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The Casimir force for a planar gauge model is studied considering perfect conducting and perfect
magnetically permeable boundaries. By using an effective model describing planar vortex excitations, we
determine the effect these can have on the Casimir force between parallel lines. Two different mappings
between models are considered for the system under study, where generic boundary conditions can be more
easily applied and the Casimir force can be derived in a more straightforward way. It is shown that vortex
excitations can be an efficient suppressor of vacuum fluctuations. In particular, for the model studied here, a
planar Chern-Simons type of model that allows for the presence of vortex matter, the Casimir force is found
to be independent of the choice of boundary conditions, at least for the more common types, like Neumann,
perfect conducting and magnetically permeable boundary conditions. We give an interpretation for these
results and some possible applications for them are also discussed.
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I. INTRODUCTION

There has been considerable interest in studying the
validity of Newton’s gravitational law at submillimeter
scales and well below that (for a recent review see, e.g.,
Ref. [1]). There is a possibility that with these experiments
deviations from the standard power-law behavior could be
found, thus, possibly probing phenomena like modified
gravity scenarios predicted by string theory, or by physics
beyond the standard model of particle physics. For exam-
ple, compactified extra spatial dimensions in string theory
could lead to a modification of the quadratic power-law
behavior, depending on the number of extra dimensions.
Also, physics beyond the standard model of particle
physics can produce Yukawa-type corrections for the
gravitational force (for a comprehensive review, see also,
e.g., Ref. [2] and references therein).
Laboratory experiments measuring gravity related forces

at extremely small scales pose some extraordinary chal-
lenges. One of these challenges for probing forces at such
very small scales is to distinguish gravitationlike inter-
actions from other effects that can come from quantum
phenomena, most notably the Casimir force [3], which can
potentially dominate gravity effects by several orders of
magnitude at distances of the order of the micrometer and
below that. In fact, the fast recent developments on
laboratory experiments measuring the Casimir force [4,5]

have also helped to put some strong constraints on the level
of possible corrections to gravity [6]. On the other hand, it
is also highly desirable to devise ways of either isolating the
Casimir effect, or to suppress it up to the level of precision
that can be found in those experiments. Recently, graphene
[7] has been proposed for such a purpose due to its
extraordinary absorption properties, which could effec-
tively function as a shield for quantum vacuum fluctua-
tions. It is also important to look for other types of materials
that can be as versatile in terms of being easily produced
and also with tunable properties under laboratory condi-
tions. One such possibility could be, for example, the use of
superconducting films.
It is known that superconducting films can have mag-

netic vortex excitations. Most of the properties of these
systems can be described in terms of planar gauge systems.
We recall that planar gauge field theories, in particular
Chern-Simons (CS) type of models, have long been
recognized as important for understanding several physical
phenomena that can be well approximated as planar ones,
like high-temperature superconductivity and the fractional
quantum Hall effect, just to cite a few examples (see, e.g.,
Ref. [8] and references therein). The Casimir force in the
presence of condensed vortices in a plane was studied
previously in Ref. [9] from the point of view of the particle-
vortex duality, where an effective description of vortex
excitations was made in terms of a Maxwell-Proca-Chern-
Simons (MPCS) model.
The study of the Casimir force in the presence of vortex

excitations carried out in Ref. [9] was based on a particular
mapping existing between the MPCS model and a model of
two noninteracting massive scalar fields. Since the Casimir
force is well known for the latter case, the corresponding
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result for the former could be easily determined. This
mapping, however, severely restricted the form of the
boundary conditions (BC) considered there. In particular,
the connection between the different model Hamiltonians
was only possible in the case of Neumann BC for the scalar
field and, in this sense, the form of the mathematical
transformations has implied in the consideration of a
specific type of BC for the scalar and vector fields.
Also, the connection was only possible for the simplest
geometry treated there to compute the Casimir force, i.e.,
the force between parallel lines, and could not be gener-
alized to other geometries.
It is a very desirable solution to explore appropriate

