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Spin-axion coupling
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We establish a new covariant phenomenological model, which describes an influence of pseudoscalar
(axion) field on spins of test massive particles. The model includes general relativistic equations of particle
motion and spin evolution in background pseudoscalar (axion), electromagnetic and gravitational fields. It
describes both the direct spin-axion coupling of the gradient type and indirect spin-axion interaction
mediated by electromagnetic fields. Special attention is paid to the direct spin-axion coupling caused by the
gradient of the pseudoscalar (axion) field. We show that it describes a spin precession, when the
pseudoscalar (axion) field is inhomogeneous and/or nonstationary. Applications of the model, which
correspond to the three types of four-vectors attributed to the gradient of the pseudoscalar (axion) field
(timelike, spacelike, and null), are considered in detail. These are the spin precessions induced by relic
cosmological axions, axions distributed around spherically symmetric static objects, and axions in a
gravitational wave field, respectively. We discuss features of the obtained exact solutions and some general
properties of the axionically induced spin rotation.
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I. INTRODUCTION

The terms angular moment and spin are considered in
theories of gravity in two main aspects. First, we face with
them, when we study the gravitational field formed by a
single rotating extended body (e.g., black holes, neutron
stars, etc. [1,2]), or a system of bodies rotating around an
attracting center (e.g., stars in spiral galaxies [3.4]).
Second, we deal with the polarization or spin, when we
investigate the gravitationally induced dynamics of test
particles, which possess vector (or pseudovector, respec-
tively) degrees of freedom. This sector of investigations
is usually connected with experiments in gravitational
physics (see, e.g., [5,6] and references therein).

According to the standard terminology the rotating
extended body or pointlike particle can be described by
an antisymmetric tensor of total moment S;;, which can be
decomposed as Sy = 6"L,,U, — €j4,,, S"U", using the
unit velocity four-vector U" of the body. The quantity
L™ can be indicated as a four-vector of the orbital moment,
and the (pseudo)vector S plays the role of a classical spin
four-vector. The term 67" is the four-indices Kronecker
tensor and €y,,, is the Levi-Civita (pseudo)tensor.
Evolutionary equations for the total moment S;;, and/or
for its constituents L™ and S™ have been investigated in
various contexts by many authors. The list of obtained
results is very long, and we would like to attract attention to
the following two only.

In 1959 Bargmann, Michel and Telegdi (BMT) obtained
the covariant equations for classical spin particles with
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anomalous magnetic moment [7]. This model describes a
spin evolution in the framework of special relativity as a
generalization of the nonrelativistic theory elaborated by
Thomas [8], Frenkel [9] and Bloch [10]. Being completed
by the spin-curvature coupling terms, introduced earlier
by Mathisson [11] and Papapetrou [12], this model became
a starting point for numerous investigations of spin particle
dynamics in general relativity (see, e.g., [13-20] and
references therein). When it was necessary to include
electromagnetic interactions, these investigations used
the Faraday-Maxwell electrodynamics. Scientific events
of the two past decades attracted the attention to its
generalization called axion electrodynamics. In light of
the hypothesis about the axionic nature of the dark matter
this theory seems to be more appropriate for describing
the cosmic electrodynamics than the standard Faraday-
Maxwell theory.

The story, how axions were associated with dark matter
particles, is well known. The dark matter, a cosmic
substance, which neither emits nor scatters the electromag-
netic radiation, is assumed to accumulate about 23% of the
Universe’s energy. The mass density distribution of the
dark matter is presented in the astrophysical catalogues as a
result of observations and theoretical simulations (see, e.g.,
[21-25] for details, review and references). The origin of
the dark matter is not yet established. One of the most
attractive hypothesis links the dark matter with massive
pseudo-Goldstone bosons. The particles of this type were
postulated in 1977 by Peccei and Quinn [26] in order to
solve the problem of strong CP-invariance, and were
introduced into the high-energy physics as new light
bosons by Weinberg [27] and Wilczek [28] in 1978.
Later these pseudobosons were indicated as axions and
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now they are considered as the most appropriate candidate
for dark matter particles [29-37].

The description of these axions in terms of the field
theory is based on the introduction of a pseudoscalar field
¢, which is assumed to interact with electromagnetic and
SU(2)-symmetric gauge fields. The theory of interaction
between electromagnetic and pseudoscalar fields was
elaborated by Ni in 1977 [38]. Due to the works of
Sikivie (see, e.g., [39]) we recognize now this sector of
science as axion electrodynamics; a number of effects such
as the axionically induced optical activity [40,41], mag-
netoelectric cross effects [42,43], etc., were predicted in the
framework of this theory.

Thus, on the one hand, the axions are associated in our
mind with the cosmic dark matter, which regulates key
gravitational processes in our Universe, for instance,
provides specific (flat) distribution of star velocities in
the spiral galaxies (see, e.g., [44]). On the other hand, the
axions produce the photon polarization rotation, in other
words, the axionic dark matter forms an electrodynamically
active chiral cosmic medium. Clearly, we could try to find
fingerprints of the axionic dark matter in the electromag-
netic signals associated with astrophysical and geophysical
phenomena [45-49].

Returning to the problem of influence of the (axionic)
dark matter on the orbital moment, polarization and spin,
we can say the following. First, definitely, the dark matter
influences the orbital moment of star gas in spiral galaxies,
providing the observed flat profiles of the velocity distri-
bution [44]. Second, the axionic dark matter is predicted to
rotate the photon polarization [40]. Third, due to the first
and second arguments, one can expect that the axionic dark
matter should also influence the particle spin.

In fact, the theoretical discussions about a new branch in
the axion physics, i.e., the theory of spin-axion coupling,
were opened in 1980s of the past century; it was a
discussion concerning the axionically induced spin depen-
dent long range forces [50]. The long range spin dependent
forces were in a focus of experimental investigations (see,
e.g., [51]), and this circumstance gave the impetus for
development of new experimental programs devoted to
detection of axions, based on their interactions with nuclear
spins, electric and magnetic moments, etc. (see, e.g.,
[52-60] and references therein). This branch of axion
physics was indicated as spin-axion coupling by analogy
with the axion-photon and the axion-gluon couplings.
Nevertheless the term spin-axion coupling is rather wide
and two theoretical approaches have to be distinguished.
Experimental works in the terrestrial laboratories deal with
bonded spin particles in the specific material media, and
these bonded particles are, in average, at rest with respect to
these media. For these purposes the nonrelativistic formal-
ism of condensed matter physics is adequate and describes
correctly the models of spin dynamics. When one deals
with free spin particles, which move with high velocity
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(e.g., in storage rings) or in a vicinity of sources of strong
gravitational and axion fields (e.g., near axion stars), the
covariant formalism of high energy physics is necessary for
description of the model.

From the mathematical point of view, our goal is to
develop the covariant version of the theory of spin-axion
coupling, and we consider extended dynamic equations for
relativistic spin particle. The corresponding extensions
include axionic modifications of the Bagrmann-Michel-
Telegdy forcelike term, and gradient-type modifications of
a rotatory term. From the physical point of view, adding the
third entity, the axion, to the interacting pair of photon and
charged spin particle, one can expect that three channels of
interaction will be activated: first, the already known direct
axion-photon coupling; second, the direct spin-axion cou-
pling; third, the indirect spin-axion coupling mediated by
the axion-photon interaction. In this paper we intend to
discuss in detail the two last channels of the photon-axion-
spin interactions.

The paper is organized as follows. In Sec. II we analyze
some details of the well-known model of axion-photon
coupling to motivate our new model of spin-axion cou-
pling. In particular, we derive an equation of the photon
polarization precession induced by a gradient of the
pseudoscalar (axion) field. In Sec. III we generalize the
results of Sec. II for massive particles and reconstruct
phenomenologically equations of spin-particle dynamics in
the axion environment. We divide the obtained terms into
three types: first, the terms indicated as axionic general-
izations of the Bargmann-Michel-Telegdy terms; second,
the terms describing direct spin-axion coupling; third,
the nonminimal terms. In Sec. IV we consider four
applications of the model with the direct spin-axion
coupling. In Sec. IVA we obtain an exact solution to the
dynamic equations for the massive spin particle, which
moves straightforwardly and interacts with the relic cosmic
axions. In Sec. IV B we apply the formalism to the model of
relativistic charged spin particle motion in a storage ring
with magnetic field. In Sec. IV C we discuss the spin-axion
coupling in the static spherically symmetric gravitational
background. We studied in detail two cases, describing
radial and circular particle motion, respectively. The exact
solutions for the spin precession in the field of pp-wave
gravitational field provided by axions are presented in
Sec. IV D. In Sec. V we discuss the common details of the
axionically induced spin precession, which were revealed
in all three submodels.

