
Spin-axion coupling

Alexander B. Balakin* and Vladimir A. Popov†

Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University,
Kremlevskaya Street 18, Kazan 420008, Russia

(Received 20 August 2015; published 18 November 2015)

We establish a new covariant phenomenological model, which describes an influence of pseudoscalar
(axion) field on spins of test massive particles. The model includes general relativistic equations of particle
motion and spin evolution in background pseudoscalar (axion), electromagnetic and gravitational fields. It
describes both the direct spin-axion coupling of the gradient type and indirect spin-axion interaction
mediated by electromagnetic fields. Special attention is paid to the direct spin-axion coupling caused by the
gradient of the pseudoscalar (axion) field. We show that it describes a spin precession, when the
pseudoscalar (axion) field is inhomogeneous and/or nonstationary. Applications of the model, which
correspond to the three types of four-vectors attributed to the gradient of the pseudoscalar (axion) field
(timelike, spacelike, and null), are considered in detail. These are the spin precessions induced by relic
cosmological axions, axions distributed around spherically symmetric static objects, and axions in a
gravitational wave field, respectively. We discuss features of the obtained exact solutions and some general
properties of the axionically induced spin rotation.
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I. INTRODUCTION

The terms angular moment and spin are considered in
theories of gravity in two main aspects. First, we face with
them, when we study the gravitational field formed by a
single rotating extended body (e.g., black holes, neutron
stars, etc. [1,2]), or a system of bodies rotating around an
attracting center (e.g., stars in spiral galaxies [3,4]).
Second, we deal with the polarization or spin, when we
investigate the gravitationally induced dynamics of test
particles, which possess vector (or pseudovector, respec-
tively) degrees of freedom. This sector of investigations
is usually connected with experiments in gravitational
physics (see, e.g., [5,6] and references therein).
According to the standard terminology the rotating

extended body or pointlike particle can be described by
an antisymmetric tensor of total moment Sik, which can be
decomposed as Sik ¼ δmn

ik LmUn − ϵikmnSmUn, using the
unit velocity four-vector Un of the body. The quantity
Lm can be indicated as a four-vector of the orbital moment,
and the (pseudo)vector Sm plays the role of a classical spin
four-vector. The term δmn

ik is the four-indices Kronecker
tensor and ϵikmn is the Levi-Civita (pseudo)tensor.
Evolutionary equations for the total moment Sik and/or
for its constituents Lm and Sm have been investigated in
various contexts by many authors. The list of obtained
results is very long, and we would like to attract attention to
the following two only.
In 1959 Bargmann, Michel and Telegdi (BMT) obtained

the covariant equations for classical spin particles with

anomalous magnetic moment [7]. This model describes a
spin evolution in the framework of special relativity as a
generalization of the nonrelativistic theory elaborated by
Thomas [8], Frenkel [9] and Bloch [10]. Being completed
by the spin-curvature coupling terms, introduced earlier
by Mathisson [11] and Papapetrou [12], this model became
a starting point for numerous investigations of spin particle
dynamics in general relativity (see, e.g., [13–20] and
references therein). When it was necessary to include
electromagnetic interactions, these investigations used
the Faraday-Maxwell electrodynamics. Scientific events
of the two past decades attracted the attention to its
generalization called axion electrodynamics. In light of
the hypothesis about the axionic nature of the dark matter
this theory seems to be more appropriate for describing
the cosmic electrodynamics than the standard Faraday-
Maxwell theory.
The story, how axions were associated with dark matter

particles, is well known. The dark matter, a cosmic
substance, which neither emits nor scatters the electromag-
netic radiation, is assumed to accumulate about 23% of the
Universe’s energy. The mass density distribution of the
dark matter is presented in the astrophysical catalogues as a
result of observations and theoretical simulations (see, e.g.,
[21–25] for details, review and references). The origin of
the dark matter is not yet established. One of the most
attractive hypothesis links the dark matter with massive
pseudo-Goldstone bosons. The particles of this type were
postulated in 1977 by Peccei and Quinn [26] in order to
solve the problem of strong CP-invariance, and were
introduced into the high-energy physics as new light
bosons by Weinberg [27] and Wilczek [28] in 1978.
Later these pseudobosons were indicated as axions and
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now they are considered as the most appropriate candidate
for dark matter particles [29–37].
The description of these axions in terms of the field

theory is based on the introduction of a pseudoscalar field
ϕ, which is assumed to interact with electromagnetic and
SUð2Þ-symmetric gauge fields. The theory of interaction
between electromagnetic and pseudoscalar fields was
elaborated by Ni in 1977 [38]. Due to the works of
Sikivie (see, e.g., [39]) we recognize now this sector of
science as axion electrodynamics; a number of effects such
as the axionically induced optical activity [40,41], mag-
netoelectric cross effects [42,43], etc., were predicted in the
framework of this theory.
Thus, on the one hand, the axions are associated in our

mind with the cosmic dark matter, which regulates key
gravitational processes in our Universe, for instance,
provides specific (flat) distribution of star velocities in
the spiral galaxies (see, e.g., [44]). On the other hand, the
axions produce the photon polarization rotation, in other
words, the axionic dark matter forms an electrodynamically
active chiral cosmic medium. Clearly, we could try to find
fingerprints of the axionic dark matter in the electromag-
netic signals associated with astrophysical and geophysical
phenomena [45–49].
Returning to the problem of influence of the (axionic)

dark matter on the orbital moment, polarization and spin,
we can say the following. First, definitely, the dark matter
influences the orbital moment of star gas in spiral galaxies,
providing the observed flat profiles of the velocity distri-
bution [44]. Second, the axionic dark matter is predicted to
rotate the photon polarization [40]. Third, due to the first
and second arguments, one can expect that the axionic dark
matter should also influence the particle spin.
In fact, the theoretical discussions about a new branch in

the axion physics, i.e., the theory of spin-axion coupling,
were opened in 1980s of the past century; it was a
discussion concerning the axionically induced spin depen-
dent long range forces [50]. The long range spin dependent
forces were in a focus of experimental investigations (see,
e.g., [51]), and this circumstance gave the impetus for
development of new experimental programs devoted to
detection of axions, based on their interactions with nuclear
spins, electric and magnetic moments, etc. (see, e.g.,
[52–60] and references therein). This branch of axion
physics was indicated as spin-axion coupling by analogy
with the axion-photon and the axion-gluon couplings.
Nevertheless the term spin-axion coupling is rather wide
and two theoretical approaches have to be distinguished.
Experimental works in the terrestrial laboratories deal with
bonded spin particles in the specific material media, and
these bonded particles are, in average, at rest with respect to
these media. For these purposes the nonrelativistic formal-
ism of condensed matter physics is adequate and describes
correctly the models of spin dynamics. When one deals
with free spin particles, which move with high velocity

(e.g., in storage rings) or in a vicinity of sources of strong
gravitational and axion fields (e.g., near axion stars), the
covariant formalism of high energy physics is necessary for
description of the model.
From the mathematical point of view, our goal is to

develop the covariant version of the theory of spin-axion
coupling, and we consider extended dynamic equations for
relativistic spin particle. The corresponding extensions
include axionic modifications of the Bagrmann-Michel-
Telegdy forcelike term, and gradient-type modifications of
a rotatory term. From the physical point of view, adding the
third entity, the axion, to the interacting pair of photon and
charged spin particle, one can expect that three channels of
interaction will be activated: first, the already known direct
axion-photon coupling; second, the direct spin-axion cou-
pling; third, the indirect spin-axion coupling mediated by
the axion-photon interaction. In this paper we intend to
discuss in detail the two last channels of the photon-axion-
spin interactions.
The paper is organized as follows. In Sec. II we analyze

some details of the well-known model of axion-photon
coupling to motivate our new model of spin-axion cou-
pling. In particular, we derive an equation of the photon
polarization precession induced by a gradient of the
pseudoscalar (axion) field. In Sec. III we generalize the
results of Sec. II for massive particles and reconstruct
phenomenologically equations of spin-particle dynamics in
the axion environment. We divide the obtained terms into
three types: first, the terms indicated as axionic general-
izations of the Bargmann-Michel-Telegdy terms; second,
the terms describing direct spin-axion coupling; third,
the nonminimal terms. In Sec. IV we consider four
applications of the model with the direct spin-axion
coupling. In Sec. IVA we obtain an exact solution to the
dynamic equations for the massive spin particle, which
moves straightforwardly and interacts with the relic cosmic
axions. In Sec. IV B we apply the formalism to the model of
relativistic charged spin particle motion in a storage ring
with magnetic field. In Sec. IV C we discuss the spin-axion
coupling in the static spherically symmetric gravitational
background. We studied in detail two cases, describing
radial and circular particle motion, respectively. The exact
solutions for the spin precession in the field of pp-wave
gravitational field provided by axions are presented in
Sec. IV D. In Sec. V we discuss the common details of the
axionically induced spin precession, which were revealed
in all three submodels.

II. CLASSICAL ANALOGY: PHOTON
POLARIZATION ROTATION INDUCED

BY THE AXION FIELD

In 1977 Ni [38] obtained equations for the electromag-
netic field coupled to a pseudoscalar field ϕ. The initial
form of the currentless electrodynamic equations was the
following:
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∇l½Fkl þ ϕF�kl� ¼ 0: ð1Þ

This equation is derived by variation with respect to the
potential four-vector Ai of the electromagnetic part SðEMÞ of
the total action functional, where

SðEMÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

4
FmnFmnþ1

4
ϕF�

mnFmn

�
: ð2Þ

Here Fmn is the Maxwell tensor, and F�kl ¼ 1
2
ϵklmnFmn is

its dual tensor. As usual, ϵklmn ≡ Eklmnffiffiffiffi−gp is the Levi-Civita

tensor, based on the completely antisymmetric Levi-Civita
symbol Eklmn with E0123 ¼ 1. The Maxwell tensor Fmn is
connected with the electromagnetic potential Ak in the
regular way:

Fmn ¼ ∇mAn −∇nAm; ð3Þ
so, that the well-known relationship

∇lF�kl ¼ 0 ð4Þ

converts into the identity. Due to (4) the basic equation (1)
simplifies as follows:

∇lFkl ¼ −F�kl∇lϕ: ð5Þ

In order to transform Eq. (5) to a one-photon form we use
the standard procedure. First, we follow the approximation
of geometrical optics, and represent the potential Am as