mappings between models that can be used in the
determination of the Casimir effect, where the above-
mentioned restrictions can be avoided. In this paper, we
consider two known relationships associated with the
MPCS model: (a) the connection of the MPCS model
with a sum of a self-dual and an antiself-dual Proca-Chern-
Simons (PCS) model [10], and (b) the connection of the
MPCS model with a sum of two Maxwell-Chern-Simons
(MCS) models [10,11]. The advantage of both associations,
as compared to that related to scalar degrees of freedom
[9,12], is that a direct relation between the original and final
fields can be made very clear. This in turn facilitates the
connection between the BC and also the calculation of the
Casimir force.
As we see in this paper, the difficulties met with the

original mapping used in Ref. [9] are removed. In the case
(a) listed above, we make use of the intrinsic properties of
self duality and antiself duality of the PCS models. This
allows us to define mathematically the BC in terms of the
Green functions; then, performing the calculations again in
the case (b) listed above, helps to confirm our results. As we
show, the use of the relation (a) facilitates our calculations
because we can make use of the symmetry of the resulting
PCS models and the final form of the energy-momentum
tensor. Another important benefit provided by the relation
(a) is that the number of differential equations that we need
to solve and the number of required Green’s functions are
smaller, when compared to the case (b), as we are going
to see.
Our objectives in this work are twofold. First, by using

more general mappings than the one used in Ref. [9], we
can compute the Casimir force in the cases of more realistic
and physically relevant BC and geometries. Secondly, with
the use of a different BC, we can determine any possible
effect that might have on the Casimir force. We derive
results for two BC of interest, i.e., for perfect conducting
and for perfect magnetically permeable boundaries. We
also consider another type of (Neumann) BC, previously
considered in Ref. [9], and confirm the result found there.
We still use for convenience and simplicity the simplest
geometry of parallel lines, but our results can be extended
to other more complex geometries, which we leave for a

future work. It is explicitly shown that, for the model
studied here, the Casimir force is found to be independent
of the choice of BC used.
Given the many approximations and considerations

assumed in our calculation (which are discussed below),
the use of the results that we have obtained in this work to
the high precision gravity and Casimir experiments that
were mentioned above may sound too optimistic and,
thus, should not be taken literally in that context.
However, the present results point to effects that can be
of relevance in the future planning of these experiments.
Nevertheless, the present work is of theoretical interest,
where some novel aspects related to topological (vortex)
excitations are considered, along also with issues regard-
ing the use of different BC in the computation of the
Casimir effect.
The remainder of this work is organized as follows. In

Sec. II, we summarize the connection of the MPCS model
as an effective vortex-particle dual to the Chern-Simons-
Higgs (CSH) model. We also summarize the mathematical
relations that connect the MPCS model in terms of a self-
dual and an antiself-dual PCS model and also in terms of a
sum of two MCS models. In Sec. III, we analyze the
relation between the original vector field of the MPCS
model and the new fields associated with the two PCS
models and give the relevant equations needed to evaluate
the Casimir force. This evaluation is done considering the
cases of perfect conductor and also perfect magnetically
permeable lines at the boundaries. In Sec. IV, we check and
confirm our results to be independent of the mapping used,
by considering this time the connection between the MPCS
and two MCS models, rederiving our results again for both
cases of perfect magnetically permeable and perfect con-
ductor boundaries. In Sec. V, based on the symmetries and
constraints of the models studied, we explain the reason for
the independence of the Casimir force on the BC consid-
ered in the calculations. In Sec. VI we analyze and discuss
the Casimir force obtained in the context of a vortex
condensate. Finally, in Sec. VII, we give our concluding
remarks and discuss other possible applications and impli-
cations of the results derived in this work.

II. THE MPCS MODEL AS AN EFFECTIVE
DUAL VORTEX DESCRIPTION AND ITS
MAPPING ONTO TWO PCS MODELS

It has been shown in Ref. [13] (for earlier derivations, see
for example Ref. [14]) that vortex excitations in a CSH
model can be expressed effectively in terms of a dual
equivalent theory (for applications of similar duality ideas
in planar systems of interest in condensed matter that also
make use of the particle-vortex duality in Chern-Simons
type of models, see Ref. [15] and references therein). This
effective model for vortices, in turn, can be expressed in the
form of a MPCS model, when both the scalar Higgs field
and the vortex field are in their symmetry broken vacuum
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states, ρ0 ≠ 0 and ψ0 ≠ 0, respectively. The Lagrangian
density of the MPCS model can be expressed as [9]