II. CLASSICAL ANALOGY: PHOTON
POLARIZATION ROTATION INDUCED
BY THE AXION FIELD

In 1977 Ni [38] obtained equations for the electromag-
netic field coupled to a pseudoscalar field ¢. The initial
form of the currentless electrodynamic equations was the
following:
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VI[FH 4 pFH] = 0. (1)

This equation is derived by variation with respect to the
potential four-vector A; of the electromagnetic part S(gyy) of

the total action functional, where
4 1 mn 1 * mn
S(EM) = d X\/—g ZanF +Z¢anF . (2)

Here F,,, is the Maxwell tensor, and F** = JekmF, s

klmn —_ EKmn .

its dual tensor. As usual, ¢ is the Levi-Civita

tensor, based on the completely antisymmetric Levi-Civita
symbol EX™ with E9'23 = 1. The Maxwell tensor F,,, is
connected with the electromagnetic potential A, in the
regular way:

an = van - vnAm’ (3)

so, that the well-known relationship
V,F* =0 (4)

converts into the identity. Due to (4) the basic equation (1)
simplifies as follows:

V,Fkl - —F*“V,qﬁ. (5)

In order to transform Eq. (5) to a one-photon form we use
the standard procedure. First, we follow the approximation
of geometrical optics, and represent the potential A,, as

Am = amei\p‘ (6)

Here W is a rapidly varying phase, the so-called eikonal. Its
gradient four-vector k; = V,; ¥ has a sense of a wavelength
four-vector of the photon. The amplitude a,, and its
derivatives are assumed to be slowly varying functions,
ie., max [V;a,| < min|k;a,,|. In these terms the Lorentz
condition,

vam =Y (7)

gives two relations. The first one, a,,k” = 0, appears in the
first order approximation and means that the polarization is
orthogonal to the wavelength four-vector. In the next order
we obtain V,,a™ = 0. The leading order approximation in
Eq. (5) in the context of (6) yields k,, k™ = 0, the ordinary
eikonal equation, implying that the photons travel along
null geodesics. The tangent vector to the photon world-line
canbe defined as k" = h ddLT where 7 is an affine parameter
along the line, and 7 is the Planck constant.

The differential consequence of the eikonal equation
k,k™ =0 is K"V, k, = 0. Since the quantity k" is the
gradient four-vector, the relation V,,k,, = V, k,, is valid, so
we obtain additionally that
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KV, k" = 0, 8)

For an illustration of the main idea we assume that the
wavelength vector k™ is divergence-free, i.e., V,k" =0
(or equivalently, V"V, ¥ = 0). This can be realized in
many models, e.g, in the Minkowski space-time, in the
space-time with plane-wave symmetry. Then the first order
approximation in Eq. (5) gives the following equation for
the evolution of the amplitude a’:

1.
K"V, al = Eeﬂf’qvld)apkq. 9)
The convolution of this equation with a; yields

1 .
Ek’”Vm(a/aj) =0, (10)

= _g?

j is constant along the photon world-line
with the tangent vector k. This fact allows us to introduce

the unit spacelike polarization four-vector & as follows:

1.e., d’a

al = aél,

&g =-1, (11)

and to exclude the amplitude a from Eq. (9):

A
K"V, & = zeﬂpqvlg{)ipkq. (12)
Using the covariant differential operator

D dx™

L _dyg |
Dt dr ™ (13)

one can rewrite Eqs. (8) and (12) as a pair of basic
equations of photon evolution: first, the dynamic equation
Dl
Dr

and second, the equation of polarization rotation

0, (14)

DE 1 dx?

D—i:§€jlpqvl¢§pg. (15)
It is clear that in terms of one-photon description three
scalar quantities, k"'k,,, k,,£™, and £"¢&,,, are the integrals of
motion for the set of equations (14), (15), i.e., they remain
constant along the photon world-line, k"'k,, = const = 0,
k,,&" = const = 0, &"¢,, = —1.

There is an obvious analogy between equations of
motion for the massless photons and massive fermions.
Based on this analogy, we can replace the polarization four-
vector & by the spin four-(pseudo)vector S/, and introduce
the timelike particle momentum four-vector p* = mU* =

mdd—xf instead of the null wave four-vector k/ (here and

below we consider the system of units, in which ¢ = 1). As
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a natural extension of Eqs. (14) and (15) we obtain the
following evolutionary equations for the fermion particle:

DSji a

Dp/
ZZ o _ 2
Dt 2m

D = e, VSt pi, (16)
where a is some parameter introduced phenomenologically.
The presented analogy could explain the appearance of the
rotational term in the right-hand side of Eq. (16). However,
some fermions possess electric charges and thus interact
with electromagnetic fields, and a phenomenological gen-
eralization of Egs. (14) and (15) requires more sophisti-
cated efforts. We will take into account these interactions in
the next section.

III. SPIN-PARTICLE DYNAMICS IN AN
AXION ENVIRONMENT

A. Basic equations

Let us consider the evolution of a relativistic point
particle with an electric charge and a spin four-vector.
Dynamic equations for the particle momentum p’ and for
the spin four-vector S’ can be written as

Dp' P DS"

Dzt Dt g (17)

i.e., the rates of change of the given quantities are
predetermined by the corresponding forcelike terms, F'
and G', respectively. Let us present, first, three general
properties of the four-vectors ' and G'.

(i) The mass of the particle, m, defined from the
normalization law p’p; = m*c?, is assumed to be con-
served quantity, providing the four-vector F* to be orthogo-
nal to the momentum:

A Dp' 1D :
F'=pi—==-—(p;p") =0. 18
piF' = pipy =55 (pip') (18)

(ii) Similarly, we assume that the scalar square of
the spacelike spin four-vector is constant, i.e., S'S; =
const = —S?%. Then using the second equation from (17)

we obtain that

DS 1D, ., 1D

. —_ _ Qi — -7 Q2 _ 1
"Dt ZDT(SZS) 2DTS 0. (19)

Sigi — S

or in other words, that the forcelike term G’ is orthogonal to
the spin four-vector.
(iii) Finally, we assume that the spin four-vector is

orthogonal to the momentum four-vector, S'p;, =
const = 0; then one obtains that
D . . .
(p'S;)) =0= F'S;+ G;p' =0. (20)

Dzt
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In the minimal theory the quantities 7' and G' depend on
the particle momentum p*, spin S, Maxwell tensor F,,,
and its dual F;,,, as well as on the pseudoscalar (axion)
field ¢ and its gradient four-vector Vi ¢. In the non-
minimally extended theory the quantities 7' and G' can
include the Riemann tensor R}'dm, Ricci tensor R;; and
Ricci scalar R; also the covariant derivatives of the
Maxwell tensor, V,F,,, and of the Riemann tensor
V,R;m, can appear in the decomposition of F' and
G'. Three equations (18)—(20) are satisfied identically,
when

‘7:i = a)ikpk, gi = (I)ikSk, (21)

where ®* is an arbitrary antisymmetric tensor,
o'* = —w*. As a first step, we remind the reader what
this tensor is for the most known example, the
Bargmann-Michel-Telegdi model [7].

B. Bargmann-Michel-Telegdi model

Let us consider the Bargmann-Michel-Telegdi model, for
which the relevant forcelike term F' is the Lorentz force

i_ ¢

f - Fikpk, (22)
m

and G is of the form

) e . -2) .
g =— gFlkSk + —(g 5 )plelSkpl . (23)
2m m

Here ¢ denotes the so-called g-factor; the case g # 2
means that the particle possesses an anomalous magnetic
moment. Clearly, these terms can be written in the form
(21), when

. ) . -2) .
wlk = wlk = i gFlk + <gm2 )5#1{1117

© = 2m Fret|s (24

J

where 6k, = §1,65 — 616~ is the four-indices Kronecker
tensor. The important detail of this model is that the force
F' does not contain the spin four-vector, and the term G'is
linear in S*. There is a simple motivation of such model
construction. In the quasiclassical approach one uses the
decomposition of microscopic equations with respect to
small quantity %, the Planck constant. Although the spin of
particle enters the microscopic equations in the product
7 - S, the Planck constant is not involved into the classical
dynamic equations. Therefore one has to exclude the
quantity #-S from (24) to provide that both left-hand
and right-hand sides of Eq. (17) are of the same order in 7,
and the multiplier 7 can be eliminated.
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C. Electrically charged spin particle in electromagnetic
and axion fields

1. Reconstruction of the force-type sources

Keeping in mind the general relationships (21) we
reconstruct the tensor @’ using the following ansatz:

(A) The tensor '’ does not contain the four-
vector S'.

(B) The tensor w'* is up to the first order in the Maxwell
tensor F'y.

(C) The tensor w’ is linear in the pseudoscalar (axion)
field ¢, or in its gradient four-vector V;¢.

(D) The tensor w'* is linear in the Riemann tensor.

The first two requirements are the same as in the
Bargmann-Michel-Telegdi model. The third point is a
new detail, which appears as a natural extension of this
model for the case of particles interacting with the
pseudoscalar field. The last point implies that the model
can be minimal, when Rizm does not enter the tensor w*,
and nonminimal, when there are terms containing the
Riemann tensor and its linear convolutions. Below we
consider all the appropriate constructions, which satisfy the
requirements (A)—(D) and can be added to the tensor
a)g’g) (24).

Minimal (curvature free) terms linear in the axion field ¢
itself can be represented as follows:

. el v ga—2) . "
a)zli) = ¢ gaF Ik"_( Am2 )5;;]1(11ij Mmpti. (25)

2m

In fact, a)é’{) can be obtained from a)ég) with replacements

F,, — F, and g — g4, where the coupling constant g, is
an axionic analog of g-factor. Dimensionless parameter A is
equal to one, if the nature admits this coupling term, and
A =0, if it does not admit.