Am ¼ ameiΨ: ð6Þ

Here Ψ is a rapidly varying phase, the so-called eikonal. Its
gradient four-vector kj ≡∇jΨ has a sense of a wavelength
four-vector of the photon. The amplitude am and its
derivatives are assumed to be slowly varying functions,
i.e., max j∇jamj ≪ min jkjamj. In these terms the Lorentz
condition,

∇mAm ¼ 0; ð7Þ

gives two relations. The first one, amkm ¼ 0, appears in the
first order approximation and means that the polarization is
orthogonal to the wavelength four-vector. In the next order
we obtain ∇mam ¼ 0. The leading order approximation in
Eq. (5) in the context of (6) yields kmkm ¼ 0, the ordinary
eikonal equation, implying that the photons travel along
null geodesics. The tangent vector to the photon world-line
can be defined as km ¼ ℏ dxm

dτ , where τ is an affine parameter
along the line, and ℏ is the Planck constant.
The differential consequence of the eikonal equation

kmkm ¼ 0 is km∇nkm ¼ 0. Since the quantity km is the
gradient four-vector, the relation ∇mkn ¼ ∇nkm is valid, so
we obtain additionally that

km∇mkn ¼ 0: ð8Þ

For an illustration of the main idea we assume that the
wavelength vector km is divergence-free, i.e., ∇mkm ¼ 0
(or equivalently, ∇m∇mΨ ¼ 0). This can be realized in
many models, e.g, in the Minkowski space-time, in the
space-time with plane-wave symmetry. Then the first order
approximation in Eq. (5) gives the following equation for
the evolution of the amplitude aj:

km∇maj ¼
1

2
ϵjlpq∇lϕapkq: ð9Þ

The convolution of this equation with aj yields

1

2
km∇mðajajÞ ¼ 0; ð10Þ

i.e., ajaj ≡ −a2 is constant along the photon world-line
with the tangent vector kl. This fact allows us to introduce
the unit spacelike polarization four-vector ξj as follows:

aj ¼ aξj; ξjξj ¼ −1; ð11Þ

and to exclude the amplitude a from Eq. (9):

km∇mξ
j ¼ 1

2
ϵjlpq∇lϕξpkq: ð12Þ

Using the covariant differential operator

D
Dτ

≡ dxm

dτ
∇m; ð13Þ

one can rewrite Eqs. (8) and (12) as a pair of basic
equations of photon evolution: first, the dynamic equation

Dkj

Dτ
¼ 0; ð14Þ

and second, the equation of polarization rotation

Dξj

Dτ
¼ 1

2
ϵjlpq∇lϕξ

p dx
q

dτ
: ð15Þ

It is clear that in terms of one-photon description three
scalar quantities, kmkm, kmξm, and ξmξm, are the integrals of
motion for the set of equations (14), (15), i.e., they remain
constant along the photon world-line, kmkm ¼ const ¼ 0,
kmξm ¼ const ¼ 0, ξmξm ¼ −1.
There is an obvious analogy between equations of

motion for the massless photons and massive fermions.
Based on this analogy, we can replace the polarization four-
vector ξj by the spin four-(pseudo)vector Sj, and introduce
the timelike particle momentum four-vector pk ¼ mUk ¼
mdxk

ds instead of the null wave four-vector kj (here and
below we consider the system of units, in which c ¼ 1). As
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a natural extension of Eqs. (14) and (15) we obtain the
following evolutionary equations for the fermion particle:

Dpj

Dτ
¼ 0;

DSj

Dτ
¼ α

2m
ϵjlpq∇lϕSppq; ð16Þ

where α is some parameter introduced phenomenologically.
The presented analogy could explain the appearance of the
rotational term in the right-hand side of Eq. (16). However,
some fermions possess electric charges and thus interact
with electromagnetic fields, and a phenomenological gen-
eralization of Eqs. (14) and (15) requires more sophisti-
cated efforts. We will take into account these interactions in
the next section.

III. SPIN-PARTICLE DYNAMICS IN AN
AXION ENVIRONMENT

A. Basic equations

Let us consider the evolution of a relativistic point
particle with an electric charge and a spin four-vector.
Dynamic equations for the particle momentum pi and for
the spin four-vector Si can be written as

Dpi

Dτ
¼ F i;

DSi

Dτ
¼ Gi; ð17Þ

i.e., the rates of change of the given quantities are
predetermined by the corresponding forcelike terms, F i

and Gi, respectively. Let us present, first, three general
properties of the four-vectors F i and Gi.
(i) The mass of the particle, m, defined from the

normalization law pipi ¼ m2c2, is assumed to be con-
served quantity, providing the four-vectorF i to be orthogo-
nal to the momentum:

piF i ¼ pi
Dpi

Dτ
¼ 1

2

D
Dτ

ðpipiÞ ¼ 0: ð18Þ

(ii) Similarly, we assume that the scalar square of
the spacelike spin four-vector is constant, i.e., SiSi ¼
const ¼ −S2. Then using the second equation from (17)
we obtain that

SiGi ¼ Si
DSi

Dτ
¼ 1

2

D
Dτ

ðSiSiÞ ¼ −
1

2

D
Dτ

S2 ¼ 0; ð19Þ

or in other words, that the forcelike term Gi is orthogonal to
the spin four-vector.
(iii) Finally, we assume that the spin four-vector is

orthogonal to the momentum four-vector, Sipi ¼
const ¼ 0; then one obtains that

D
Dτ

ðpiSiÞ ¼ 0 ⇒ F iSi þ Gipi ¼ 0: ð20Þ

In the minimal theory the quantities F i and Gi depend on
the particle momentum pk, spin Sl, Maxwell tensor Fmn
and its dual F�

mn, as well as on the pseudoscalar (axion)
field ϕ and its gradient four-vector ∇kϕ. In the non-
minimally extended theory the quantities F i and Gi can
include the Riemann tensor Ri

klm, Ricci tensor Rik and
Ricci scalar R; also the covariant derivatives of the
Maxwell tensor, ∇sFmn, and of the Riemann tensor
∇sRikmn can appear in the decomposition of F i and
Gi. Three equations (18)–(20) are satisfied identically,
when

F i ¼ ωikpk; Gi ¼ ωikSk; ð21Þ

where ωik is an arbitrary antisymmetric tensor,
ωik ¼ −ωki. As a first step, we remind the reader what
this tensor is for the most known example, the
Bargmann-Michel-Telegdi model [7].

B. Bargmann-Michel-Telegdi model

Let us consider the Bargmann-Michel-Telegdi model, for
which the relevant forcelike term F i is the Lorentz force

F i ¼ e
m
Fi

kpk; ð22Þ

and Gi is of the form

Gi ¼ e
2m

�
gFi

kSk þ
ðg − 2Þ
m2

piFklSkpl

�
: ð23Þ

Here g denotes the so-called g-factor; the case g ≠ 2
means that the particle possesses an anomalous magnetic
moment. Clearly, these terms can be written in the form
(21), when

ωik ¼ ωik
ð0Þ ¼

e
2m

�
gFik þ ðg − 2Þ

m2
δikmnpjFjmpn

�
; ð24Þ

where δikmn ¼ δimδ
k
n − δinδ

k
m is the four-indices Kronecker

tensor. The important detail of this model is that the force
F i does not contain the spin four-vector, and the term Gi is
linear in Sk. There is a simple motivation of such model
construction. In the quasiclassical approach one uses the
decomposition of microscopic equations with respect to
small quantity ℏ, the Planck constant. Although the spin of
particle enters the microscopic equations in the product
ℏ · S, the Planck constant is not involved into the classical
dynamic equations. Therefore one has to exclude the
quantity ℏ · S from (24) to provide that both left-hand
and right-hand sides of Eq. (17) are of the same order in ℏ,
and the multiplier ℏ can be eliminated.
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C. Electrically charged spin particle in electromagnetic
and axion fields

1. Reconstruction of the force-type sources

Keeping in mind the general relationships (21) we
reconstruct the tensor ωik using the following ansatz:
(A) The tensor ωik does not contain the four-

vector Si.
(B) The tensor ωik is up to the first order in the Maxwell

tensor Fik.
(C) The tensor ωik is linear in the pseudoscalar (axion)

field ϕ, or in its gradient four-vector ∇iϕ.
(D) The tensor ωik is linear in the Riemann tensor.
The first two requirements are the same as in the

Bargmann-Michel-Telegdi model. The third point is a
new detail, which appears as a natural extension of this
model for the case of particles interacting with the
pseudoscalar field. The last point implies that the model
can be minimal, when Ri

klm does not enter the tensor ωik,
and nonminimal, when there are terms containing the
Riemann tensor and its linear convolutions. Below we
consider all the appropriate constructions, which satisfy the
requirements (A)–(D) and can be added to the tensor
ωik
ð0Þ (24).
Minimal (curvature free) terms linear in the axion field ϕ

itself can be represented as follows:

ωik
ð1Þ ¼

eλ
2m

ϕ

�
gAF�ik þ ðgA − 2Þ

m2
δikmnpjF�jmpn

�
: ð25Þ

In fact, ωik
ð1Þ can be obtained from ωik

ð0Þ with replacements

Fmn → F�
mn and g → gA, where the coupling constant gA is

an axionic analog of g-factor. Dimensionless parameter λ is
equal to one, if the nature admits this coupling term, and
λ ¼ 0, if it does not admit.
Minimal terms linear in the gradient four-vector of the

axion field can be written as follows:

ωik
ð2Þ ¼

eμ
2m

pl∇lϕ

�
gGF�ik þ ðgG − 2Þ

m2
δikmnpjF�jmpn

þ ω23ϵ
ikjnpnpsFjs

�

þ∇lϕ

m
½ω24ϵ

ikmnpnFm
l þ ω25ϵ

iklnpn�: ð26Þ

Here, in addition to the axionic analog of the g-factor gA,
we introduced its gradient-type analog gG. The constant μ
in (26) plays the same role as the constant λ in (25). Other
constants have no direct analogs, and we indicated them as
ω23, ω24, etc., where the first index 2 is an indicator that the
decomposition relates to the term ωik

ð2Þ. The last term in (26)

is a unique element of the presented irreducible decom-
position, which does not contain the Maxwell tensor Fmn.

