
WijWij þ

1

2
m2B2

0 −
1

2
m2BiBi: ð3:35Þ

The canonical variables are ξα ¼ ðΨ;Ψ†; Bi; πi; B0Þ. There
is no problem with having complex coordinates so we do
not make the redefinition to real fields as in [18]. Because
there are an odd number of canonical coordinates there
must be some constraints. The components of the canonical
one-form are

AΨ ¼ i
2
Ψ†; ð3:36Þ

AΨ† ¼ −
i
2
Ψ; ð3:37Þ

ABi
¼ πi; ð3:38Þ

Aπi ¼ 0; ð3:39Þ

AB0
¼ 0: ð3:40Þ

Again it is convenient to use the components of the
canonical coordinates to label the components of
the canonical one-form and the symplectic two-form.
The components of the symplectic two-form are defined
as in (2.3) except that for field theory the derivatives must
be functional derivatives. Because the formalism uses a

constant time hypersurface, only the spatial coordinates
will differ for the different components. We have

Fξαξβ ¼
δ

δξα
Aξβ −

δ

δξβ
Aξα ; ð3:41Þ

analogously to (2.3). We choose ξα ¼ ðΨ;Ψ†; Bi; πi; B0Þ
with all fields evaluated at some spatial coordinate x and
ξβ ¼ ðΨ0;Ψ0†; B0

j; π
0j; B0

0Þ with all fields evaluated at some
spatial coordinate x0. [So, for example, Ψ ¼ Ψðt;xÞ and
Ψ0 ¼ Ψðt;x0Þ with similar expressions for the other fields.]
It then follows that the components of the symplectic two-
form are

Fξαξβ ¼

0
BBBBBB@

0 −i 0 0 0

i 0 0 0 0

0 0 0 −δij 0

0 0 δji 0 0

0 0 0 0 0

1
CCCCCCA
δðx;x0Þ: ð3:42Þ

The symplectic two-form is clearly degenerate with a zero
mode ð0; 0; 0; 0; zB0Þ, where zB0 is an arbitrary function.
This gives rise to a constraint from the consistency
condition

δ

δB0

Z
dNxLv ¼ 0: ð3:43Þ

Using (3.35) after an integration by parts of the πi∂iB0 term
we find the constraint

0 ¼ −eΨ†Ψþ ∂iπ
i þm2B0: ð3:44Þ

We now modify the Lagrangian density by adding in the
constraint with a Lagrange multiplier λ, so that

L ¼ πi _Bi þ
i
2
Ψ† _Ψ −

i
2
_Ψ†Ψ

þ λð∂iπ
i þm2B0 − eΨ†ΨÞ þ Lv; ð3:45Þ

withLv unchanged from(3.35).Thenewsymplectic variables
are ξα ¼ ðΨ;Ψ†; Bi; πi; B0; λÞ with all fields evaluated at
some spatial coordinate x and ξβ ¼ ðΨ0;Ψ0†; B0

j; π
0j; B0

0; λ
0Þ

with all fields evaluated at some spatial coordinate x0.
There is an additional component to the canonical one-form
in addition to those in (3.36)–(3.40) which is

Aλ ¼ ∂iπ
i þm2B0 − eΨ†Ψ: ð3:46Þ
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A new row and a new column is added to (3.42) to give

Fξαξβ ¼

0
BBBBBBBBB@

0 −i 0 0 0 −eΨ0†

i 0 0 0 0 −eΨ0

0 0 0 −δij 0 0

0 0 δji 0 0 ∂ 0
i

0 0 0 0 0 m2

eΨ† eΨ 0 −∂j −m2 0

1
CCCCCCCCCA
δðx;x0Þ:

ð3:47Þ

There are no zero modes (assuming as we do thatm2 ≠ 0.) A
careful use of the identity in (3.17) shows that

ðdet FξαξβÞ1=2 ¼ det½m2δðx;x0Þ�: ð3:48Þ

This agrees completely with what is found from [4] for the
massive vector field but where theDirac procedure for second
class constraints is used.
This substantiates our claim that the functional measure

(2.14) reproduces the result found for a theory that in Dirac
language contains second class constraints. (The example
of [18] was too simple to see this as the authors relied on a
unit Jacobian.) If the functional integral over λ is per-
formed, we will end up with a delta function of the
constraint given in (3.44). It is then possible to use this
delta function to integrate over the field B0. The fact that B0

is multiplied bym2 in the constraint results in a cancellation
of the factor of m2 that arises from the measure factor of
(3.48). The canonical momentum πi can then be integrated
out to leave a configuration space path integral that
corresponds precisely to what was found by Jackiw [11]
in a similar example with the Dirac field in place of the
Schrödinger field and where a canonical analysis was used.
Of course Jackiw’s [11] analysis was much simpler and
straightforward than that presented here where he chose to
solve the constraint for what we call B0. There is no
problem with doing this for this particular example, but
there are more complicated situations where the full
apparatus described here appears to be necessary [21].