Minimal terms linear in the gradient four-vector of the
axion field can be written as follows:

i e *1 9 -2
(U(IE) = 2—P1v1¢ [QGF b 96 -2) sz )

5£rlfnij*jmpn
m

+ 0)23€ikj"PnPSFjs}

Vi .
+ 7[ {w24€lkmnpnle + w25€lklnpn]' (26)

Here, in addition to the axionic analog of the g-factor g,,
we introduced its gradient-type analog g;. The constant y
in (26) plays the same role as the constant 4 in (25). Other
constants have no direct analogs, and we indicated them as
Wy3, oy, etc., where the first index 2 is an indicator that the
decomposition relates to the term a)ég. The last term in (26)

is a unique element of the presented irreducible decom-
position, which does not contain the Maxwell tensor F™".
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Note that this term with @,5 in front corresponds to the
right-hand side of Eq. (16) with the multiplier a.

In order to classify nonminimal terms in the theory of
spin-axion coupling we can use the following procedure.
First, we replace the Maxwell tensor F* in (24), (25),
and (26) with the tensor of nonminimal polarization-
magnetization M* = R*""F _ where the so-called non-
minimal susceptibility tensor R is introduced according
to the rule

qu(gimgkn _ gingkm) + q3Rikmn

1 . . ) .
qu (legkn _ ngkm + Rknglm _ kagln).
(27)

Here R™" is the Ricci tensor, R is the Ricci scalar, ¢4, g5, ¢3
are the nonminimal coupling constants (see, e.g., [61-64]
for details). Similarly, we replace the dual Maxwell tensor
F** with the tensor M

Mik — [al*Rikmn + aQR*ikmn]me (28)

where *Rkm" and R**m are the left-dual and right-dual
tensors of nonminimal susceptibility, respectively. The
corresponding coupling parameters @, should be replaced
with @,;,. Concerning the last term in (26), which does not
contain the Maxwell tensor, our strategy is to add the
following nonminimal analogs:

a)élf\]M) = Vig{ansla R™ + &, R ] p;
+5)26P16%anqP"Pq}- (29)

Here R™ ='R"™%g,.. As a result of the described
procedure, we deal with a large number of phenomeno-
logically introduced coupling parameters. As a first step,
below we restrict ourselves by the minimal model, i.e., by
the case when @,, = 0; the nonminimal model contains
a lot of specific details and will be discussed in a
special paper.

2. Dynamic equations
Following the representation of the total tensor
w'* = wé’(‘» + a)’(’{) + a)’é> described above, we obtain the
minimal dynamic equation in the form

Dpi
Dt

= = {F¥py+ F¥pilap + u(p'Vig)]}. (30)

The first term in the right-hand side of this equation is the
usual Lorentz force. The second term can be interpreted as
an axionic analog of Lorentz force, in which the Maxwell
tensor F'¥ is replaced by its dual tensor F**, and the electric
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charge e is replaced by an effective pseudocharge e¢. If
A = 0 identically, the model is characterized by vanishing
pseudocharge. The coupling constant y introduces a com-
pletely new term, which contains the gradient four-vector
of an effective pseudocharge e¢. We faced with similar
situation in the SU(2) and SU (3)-symmetric gauge models,
in which the isospin and color charges, respectively, were
considered as functions, and their derivatives also entered
the master equations [65,60].

The evolutionary equation for the spin with the redefi-
nitions, mentioned above, takes the form

s s ’}
+ 2l (pr,¢)w23€ikm”SkpnPijj
4O W4 vl¢€zk}nnskpn o + Dy S, p,.

(31)

The first term in the right-hand side of this equation is the
usual term attributed to the Bargmann-Michel-Telegdi
model with anomalous magnetic moment; other terms
can be indicated as its axionic analogs. Only one term
with @,5 in front does not contain the Maxwell tensor thus
describing the direct spin-axion coupling.

3. Our further strategy

We have established the phenomenological model, in
which three channels of spin-axion coupling can be
distinguished. The first channel is direct: it works even
if there are no electromagnetic fields (F,,, = 0), and the
tidal (nonminimal) interactions are absent (R*”" = 0). The
second channel is indirect, the corresponding spin-axion
coupling is mediated by the Maxwell field (F,,, # 0,
R ikmn — 0). The third channel is also indirect, and it can
be opened when the model is nonminimal (R*™" # 0).
Below we put F,,, =0 in (31) and consider effects of a
direct spin-axion interaction only. The next papers will be
devoted to a systematic study of effects mediated by
electromagnetic fields of various structures. In the future
we also intend to add nonminimal couplings to the direct
and indirect models of spin-axion coupling.

IV. APPLICATIONS OF THE MODEL WITH
DIRECT SPIN-AXION COUPLING

We focus now on the direct spin-axion interactions, i.e.,
we assume that F,,, = 0 and R**"" = 0, and the gradient
four-vector V;¢ is nonvanishing due to the coupling of
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axions to the gravity field. In this case Eqgs. (30) and (31)
obtain the simple form

Dp' _0 DS’

Dr Dt

=I5, peiking,p,. (32
m

Below we study three examples. The first one relates to the
cosmological context, and the gradient four-vector V;¢ is
timelike (i.e., V,;¢Vi¢p > 0). The second example relates to
the case with the spacelike gradient four-vector (i.e.,
V.¢Vig < 0), which can be realized, e.g., in a spherically
symmetric static space-time. The third example corre-
sponds to the case V,;pVi¢p = 0, which can be realized
in space-times with plane-wave symmetry (gravitational
waves). In all three cases we consider the spin particle as a
test one. It moves in a given space-time through the
pseudoscalar field, which obeys the equation

VY, + V() = 0. (33)

Here V(¢?) is the potential of the pseudoscalar (axion)
field. This equation is derived from the axionic part of the
total Lagrangian

S(dan /d4x\/_ [ ( >_vk¢vk¢]’ (34)

where the constant W, is reciprocal to the coupling constant
of the axion-photon interaction py,,, 1.€., 5= = pay, (see,
e.g., [64]). Since the direct spin-axion effect appears if and
only if the gradient four-vector V¢ is nonvanishing, i.e.,
Vi¢p #0, we assume that just the gravitational field
produces the inhomogeneity or nonstationarity of the
axionic field ¢.

A. Spin coupling to relic dark matter axions

Dark matter hypothetically contains relic axions born in
the early Universe, and in the cosmological context the
pseudoscalar (axion) field ¢ can be considered as a function
of cosmological time only, ¢(z). The time variable ¢
corresponds to the following choice of the background
space-time metric:

ds* = dr* — d*(t) de1>2 + (dx2>2 + (dx3)2]. (35)

In this model the gradient four-vector V;¢ is of the form
Vip =U ,-(l), where U; =& is the global velocity four-
vector. In the context of cosmological application we
consider the axion field potential V(¢?) to be of the form
V(g?) = m%a)qbz, where m,) is the axion mass. Then the

equation of the axion field evolution (33) is
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. a -
$+3-g+mid =0, (36)

where the dot denotes a derivative with respect to time.
We consider the space-time background to be fixed by
the corresponding gravity field equations, and the scale
factor a(r) is a known function of time [67]. For instance, in
the de Sitter—type regime of cosmological expansion the
scale factor is of the form a(r) = a(ty)exp [Ho(t — 1y)]
with the constant Hubble function H(f) =% = H,. When

M) > %HO the solution to Eq. (36) is

¢<t>=e-%Ho<f-fo>{¢<ro>cossz<a><z—to>

!
Q)

) 3 ) sin (1100 . 37

where the effective axionic frequency is introduced as

9
Qu = \/m?, — L H}. (38)

()

When the electromagnetic field is absent, the equations
of particle dynamics (32) for the metric (35) are reduced to

dp; 1 kol
dr %5917 P Gki- (39)

The solution is known to be the following:

pi(1) = pi(to), p2(1) = pa(ty), p3(1) = p3(t),

(40)

where ¢> = p3(ty) + p3(to) + p3(to) is the constant quan-
tity. Since the space-time is spatially isotropic, we assume
that the particle had only one nonvanishing component at
t = ty, say, p3(ty) # 0, and consider (for the illustration)
the following initial data:

pi(ty) =0, pa(fy) =0, $(t) = 0. (41)
Clearly, for this case at an arbitrary time moment p,(7) =
po(t) =0 and p5(t) = ps(ty), so that the cosmological
time ¢ and the proper time 7 along the particle world-line are
linked by the relationship

[ ma(t)dt . (42)

The equation of spin dynamics (32) is now of the form

DS'

W5 . .
Dr = fe"‘“skpsdi- (43)
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Its right-hand side does not equal zero only for two values
of indices: i =1 and i = 2. This means that using the
property S¥p, = S%p, + S3p; = 0 we can write the equa-
tions for the components S* and S° as follows:

_5ps

P (44)

das3 p2
— +HS 1+ ) =0, S'=
ar < +azp%>

For the initial value S(#)) = 0 these equations have the
only trivial solution $3(7) =0, $°(f) = 0. In other words
the transverse spin components only are influenced by the
axion environment and the longitudinal component is not
touched.