Note that this term with ω25 in front corresponds to the
right-hand side of Eq. (16) with the multiplier α.
In order to classify nonminimal terms in the theory of

spin-axion coupling we can use the following procedure.
First, we replace the Maxwell tensor Fik in (24), (25),
and (26) with the tensor of nonminimal polarization-
magnetization Mik ¼ RikmnFmn, where the so-called non-
minimal susceptibility tensorRikmn is introduced according
to the rule

Rikmn ≡ 1

2
q1Rðgimgkn − gingkmÞ þ q3Rikmn

þ 1

2
q2ðRimgkn − Ringkm þ Rkngim − RkmginÞ:

ð27Þ

Here Rmn is the Ricci tensor, R is the Ricci scalar, q1, q2, q3
are the nonminimal coupling constants (see, e.g., [61–64]
for details). Similarly, we replace the dual Maxwell tensor
F�ik with the tensor Mik:

Mik ¼ ½α1�Rikmn þ α2R�ikmn�Fmn; ð28Þ

where �Rikmn and R�ikmn are the left-dual and right-dual
tensors of nonminimal susceptibility, respectively. The
corresponding coupling parameters ωab should be replaced
with ~ωab. Concerning the last term in (26), which does not
contain the Maxwell tensor, our strategy is to add the
following nonminimal analogs:

ωik
ðNMÞ ¼ ∇lϕf ~ω25½ ~α1�Riklj þ ~α2R�iklj�pj

þ ~ω26plϵikmnRmqpnpqg: ð29Þ

Here Rmq ¼ Rmnqsgns. As a result of the described
procedure, we deal with a large number of phenomeno-
logically introduced coupling parameters. As a first step,
below we restrict ourselves by the minimal model, i.e., by
the case when ~ωab ¼ 0; the nonminimal model contains
a lot of specific details and will be discussed in a
special paper.

2. Dynamic equations

Following the representation of the total tensor
ωik ¼ ωik

ð0Þ þ ωik
ð1Þ þ ωik

ð2Þ, described above, we obtain the

minimal dynamic equation in the form

Dpi

Dτ
¼ e

m
fFikpk þ F�ikpk½λϕþ μðpl∇lϕÞ�g: ð30Þ

The first term in the right-hand side of this equation is the
usual Lorentz force. The second term can be interpreted as
an axionic analog of Lorentz force, in which the Maxwell
tensor Fik is replaced by its dual tensor F�ik, and the electric
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charge e is replaced by an effective pseudocharge eϕ. If
λ ¼ 0 identically, the model is characterized by vanishing
pseudocharge. The coupling constant μ introduces a com-
pletely new term, which contains the gradient four-vector
of an effective pseudocharge eϕ. We faced with similar
situation in the SUð2Þ and SUð3Þ-symmetric gauge models,
in which the isospin and color charges, respectively, were
considered as functions, and their derivatives also entered
the master equations [65,66].
The evolutionary equation for the spin with the redefi-

nitions, mentioned above, takes the form

DSi

Dτ
¼ e

2m

�
gFikSk þ

ðg − 2Þ
m2

piFklSkpl

�

þ eλ
2m

ϕ

�
gAF�ikSk þ

ðgA − 2Þ
m2

piF�
klS

kpl

�

þ eμ
2m

ðpl∇lϕÞ
�
gGF�ikSk þ

ðgG − 2Þ
m2

piF�
klS

kpl

�

þ eμ
2m

ðpl∇lϕÞω23ϵ
ikmnSkpnpjFmj

þ ω24

m
∇lϕϵikmnSkpnFml þ

ω25

m
∇lϕϵ

iklnSkpn:

ð31Þ

The first term in the right-hand side of this equation is the
usual term attributed to the Bargmann-Michel-Telegdi
model with anomalous magnetic moment; other terms
can be indicated as its axionic analogs. Only one term
with ω25 in front does not contain the Maxwell tensor thus
describing the direct spin-axion coupling.

3. Our further strategy

We have established the phenomenological model, in
which three channels of spin-axion coupling can be
distinguished. The first channel is direct: it works even
if there are no electromagnetic fields (Fmn ¼ 0), and the
tidal (nonminimal) interactions are absent (Rikmn ¼ 0). The
second channel is indirect, the corresponding spin-axion
coupling is mediated by the Maxwell field (Fmn ≠ 0,
Rikmn ¼ 0). The third channel is also indirect, and it can
be opened when the model is nonminimal (Rikmn ≠ 0).
Below we put Fmn ¼ 0 in (31) and consider effects of a
direct spin-axion interaction only. The next papers will be
devoted to a systematic study of effects mediated by
electromagnetic fields of various structures. In the future
we also intend to add nonminimal couplings to the direct
and indirect models of spin-axion coupling.

IV. APPLICATIONS OF THE MODEL WITH
DIRECT SPIN-AXION COUPLING

We focus now on the direct spin-axion interactions, i.e.,
we assume that Fmn ¼ 0 and Rikmn ¼ 0, and the gradient
four-vector ∇iϕ is nonvanishing due to the coupling of

axions to the gravity field. In this case Eqs. (30) and (31)
obtain the simple form

Dpi

Dτ
¼ 0;

DSi

Dτ
¼ ω25

m
∇lϕϵ

iklnSkpn: ð32Þ

Below we study three examples. The first one relates to the
cosmological context, and the gradient four-vector ∇iϕ is
timelike (i.e., ∇iϕ∇iϕ > 0). The second example relates to
the case with the spacelike gradient four-vector (i.e.,
∇iϕ∇iϕ < 0), which can be realized, e.g., in a spherically
symmetric static space-time. The third example corre-
sponds to the case ∇iϕ∇iϕ ¼ 0, which can be realized
in space-times with plane-wave symmetry (gravitational
waves). In all three cases we consider the spin particle as a
test one. It moves in a given space-time through the
pseudoscalar field, which obeys the equation

∇m∇mϕþ V 0ðϕ2Þϕ ¼ 0: ð33Þ

Here Vðϕ2Þ is the potential of the pseudoscalar (axion)
field. This equation is derived from the axionic part of the
total Lagrangian

SðaxionÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p Ψ2
0

2
½Vðϕ2Þ−∇kϕ∇kϕ�; ð34Þ

where the constantΨ0 is reciprocal to the coupling constant
of the axion-photon interaction ρAγγ , i.e.,

1
Ψ0

¼ ρAγγ (see,
e.g., [64]). Since the direct spin-axion effect appears if and
only if the gradient four-vector ∇kϕ is nonvanishing, i.e.,
∇kϕ ≠ 0, we assume that just the gravitational field
produces the inhomogeneity or nonstationarity of the
axionic field ϕ.

A. Spin coupling to relic dark matter axions

Dark matter hypothetically contains relic axions born in
the early Universe, and in the cosmological context the
pseudoscalar (axion) field ϕ can be considered as a function
of cosmological time only, ϕðtÞ. The time variable t
corresponds to the following choice of the background
space-time metric:

ds2 ¼ dt2 − a2ðtÞ
��

dx1
�

2

þ
�
dx2

�
2

þ
�
dx3

�
2
�
: ð35Þ

In this model the gradient four-vector ∇iϕ is of the form
∇iϕ ¼ Ui

_ϕ, where Ui ≡ δ0i is the global velocity four-
vector. In the context of cosmological application we
consider the axion field potential Vðϕ2Þ to be of the form
Vðϕ2Þ ¼ m2

ðaÞϕ
2, where mðaÞ is the axion mass. Then the

equation of the axion field evolution (33) is
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ϕ̈þ 3
_a
a
_ϕþm2

ðaÞϕ ¼ 0; ð36Þ

where the dot denotes a derivative with respect to time.
We consider the space-time background to be fixed by

the corresponding gravity field equations, and the scale
factor aðtÞ is a known function of time [67]. For instance, in
the de Sitter–type regime of cosmological expansion the
scale factor is of the form aðtÞ ¼ aðt0Þ exp ½H0ðt − t0Þ�
with the constant Hubble function HðtÞ≡ _a

a ¼ H0. When
mðaÞ > 3

2
H0 the solution to Eq. (36) is

ϕðtÞ¼e−
3
2
H0ðt−t0Þ

�
ϕðt0ÞcosΩðaÞðt− t0Þ

þ 1

ΩðaÞ

�
_ϕðt0Þþ

3

2
H0ϕðt0Þ

�
sinΩðaÞðt− t0Þ

�
; ð37Þ

where the effective axionic frequency is introduced as

ΩðaÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ðaÞ −
9

4
H2

0

r
: ð38Þ

When the electromagnetic field is absent, the equations
of particle dynamics (32) for the metric (35) are reduced to

dpj

dτ
¼ 1

2m
δ0jp

kpl _gkl: ð39Þ

The solution is known to be the following:

p1ðtÞ ¼ p1ðt0Þ; p2ðtÞ ¼ p2ðt0Þ; p3ðtÞ ¼ p3ðt0Þ;

p0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

a2ðtÞ

s
; ð40Þ

where q2 ≡ p2
1ðt0Þ þ p2

2ðt0Þ þ p2
3ðt0Þ is the constant quan-

tity. Since the space-time is spatially isotropic, we assume
that the particle had only one nonvanishing component at
t ¼ t0, say, p3ðt0Þ ≠ 0, and consider (for the illustration)
the following initial data:

p1ðt0Þ ¼ 0; p2ðt0Þ ¼ 0; S3ðt0Þ ¼ 0: ð41Þ

Clearly, for this case at an arbitrary time moment p1ðtÞ ¼
p2ðtÞ ¼ 0 and p3ðtÞ ¼ p3ðt0Þ, so that the cosmological
time t and the proper time τ along the particle world-line are
linked by the relationship

τ ¼
Z

t

t0

maðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2ðtÞ þ q2

p : ð42Þ

The equation of spin dynamics (32) is now of the form

DSi

Dτ
¼ ω25

m
ϵik03Skp3

_ϕ: ð43Þ

Its right-hand side does not equal zero only for two values
of indices: i ¼ 1 and i ¼ 2. This means that using the
property Skpk ¼ S0p0 þ S3p3 ¼ 0 we can write the equa-
tions for the components S3 and S0 as follows:

dS3

dt
þH0S3

�
1þ p2

3

a2p2
0

�
¼ 0; S0 ¼ −

S3p3

p0

: ð44Þ

For the initial value S3ðt0Þ ¼ 0 these equations have the
only trivial solution S3ðtÞ ¼ 0, S0ðtÞ ¼ 0. In other words
the transverse spin components only are influenced by the
axion environment and the longitudinal component is not
touched.
From the normalization condition SkSk ¼ −S2 we obtain

a−2ðtÞðS21 þ S22Þ ¼ S2, which is the hint to introduce two
convenient variables,

SþðtÞ ¼
S1
aðtÞ ; S−ðtÞ ¼

S2
aðtÞ ; ð45Þ

so that

S2þ þ S2− ¼ S2 ¼ const: ð46Þ
In these terms the equations for the transverse components
take the form