C. Schrödinger field coupled to a massless
vector field

We now look at the case where the vector field in (3.27)
is massless. From (3.35) the difference now is that the
component B0 only enters the Lagrangian linearly. This
means that it acts like a simple Lagrange multiplier to
enforce the constraint 0 ¼ ∂iπ

i − ejΨj2, which is simply
the massless limit of (3.44). Because B0 now occurs
linearly we can include it as part of the symplectic part
of the Lagrangian density (and we could redefine it to be _λ
if we like, but we will not do this). The Lagrangian density
in (3.34) can be written as

L ¼ πi _Bi þ
i
2
Ψ† _Ψ −

i
2
_Ψ†Ψþ B0ð∂iπ

i − eΨ†ΨÞ
þ L0

v; ð3:49Þ

where we define

L0
v ¼ LvjB0¼0;m2¼0; ð3:50Þ

with Lv given in (3.35). The components of the canonical
one-form are

AΨ ¼ i
2
Ψ†; ð3:51Þ

AΨ† ¼ −
i
2
Ψ; ð3:52Þ

ABi
¼ πi; ð3:53Þ

Aπi ¼ 0; ð3:54Þ

AB0
¼ ∂iπ

i − eΨ†Ψ: ð3:55Þ

The terms in (3.51)–(3.54) are the same as those in (3.36)–
(3.39) but now (3.55) replaces (3.40). The net effect of this
is the same as if we had dropped B0 altogether from the
original formalism, adopted the massless limit of (3.45)
with (3.46) and then relabeled λ with B0. This observation
allows us to deduce from (3.47) that [with ξα ¼
ðΨ;Ψ†; Bi; πi; B0Þ and ξβ ¼ ðΨ0;Ψ0†; B0

j; π
0j; B0

0Þ]

Fξαξβ ¼

0
BBBBBB@

0 −i 0 0 −eΨ0†

i 0 0 0 −eΨ0

0 0 0 −δij 0

0 0 δji 0 ∂ 0
i

eΨ† eΨ 0 −∂j 0

1
CCCCCCA
δðx;x0Þ: ð3:56Þ

[Of course this can be calculated directly from the canoni-
cal one-form in (3.51)–(3.55).]
Because Fξαξβ in (3.56) is odd dimensional and anti-

symmetric its determinant must vanish. This means that
there is a zero mode present. It is straightforward to show
that the zero mode has components given by

zξ
α ¼ ð−ieΨθ; ieΨ†θ; ∂iθ; 0; θÞ; ð3:57Þ

where θ is an arbitrary function. It is now possible to show
that the field theory analogue of the consistency condition
(2.6) is satisfied identically meaning that there are no new
constraints. The symplectic two-form remains degenerate
without further conditions. It is easy to understand why this
happens. The massless vector field theory that we have
written down has a local gauge symmetry and the zero
mode found in (3.57) is recognized as the infinitesimal
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form of the local gauge transformation of both the
Schrödinger field and the spatial components of the vector
field Bi. [See (3.30)–(3.32).] The fact that no new con-
straints are generated and that the consistency conditions
are automatically satisfied is just the expression of this
gauge symmetry. This is a particularization of the more
general treatment given in [14,15]. This situation also
occurs even if the Darboux transformation has been
performed as in the original Faddeev-Jackiw method
[10,11]. It is necessary, as usual, to adopt a gauge condition
to remove the gauge degrees of freedom from the theory.
The convenient choice here is to pick the Coulomb gauge
∂iBi ¼ 0 and to enforce it by adding on a new Lagrange
multiplier field λ:

L ¼ πi _Bi þ
i
2
Ψ† _Ψ −

i
2
_Ψ†Ψþ B0ð∂iπ

i − eΨ†ΨÞ
þ λ∂iBi þ L0

v; ð3:58Þ

with L0
v defined in (3.50). The procedure outlined

above now extends the canonical variables to ξα ¼
ðΨ;Ψ†; Bi; πi; B0; λÞ. In addition to (3.51)–(3.55) the
canonical one-form picks up a new component