From the normalization condition S¥S;, = —S? we obtain
a=2(t)(S? + S3) = S?, which is the hint to introduce two
convenient variables,

_ St _ 5
S+(t) - Cl(l) ’ S—(t) - a(t) ’ (45)
so that
§% + 82 = 8% = const. (46)

In these terms the equations for the transverse components
take the form

S, =-Q(NS_, S_=9Q)S,. (47)
where
. a)25p3(t0)é5(t)
0= a0 )

The solutions to (47) are of harmonic type

S, =Scos (1), S_ =SsinV(r), (49)

where the phase of rotation is presented as a formal integral,

W(r) = / "Q)dt + (1) (50)

)

For the illustration of the obtained exact solution we
assume, first, that the particle is ultrarelativistic
[¢* > m*a*(t)] and p;(ty) is positive; second, we choose
the time moment 7, so that ¢(7y) = 0; third, we put for
simplicity W(#y) = w,5¢(ty). Then, keeping in mind that
nowadays m,) > H,, we find the phase W(¢) in the explicit
form [see (37)]

U(t)=ocosm(t—1ty), o=wrsp(to). (51)
The solutions for the spin components can be now
presented as follows:
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S, = Scos{acos [mg (t—ty)]}

= Jo(6) 23 (1) (o) cos [2m g 1 — 1),
- (52)
5. = Ssin{o cos m (1 — 1)}
= 23 (1) a1 (0) cos[(2n+ mgy (1 = 1)
- (53)

where J, (o) are the Bessel functions of the first kind.
We deal with sophisticated spin precession, for which the
phase of precession W(z) is the harmonic function oscillat-
ing with the axionic frequency Q) = m, and the ampli-
tude ¢ = a)25¢(t0).

B. Spin precession of relativistic charged particle
in storage rings

When a relativistic charged spin particle moves in the
constant magnetic field B, the motion is known to be
circular, and the quantity reciprocal to the Larmor fre-
quency, wy! = 25, predetermines the time scale of dynamic
processes. In fact, for such motion the cosmological
phenomena can be considered as extremely slow, and
one can put H(r) — 0. The scale factor a() can be replaced
by constant a(fy) and absorbed into the redefined coor-
dinates [in fact, one can put a(¢) — 1]. Since the size of the
storage ring is much smaller than the typical size of the dark
matter inhomogeneity, we can neglect a spatial dependence
and consider the axion field as a function of time only. In
our case the quantity ¢ can be expressed in terms of the
energy density scalar W,y and pressure P, attributed to
the axionic dark matter as follows (see, e.g., [68]):

. 1
¢ = :|:\ITO W(a)(l) + P(a)(l‘). (54)
When the axionic dark matter is cold, i.e., P = 0, and
W(a) = p(a)» Where p(,) is the mass density of the dark
matter, this formula is simplified, respectively, as

1
+
¢%

Pa)(1)- (55)
Also, for the sake of simplicity, we can neglect the
deformation of the initial magnetic field by the axionic
field, and put equal to zero all the new coupling constants
except @,s.

Let the magnetic field be directed along the x* = 7 axis,
ie.,, only one component of the Maxwell tensor,
F|, = const, is nonvanishing. In the cylindrical coordinates
{p, @, z} with the metric

PHYSICAL REVIEW D 92, 105025 (2015)
ds* = di* — (dZ* + dp* + p*de?) (56)
the equation of particle motion,

Dp;, e
D—T] = Zijpk’ (57)
can be transformed as
@:_ﬁgﬁptﬂ —|—iF~pk (58)
dt Po ’ Po s

and gives the evident solutions

p:(t) = p:(0) =0, p,(1) =0, (59)

p, = —epF,, = —ep*F s, (60)

p(t) = R = const, @(t) = Qg)t, (61)

2R2F2

e
po = \/m*+ *R*F2,, s 2 (62)

t=r1\/1+

Here R is the radius of the circular orbit, and the quantity
Q) given by

F
Qg = €712 _ const (63)
(B)
Po

is the relativistic angular frequency of rotation (the rela-
tivistic Larmor frequency).
The equations for the spin evolution

DSi o 0)25¢
Dt

rewritten as

eikong 4 % Fi S (64)

Po % +2e (g8 = gS?) = 25¢E’k0¢5 Py + eF' Sk
(65)
give
S8 =0,  §7=o0, (66)
§° = wzsf.bQ(B)RSp, (67)
§ = —w,5 Q) RS". (68)
Physically motivated solutions to these equations are
S%() =0, S?(t) =0, (69)
Si(1) = =S cos W y)(t), (70)
SP(t) = Ssin Wy (1), (71)
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where the hybrid precession phase Wy is given by

U (1) = U(1)Qp)R = U(1) \/%;F@’ (72)
and () is the axionic phase (we put here 7, = 0)
U(1) = ws[gp(r) — p(0)]
= w35 |$(0)(cos Q1 — 1) + ¢(—23$in Qt
= wr5(0)1. (73)

Clearly, the spin four-vector is orthogonal to the particle
momentum four-vector, i.e., p,S¥ = 0. This solution can be
illustrated as follows. If wzsqb = 0, the particle has the spin
three-vector directed along the magnetic field, and this
direction is conserved during the particle circular motion. If
széB # 0 the spins start to precess in the plane pOz
according the law described by formulas (69)-(71); the
frequency of the precession depends on the particle energy,
or, equivalently, on the orbit radius R. From the exper-
imental point of view, if the polarized beam of electrons is
formed in a storage ring, and all the spins are initially
directed perpendicularly to the ring plane, one can expect
that the axionically induced spin rotation will start, and the
distribution of the angles between the spins and the ring
plane will be a predicted function of time and the particle
energy. In the ultrarelativistic regime, when m — 0 effec-
tively, one obtains from (72) that Wy () — W(¢) and the
dependence on the parameter R disappears (some specific
details of ultrarelativistic spin particle motion can be found
also in [69]).

C. Spin dynamics in the field of an axion star

In this application we consider a spherically symmetric
static axionically active object, which is characterized by
the metric

ds* = B(r)dr* — A(r)dr* — r*(d0* + sin’0dg?).  (74)

The axion field is assumed to depend on the radial
coordinate r only. The gradient four-vector V¢ =
8I¢/(r) (the prime denotes the derivative with respect to
r) is now spacelike, i.e., V;¢Vigp = — 1 ¢/> < 0. When we
consider the distribution of the pseudoscalar (axion) field in
this static model, and the gravity field is assumed to be
strong, it seems to be reasonable to use the extended
potential

1
V(¢?) = m(za>¢2 + El/(a)(¢2 - 7). (75)

The function ¢(r) satisfies now the equation

PHYSICAL REVIEW D 92, 105025 (2015)

/ ! 2
eeb (-]
— AP, + (- (76)

which is (due to the absence of electromagnetic field)
formally the same as for the gravitating scalar field ®(r)
(see, e.g., [70-72]). There is no need to present explicit
solutions of (76) for our purposes. Examples of solutions
with asymptotically flat space-time and scalar fields van-
ishing at r — oo can be found in [70-72].

In the static spherically symmetric case the plane of the
particle motion can be chosen as the equatorial one 6 = 7,
and the first equation in (32) is known to give four integrals
of motion [73]:

po = K = const, Po =0, p, = —J = const,
(77)
1 /K* J?
pr=—\/——-5-E% E = const.  (78)
VAV B P

For the asymptotically flat space-time with A(co) =1
and B(co) =1 the normalization condition p;p’ = m?

yields
K = po(o0) = /m* + p,*(e), (79)

i.e., the constant K usually describes the particle energy at
infinity. The constant J relates to the conserved particle
angular momentum. The constant E regulates the parameter
along the particle world-line, e.g., when dr = ds, we see
that £ = m.

In order to analyze properly the equations of spin
evolution (32) we distinguish two specific types of particle
motion: first, the radial motion; second, the motion along a
circular orbit.

1. Radial particle motion

For this type of motion py =0, p, = 0 and the equa-
tions of spin evolution

DS'_ s

D7 . ¢/(’”)€ikr05kpo (80)

can be split into two independent subsets. The first subset
contains the components S° and S” only, and does not
include the coupling term proportional to @,5. Keeping in
mind that the condition S¥p, =0 leads to S°p,+
S"p, = 0, we can write this subset of equations as follows:
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dSV . pr A/ B/ B
CO T (O S
As in the first application we assume that S”(0) =0,
providing that $°(0) = 0 from the orthogonality condition.
Then the solutions to the equations (81) and (82) are trivial
§%(z) =0 and S"(z) = 0.

The second subset of (80),

ds’ P’ 5¢’

S ) =——2L _p,S . 83
dr + (mr) m ABI"2 Po @ ( )
as’ r’ )5/

o (mr) v

can be transformed into

das
P g -
dr (nS-.