_Sþ ¼ −ΩðtÞS−; _S− ¼ ΩðtÞSþ; ð47Þ
where

ΩðtÞ ¼ ω25p3ðt0Þ _ϕðtÞ
aðtÞp0ðtÞ : ð48Þ

The solutions to (47) are of harmonic type

Sþ ¼ S cosΨðtÞ; S− ¼ S sinΨðtÞ; ð49Þ
where the phase of rotation is presented as a formal integral,

ΨðtÞ ¼
Z

t

t0

ΩðtÞdtþΨðt0Þ: ð50Þ

For the illustration of the obtained exact solution we
assume, first, that the particle is ultrarelativistic
[q2 ≫ m2a2ðtÞ] and p3ðt0Þ is positive; second, we choose
the time moment t0 so that _ϕðt0Þ ¼ 0; third, we put for
simplicity Ψðt0Þ ¼ ω25ϕðt0Þ. Then, keeping in mind that
nowadaysmðaÞ ≫ H0, we find the phaseΨðtÞ in the explicit
form [see (37)]

ΨðtÞ¼σcosmðaÞðt− t0Þ; σ≡ω25ϕðt0Þ: ð51Þ

The solutions for the spin components can be now
presented as follows:
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Sþ ¼ S cosfσ cos ½mðaÞðt − t0Þ�g

¼ J0ðσÞ þ 2
X∞
n¼1

ð−1ÞnJ2nðσÞ cos ½2nmðaÞðt − t0Þ�;

ð52Þ

S− ¼ S sinfσ cosmðaÞðt − t0Þ�g

¼ 2
X∞
n¼0

ð−1ÞnJ2nþ1ðσÞ cos ½ð2nþ 1ÞmðaÞðt − t0Þ�;

ð53Þ

where JmðσÞ are the Bessel functions of the first kind.
We deal with sophisticated spin precession, for which the
phase of precession ΨðtÞ is the harmonic function oscillat-
ing with the axionic frequency ΩðaÞ ¼ mðaÞ and the ampli-
tude σ ¼ ω25ϕðt0Þ.

B. Spin precession of relativistic charged particle
in storage rings

When a relativistic charged spin particle moves in the
constant magnetic field B, the motion is known to be
circular, and the quantity reciprocal to the Larmor fre-
quency, ω−1

L ¼ m
eB, predetermines the time scale of dynamic

processes. In fact, for such motion the cosmological
phenomena can be considered as extremely slow, and
one can putHðtÞ → 0. The scale factor aðtÞ can be replaced
by constant aðt0Þ and absorbed into the redefined coor-
dinates [in fact, one can put aðtÞ → 1]. Since the size of the
storage ring is much smaller than the typical size of the dark
matter inhomogeneity, we can neglect a spatial dependence
and consider the axion field as a function of time only. In
our case the quantity _ϕ can be expressed in terms of the
energy density scalar WðaÞ and pressure PðaÞ attributed to
the axionic dark matter as follows (see, e.g., [68]):

_ϕ ¼ � 1

Ψ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðaÞðtÞ þ PðaÞðtÞ

q
: ð54Þ

When the axionic dark matter is cold, i.e., PðaÞ ¼ 0, and
WðaÞ ¼ ρðaÞ, where ρðaÞ is the mass density of the dark
matter, this formula is simplified, respectively, as

_ϕ ¼ � 1

Ψ0

ffiffiffiffiffiffiffiffiffiffiffiffi
ρðaÞðtÞ

q
: ð55Þ

Also, for the sake of simplicity, we can neglect the
deformation of the initial magnetic field by the axionic
field, and put equal to zero all the new coupling constants
except ω25.
Let the magnetic field be directed along the x3 ≡ z axis,

i.e., only one component of the Maxwell tensor,
F12 ¼ const, is nonvanishing. In the cylindrical coordinates
fρ;φ; zg with the metric

ds2 ¼ dt2 − ðdz2 þ dρ2 þ ρ2dφ2Þ ð56Þ
the equation of particle motion,

Dpj

Dτ
¼ e

m
Fjkpk; ð57Þ

can be transformed as

dpj

dt
¼ −

ρ

p0

δρjp
φ2 þ e

p0

Fjkpk; ð58Þ

and gives the evident solutions

pzðtÞ ¼ pzð0Þ ¼ 0; pρðtÞ ¼ 0; ð59Þ

pφ ¼ −eρFρφ ¼ −eρ2F12; ð60Þ

ρðtÞ ¼ R ¼ const; φðtÞ ¼ ΩðBÞt; ð61Þ

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2R2F2

12

q
; t ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2R2F2

12

m2

r
: ð62Þ

Here R is the radius of the circular orbit, and the quantity
ΩðBÞ given by

ΩðBÞ ¼
eF12

p0

¼ const ð63Þ

is the relativistic angular frequency of rotation (the rela-
tivistic Larmor frequency).
The equations for the spin evolution

DSi

Dτ
¼ ω25

_ϕ

m
ϵik0nSkpn þ

e
m
Fi

kSk ð64Þ
rewritten as

p0

dSi

dt
þ pφ

ρ
ðgiφSρ − giρSφÞ ¼ ω25

_ϕ

ρ
Eik0φSkpφ þ eFi

kSk

ð65Þ
give

_S0 ¼ 0; _Sφ ¼ 0; ð66Þ

_Sz ¼ ω25
_ϕΩðBÞRSρ; ð67Þ

_Sρ ¼ −ω25
_ϕΩðBÞRSz: ð68Þ

Physically motivated solutions to these equations are

S0ðtÞ ¼ 0; SφðtÞ ¼ 0; ð69Þ

SzðtÞ ¼ −S cosΨðHÞðtÞ; ð70Þ

SρðtÞ ¼ S sinΨðHÞðtÞ; ð71Þ
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where the hybrid precession phase ΨðHÞ is given by

ΨðHÞðtÞ ¼ ΨðtÞΩðBÞR ¼ ΨðtÞ eF12Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2R2F2

12

p ; ð72Þ

and ΨðtÞ is the axionic phase (we put here t0 ¼ 0)

ΨðtÞ ¼ ω25½ϕðtÞ − ϕð0Þ�

¼ ω25

�
ϕð0ÞðcosΩðaÞt − 1Þ þ

_ϕð0Þ
ΩðaÞ

sinΩðaÞt
�

≃ ω25
_ϕð0Þt: ð73Þ

Clearly, the spin four-vector is orthogonal to the particle
momentum four-vector, i.e., pkSk ¼ 0. This solution can be
illustrated as follows. If ω25

_ϕ ¼ 0, the particle has the spin
three-vector directed along the magnetic field, and this
direction is conserved during the particle circular motion. If
ω25

_ϕ ≠ 0 the spins start to precess in the plane ρOz
according the law described by formulas (69)–(71); the
frequency of the precession depends on the particle energy,
or, equivalently, on the orbit radius R. From the exper-
imental point of view, if the polarized beam of electrons is
formed in a storage ring, and all the spins are initially
directed perpendicularly to the ring plane, one can expect
that the axionically induced spin rotation will start, and the
distribution of the angles between the spins and the ring
plane will be a predicted function of time and the particle
energy. In the ultrarelativistic regime, when m → 0 effec-
tively, one obtains from (72) that ΨðHÞðtÞ → ΨðtÞ and the
dependence on the parameter R disappears (some specific
details of ultrarelativistic spin particle motion can be found
also in [69]).

C. Spin dynamics in the field of an axion star

In this application we consider a spherically symmetric
static axionically active object, which is characterized by
the metric

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ: ð74Þ

The axion field is assumed to depend on the radial
coordinate r only. The gradient four-vector ∇iϕ ¼
δriϕ

0ðrÞ (the prime denotes the derivative with respect to
r) is now spacelike, i.e., ∇iϕ∇iϕ ¼ − 1

Aϕ
02 < 0. When we

consider the distribution of the pseudoscalar (axion) field in
this static model, and the gravity field is assumed to be
strong, it seems to be reasonable to use the extended
potential

Vðϕ2Þ ¼ m2
ðaÞϕ

2 þ 1

2
νðaÞðϕ2 − ϕ2�Þ2: ð75Þ

The function ϕðrÞ satisfies now the equation

ϕ00 þ ϕ0
�
1

2

�
B0

B
−
A0

A

�
þ 2

r

�
¼ AðrÞϕ½m2

ðaÞ þ νðaÞðϕ2 − ϕ2�Þ�; ð76Þ

which is (due to the absence of electromagnetic field)
formally the same as for the gravitating scalar field ΦðrÞ
(see, e.g., [70–72]). There is no need to present explicit
solutions of (76) for our purposes. Examples of solutions
with asymptotically flat space-time and scalar fields van-
ishing at r → ∞ can be found in [70–72].
In the static spherically symmetric case the plane of the

particle motion can be chosen as the equatorial one θ ¼ π
2
,

and the first equation in (32) is known to give four integrals
of motion [73]:

p0 ¼ K ¼ const; pθ ¼ 0; pφ ¼ −J ¼ const;

ð77Þ

pr ¼ 1ffiffiffiffi
A

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

B
−
J2

r2
− E2

r
; E ¼ const: ð78Þ

For the asymptotically flat space-time with Að∞Þ ¼ 1

and Bð∞Þ ¼ 1 the normalization condition pipi ¼ m2

yields

K ¼ p0ð∞Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ pr

2ð∞Þ
q

; ð79Þ

i.e., the constant K usually describes the particle energy at
infinity. The constant J relates to the conserved particle
angular momentum. The constant E regulates the parameter
along the particle world-line, e.g., when dτ ¼ ds, we see
that E ¼ m.
In order to analyze properly the equations of spin

evolution (32) we distinguish two specific types of particle
motion: first, the radial motion; second, the motion along a
circular orbit.