Aλ ¼ ∂iBi: ð3:59Þ

This gives some additional components to the symplectic
two-form which is now

Fξαξβ ¼

0
BBBBBBBBB@

0 −i 0 0 −eΨ0† 0

i 0 0 0 −eΨ0 0

0 0 0 −δij 0 ∂ 0i

0 0 δji 0 ∂ 0
i 0

eΨ† eΨ 0 −∂j 0 0

0 0 −∂j 0 0 0

1
CCCCCCCCCA
δðx;x0Þ:

ð3:60Þ

There are now no zero modes present and the determinant
does not vanish. Making use of (3.17) shows after a bit of
calculation that

ðdetFξαξβÞ1=2 ¼ det½−∇2δðx;x0Þ�: ð3:61Þ

When this result is used in the path integral measure (2.14)
and the field B0 integrated out we recover the form for the
path integral that was found by Faddeev [3] using the Dirac
analysis. If we further integrate out the fields πi, the
standard configuration space path integral result for the
Coulomb gauge is found. (See Sec. 12-2-2 of [22], for
example.)

IV. DISCUSSION

We have shown how the natural geometrical structure of
the Faddeev-Jackiw [10] method gives rise to a measure
factor in the path integral for a constrained system. The
measure given by (2.14) involves the symplectic two-form
in a simple way. This extends the analysis of [18] where the
measure required knowing the Jacobian that was involved
in the Darboux transformation. This was demonstrated to
agree with the path integral found from the more standard
Dirac constraint analysis in the examples of Sec. III.
Whether one finds the Faddeev-Jackiw, the Dirac, or

some other method for dealing with constraints the most
suitable is a matter of taste. There are several reasons why
we prefer the Faddeev-Jackiw method, in the form advo-
cated in [13]. There does not need to be any classification of
constraints into primary and secondary, or first and second
class; all can be treated the same. There is no need for weak
and strong equalities to hold. Note that in common with
[13] we do not advocate solving the constraints to eliminate
coordinates or fields, although this does shorten work in
some cases. The path integral measure involves the
symplectic two-form in a simple way; as this object is
central to the Faddeev-Jackiw method no extra work is
required, other than calculating its determinant. In the
canonical quantization the symplectic two-form needs to
be inverted to obtain the canonical commutation relations
which is a bit more involved. The path integral measure
reproduces both the Faddeev [3] path integral for first class
Dirac constraints and the Senjanovic [4] path integral for
second class Dirac constraints. (As just mentioned we do
not need to distinguish between these in the Faddeev-
Jackiw method.)
There have been at least two papers that are critical of the

symplectic method that we have described here [23,24].
Both critiques stem from the fact that the constraints found
by the Faddeev-Jackiw method do not necessarily repro-
duce all of those found by the Dirac method. For example,
in the case of the constrained particle on a surface of
Sec. III A we found two constraints with a direct physical
interpretation. In the Dirac case because there is no time
derivative of the coordinate σ in (3.2) this leads to a primary
constraint in which the canonically conjugate momentum
must vanish. The two constraints present in the analysis
above are also found. Consistency of these three constraints
generates a fourth constraint that also involves the momen-
tum canonically conjugate to σ. So two constraints found
from the Dirac analysis appear to have been missed by the
symplectic Faddeev-Jackiw method. This leads [23,24] to
suggest that the symplectic method has a shortcoming and
needs either to be modified or else another method must be
used. We disagree with this conclusion. First of all there is a
fundamental difference between the Dirac and symplectic
methods; the Dirac method is a Hamiltonian approach
whereas the symplectic approach is a Lagrangian method.
There is no reason to believe that there must be a one-to-one
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correspondence between the constraints for the two meth-
ods. The two extra constraints generated by the Dirac
method for the constrained particle are simply because the
method is a Hamiltonian one; furthermore, unlike the two
constraints that we found above have no direct physical
meaning. In fact in his Dirac path integral treatment
Kashiwa [20] simply drops them. However what must
be true is that both the Dirac method and the symplectic
Faddeev-Jackiw method must yield the same physics. The
examples of Sec. III demonstrate that with the choice of
measure adopted in this paper both methods result in the

same path integral and hence the same physical conse-
quences. There is no need for modifications of the method.
I am grateful to the referee for pointing out another

potential application of the method to a very interesting
example [25]. In this work the symplectic structure is
elucidated and used to examine the spectrum of a non-
commutative Landau problem. It is shown that the spec-
trum depends on the type of quantization scheme adopted,
which is a rather unexpected result. It would be of interest
to examine this calculation using the path integral approach
described in the present paper and we hope to do so later.
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