L ¼ −
1

4
FαβFαβ þ

m2

2
AαAα þ

μ

4
ϵαβλAα∂βAλ; ð2:1Þ

where

m≡ 4πρ0ψ0; ð2:2Þ

μ≡ 2e2ρ20=Θ; ð2:3Þ

and Θ is the Chern-Simons parameter of the original CSH
model, from which Eq. (2.1) is derived.
In addition to the connection of the above model with a

dual vortex equivalent one, the MPCS model given by
Eq. (2.1) can be mapped in a sum of a self-dual and an
antiself-dual PCS model [10] or, also, in terms of a sum of
two MCS models [10,11]. As we discuss later on, these
associations will simplify considerably the calculation of
the Casimir force. For completeness, let us briefly review
below these two considerations concerning the model given
by Eq. (2.1).

A. The effective dual vortex description
for the MPCS model

Chern-Simons gauge field theories can exhibit many
features of relevance in different contexts. One of these
features, which is of particular importance in our study, is
the possibility of having topological vortex solutions when
these models are coupled to symmetry broken scalar
potentials [16]. For instance, we can consider the CSH
model described by the Euclidean action

SE½hμ; η; η�� ¼
Z

d3x

�
−i

Θ
4
ϵμνγhμHνγ þ jDμηj2 þ VðjηjÞ

�
;

ð2:4Þ

where Hμν ¼ ∂μhν − ∂νhμ, Dμ ≡ ∂μ þ iehμ and η is a
complex scalar field, with a non-null vacuum expectation
value (VEV) obtained from a symmetry breaking poly-
nomial potential VðjηjÞ. For instance, for a potential given
by VðjηjÞ ¼ e4ðjηj2 − ν2Þ2jηj2=Θ2, the field equations for
the model (2.4) have nontrivial vortex solutions given
by [17]

ηvortex ¼ ξðrÞ expðinχÞ; hμ;vortex ¼
n
e
hðrÞ∂μχ; ð2:5Þ

where n is an integer that represents the vortex charge,
while ξðrÞ and hðrÞ are the (vortex profile) functions
obtained from the solutions of the classical field differ-
ential equations, subjected to the BC limr→0ξðrÞ ¼ 0,
limr→∞ξðrÞ ¼ ν, limr→0hðrÞ ¼ 0 and limr→∞hðrÞ ¼ 1.
The presence of vortex excitations means that the phase

of the scalar field, ϕ ¼ ρ expðiχÞ= ffiffiffi
2

p
, is a multivalued

function. The phase χ can then in general be expressed in
terms of a regular (single valued) and a singular part as
χðxÞ ¼ χregðxÞ þ χsingðxÞ. The vortex excitations can be
made explicit in the action by functionally integrating
over the regular phase, while leaving explicitly the
dependence of the singular phase in the action. This
procedure can be done by the so-called dual transforma-
tions (see, e.g., Refs. [13,18] for a detailed account for this
procedure). The final result can be expressed in terms of a
dual action, written in terms of a complex scalar field ψ
(representing quantized vortex excitations) and a new
gauge field Aμ, which is related to the original fields by the
relation ρ2ð∂μχ þ ehμÞ ¼ ðσ=ð2πeÞÞϵμνγ∂μAγ , where σ is
an arbitrary parameter with mass dimension. The final
dual action can be expressed in the form [13]

Sdual¼
Z

d3x

�
σ2

16π2e2ρ20
F2
μνþ i

σ2

8π2Θ
ϵμνγAμ∂νAγ

þ
����∂μψþ i

2σ

e
Aμψ

����2þVvortexðjψ jÞþLG

�
; ð2:6Þ

where Fμν ≡ ∂μAν − ∂νAμ, Vðjψ jÞ is the effective potential
term for the vortex field, with a VEV ψ0, and LG is a gauge
fixing term.
When the system is taken deep inside its vortex con-

densed phase, we can take the London-type approximation
for the vortex field [19], where jψ j → ψ0=

ffiffiffi
2

p
. In this case,

we can neglect the derivative of ψ that appears in Eq. (2.6).
We can also choose σ ≡ 2πeρ0, so that Eq. (2.6) can then be
finally rewritten in the form of the MPCS model with the
(Minkowski) Lagrangian density given by Eq. (2.1).