1. Radial particle motion

For this type of motion pθ ¼ 0, pφ ¼ 0 and the equa-
tions of spin evolution

DSi

Dτ
¼ ω25

m
ϕ0ðrÞϵikr0Skp0 ð80Þ

can be split into two independent subsets. The first subset
contains the components S0 and Sr only, and does not
include the coupling term proportional to ω25. Keeping in
mind that the condition Skpk ¼ 0 leads to S0p0 þ
Srpr ¼ 0, we can write this subset of equations as follows:

dS0

dτ
þ S0

�
B0ðrÞ

2mABpr

�
2

K2

BðrÞ −m2

��
¼ 0; ð81Þ
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dSr

dτ
þ Sr

�
pr

2m

�
A0

A
þ B0

B

��
¼ 0: ð82Þ

As in the first application we assume that Srð0Þ ¼ 0,
providing that S0ð0Þ ¼ 0 from the orthogonality condition.
Then the solutions to the equations (81) and (82) are trivial
S0ðτÞ ¼ 0 and SrðτÞ ¼ 0.
The second subset of (80),

dSθ

dτ
þ Sθ

�
pr

mr

�
¼ −

ω25ϕ
0

m
ffiffiffiffiffiffiffi
AB

p
r2
p0Sφ; ð83Þ

dSφ

dτ
þ Sφ

�
pr

mr

�
¼ ω25ϕ

0

m
ffiffiffiffiffiffiffi
AB

p
r2
p0Sθ; ð84Þ

can be transformed into

dSþ
dr

¼ −ΩðrÞS−;
dS−
dr

¼ ΩðrÞSþ; ð85Þ

using the relation between τ and r [see (78)],

τ ¼
Z

r

∞
dr

m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ABðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − E2BðrÞ

p ; ð86Þ

and the following definitions:

Sþ ≡ rSθ; S− ≡ rSφ; ð87Þ

ΩðrÞ≡ Kω25ϕ
0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 − E2BðrÞ
p : ð88Þ

Clearly, the solutions to (85) are

SþðrÞ ¼ S cosΨðrÞ; S− ¼ S sinΨðrÞ; ð89Þ

ΨðrÞ ¼ Ψð∞Þ þ
Z

r

∞
drΩðrÞ: ð90Þ

Thus, when the particle moves in the radial direction, one
deals with a spin turn in the plane ðθ;ϕÞ; the quantity ΩðrÞ
plays the role of the rate of turn with respect to radial
variable r, andΨðrÞ describes the cumulative angle of turn.

2. Circular particle motion

The circular motion is characterized by r ¼ R ¼ const,
so that pr ¼ 0 and thus

K2

BðRÞ −
J2

R2
¼ E2: ð91Þ

We consider a stable orbit and thus the radial component of
the gravitational force should vanish on the orbit, providing
Dpr

Dτ ¼ 0, or

B0ðRÞ
B2ðRÞ ¼

2J2

K2R3
: ð92Þ

Also, as previously, we have that p0 ¼ K, pθ ¼ 0,
pφ ¼ −J, but now the particle cannot reach infinity, and
we have to redefine the constant K. For instance, we obtain
from (91) and (92) that

J2 ¼ E2R3B0ðRÞ
2B − RB0ðRÞ ; K ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B2ðRÞ

2B − RB0ðRÞ

s
: ð93Þ

The first equation of (93) gives implicitly the radius of
the circular orbit as a function of orbital moment, RðJÞ. The
second equation defines the energy of the particle on the
given orbit as a function of obtained radius, KðRÞ. We
assume that the inequality 2BðRÞ > RB0ðRÞ is satisfied [for
instance, for the Schwarzschild metric BðrÞ ¼ 1 − 2GM

r this
inequality means that R > 3

2
rg ¼ 3GM].

The orthogonality condition Skpk ¼ 0 and the integrals
of motion (77) provide that the components S0 and Sφ are
proportional one to another, S0 ¼ SφðJKÞ. For the circular
orbit one can replace the differentiation with respect to
proper time τ with the azimuthal angle φ due to the
relationship dφ

ds ¼ pφ

m ¼ J
mR2 (recall, that in the case s ¼ τ

we obtain E ¼ m). With this replacement three indepen-
dent equations for spin evolution take the following form:

dSr

dφ
¼ Sφ ·HrðRÞ; dSθ

dφ
¼ Sφ ·HθðRÞ;

dSφ

dφ
þ Sr

R
¼ −Sθ ·HφðRÞ: ð94Þ

Here, for short, we introduced three auxiliary functions of
the radius R:

HrðRÞ ¼ RE2BðRÞ
K2AðRÞ ; HφðRÞ ¼ HθðRÞ K2

E2BðRÞ ;

HθðRÞ ¼ ω25R2E2
ffiffiffiffiffiffiffiffiffiffiffi
BðRÞp

ϕ0ðRÞ
KJ

ffiffiffiffiffiffiffiffiffiffi
AðRÞp : ð95Þ

The evident differential consequence of (94) and (95) is the
following equation of the second order for Sφ:

d2Sφ

dφ2
þ I2ðRÞSφ ¼ 0; ð96Þ

where

I2ðRÞ ¼ 1

R
Hr þHθHϕ ¼ E2B

K2A
þ ω2

25R
4E2ϕ02

J2A
: ð97Þ

For the positive metric functions BðRÞ > 0 and AðRÞ > 0
the solution to this equation is a harmonic function of the
azimuthal angle

ALEXANDER B. BALAKIN AND VLADIMIR A. POPOV PHYSICAL REVIEW D 92, 105025 (2015)

105025-10



SφðφÞ ¼ C1 cos Iφþ C2 sin Iφ; ð98Þ

providing the following solutions in terms of τ:

SφðτÞ ¼ C1 cosΩτ þ C2 sinΩτ;

S0ðτÞ ¼ J
K
½C1 cosΩτ þ C2 sinΩτ�: ð99Þ

The quantity Ω ¼ I·J
mR2 plays the role of frequency of the

spin turn. Other components of the spin four-vector are,
respectively,

SrðτÞ ¼ HrðRÞ
IðRÞ ½C1 sinΩτ − C2 cosΩτ� þ C3;

SθðτÞ ¼ HθðRÞ
IðRÞ ½C1 sinΩτ − C2 cosΩτ� þ C4: ð100Þ

The constants of integration C1, C2, C3, C4 are connected
by the normalization condition

BS02 − ASr2 − r2Sθ2 − r2Sφ2 ¼ −S2 ¼ const; ð101Þ

which at r ¼ R yields two relationships:

S2 ¼ BE2R2

K2
ðC2

1 þ C2
2Þ þ R2C2

4

�
1þ ω2

25R
4K2ϕ02

J2B

�
;

C3 ¼ −C4

ω25R3ϕ0ðRÞK
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABðRÞp : ð102Þ

On the other hand, three independent constants of integra-
tion C1, C2, C4, are connected with initial values Sφð0Þ,
Sθð0Þ, Srð0Þ as follows:

C1 ¼ Sφð0Þ; C2 ¼ −
Srð0Þ
RIðRÞ − Sθð0Þ K2Hθ

E2IBðRÞ ;

C4 ¼ −Srð0Þ H
θ

RI2
þ Sθð0Þ H

r

RI2
: ð103Þ

The problem is solved completely. The formulas (99)
and (100) with constants given by (102) and (103) and
auxiliary quantities (95) and (97) describe the axionically
induced turn of the spin four-vector of the particle moving
along the circular orbit around the static spherically
symmetric gravitating object. When ω25ϕ

0 ¼ 0, we see

that I ¼ E
K

ffiffiffi
B
A

q
, and the corresponding frequency Ω ¼ IJ

mR2

takes the form Ω ¼ ΩðgeodesicÞ ¼ J
KR2

ffiffiffi
B
A

q
, describing the

geodesic precession. This fact allows us to indicate the term

ΩðaxionÞ ¼ ω25ϕ
0ðRÞffiffiffiffiffiffiffi

AðRÞ
p as the axionic frequency. With this

terminology we can say that the total frequency Ω satisfies
the equality

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ðgeodesicÞ þ Ω2
ðaxionÞ

q
; ð104Þ

and can be called a hybrid frequency of the geodesic-
axionic precession. Finally, it should be mentioned that one
can introduce local frequency ω instead of Ω, using the
equality ωdt ¼ Ωdτ. Clearly, we obtain that ω ¼ ΩBðRÞ mK.

D. Spin precession induced by plane-symmetric
axion-gravitational waves

The third application of the model relates to the case
when the gradient four-vector ∇iϕ is the null one, i.e.,
∇iϕ∇iϕ ¼ 0. It can be realized, e.g., in the model with
plane-wave symmetry [64,74,75]. The corresponding
space-time metric is of the form

ds2 ¼ 2dudv − L2½e2βðdx2Þ2 þ e−2βðdx3Þ2�; ð105Þ

where u ¼ t−x1ffiffi
2

p and v ¼ tþx1ffiffi
2

p are the retarded and advanced

times, respectively, and two metric functions LðuÞ and βðuÞ
depend on the retarded time u only. On the plane-wave
front u ¼ 0 the initial data are fixed in the form

Lð0Þ ¼ 1; L0ð0Þ ¼ 0; βð0Þ ¼ 0: ð106Þ

We assume that the background pseudoscalar (axion) field
also depends on retarded time only, ϕ ¼ ϕðuÞ, providing
the condition ∇iϕ∇iϕ ¼ 0 automatically. Exact solutions
of this type (in particular, the solution linear in the retarded
time) can be found in [64].
The equations of particle dynamics in the metric (105)

are known to yield (see, e.g., [66])

pu ¼ pv ¼ Cv; p2 ¼ C2; p3 ¼ C3;

pv ¼ pu ¼
m2 þ L−2ðe−2βC2

2 þ e2βC2
3Þ

2Cv
: ð107Þ

Here Cv, C2, C3 are constants of integration.
Our aim is to solve the equations of the spin evolution,

which can be reduced now to the following three inde-
pendent equations:

d
du

Su ¼ 0 ⇒ Su ¼ Sv ¼ const ð108Þ

e−β

L
d
du

ðLeβS2Þ þ C2

2Cv
SvðL−2e−2βÞ0

¼ ω25ϕ
0

L2

�
Sv

C3

Cv
− S3

�
; ð109Þ

eβ

L
d
du

ðLe−βS3Þ þ C3

2Cv
SvðL−2e2βÞ0

¼ −
ω25ϕ

0

L2

�
Sv

C2

Cv
− S2

�
: ð110Þ
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Here we used the relationship u ¼ τ Cv
m between the

parameter τ and the retarded time u, which is the conse-
quence of the equation mdu

ds ¼ pu ¼ Cv (we restrict our-
selves by the case, when u ¼ 0 corresponds to τ ¼ 0). The
prime denotes here the derivative with respect to retarded
time. We present only three equations from four, since the
component Sv ¼ Su can be found from one of the two
integrals,

2SuSv ¼ ðLeβS2Þ2 þ ðLe−βS3Þ2 − S2; ð111Þ

SuCv þ Svpu þ S2C2 þ S3C3 ¼ 0: ð112Þ

Clearly, when Sv ¼ 0, one can extract Su from the second
relationship only (Cv ≠ 0 for massive particles).
In order to solve the key equations (109) and (110), it is

convenient to use the following auxiliary functions:

S−ðuÞ ¼ LeβS2; SþðuÞ ¼ Le−βS3;

ΩðuÞ ¼ ω25ϕ
0ðuÞ;

fðuÞ ¼ Sv
C2

Cv

�
e−β

L

�
; gðuÞ ¼ Sv

C3

Cv

�
eβ

L

�
: ð113Þ

In these terms the equations (109) and (110) take the form

d
du

S− ¼ ΩðuÞSþ þ ΩgðuÞ − f0ðuÞ;
d
du

Sþ ¼ −ΩðuÞS− − ΩfðuÞ − g0ðuÞ; ð114Þ

and their solutions happen to be very simple:

Sþ ¼ A cosΨðuÞ − gðuÞ;
S− ¼ A sinΨðuÞ − fðuÞ;

ΨðuÞ ¼ Ψð0Þ þ ω25½ϕðuÞ − ϕð0Þ�: ð115Þ

Here A is an integration constant. When the integral Sv is
nonvanishing, the last unknown function SuðuÞ reads

Su ¼
1

2Sv
½f2 þ g2 − 2Aðg cosΨþ f sinΨÞ þA2 − S2�;

ð116Þ

and the constant A can be found from the orthogonality
condition (112) yielding

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 −

m2S2v
C2
v

s
: ð117Þ

Below we illustrate the obtained exact solutions by the
examples of longitudinal and transversal particle motion
with respect to the plane front of the gravitational wave.