Co—ams.  (89)

using the relation between 7z and r [see (78)],

r m+/AB(r)

T= dr —— (86)
w VK*—E’B(r)
and the following definitions:
S, =rs, S_=rS?, (87)
K /
Q(r) = M (88)
K* — E*B(r)

Clearly, the solutions to (85) are

S, (r) =Scos¥(r), S_=S8sinU(r), (89)

U(r) = U(oo) + / "arQ(n). (90)

(5]

Thus, when the particle moves in the radial direction, one
deals with a spin turn in the plane (6, ¢); the quantity Q(r)
plays the role of the rate of turn with respect to radial
variable r, and W(r) describes the cumulative angle of turn.

2. Circular particle motion

The circular motion is characterized by r = R = const,
so that p” = 0 and thus

K*
— - = =E% 91
B(R) R? G
We consider a stable orbit and thus the radial component of
the gravitational force should vanish on the orbit, providing

Dp" _
= 0, or

PHYSICAL REVIEW D 92, 105025 (2015)

B(R) 2J?
B*(R) K°R*’

(92)

Also, as previously, we have that p, =K, py=0,
p, = —J, but now the particle cannot reach infinity, and
we have to redefine the constant K. For instance, we obtain
from (91) and (92) that

p_ E’R*B'(R)
- 2B—-RB'(R)’

2B*(R)

K=E—"—""—
2B — RB'(R)

(93)

The first equation of (93) gives implicitly the radius of
the circular orbit as a function of orbital moment, R(J). The
second equation defines the energy of the particle on the
given orbit as a function of obtained radius, K(R). We
assume that the inequality 2B(R) > RB'(R) is satisfied [for
instance, for the Schwarzschild metric B(r) = 1 — 26X this
inequality means that R > %rg =3GM].

The orthogonality condition S¥p, = 0 and the integrals
of motion (77) provide that the components S° and S are
proportional one to another, S® = $7(%). For the circular
orbit one can replace the differentiation with respect to
proper time 7 with the azimuthal angle ¢ due to the
relationship % = pn—(: = # (recall, that in the case s =7
we obtain £ = m). With this replacement three indepen-
dent equations for spin evolution take the following form:

ds’ ds?
=S"-H'(R), —=5"-H’R),
do do
ds? 8"
—+—=-5-H?(R). 94
7 TR (R) (94)

Here, for short, we introduced three auxiliary functions of
the radius R:

HR) =T HOR) = HOR) e
o) - SR E VB R) 05

KJ+\/A(R)

The evident differential consequence of (94) and (95) is the
following equation of the second order for S7:

d>S?

I*(R)S? = 0, 96
a7 T E® (96)

where

EZB N w%5R4E2¢/2 .
K’A J?A

1
I*(R) = A+ HH? = (97)
For the positive metric functions B(R) > 0 and A(R) > 0
the solution to this equation is a harmonic function of the
azimuthal angle
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S?(¢p) = C, coslp + C,sinle, (98)

providing the following solutions in terms of z:
§?(7) = C, cos Qr + C, sin Qr,
J
S(r) = X [C} cos Q7 + C, sin Q1. (99)
The quantity Q = L plays the role of frequency of the

spin turn. Other components of the spin four-vector are,
respectively,

H"(R .
S"(7) = 1(1('3)) [C; sin Q7 — C, cos Q1] + Cj,
H’(R
S%(7) = I(E?)) [C sin Qr — C, cos Q1] + Cj. (100)

The constants of integration C;, C,, C3, C4 are connected
by the normalization condition

BS%? — AS™? — 2892 — 2892 = —S? = const,  (101)
which at » = R yields two relationships:
BE2R2 w%5R4K2¢’2
S = e (CT+CG3) + RCS [1 e }
R3¢'(R)K
C3=—C4M, (102)

J\/AB(R)

On the other hand, three independent constants of integra-
tion C;, C,, Cy, are connected with initial values $%(0),
59(0), S(0) as follows:

$7(0) K2H’
= P = - —_ 0 S
H? H"
=-5"0)— (0 . 10
Co==5'(0) 1 + $°(0) (103

The problem is solved completely. The formulas (99)
and (100) with constants given by (102) and (103) and
auxiliary quantities (95) and (97) describe the axionically
induced turn of the spin four-vector of the particle moving
along the circular orbit around the static spherically
symmetric gravitating object. When w,s¢’ = 0, we see

that 7 = £ \/é, and the corresponding frequency Q = ﬁ

takes the form Q = Queoqesic) = 27 \/ 3 describing the

KR
geodesic precession. This fact allows us to indicate the term
Q(axion) = 2 (R)

A(R)
terminology we can say that the total frequency Q satisfies
the equality

as the axionic frequency. With this

PHYSICAL REVIEW D 92, 105025 (2015)
_ 2 2
Q= \/Q(geodesic) + Q(axion)’

and can be called a hybrid frequency of the geodesic-
axionic precession. Finally, it should be mentioned that one
can introduce local frequency w instead of €, using the
equality wdt = Qdr. Clearly, we obtain that = QB(R) %.

(104)

D. Spin precession induced by plane-symmetric
axion-gravitational waves

The third application of the model relates to the case
when the gradient four-vector V;¢ is the null one, i.e.,
V.¢pVigp = 0. It can be realized, e.g., in the model with
plane-wave symmetry [64,74,75]. The corresponding
space-time metric is of the form

ds®> = 2dudv — L*[e* (dx*)* + e (dx*)?],  (105)

where u = % and v = % are the retarded and advanced

times, respectively, and two metric functions L(u) and (u)
depend on the retarded time u only. On the plane-wave
front u = O the initial data are fixed in the form
p(0)=0. (1006)
We assume that the background pseudoscalar (axion) field
also depends on retarded time only, ¢ = ¢(u), providing
the condition V,;Vi¢p = 0 automatically. Exact solutions
of this type (in particular, the solution linear in the retarded
time) can be found in [64].

The equations of particle dynamics in the metric (105)
are known to yield (see, e.g., [66])

p'=p,=C,, P2 =Gy, p3 = Cs,
m% 4+ L72(e 2 C2 + 22
p'=p.= ( s ), (107)
2C,

Here C,, C,, C; are constants of integration.

Our aim is to solve the equations of the spin evolution,
which can be reduced now to the following three inde-
pendent equations:

d
—S§"=0= §*=S, = const
du

e’ d C
T (Lefs? 2
L au L) Fac;

o5 Cs
= L2 (SDC_U_ 53),

(108)

S, (L2

(109)

e’ d C
Z (LePS3) 4+ 28 (L2e28Y
Ldu(e S)+2CSL( e?)

v

w5’ &)
- o <s,,a—s2).

(110)
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Here we used the relationship u = r% between the
parameter 7 and the retarded time u, which is the conse-
quence of the equation m4* = p* = C, (we restrict our-
selves by the case, when u = 0 corresponds to 7 = 0). The
prime denotes here the derivative with respect to retarded
time. We present only three equations from four, since the
component S = §, can be found from one of the two
integrals,

25,8, = (LefS?)? + (Le™P$3)? =82, (111)

S,Cy + Sypu+ S2C, + S3C; = 0. (112)

Clearly, when S, = 0, one can extract S, from the second
relationship only (C, # 0 for massive particles).

In order to solve the key equations (109) and (110), it is
convenient to use the following auxiliary functions:

S_(u) = Le’S?,
Q(u) = wy5¢' (u),

1w =S, (g) olu) = 5, 2 ({) (113)

S, (u) = Le™’S?,

In these terms the equations (109) and (110) take the form

d
7 5= = Q)84+ Qg(u) - f'(u),
d
2,5+ = QS —Qf(u) —g(u),  (114)
and their solutions happen to be very simple:
S, = AcosVU(u) — g(u),
S_=Asin¥(u) — f(u),
U (u) = W(0) + wos[ep(u) — $(0)]. (115)

Here A is an integration constant. When the integral S, is
nonvanishing, the last unknown function S, (u) reads

1

S =
“T s,

[+ ¢* —2A(gcos ¥ + fsin¥) + A> — &2,
(116)

and the constant A can be found from the orthogonality
condition (112) yielding

2Q2
, m S?
5
&

A=]S (117)

Below we illustrate the obtained exact solutions by the
examples of longitudinal and transversal particle motion
with respect to the plane front of the gravitational wave.

PHYSICAL REVIEW D 92, 105025 (2015)
1. Longitudinal motion

Let the spinning particle start to move along the x' axis,
i.e., po(0) = C, =0, p3(0) = C3 = 0. According to (107)
at u >0 the particle keeps the direction of motion,
po(u) = p3(u) = 0. From (108) and (111) it follows that
the components S, and S, do not feel the influence of
axions, and we assume that S,(0) = S,(0) =0, i.e., at
u = 0 there were only two nonvanishing spin four-vector
components, S?(0) # 0 and $3(0) # 0. For such initial data
we obtain immediately that f(u) =0, g(u) =0, A=S
and thus

Sv(u) = 0’
e_ﬂ

S?(u) = S(T> sin W(u),

S3(u) = S(%ﬁ) cos ¥(u). (118)

Again we deal with axionically induced spin rotation with
the frequency Q(u) = wys'(u).