B. Mapping the MPCS model onto two PCS models

To compute the Casimir force for the MPCS model, we
could in principle start directly from Eq. (2.1) and use
standard methods based on the vacuum expectation values
for the space-space and time-time components of the
energy-momentum tensor (like, e.g., those discussed in
Ref. [20]). This procedure leads, however, to a hard to solve
system of partial differential equations (PDE). It turns out
that it is much simpler to express the original model,
Eq. (2.1), in terms of an equivalent one that can be easily
treated mathematically. In particular, we want to have a
well-defined mapping between the fields in each model,
such that we can unequivocally establish their behaviors at
the physical boundaries of the system. Such mapping must
imply in a direct correspondence between the BC consid-
ered for the MPCS and its equivalent model, resulting in a
one-to-one mapping between the Casimir forces for the
models involved. One such possibility is to follow the
proposal of Refs. [10,11], where the MPCS of Eq. (2.1) is
mapped into a doublet consisting of a self-dual and an
antiself-dual PCS model in 2þ 1 dimensions. One of the
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advantages of this procedure is that a direct relation
between the original and final fields can be made very
clear, which facilitates the connection between the BC.
Besides, it also allows the use of different BC and,
eventually, it can also be generalized to different geom-
etries, as opposite to the case treated originally in Ref. [9].
Following in particular Ref. [10], we consider a

doublet consisting of an antiself-dual and a self-dual
PCS model, represented, respectively, by the Lagrangian
densities,

L− ¼ −
1

2
ϵμνβgμ∂νgβ þm−

2
gμgμ; ð2:7Þ

and

Lþ ¼ 1

2
ϵμνβfμ∂νfβ þmþ

2
fμfμ; ð2:8Þ

where fμ and gμ are two independent vector fields. By
making use of a soldering fieldWμ with no dynamics, it is a
simple exercise to obtain, from the combination of Lþ and
L−, a final Lagrangian density that does not depend onWμ.
For example, we can define an intermediate Lagrangian
density given by

L ¼ L−ðgÞ þ LþðfÞ −Wμ½Jμ−ðgÞ þ JμþðfÞ�

þ 1

2
ðmþ þm−ÞWμWμ; ð2:9Þ

where Jμ� are defined by

JμþðfÞ≡ ffiffiffiffiffiffiffi
mþ

p
fμ þ ϵμαβ∂αfβ; ð2:10Þ

Jμ−ðgÞ≡ ffiffiffiffiffiffiffi
m−

p
gμ − ϵμαβ∂αgβ: ð2:11Þ

In the generating functional associated with (2.9),Wμ plays
the role of an auxiliary field, which can be eliminated by a
direct integration (another way of seeing the auxiliary role
ofWμ is by the use of its equation of motion). The resulting
final Lagrangian density can then be written as

L ¼−
1

4
FμνFμνþ ðm− −mþÞ

2
ϵμνβAμ∂νAβ þ 1

2
mþm−AμAμ;

ð2:12Þ

where Aμ is a new vector field, related to fμ and gμ by

Aμ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm−

p ðfμ − gμÞ; ð2:13Þ

and mþ and m− are related to the original mass parameters
μ and m of Eq. (2.1) by

m− −mþ ¼ μ=2; ð2:14Þ

mþm− ¼ m2: ð2:15Þ

It is important to note that in Eq. (2.13) we consider thatmþ
and m− are both positive. This consideration implies that
m2 > 0. Thus, Eqs. (2.14)–(2.15) imply that

m� ¼∓ μ

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

16
þm2

r
: ð2:16Þ

The result of the detailed study of the relation between L
and Lþ þ L− shows a complete equivalence between them
[10], i.e., L ¼ Lþ þ L−. Hence, it is straightforward to
perceive that the Casimir force related to the original MPCS
model can be written as the sum of the Casimir forces
associated with Lþ and L−. The relation between fμ, gμ
and Aμ, given by Eq. (2.13), implies in a direct determi-
nation of the BC considered for fμ and gμ, in terms of those
considered for Aμ. We can also conclude from Eq. (2.13)
that, in principle, there is no restriction for the BC to be
considered for Aμ (which will be associated with the BC for
fμ and gμ), as long as they are mathematically and
physically acceptable. We also note that determining the
Casimir force related to a PCS model is rather simpler than
determining the force for the MPCS model directly, as we
discuss in the next section.