1. Longitudinal motion

Let the spinning particle start to move along the x1 axis,
i.e., p2ð0Þ ¼ C2 ¼ 0, p3ð0Þ ¼ C3 ¼ 0. According to (107)
at u > 0 the particle keeps the direction of motion,
p2ðuÞ ¼ p3ðuÞ ¼ 0. From (108) and (111) it follows that
the components Su and Sv do not feel the influence of
axions, and we assume that Suð0Þ ¼ Svð0Þ ¼ 0, i.e., at
u ¼ 0 there were only two nonvanishing spin four-vector
components, S2ð0Þ ≠ 0 and S3ð0Þ ≠ 0. For such initial data
we obtain immediately that fðuÞ ¼ 0, gðuÞ ¼ 0, A ¼ S
and thus

SuðuÞ ¼ 0; SvðuÞ ¼ 0;

S2ðuÞ ¼ S
�
e−β

L

�
sinΨðuÞ;

S3ðuÞ ¼ S
�
eβ

L

�
cosΨðuÞ: ð118Þ

Again we deal with axionically induced spin rotation with
the frequency ΩðuÞ ¼ ω25ϕ

0ðuÞ.

2. Example of a transversal motion

Let the particle start to move at u ¼ 0 in the direction x2

(in the front plane of the gravitational wave), and have
initially only one nonvanishing component of the spin four-
vector S3ð0Þ ≠ 0. Mathematically this is possible if

Sv ¼ 0; Ψð0Þ ¼ 0 ⇒ fðuÞ ¼ gðuÞ ¼ 0; A ¼ S.

ð119Þ
Then the exact solution obtained above gives

SvðuÞ ¼ 0; SuðuÞ ¼ −
C2

Cv
S
�
e−β

L

�
sinΨðuÞ;

S2ðuÞ ¼ S
�
e−β

L

�
sinΨðuÞ;

S3ðuÞ ¼ S
�
eβ

L

�
cosΨðuÞ: ð120Þ

The first and second formulas in (120) yield

S1ðuÞ ¼ 1ffiffiffi
2

p ðSu − SvÞ ¼ −
C2ffiffiffi
2

p
Cv

S
�
e−β

L

�
sinΨðuÞ:

ð121Þ

One can see that due to the spin-axion coupling the
longitudinal and the second transversal components of
the spin appear S1ðu > 0Þ ≠ 0, S2ðu > 0Þ ≠ 0. The axioni-
cally induced spin rotation is characterized by the fre-
quency ΩðuÞ ¼ ω25ϕ

0ðuÞ.
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V. DISCUSSION

We have established the model of the pseudoscalar
(axion) field action on the spinning particle. In its minimal
(curvature independent) version this model includes the
dynamic equation (30) and the equation of the spin
evolution (31). The terms, which include the Maxwell
tensor Fmn and its dual F�

ik are constructed phenomeno-
logically by analogy with (and as generalization of) the
well-known Bargmann-Michel-Telegdi (BMT) model. As
in the BMT model, the dynamic equation (30) does not
contain the spin four-vector, and the equation (31) is linear
in Sk. Is it possible to extend (31) by introducing the spin
four-vector quadratically, e.g., as it was made by Bander
and Yee in [17]? For sure, the scheme, based on the
representations (17) of the master equations and on the
decomposition of the basic tensor ωik introduced in (21),
gives us such a tool. For instance, when ωik is linear in the
spin, the corresponding dynamic equation is also linear, and
the equation of the spin evolution is quadratic in the spin
four-vector.
However, even in the simplest BMT-like form (30) the

dynamic equation includes two new force terms, which
points to the axionic extension of the theory. The first
novelty is the term in which the tensor eFmn is replaced
with the tensor eϕF�

mn, where the pseudoscalar multiplier ϕ
compensates the pseudotensorial nature of the dual
Maxwell tensor F�

mn. The second novelty is the term with
the gradient-type multiplier pl∇lϕ in front of F�

mn. If the
axionic environment indeed produces forces of these kinds,
they could be tested in high-energy experiments with
polarized beams, e.g. in the LHC. We hope to present
the corresponding work and discuss exact solutions to the
whole system of equations of axion electrodynamics,
particle dynamics and spin evolution in the next paper.
As for this paper, we consider the contribution from the

only new term, which is free of the Maxwell tensor and
linear in the gradient four-vector ∇lϕ. This term describes
the direct action of the axion field on the particle spin. This
term, ω25

mc ∇lϕϵ
iklnSkpn, was introduced phenomenologi-

cally, and the dimensionless coupling constant ω25 should
be recognized. One of the ways to find ω25 is to make the
reduction from the axionically extended Dirac theory; we
will return to this problem in the future. The second way is
to use the analogy with the axion-photon coupling, which
has been considered in Sec. II. To follow the hypothesis of
universality and to compare the evolutionary equations for
the photon polarization (15) and for the spin rotation (16),
one can assume that ω25 ¼ α ¼ 1. Nevertheless, one
should repeat that this coupling constant has to be found
experimentally.
One can mention that the term ω25

m ∇lϕϵ
iklnSkpn describ-

ing the direct spin-axion coupling can be represented in the
BMT-like form. Indeed, let us take the main term e

m F
ikSk

appearing in the BMT model for the case g ¼ 2, and

consider the decomposition of the Maxwell tensor in the
reference frame associated with the particle moving with

the velocity pi

m. In addition, let us assume that in this frame
the electric field Ek is absent, then we obtain that
Fik ¼ − 1

m ϵ
iklnBlpn, where Bk is the four-vector of the

corresponding magnetic excitation. Comparing the terms
ω25

m ∇lϕϵ
iklnSkpn and − e

m2 ϵiklnSkBlpn, we can see that they
formally coincide, when ω25∇lϕ ¼ − e

mBl. In other words,
this analogy hints that the gradient of the pseudoscalar
(axion) field can produce the spin rotation similar to the
well-known effect induced by the magnetic field.
Of course, the mentioned analogy is incomplete, since

Bk is the spacelike four-(pseudo)vector, while the gradient
four-(pseudo)vector ∇kϕ can be timelike (∇iϕ∇iϕ > 0),
spacelike (∇iϕ∇iϕ < 0) or null (∇iϕ∇iϕ ¼ 0). However,
in all three cases, as it was demonstrated using the
obtained exact solutions to the master equations, we deal
with the same phenomenon, the axionically induced spin
precession.
The typical example for the timelike gradient four-vector

∇kϕ is given by the spatially homogeneous cosmological
model according to which the pseudoscalar field corre-
sponds to the relic dark matter axions. In this case the
gradient four-vector reduces to δ0i _ϕ and the spin rotates in
the plane orthogonal to the direction of the particle motion.
The corresponding time-dependent frequency ΩðtÞ ¼
ω25

_ϕðtÞ Vc (V is the modulus of the velocity three-vector)
is a direct analog of the Larmor frequency.
The static spherically symmetric model of gravitational

and axion fields gives the typical example for the spacelike
gradient, ∇iϕ∇iϕ < 0. When the particle moves in the
radial direction, we deal again with the spin rotation in
the transverse plane. Now it is more reasonable to speak
about the spin turn with respect to radial variable r rather
than with respect to time [see (86)–(89)]. The rate of spin
turn depends on the distance to the center; in particular,
when prð∞Þ ¼ 0 and thus K ¼ m ¼ E, we obtain

ΩðrÞ ¼ ω25
ϕ0ðrÞffiffiffiffiffiffiffiffiffiffiffi
1−BðrÞ

p . Far from the center the metric function

BðrÞ has the standard behavior, BðrÞ → ð1 − 2GM
r Þ, so the

asymptotic behavior of the frequency ΩðrÞ, Ωðr → ∞Þ →
ω25ffiffiffiffiffiffiffiffi
2GM

p ffiffiffi
r

p
ϕ0ðrÞ is predetermined by the function

ffiffiffi
r

p
ϕ0ðrÞ.