2. Example of a transversal motion

Let the particle start to move at u = 0 in the direction x*

(in the front plane of the gravitational wave), and have
initially only one nonvanishing component of the spin four-
vector $3(0) # 0. Mathematically this is possible if

S,=0, ¥(0)=0= f(u) =gu) =0, A=S.

(119)
Then the exact solution obtained above gives
C -
S,(u) =0,  S,(u)= —C—i (%) sin U (x),
e’
S%(u) = S(T) sin U(u),
er
S (u) = S<L> cos ¥(u). (120)
The first and second formulas in (120) yield
1 C e
S'u)=—=(S,-S,) = ———= S<—> sin W(u).
() = 5 (8= == 52-8( ) sinwi
(121)

One can see that due to the spin-axion coupling the
longitudinal and the second transversal components of
the spin appear S'(u« > 0) # 0, S*(u > 0) # 0. The axioni-
cally induced spin rotation is characterized by the fre-
quency Q(u) = w5’ (u).
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V. DISCUSSION

We have established the model of the pseudoscalar
(axion) field action on the spinning particle. In its minimal
(curvature independent) version this model includes the
dynamic equation (30) and the equation of the spin
evolution (31). The terms, which include the Maxwell
tensor F,,, and its dual F7, are constructed phenomeno-
logically by analogy with (and as generalization of) the
well-known Bargmann-Michel-Telegdi (BMT) model. As
in the BMT model, the dynamic equation (30) does not
contain the spin four-vector, and the equation (31) is linear
in S*. Is it possible to extend (31) by introducing the spin
four-vector quadratically, e.g., as it was made by Bander
and Yee in [17]? For sure, the scheme, based on the
representations (17) of the master equations and on the
decomposition of the basic tensor w* introduced in (21),
gives us such a tool. For instance, when @' is linear in the
spin, the corresponding dynamic equation is also linear, and
the equation of the spin evolution is quadratic in the spin
four-vector.

However, even in the simplest BMT-like form (30) the
dynamic equation includes two new force terms, which
points to the axionic extension of the theory. The first
novelty is the term in which the tensor eF,,, is replaced
with the tensor e¢F’;,,,,, where the pseudoscalar multiplier ¢
compensates the pseudotensorial nature of the dual
Maxwell tensor F7,,. The second novelty is the term with
the gradient-type multiplier p'V,¢ in front of F%,,. If the
axionic environment indeed produces forces of these kinds,
they could be tested in high-energy experiments with
polarized beams, e.g. in the LHC. We hope to present
the corresponding work and discuss exact solutions to the
whole system of equations of axion electrodynamics,
particle dynamics and spin evolution in the next paper.

As for this paper, we consider the contribution from the
only new term, which is free of the Maxwell tensor and
linear in the gradient four-vector V,¢. This term describes
the direct action of the axion field on the particle spin. This
term, 22V,¢e*™S; p,, was introduced phenomenologi-
cally, and the dimensionless coupling constant @,5 should
be recognized. One of the ways to find w,s is to make the
reduction from the axionically extended Dirac theory; we
will return to this problem in the future. The second way is
to use the analogy with the axion-photon coupling, which
has been considered in Sec. II. To follow the hypothesis of
universality and to compare the evolutionary equations for
the photon polarization (15) and for the spin rotation (16),
one can assume that @w,s = a = 1. Nevertheless, one
should repeat that this coupling constant has to be found
experimentally.

One can mention that the term “2 V,¢e’*""S; p,, describ-
ing the direct spin-axion coupling can be represented in the
BMT-like form. Indeed, let us take the main term - F° kS,
appearing in the BMT model for the case g =2, and
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consider the decomposition of the Maxwell tensor in the
reference frame associated with the particle moving with

the velocity % In addition, let us assume that in this frame
the electric field E* is absent, then we obtain that
Fik = —Leiking, p . where B* is the four-vector of the
corresponding magnetic excitation. Comparing the terms
25 V,pe*" Sy p, and —-5 €S, B, p,,, we can see that they
formally coincide, when @,5V;¢p = — £ B,. In other words,
this analogy hints that the gradient of the pseudoscalar
(axion) field can produce the spin rotation similar to the
well-known effect induced by the magnetic field.

Of course, the mentioned analogy is incomplete, since
BF is the spacelike four-(pseudo)vector, while the gradient
four-(pseudo)vector V¢ can be timelike (V;¢pVigp > 0),
spacelike (V;¢Vigp < 0) or null (V,¢pVi¢p = 0). However,
in all three cases, as it was demonstrated using the
obtained exact solutions to the master equations, we deal
with the same phenomenon, the axionically induced spin
precession.

The typical example for the timelike gradient four-vector
V¢ is given by the spatially homogeneous cosmological
model according to which the pseudoscalar field corre-
sponds to the relic dark matter axions. In this case the
gradient four-vector reduces to 5?&5 and the spin rotates in
the plane orthogonal to the direction of the particle motion.

The corresponding time-dependent frequency Q(¢) =

a)25(}5(t)¥ (V is the modulus of the velocity three-vector)
is a direct analog of the Larmor frequency.

The static spherically symmetric model of gravitational
and axion fields gives the typical example for the spacelike
gradient, V;¢)Vi¢p < 0. When the particle moves in the
radial direction, we deal again with the spin rotation in
the transverse plane. Now it is more reasonable to speak
about the spin turn with respect to radial variable r rather
than with respect to time [see (86)—(89)]. The rate of spin
turn depends on the distance to the center; in particular,
when p,(c0) =0 and thus K =m =E, we obtain

Q(r)=w —#)_ Far from the center the metric function
2 /1-B(n)

B(r) has the standard behavior, B(r) — (1 —26M), so the
asymptotic behavior of the frequency Q(r), Q(r — o) —

\/‘;’—_éiﬁ\/?qﬁ’ (r) is predetermined by the function /r¢'(r).
One can expect that the zone of strong gravitation gives the
maximal contribution into the total turn of the spin,
however, this question should be analyzed in its own right.

When the particle moves along a circular orbit around
the axionically active object, one can split the total effect in
the spin rotation into geodesic precession and axionic
precession. The frequency of rotation is given by hybrid
formula (104), and the axionic frequency Q uion) = “’ZSZ’/((;))
is constant on the orbit, but depends on the radius of the
orbit R. The behavior of the function o) (R) can be

105025-13



ALEXANDER B. BALAKIN AND VLADIMIR A. POPOV

studied only when the distribution of axion field ¢(r) is
found. We hope to return to this question in the next paper
in the context of discussion of qualitative and numerical
study of the total system of master equations.

The case V;¢pVigp = 0 is typical for the model with a
plane-wave symmetry, for which the axion field depends on
the retarded time only, ¢(u). Again the exact solutions to
the master equations demonstrate the spin rotation with the
frequency Q(u) = w,s5¢’ (u). Two cases have to be distin-
guished in this model. First, when the particle moves
orthogonally to the front of the gravitational wave (the
so-called longitudinal motion), we deal with simple spin
rotation in the front plane (S # 0 and S° # 0). When the
projection of the particle momentum on the front plane is
nonvanishing (p, # 0, transversal motion), the spin rota-
tion becomes more sophisticated (the additional, third
component of the spin four-vector appears).

The first obvious conclusion for all three applications is
that the pseudoscalar (axion) field makes the space-time
chiral, so that the left-hand and right-hand rotations of the
particle spin four-vector become nonequivalent. The spin
precession can be indicated as the first general property of
the model.

The second general property is that the gravitational
field, providing the nonvanishing gradient of the axion field
[ #0, ¢/ (r)#0, ¢'(u) # 0], activates the spin-axion cou-
pling. In this sense, when the gravity field is strong, it
displays the phenomenon of spin rotation more effectively.

Since the phase of the spin turn is described by the
integral formulas of the type ¥ = f dEQ(E) (E=t,E=ror
& = u), the effect of spin rotation is cumulative in the space-
time domains, in which the quantities ¢(¢), ¢/ (r) or ¢/ (u),
respectively, hold the sign. In this sense the phase accu-
mulation can be treated as the third general property of
the model.

Finally, we would like to say a couple of words about
estimation of the described effect. We prefer to do it on the
example of relic dark matter axions, which seem to be
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distributed everywhere, using the model of relativistic
charged spin particle motion in a storage ring with
magnetic field (see Sec. IV B). In the cosmological context

the quantity (ﬁ(to) can be estimated as éﬁ(to) = \Pio Pa)(to)

using the mass density of dark matter axions p(,) (t9). Thus,
for the relic cold dark matter axions with the mass density
of the order p(py) = 0.033M (Sun)pc‘3, for the ultrarelativ-
istic particle with V — ¢, for the coupling constant
\I}LO = pay; =107 GeV~!, we obtain that an optimistic
estimation for the spin rotation frequency (in Hz) is

Quy =Ygy~ ¥

() () )
1 )\107 GeV~! 1.25 GeVem™3

In order to estimate the possible total axionically induced
phase variation, AW, for other examples, we have to know
the time period, during which the sign of the frequency is
nonchanged and is, say, positive. When we deal with
homogeneous cosmological model, according to (52)
and (53) this time period is about of 7 = ﬁ, and thus
is negligibly small. The application to the static spherically
symmetric gravitation field is much more promising, since
now the derivative ¢’ (r) is a monotonic function, and the
accumulation of the phase of the spin turn can continue for
a long time for both radial and circular motion of the test
particle.