C. The MPCS model written in term
of two MCS models

Alternatively, we can also use the equivalence between
the MPCS model and a doublet of MCS models, given in
Ref. [10]. These two MCS models will be written in terms
of two gauge fields Pμ and Qμ, respectively, which can be
conveniently rescaled, when compared with their analogues
considered in Ref. [10]. We can write the Lagrangian
densities for the two MCS models as

~L−ðPÞ ¼ −
1

4
PμνPμν þ 1

2
m−ϵμνβPμ∂νPβ; ð2:17Þ

and

~LþðQÞ ¼ −
1

4
QμνQμν −

1

2
mþϵμνβQμ∂νQβ; ð2:18Þ

where Pμν ¼ ∂μPν − ∂νPμ, and Qμν ¼ ∂μQν − ∂νQμ. The
massesmþ andm− in Eqs. (2.17)–(2.18) are the same as the
ones defined in Eq. (2.16).
The two gauge fields Pμ and Qμ are connected to the

original gauge field Aμ of the MPCS model by

Aμ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm−

p ð ffiffiffiffiffiffiffi
m−

p
Pμ −

ffiffiffiffiffiffiffi
mþ

p
QμÞ: ð2:19Þ

The relation between the doublet of MCS models,
Eqs. (2.17)–(2.18), with the MPCS model (2.1) is
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established in a similar fashion as in the case of the previous
subsection. By using this time a tensor field Bμν connecting
the two Lagrangian densities (2.17)–(2.18), we have that

L ¼ ~L−ðPÞ þ ~LþðQÞ − 1

2
Bμν½Jμν− ðPÞ þ Jμνþ ðQÞ�

−
mþ þm−

4mþm−
BμνBμν; ð2:20Þ

where Jμ� are defined by

JþμνðQÞ≡ −Qμν −mþϵμνβQβ; ð2:21Þ

J−μνðPÞ≡ −Pμν þm−ϵμνβPβ: ð2:22Þ

Again, considering the relation between the fields given in
Eq. (2.19), we can eliminate the auxiliary field Bμν,
reproducing once again the original MPCS model.
It is important to realize that in both mappings described

above, the number of degrees of freedom is preserved. It is
noteworthy to realize that in a MCS model the mass term
for the gauge field is of topological origin. Each MCS
model has only one (transverse) polarization degree of
freedom. However, in the MPCS model, the explicit mass
term for the gauge field implies that there are now two
polarization degrees of freedom for the gauge field. The
number of degrees of freedom is preserved in the two
mappings used. The duality between these different types
of gauge models has also been discussed extensively in the
literature before. For example, in Ref. [21] this issue is
discussed in terms of an interpolating master action and
how it explains the doubling of fields, yet preserves the
number of degrees of freedom.
Finally, it is important to also note that while the

association of the vortex excitations in the CSH model
with the MPCS model given in Eq. (2.1) is only valid
within the approximations considered in the previous
subsection (e.g., for a special Higgs potential, no vortex
interactions, and the use of a London-type limit for the
Higgs and vortex fields), the relation between the MPCS
and PCS models is exact. The same can be said with respect
to the MCS models.

III. THE CASIMIR FORCE FOR THE MPCS
MODEL EXPRESSED IN TERMS OF A

DOUBLET OF PCS MODELS

In this section, we use an analogous procedure as
used, e.g., in Ref. [20] to calculate the Casimir forces
associated with Lþ and L−, given by Eqs. (2.8) and (2.7),
respectively.
In the following, we have adopted the notation

X ≡ xμ ¼ ðt; x; yÞ and considered the metric tensor
ημν ¼ diagð1;−1;−1Þ. The physical boundaries are placed
in x ¼ 0 and x ¼ a.