One can expect that the zone of strong gravitation gives the
maximal contribution into the total turn of the spin,
however, this question should be analyzed in its own right.
When the particle moves along a circular orbit around

the axionically active object, one can split the total effect in
the spin rotation into geodesic precession and axionic
precession. The frequency of rotation is given by hybrid

formula (104), and the axionic frequency ΩðaxionÞ ¼ ω25ϕ
0ðRÞffiffiffiffiffiffiffi

AðRÞ
p

is constant on the orbit, but depends on the radius of the
orbit R. The behavior of the function ΩðaxionÞðRÞ can be
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studied only when the distribution of axion field ϕðrÞ is
found. We hope to return to this question in the next paper
in the context of discussion of qualitative and numerical
study of the total system of master equations.
The case ∇iϕ∇iϕ ¼ 0 is typical for the model with a

plane-wave symmetry, for which the axion field depends on
the retarded time only, ϕðuÞ. Again the exact solutions to
the master equations demonstrate the spin rotation with the
frequency ΩðuÞ ¼ ω25ϕ

0ðuÞ. Two cases have to be distin-
guished in this model. First, when the particle moves
orthogonally to the front of the gravitational wave (the
so-called longitudinal motion), we deal with simple spin
rotation in the front plane (S2 ≠ 0 and S3 ≠ 0). When the
projection of the particle momentum on the front plane is
nonvanishing (p2 ≠ 0, transversal motion), the spin rota-
tion becomes more sophisticated (the additional, third
component of the spin four-vector appears).
The first obvious conclusion for all three applications is

that the pseudoscalar (axion) field makes the space-time
chiral, so that the left-hand and right-hand rotations of the
particle spin four-vector become nonequivalent. The spin
precession can be indicated as the first general property of
the model.
The second general property is that the gravitational

field, providing the nonvanishing gradient of the axion field
[ _ϕ≠0, ϕ0ðrÞ≠0, ϕ0ðuÞ ≠ 0], activates the spin-axion cou-
pling. In this sense, when the gravity field is strong, it
displays the phenomenon of spin rotation more effectively.
Since the phase of the spin turn is described by the

integral formulas of the typeΨ ¼ R
dξΩðξÞ (ξ ¼ t, ξ ¼ r or

ξ ¼ u), the effect of spin rotation is cumulative in the space-
time domains, in which the quantities _ϕðtÞ, ϕ0ðrÞ or ϕ0ðuÞ,
respectively, hold the sign. In this sense the phase accu-
mulation can be treated as the third general property of
the model.
Finally, we would like to say a couple of words about

estimation of the described effect. We prefer to do it on the
example of relic dark matter axions, which seem to be

distributed everywhere, using the model of relativistic
charged spin particle motion in a storage ring with
magnetic field (see Sec. IV B). In the cosmological context

the quantity _ϕðt0Þ can be estimated as _ϕðt0Þ ¼ 1
Ψ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðaÞðt0Þ

q
using the mass density of dark matter axions ρðaÞðt0Þ. Thus,
for the relic cold dark matter axions with the mass density
of the order ρðDMÞ ≃ 0.033MðSunÞpc−3, for the ultrarelativ-
istic particle with V → c, for the coupling constant
1
Ψ0

¼ ρAγγ ≃ 10−9 GeV−1, we obtain that an optimistic
estimation for the spin rotation frequency (in Hz) is

ΩðHÞ ¼ _ΨðHÞ → _Ψ

≃ 10−6
�
ω25

1

��
ρAγγ

10−9 GeV−1

�� ffiffiffiffiffiffiffiffiffiffiffi
ρðDMÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.25 GeV cm−3

p
�
:

In order to estimate the possible total axionically induced
phase variation, ΔΨ, for other examples, we have to know
the time period, during which the sign of the frequency is
nonchanged and is, say, positive. When we deal with
homogeneous cosmological model, according to (52)
and (53) this time period is about of T ¼ π

mðaÞ
, and thus

is negligibly small. The application to the static spherically
symmetric gravitation field is much more promising, since
now the derivative ϕ0ðrÞ is a monotonic function, and the
accumulation of the phase of the spin turn can continue for
a long time for both radial and circular motion of the test
particle.

ACKNOWLEDGMENTS

A. B. is grateful to Professor Wei-Tou Ni for fruitful
discussion concerning new trends in the physics of axions.
This work was supported by Program of Competitive
Growth of KFU (Project No. 0615/06.15.02302.034),
and by Russian Foundation for Basic Research (Grant
No. RFBR N 14-02-00598).

[1] The Kerr Spacetime: Rotating Black Holes in General
Relativity, edited by D. L. Wiltshire, M. Visser, and
S. M. Scott (Cambridge University Press, New York,
2009).

[2] J. L. Friedman and N. Stergioulas, Rotating Relativistic
Stars (Cambridge University Press, New York, 2013).

[3] E. Athanassoula, The spiral structure of galaxies, Phys. Rep.
114, 319 (1984).

[4] A. J. Benson, Galaxy formation theory, Phys. Rep. 495, 33
(2010).

[5] C. M. Will, The confrontation between general relativity
and experiment, Living Rev. Relativity 17, 4 (2014).

[6] I. Ciufolini and E. C. Pavlis, A confirmation of the general
relativistic prediction of the Lense-Thirring effect, Nature
(London) 431, 958 (2004).

[7] V. Bargmann, L. Michel, and V. L. Telegdi, Precession of
the Polarization of Particles Moving in a Homogeneous
Electromagnetic Field, Phys. Rev. Lett. 2, 435 (1959).

[8] L. H. Thomas, The motion of a spinning electron, Nature
(London) 117, 514 (1926).

[9] J. Frenkel, Die elektrodynamik des rotierenden elektrons, Z.
Phys. 37, 243 (1926).

[10] F. Bloch, Nuclear induction, Phys. Rev. 70, 460
(1946).

ALEXANDER B. BALAKIN AND VLADIMIR A. POPOV PHYSICAL REVIEW D 92, 105025 (2015)

105025-14

http://dx.doi.org/10.1016/0370-1573(84)90156-X
http://dx.doi.org/10.1016/0370-1573(84)90156-X
http://dx.doi.org/10.1016/j.physrep.2010.06.001
http://dx.doi.org/10.1016/j.physrep.2010.06.001
http://dx.doi.org/10.12942/lrr-2014-4
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1038/117514a0
http://dx.doi.org/10.1038/117514a0
http://dx.doi.org/10.1007/BF01397099
http://dx.doi.org/10.1007/BF01397099
http://dx.doi.org/10.1103/PhysRev.70.460
http://dx.doi.org/10.1103/PhysRev.70.460


[11] M. Mathisson, Neue mechanik materieller systeme, Acta
Phys. Pol. 6, 163 (1937).

[12] A. Papapetrou, Spinning test particles in general relativity.
1., Proc. R. Soc. A 209, 248 (1951).

[13] W. Dixon, Dynamics of extended bodies in general rela-
tivity. I. Momentum and angular momentum, Proc. R. Soc.
A 314, 499 (1970).

[14] R. M. Wald, Gravitational spin interaction, Phys. Rev. D 6,
406 (1972).

[15] I. Khriplovich and A. Pomeransky, Equations of motion of
spinning relativistic particle in external fields, Surveys in
High Energy Physics 14, 145 (1999); Gravitational inter-
action of spinning bodies, center-of-mass coordinate and
radiation of compact binary systems, Phys. Lett. A 216, 7
(1996).

[16] R. Rietdijk and J. van Holten, Spinning particles in
Schwarzschild space-time, Classical Quantum Gravity 10,
575 (1993); J. W. van Holten, Relativistic dynamics of spin
in strong external fields, arXiv:hep-th/9303124.

[17] M. Bander and K. Yee, Equations of motion for spinning
particles in external electromagnetic and gravitational fields,
Phys. Rev. D 48, 2797 (1993).

[18] A. P. Balachandran, G. Marmo, B. S. Skagerstam, and A.
Stern, Spinning particles in general relativity, Phys. Lett.
89B, 199 (1980).

[19] G. Cognola, L. Vanzo, S. Zebrini, and R. Soldati, On the
Lagrangian formulation of a charged spinning particle in an
external electromagnetic field, Phys. Lett. 104B, 67 (1981).

[20] W.-T. Ni, Searches for the role of spin and polarization in
gravity, Rep. Prog. Phys. 73, 056901 (2010).

[21] G. Bertone,Particle DarkMatter: Observations,Models and
Searches (Cambridge University Press, Cambridge, 2010).

[22] J. Silk, The invisible universe: Dark matter and dark energy,
Lect. Notes Phys. 720, 101 (2007).

[23] V. Trimble, Existence and nature of dark matter in the
universe, Annu. Rev. Astron. Astrophys. 25, 425 (1987).

[24] M. Khlopov, Fundamentals of Cosmic Particle Physics
(CISP-Springer, Cambridge, 2012).

[25] L. Sadeghian, F. Ferrer, and C. M. Will, Dark matter
distributions around massive black holes: A general rela-
tivistic analysis, Phys. Rev. D 88, 063522 (2013).

[26] R. D. Peccei and H. R. Quinn, CP Conservation in the
Presence of Pseudoparticles, Phys. Rev. Lett. 38, 1440
(1977).

[27] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223
(1978).

[28] F. Wilczek, Problem of Strong P and T Invariance in
the Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978).

[29] M. S. Turner, Windows on the axion, Phys. Rep. 197, 67
(1990).

[30] G. G. Raffelt, Astrophysical methods to constrain axions
and other novel particle phenomena, Phys. Rep. 198, 1
(1990).

[31] E. P. S. Shellard and R. A. Battye, Origin of dark matter
axions, Phys. Rep. 307, 227 (1998).

[32] P. Sikivie, Axion cosmology, Lect. Notes Phys. 741, 19
(2008).

[33] R. Battesti, B. Beltran, H. Davoudiasl, M. Kuster, P. Pugnat,
R. Rabadan, A. Ringwald, N. Spooner, and K. Zioutas,
Axions, Lect. Notes Phys. 741, 199 (2008).

[34] E. di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri,
and O. Mena, Axion cold dark matter: Status after Planck
and BICEP2, Phys. Rev. D 90, 043534 (2014).

[35] L. Visinelli and P. Gondolo, Axion Cold DarkMatter in View
of BICEP2 Results, Phys. Rev. Lett. 113, 011802 (2014).

[36] T. Noumi, K. Saikawa, R. Sato, and M. Yamaguchi,
Effective gravitational interactions of dark matter axions,
Phys. Rev. D 89, 065012 (2014).

[37] N. Banik and P. Sikivie, Axions and the galactic angular
momentum distribution, Phys. Rev. D 88, 123517 (2013).

[38] W.-T. Ni, Equivalence Principles and Electromagnetism,
Phys. Rev. Lett. 38, 301 (1977).

[39] P. Sikivie, Experimental Tests of the “Invisible” Axion,
Phys. Rev. Lett. 51, 1415 (1983).

[40] W.-T. Ni, From equivalence principles to cosmology:
Cosmic polarization rotation, CMB observation, neutrino
number asymmetry, Lorentz invariance and CPT, Prog.
Theor. Phys. Suppl. 172, 49 (2008).

[41] W.-T. Ni, Cosmic polarization rotation, cosmological mod-
els, and the detectability of primordial gravitational waves,
Int. J. Mod. Phys. A 24, 3493 (2009).

[42] Y. N. Obukhov and F.W. Hehl, Measuring a piecewise
constant axion field in classical electrodynamics, Phys. Lett.
A 341, 357 (2005).

[43] A. M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelec-
tric Polarizability and Axion Electrodynamics in Crystalline
Insulators, Phys. Rev. Lett. 102, 146805 (2009).