ACKNOWLEDGMENTS

A.B. is grateful to Professor Wei-Tou Ni for fruitful
discussion concerning new trends in the physics of axions.
This work was supported by Program of Competitive
Growth of KFU (Project No. 0615/06.15.02302.034),
and by Russian Foundation for Basic Research (Grant
No. RFBR N 14-02-00598).

[1] The Kerr Spacetime: Rotating Black Holes in General
Relativity, edited by D.L. Wiltshire, M. Visser, and
S.M. Scott (Cambridge University Press, New York,
2009).

[2] J.L. Friedman and N. Stergioulas, Rotating Relativistic
Stars (Cambridge University Press, New York, 2013).

[3] E. Athanassoula, The spiral structure of galaxies, Phys. Rep.
114, 319 (1984).

[4] A.J. Benson, Galaxy formation theory, Phys. Rep. 495, 33
(2010).

[5] C.M. Will, The confrontation between general relativity
and experiment, Living Rev. Relativity 17, 4 (2014).

[6] 1. Ciufolini and E. C. Pavlis, A confirmation of the general
relativistic prediction of the Lense-Thirring effect, Nature
(London) 431, 958 (2004).

[7]1 V. Bargmann, L. Michel, and V. L. Telegdi, Precession of
the Polarization of Particles Moving in a Homogeneous
Electromagnetic Field, Phys. Rev. Lett. 2, 435 (1959).

[8] L. H. Thomas, The motion of a spinning electron, Nature
(London) 117, 514 (1926).

[9] J. Frenkel, Die elektrodynamik des rotierenden elektrons, Z.
Phys. 37, 243 (1926).

[10] E. Bloch, Nuclear
(1946).

induction, Phys. Rev. 70, 460

105025-14


http://dx.doi.org/10.1016/0370-1573(84)90156-X
http://dx.doi.org/10.1016/0370-1573(84)90156-X
http://dx.doi.org/10.1016/j.physrep.2010.06.001
http://dx.doi.org/10.1016/j.physrep.2010.06.001
http://dx.doi.org/10.12942/lrr-2014-4
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1038/117514a0
http://dx.doi.org/10.1038/117514a0
http://dx.doi.org/10.1007/BF01397099
http://dx.doi.org/10.1007/BF01397099
http://dx.doi.org/10.1103/PhysRev.70.460
http://dx.doi.org/10.1103/PhysRev.70.460

SPIN-AXION COUPLING

[11] M. Mathisson, Neue mechanik materieller systeme, Acta
Phys. Pol. 6, 163 (1937).

[12] A. Papapetrou, Spinning test particles in general relativity.
1., Proc. R. Soc. A 209, 248 (1951).

[13] W. Dixon, Dynamics of extended bodies in general rela-
tivity. I. Momentum and angular momentum, Proc. R. Soc.
A 314, 499 (1970).

[14] R. M. Wald, Gravitational spin interaction, Phys. Rev. D 6,
406 (1972).

[15] L. Khriplovich and A. Pomeransky, Equations of motion of
spinning relativistic particle in external fields, Surveys in
High Energy Physics 14, 145 (1999); Gravitational inter-
action of spinning bodies, center-of-mass coordinate and
radiation of compact binary systems, Phys. Lett. A 216, 7
(1996).

[16] R. Rietdijk and J. van Holten, Spinning particles in
Schwarzschild space-time, Classical Quantum Gravity 10,
575 (1993); J. W. van Holten, Relativistic dynamics of spin
in strong external fields, arXiv:hep-th/9303124.

[17] M. Bander and K. Yee, Equations of motion for spinning
particles in external electromagnetic and gravitational fields,
Phys. Rev. D 48, 2797 (1993).

[18] A.P. Balachandran, G. Marmo, B. S. Skagerstam, and A.
Stern, Spinning particles in general relativity, Phys. Lett.
89B, 199 (1980).

[19] G. Cognola, L. Vanzo, S. Zebrini, and R. Soldati, On the
Lagrangian formulation of a charged spinning particle in an
external electromagnetic field, Phys. Lett. 104B, 67 (1981).

[20] W.-T. Ni, Searches for the role of spin and polarization in
gravity, Rep. Prog. Phys. 73, 056901 (2010).

[21] G. Bertone, Particle Dark Matter: Observations, Models and
Searches (Cambridge University Press, Cambridge, 2010).

[22] J. Silk, The invisible universe: Dark matter and dark energy,
Lect. Notes Phys. 720, 101 (2007).

[23] V. Trimble, Existence and nature of dark matter in the
universe, Annu. Rev. Astron. Astrophys. 25, 425 (1987).

[24] M. Khlopov, Fundamentals of Cosmic Particle Physics
(CISP-Springer, Cambridge, 2012).

[25] L. Sadeghian, F. Ferrer, and C.M. Will, Dark matter
distributions around massive black holes: A general rela-
tivistic analysis, Phys. Rev. D 88, 063522 (2013).

[26] R.D. Peccei and H.R. Quinn, CP Conservation in the
Presence of Pseudoparticles, Phys. Rev. Lett. 38, 1440
(1977).

[27] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223
(1978).

[28] F. Wilczek, Problem of Strong P and T Invariance in
the Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978).

[29] M. S. Turner, Windows on the axion, Phys. Rep. 197, 67
(1990).

[30] G.G. Raffelt, Astrophysical methods to constrain axions
and other novel particle phenomena, Phys. Rep. 198, 1
(1990).

[31] E.P.S. Shellard and R. A. Battye, Origin of dark matter
axions, Phys. Rep. 307, 227 (1998).

[32] P. Sikivie, Axion cosmology, Lect. Notes Phys. 741, 19
(2008).

[33] R. Battesti, B. Beltran, H. Davoudiasl, M. Kuster, P. Pugnat,
R. Rabadan, A. Ringwald, N. Spooner, and K. Zioutas,
Axions, Lect. Notes Phys. 741, 199 (2008).

PHYSICAL REVIEW D 92, 105025 (2015)

[34] E. di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri,
and O. Mena, Axion cold dark matter: Status after Planck
and BICEP2, Phys. Rev. D 90, 043534 (2014).

[35] L. Visinelli and P. Gondolo, Axion Cold Dark Matter in View
of BICEP2 Results, Phys. Rev. Lett. 113, 011802 (2014).

[36] T. Noumi, K. Saikawa, R. Sato, and M. Yamaguchi,
Effective gravitational interactions of dark matter axions,
Phys. Rev. D 89, 065012 (2014).

[37] N. Banik and P. Sikivie, Axions and the galactic angular
momentum distribution, Phys. Rev. D 88, 123517 (2013).

[38] W.-T. Ni, Equivalence Principles and Electromagnetism,
Phys. Rev. Lett. 38, 301 (1977).

[39] P. Sikivie, Experimental Tests of the “Invisible” Axion,
Phys. Rev. Lett. 51, 1415 (1983).

[40] W.-T. Ni, From equivalence principles to cosmology:
Cosmic polarization rotation, CMB observation, neutrino
number asymmetry, Lorentz invariance and CPT, Prog.
Theor. Phys. Suppl. 172, 49 (2008).

[41] W.-T. Ni, Cosmic polarization rotation, cosmological mod-
els, and the detectability of primordial gravitational waves,
Int. J. Mod. Phys. A 24, 3493 (2009).

[42] Y.N. Obukhov and F. W. Hehl, Measuring a piecewise
constant axion field in classical electrodynamics, Phys. Lett.
A 341, 357 (2005).

[43] A.M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelec-
tric Polarizability and Axion Electrodynamics in Crystalline
Insulators, Phys. Rev. Lett. 102, 146805 (2009).

[44] J. E. Navarro, C. S. Frenk, and S. D. M. White, The structure
of cold dark matter halos, Astrophys. J. 462, 563 (1996).

[45] A.B. Balakin and L. V. Grunskaya, Axion electrodynamics
and dark matter fingerprints in the terrestrial magnetic and
electric fields, Rep. Math. Phys. 71, 45 (2013).

[46] A.B. Balakin and W.-T. Ni, Anomalous character of the
axion-photon coupling in a magnetic field distorted by a pp-
wave gravitational background, Classical Quantum Gravity
31, 105002 (2014).

[47] A.B.Balakin,R. K. Muharlyamov, and A. E. Zayats, Electro-
magnetic waves in an axion-active relativistic plasma non-
minimally coupled to gravity, Eur. Phys. J. C73,2647 (2013).

[48] A.B. Balakin, V. V. Bochkarev, and N. O. Tarasova, Gra-
dient models of the axion-photon coupling, Eur. Phys. J. C
72, 1895 (2012).

[49] A.B. Balakin and N. O. Tarasova, Extended axion electro-
dynamics: Optical activity induced by nonstationary dark
matter, Gravitation Cosmol. 18, 54 (2012).

[50] J.E. Moody and F. Wilczek, New macroscopic forces?,
Phys. Rev. D 30, 130 (1984).