The Casimir force (per unit length) for the MPCS model
is determined from the 11 component of the energy-
momentum tensor,

f ≡ ðforce=lenghtÞMPCS ¼ hT11
MPCSijx¼0 and x¼a; ð3:1Þ

which can also be written, according to the results shown in
the previous section, as

f ¼ ½hT11
− i þ hT11þ i�jx¼0 and x¼a; ð3:2Þ

where T11
− is the energy-momentum tensor component

obtained from L−, given by Eq. (2.7), while T11þ is the
one obtained from Lþ, given by Eq. (2.8). As it is well
known, the CS term does not contribute to the symmetric
energy-momentum tensor, since it is given in terms of the
derivative of the action with respect to the metric tensor and
the CS term does not depend on this metric [20,22]. Thus,
we obtain

Tμν
− ¼ −ημν

m−

2
gαgα; ð3:3Þ

Tμν
þ ¼ −ημν

mþ
2

fαfα: ð3:4Þ

Equation (3.2) can be written in terms of the Green
functions for the gauge fields fμ and gμ, Gμν

þ ðX;X0Þ ¼
ihT̂½fμðXÞfνðX0Þ�i and Gμν

− ðX;X0Þ ¼ ihT̂½gμðXÞgνðX0Þ�i,
respectively. For example, using Eq. (3.3), we can write

hT11
− ðXÞi ¼ −i

m−

2
lim
X0→X

½G00
− ðX;X0Þ

− G11
− ðX;X0Þ −G22

− ðX;X0Þ�; ð3:5Þ

and similarly for hT11þ ðXÞi.
The Green functions for fμ and gμ can be derived from

the Euler-Lagrange equations for the fields as usual:

m−gμðXÞ − ϵμβν∂βgνðXÞ þ Jð−ÞμðXÞ ¼ 0; ð3:6Þ

mþfμðXÞ þ ϵμβν∂βfνðXÞ þ JðþÞμðXÞ ¼ 0; ð3:7Þ

where Jð−Þμ and JðþÞμ are the source terms. The formal
solutions to Eqs. (3.6)–(3.7) are

gμðXÞ ¼
Z

Gμα
− ðX;X0ÞJð−ÞαðX0ÞdX0; ð3:8Þ

fμðXÞ ¼
Z

Gμα
þ ðX;X0ÞJðþÞαðX0ÞdX0; ð3:9Þ

and

m−Gμα
− − ϵμβν∂βGνα

− þ δðX − X0Þημα ¼ 0; ð3:10Þ

mþG
μα
þ þ ϵμβν∂βGναþ þ δðX − X0Þημα ¼ 0: ð3:11Þ
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Note that, unlike the calculations followed in
Refs. [20,23] (where the Green functions for the field’s
duals were used), we work directly in terms of the Green
functions for the fields themselves (fμ and gμ). This would
also be the case if we had decided to work with the MPCS
model directly. This fact can be seen as a consequence of
the fact that the Proca term,m2AμAμ=2, cannot be written in
terms of the dual of Aμ. But if we had decided to work with
the MPCS model directly (without “transforming” it to a
doublet of PCS models beforehand as we are proceeding
here), the resulting system of second-order differential
equations would be more difficult to solve, when compared
to the one that we have in the present case [20,23]. The
transformations taken here simplify the calculations sig-
nificantly, since the system of equations with which we
have to deal with is relatively easier to solve, given by
Eqs. (3.10)–(3.11).
Using the Fourier transforms in time and in the trans-

verse coordinate y for Gμν
� ðX;X0Þ,

Gμν
� ðX;X0Þ ¼

Z
dω
2π

e−iωðt−t0Þ
Z

dk
2π

eikðy−y0ÞGμν
� ðk;ω; x; x0Þ;