[44] J. F. Navarro, C. S. Frenk, and S. D. M. White, The structure
of cold dark matter halos, Astrophys. J. 462, 563 (1996).

[45] A. B. Balakin and L. V. Grunskaya, Axion electrodynamics
and dark matter fingerprints in the terrestrial magnetic and
electric fields, Rep. Math. Phys. 71, 45 (2013).

[46] A. B. Balakin and W.-T. Ni, Anomalous character of the
axion-photon coupling in a magnetic field distorted by a pp-
wave gravitational background, Classical Quantum Gravity
31, 105002 (2014).

[47] A. B.Balakin,R. K.Muharlyamov,andA. E.Zayats,Electro-
magnetic waves in an axion-active relativistic plasma non-
minimally coupled to gravity, Eur. Phys. J. C 73, 2647 (2013).

[48] A. B. Balakin, V. V. Bochkarev, and N. O. Tarasova, Gra-
dient models of the axion-photon coupling, Eur. Phys. J. C
72, 1895 (2012).

[49] A. B. Balakin and N. O. Tarasova, Extended axion electro-
dynamics: Optical activity induced by nonstationary dark
matter, Gravitation Cosmol. 18, 54 (2012).

[50] J. E. Moody and F. Wilczek, New macroscopic forces?,
Phys. Rev. D 30, 130 (1984).

[51] N. Ramsey, The tensor force between two protons at long
range, Physica A (Amsterdam) 96, 285 (1979).

[52] R. Barbieri, M. Cerdonio, G. Fiorentini, and S. Vitale,
Axion to magnon conversion. A scheme for the detection of
galactic axions, Phys. Lett. B 226, 357 (1989).

[53] F. Giuliani and T. A. Girard, Model-independent limits from
spin-dependent WIMP dark matter experiments, Phys. Rev.
D 71, 123503 (2005).

[54] A. G. Glenday, C. E. Cramer, D. F. Phillips, and R. L.
Walsworth, Limits on Anomalous Spin-Spin Couplings
between Neutrons, Phys. Rev. Lett. 101, 261801 (2008).

[55] G. Vasilakis, J.M. Brown, T.W. Kornack, andM. V. Romalis,
Limits on New Long Range Nuclear Spin-Dependent Forces

SPIN-AXION COUPLING PHYSICAL REVIEW D 92, 105025 (2015)

105025-15

http://dx.doi.org/10.1098/rspa.1951.0200
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1103/PhysRevD.6.406
http://dx.doi.org/10.1103/PhysRevD.6.406
http://dx.doi.org/10.1080/01422419908228843
http://dx.doi.org/10.1080/01422419908228843
http://dx.doi.org/10.1016/0375-9601(96)00266-6
http://dx.doi.org/10.1016/0375-9601(96)00266-6
http://dx.doi.org/10.1088/0264-9381/10/3/017
http://dx.doi.org/10.1088/0264-9381/10/3/017
http://arXiv.org/abs/hep-th/9303124
http://dx.doi.org/10.1103/PhysRevD.48.2797
http://dx.doi.org/10.1016/0370-2693(80)90009-X
http://dx.doi.org/10.1016/0370-2693(80)90009-X
http://dx.doi.org/10.1016/0370-2693(81)90856-X
http://dx.doi.org/10.1088/0034-4885/73/5/056901
http://dx.doi.org/10.1007/978-3-540-71013-4
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1103/PhysRevD.88.063522
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1016/0370-1573(90)90172-X
http://dx.doi.org/10.1016/0370-1573(90)90172-X
http://dx.doi.org/10.1016/0370-1573(90)90054-6
http://dx.doi.org/10.1016/0370-1573(90)90054-6
http://dx.doi.org/10.1016/S0370-1573(98)00078-7
http://dx.doi.org/10.1007/978-3-540-73518-2
http://dx.doi.org/10.1007/978-3-540-73518-2
http://dx.doi.org/10.1007/978-3-540-73518-2
http://dx.doi.org/10.1103/PhysRevD.90.043534
http://dx.doi.org/10.1103/PhysRevLett.113.011802
http://dx.doi.org/10.1103/PhysRevD.89.065012
http://dx.doi.org/10.1103/PhysRevD.88.123517
http://dx.doi.org/10.1103/PhysRevLett.38.301
http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://dx.doi.org/10.1143/PTPS.172.49
http://dx.doi.org/10.1143/PTPS.172.49
http://dx.doi.org/10.1142/S0217751X09047107
http://dx.doi.org/10.1016/j.physleta.2005.05.006
http://dx.doi.org/10.1016/j.physleta.2005.05.006
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1016/S0034-4877(13)60021-X
http://dx.doi.org/10.1088/0264-9381/31/10/105002
http://dx.doi.org/10.1088/0264-9381/31/10/105002
http://dx.doi.org/10.1140/epjc/s10052-013-2647-8
http://dx.doi.org/10.1140/epjc/s10052-012-1895-3
http://dx.doi.org/10.1140/epjc/s10052-012-1895-3
http://dx.doi.org/10.1134/S0202289312010033
http://dx.doi.org/10.1103/PhysRevD.30.130
http://dx.doi.org/10.1016/0378-4371(79)90217-6
http://dx.doi.org/10.1016/0370-2693(89)91209-4
http://dx.doi.org/10.1103/PhysRevD.71.123503
http://dx.doi.org/10.1103/PhysRevD.71.123503
http://dx.doi.org/10.1103/PhysRevLett.101.261801


Set with a K?He3 Comagnetometer, Phys. Rev. Lett. 103,
261801 (2009).

[56] D. Chelouche and E. I. Guendelman, Cosmic analogues of
the Stern-Gerlach experiment and the detection of light
bosons, Astrophys. J. 699, L5 (2009).

[57] P.-H. Chu, A. Dennis, C. B. Fu, H. Gao, R. Khatiwada, G.
Laskaris, K. Li, E. Smith, W.M. Snow, H. Yan, and W.
Zheng, Laboratory search for spin-dependent short-range
force from axionlike particles using optically polarized He3
gas, Phys. Rev. D 87, 011105(R) (2013).

[58] P. W. Graham and S. Rajendran, New observables for direct
detection of axion dark matter, Phys. Rev. D 88, 035023
(2013).

[59] Y. V. Stadnik and V. V. Flambaum, Axion-induced effects in
atoms, molecules and nuclei: Parity nonconservation, ana-
pole moments, electric dipole moments, and spin-gravity
and spin-axion momentum couplings, Phys. Rev. D 89,
043522 (2014).

[60] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and
A. Sushkov, Cosmic Axion Spin Precession Experiment
(CASPEr), Phys. Rev. X 4, 021030 (2014).

[61] I. T. Drummond and S. J. Hathrell, QED vacuum polariza-
tion in a background gravitational field and its effect on the
velocity of photons, Phys. Rev. D 22, 343 (1980).

[62] F. W. Hehl and Yu. N. Obukhov, How does the electromag-
netic field couple to gravity, in particular to metric, non-
metricity, torsion, and curvature?, Lect. Notes Phys. 562,
479 (2001).

[63] A. B. Balakin and J. P. S. Lemos, Nonminimal coupling for
the gravitational and electromagnetic fields: A general
system of equations, Classical Quantum Gravity 22, 1867
(2005).

[64] A. B. Balakin and W.-T. Ni, Nonminimal coupling of
photons and axions, Classical Quantum Gravity 27,
055003 (2010).

[65] S. K. Wong, Field and particle equations for the classical
Yang-Mills field and particles with isotopic spin, Nuovo
Cimento 65, 689 (1970).

[66] A. B. Balakin, V. R. Kurbanova, and W. Zimdahl,
Parametric phenomena of the particle dynamics in a periodic
gravitational wave field, J. Math. Phys. (N.Y.) 44, 5120
(2003).

[67] A. A. Starobinsky, Future and origin of our universe:
Modern view, Gravitation Cosmol. 6, 157 (2000).

[68] S. Nojiri and S. D. Odintsov, Unified cosmic history in
modified gravity: From FðRÞ theory to Lorentz noninvariant
models, Phys. Rep. 505, 59 (2011).

[69] A. A. Deriglazov and W. G. Ramrez, Mathisson-
Papapetrou-Tulczyjew-Dixon (MPTD) equations in ultra-
relativistic regime and gravimagnetic moment, arXiv:
1509.05357.

[70] D. J. Kaup, Klein-Gordon geon, Phys. Rev. 172, 1331 (1968).
[71] R. Ruffini and F. Bonazzola, System of self-gravitating

particles in general relativity and the concept of an equation
of state, Phys. Rev. 187, 1767 (1969).

[72] J.-W. Lee and I.-G. Koh, Galactic halos as boson stars, Phys.
Rev. D 53, 2236 (1996).

[73] S. Weinberg, Gravitation and Cosmology (Wiley,
New York, 1972).

[74] C. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[75] J. B. Griffiths and J. Podolsky, Exact Space-Times in
Einstein’s General Relativity (Cambridge University Press,
New York, 2009).

ALEXANDER B. BALAKIN AND VLADIMIR A. POPOV PHYSICAL REVIEW D 92, 105025 (2015)

105025-16

http://dx.doi.org/10.1103/PhysRevLett.103.261801
http://dx.doi.org/10.1103/PhysRevLett.103.261801
http://dx.doi.org/10.1088/0004-637X/699/1/L5
http://dx.doi.org/10.1103/PhysRevD.87.011105
http://dx.doi.org/10.1103/PhysRevD.88.035023
http://dx.doi.org/10.1103/PhysRevD.88.035023
http://dx.doi.org/10.1103/PhysRevD.89.043522
http://dx.doi.org/10.1103/PhysRevD.89.043522
http://dx.doi.org/10.1103/PhysRevX.4.021030
http://dx.doi.org/10.1103/PhysRevD.22.343
http://dx.doi.org/10.1007/3-540-40988-2
http://dx.doi.org/10.1007/3-540-40988-2
http://dx.doi.org/10.1088/0264-9381/22/9/024
http://dx.doi.org/10.1088/0264-9381/22/9/024
http://dx.doi.org/10.1088/0264-9381/27/5/055003
http://dx.doi.org/10.1088/0264-9381/27/5/055003
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1063/1.1617364
http://dx.doi.org/10.1063/1.1617364
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://arXiv.org/abs/1509.05357
http://arXiv.org/abs/1509.05357
http://dx.doi.org/10.1103/PhysRev.172.1331
http://dx.doi.org/10.1103/PhysRev.187.1767
http://dx.doi.org/10.1103/PhysRevD.53.2236
http://dx.doi.org/10.1103/PhysRevD.53.2236