[51] N. Ramsey, The tensor force between two protons at long
range, Physica A (Amsterdam) 96, 285 (1979).

[52] R. Barbieri, M. Cerdonio, G. Fiorentini, and S. Vitale,
Axion to magnon conversion. A scheme for the detection of
galactic axions, Phys. Lett. B 226, 357 (1989).

[53] F. Giuliani and T. A. Girard, Model-independent limits from
spin-dependent WIMP dark matter experiments, Phys. Rev.
D 71, 123503 (2005).

[54] A.G. Glenday, C.E. Cramer, D.F. Phillips, and R.L.
Walsworth, Limits on Anomalous Spin-Spin Couplings
between Neutrons, Phys. Rev. Lett. 101, 261801 (2008).

[55] G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis,
Limits on New Long Range Nuclear Spin-Dependent Forces

105025-15


http://dx.doi.org/10.1098/rspa.1951.0200
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1103/PhysRevD.6.406
http://dx.doi.org/10.1103/PhysRevD.6.406
http://dx.doi.org/10.1080/01422419908228843
http://dx.doi.org/10.1080/01422419908228843
http://dx.doi.org/10.1016/0375-9601(96)00266-6
http://dx.doi.org/10.1016/0375-9601(96)00266-6
http://dx.doi.org/10.1088/0264-9381/10/3/017
http://dx.doi.org/10.1088/0264-9381/10/3/017
http://arXiv.org/abs/hep-th/9303124
http://dx.doi.org/10.1103/PhysRevD.48.2797
http://dx.doi.org/10.1016/0370-2693(80)90009-X
http://dx.doi.org/10.1016/0370-2693(80)90009-X
http://dx.doi.org/10.1016/0370-2693(81)90856-X
http://dx.doi.org/10.1088/0034-4885/73/5/056901
http://dx.doi.org/10.1007/978-3-540-71013-4
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1103/PhysRevD.88.063522
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1016/0370-1573(90)90172-X
http://dx.doi.org/10.1016/0370-1573(90)90172-X
http://dx.doi.org/10.1016/0370-1573(90)90054-6
http://dx.doi.org/10.1016/0370-1573(90)90054-6
http://dx.doi.org/10.1016/S0370-1573(98)00078-7
http://dx.doi.org/10.1007/978-3-540-73518-2
http://dx.doi.org/10.1007/978-3-540-73518-2
http://dx.doi.org/10.1007/978-3-540-73518-2
http://dx.doi.org/10.1103/PhysRevD.90.043534
http://dx.doi.org/10.1103/PhysRevLett.113.011802
http://dx.doi.org/10.1103/PhysRevD.89.065012
http://dx.doi.org/10.1103/PhysRevD.88.123517
http://dx.doi.org/10.1103/PhysRevLett.38.301
http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://dx.doi.org/10.1143/PTPS.172.49
http://dx.doi.org/10.1143/PTPS.172.49
http://dx.doi.org/10.1142/S0217751X09047107
http://dx.doi.org/10.1016/j.physleta.2005.05.006
http://dx.doi.org/10.1016/j.physleta.2005.05.006
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1016/S0034-4877(13)60021-X
http://dx.doi.org/10.1088/0264-9381/31/10/105002
http://dx.doi.org/10.1088/0264-9381/31/10/105002
http://dx.doi.org/10.1140/epjc/s10052-013-2647-8
http://dx.doi.org/10.1140/epjc/s10052-012-1895-3
http://dx.doi.org/10.1140/epjc/s10052-012-1895-3
http://dx.doi.org/10.1134/S0202289312010033
http://dx.doi.org/10.1103/PhysRevD.30.130
http://dx.doi.org/10.1016/0378-4371(79)90217-6
http://dx.doi.org/10.1016/0370-2693(89)91209-4
http://dx.doi.org/10.1103/PhysRevD.71.123503
http://dx.doi.org/10.1103/PhysRevD.71.123503
http://dx.doi.org/10.1103/PhysRevLett.101.261801

ALEXANDER B. BALAKIN AND VLADIMIR A. POPOV

Set with a K?He3 Comagnetometer, Phys. Rev. Lett. 103,
261801 (2009).

[56] D. Chelouche and E.I. Guendelman, Cosmic analogues of
the Stern-Gerlach experiment and the detection of light
bosons, Astrophys. J. 699, L5 (2009).

[57] P--H. Chu, A. Dennis, C. B. Fu, H. Gao, R. Khatiwada, G.
Laskaris, K. Li, E. Smith, W. M. Snow, H. Yan, and W.
Zheng, Laboratory search for spin-dependent short-range
force from axionlike particles using optically polarized He3
gas, Phys. Rev. D 87, 011105(R) (2013).

[58] P. W. Graham and S. Rajendran, New observables for direct
detection of axion dark matter, Phys. Rev. D 88, 035023
(2013).

[59] Y. V. Stadnik and V. V. Flambaum, Axion-induced effects in
atoms, molecules and nuclei: Parity nonconservation, ana-
pole moments, electric dipole moments, and spin-gravity
and spin-axion momentum couplings, Phys. Rev. D 89,
043522 (2014).

[60] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and
A. Sushkov, Cosmic Axion Spin Precession Experiment
(CASPEr), Phys. Rev. X 4, 021030 (2014).

[61] I. T. Drummond and S.J. Hathrell, QED vacuum polariza-
tion in a background gravitational field and its effect on the
velocity of photons, Phys. Rev. D 22, 343 (1980).

[62] F. W. Hehl and Yu. N. Obukhov, How does the electromag-
netic field couple to gravity, in particular to metric, non-
metricity, torsion, and curvature?, Lect. Notes Phys. 562,
479 (2001).

[63] A.B. Balakin and J. P. S. Lemos, Nonminimal coupling for
the gravitational and electromagnetic fields: A general
system of equations, Classical Quantum Gravity 22, 1867
(2005).

PHYSICAL REVIEW D 92, 105025 (2015)

[64] A.B. Balakin and W.-T. Ni, Nonminimal coupling of
photons and axions, Classical Quantum Gravity 27,
055003 (2010).

[65] S.K. Wong, Field and particle equations for the classical
Yang-Mills field and particles with isotopic spin, Nuovo
Cimento 65, 689 (1970).

[66] A.B. Balakin, V.R. Kurbanova, and W. Zimdahl,
Parametric phenomena of the particle dynamics in a periodic
gravitational wave field, J. Math. Phys. (N.Y.) 44, 5120
(2003).

[67] A.A. Starobinsky, Future and origin of our universe:
Modern view, Gravitation Cosmol. 6, 157 (2000).

[68] S. Nojiri and S.D. Odintsov, Unified cosmic history in
modified gravity: From F(R) theory to Lorentz noninvariant
models, Phys. Rep. 505, 59 (2011).

[69] A.A. Deriglazov and W.G. Ramrez, Mathisson-
Papapetrou-Tulczyjew-Dixon (MPTD) equations in ultra-
relativistic regime and gravimagnetic moment, arXiv:
1509.05357.

[70] D.J. Kaup, Klein-Gordon geon, Phys. Rev. 172, 1331 (1968).

[71] R. Ruffini and F. Bonazzola, System of self-gravitating
particles in general relativity and the concept of an equation
of state, Phys. Rev. 187, 1767 (1969).

[72] J.-W. Lee and 1.-G. Koh, Galactic halos as boson stars, Phys.
Rev. D 53, 2236 (1996).

[73] S.  Weinberg, Gravitation and Cosmology (Wiley,
New York, 1972).

[74] C. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[75] J.B. Griffiths and J. Podolsky, Exact Space-Times in
Einstein’s General Relativity (Cambridge University Press,
New York, 2009).

105025-16


http://dx.doi.org/10.1103/PhysRevLett.103.261801
http://dx.doi.org/10.1103/PhysRevLett.103.261801
http://dx.doi.org/10.1088/0004-637X/699/1/L5
http://dx.doi.org/10.1103/PhysRevD.87.011105
http://dx.doi.org/10.1103/PhysRevD.88.035023
http://dx.doi.org/10.1103/PhysRevD.88.035023
http://dx.doi.org/10.1103/PhysRevD.89.043522
http://dx.doi.org/10.1103/PhysRevD.89.043522
http://dx.doi.org/10.1103/PhysRevX.4.021030
http://dx.doi.org/10.1103/PhysRevD.22.343
http://dx.doi.org/10.1007/3-540-40988-2
http://dx.doi.org/10.1007/3-540-40988-2
http://dx.doi.org/10.1088/0264-9381/22/9/024
http://dx.doi.org/10.1088/0264-9381/22/9/024
http://dx.doi.org/10.1088/0264-9381/27/5/055003
http://dx.doi.org/10.1088/0264-9381/27/5/055003
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1063/1.1617364
http://dx.doi.org/10.1063/1.1617364
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://arXiv.org/abs/1509.05357
http://arXiv.org/abs/1509.05357
http://dx.doi.org/10.1103/PhysRev.172.1331
http://dx.doi.org/10.1103/PhysRev.187.1767
http://dx.doi.org/10.1103/PhysRevD.53.2236
http://dx.doi.org/10.1103/PhysRevD.53.2236