ð3:12Þ

we can write

hT11
� i ¼ −i

m�
2

lim
X0→X

Z
dω
2π

e−iωðt−t0Þ
Z

dk
2π

eikðy−y0Þ

× ½G00
� ðk;ω; x; x0Þ − G11

� ðk;ω; x; x0Þ
− G22

� ðk;ω; x; x0Þ�; ð3:13Þ

and the Casimir force (per unit length) can be expressed as

f ¼ hT11
MPCSijx¼0 and x¼a

¼ ½hT11
− ðXÞi þ hT11þ ðXÞi�jx¼0 and x¼a

¼ −i lim
X0→X

�Z
dω
2π

e−iωðt−t0Þ
Z

dk
2π

eikðy−y0Þ

×

�
m−

2
ðG00

− − G11
− − G22

− Þ

þmþ
2

ðG00þ − G11þ − G22þ Þ
������

x¼0 and x¼a
: ð3:14Þ

The components G00
� , G11

� and G22
� are obtained from the

solutions of the following systems of PDE (where x stands
for x1):

8>><
>>:

−ikG01
− þm−G11

− þ iωG21
− ¼ δðx − x0Þ;

m−G01
− − ikG11

− þ ∂xG21
− ¼ 0;

∂xG01
− − iωG11

− þm−G21
− ¼ 0;

ð3:15Þ

8>><
>>:

−m−G00
− þ ikG10

− − ∂xG20
− ¼ δðx − x0Þ;

−ikG00
− þm−G10

− þ iωG20
− ¼ 0;

∂xG00
− − iωG10

− þm−G20
− ¼ 0;

ð3:16Þ

8>><
>>:

∂xG22
− − ikG12

− þm−G02
− ¼ 0;

iωG22
− þm−G12

− − ikG02
− ¼ 0;

m−G22
− − iωG12

− þ ∂xG02
− ¼ δðx − x0Þ;

ð3:17Þ

8>><
>>:

ikG01þ þmþG11þ − iωG21þ ¼ δðx − x0Þ;
mþG01þ þ ikG11þ − ∂xG21þ ¼ 0;

−∂xG01þ þ iωG11þ þmþG21þ ¼ 0;

ð3:18Þ

8>><
>>:

−mþG00þ − ikG10þ þ ∂xG20þ ¼ δðx − x0Þ;
ikG00þ þmþG10þ − iωG20þ ¼ 0;

−∂xG00þ þ iωG10þ þmþG20þ ¼ 0;

ð3:19Þ

8>><
>>:

−∂xG22þ þ ikG12þ þmþG02þ ¼ 0;

−iωG22þ þmþG12þ þ ikG02þ ¼ 0;

mþG22þ þ iωG12þ − ∂xG02þ ¼ δðx − x0Þ:
ð3:20Þ

The above equations are explicitly solved in the follow-
ing for the two specific BC that we consider: for a perfect
conductor (PC) and for magnetically permeable (MP)
boundaries, respectively.

A. The Casimir force for PC boundaries

We now describe the mapping between the original BC
that can be imposed on the original vector field Aμ of the
MPCS model with the ones imposed on the fields fμ and
gμ. The Casimir effect follows from Eq. (3.2). We first
consider PC at the boundaries, which can be represented
mathematically by F1 ¼ 0, where

Fμ ≡ ϵμνγ∂νAγ ð3:21Þ

is the dual of Aμ. This is a BC that could not be treated for
instance in Ref. [9], due to the specific form of the
mathematical transformations used in that work, based
on scalar degrees of freedom.
In our case, the BC F1 ¼ 0 will imply [due to Eq. (2.13)]

in ϵ1νγ∂νfγ ¼ ϵ1νγ∂νgγ , which can be written in terms

of the dual fields ~fμ and ~gμ, associated with fμ and gμ,
respectively,

~fμ ≡ ϵμνγ∂νfγ; ð3:22Þ

~gμ ≡ ϵμνγ∂νgγ: ð3:23Þ
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In terms of these fields, the BC F1 ¼ 0 implies in ~f1 ¼ ~g1.
But since the PCS models are self dual and antiself dual, ~fμ
and ~gμ are proportional to fμ and gμ, respectively (this
proportionality can be obtained if we use the Euler-
Lagrange equations for fμ and gμ). Thus, we can write

that the BC ~f1 ¼ ~g1 implies in f1 ¼ −g1 at the boundaries.
Using then Eqs. (3.8)–(3.9) we obtain�Z

G1α
− ðX;X0ÞJð−ÞαðX0ÞdX0

�����
x¼0 and x¼a

¼ −
�Z

G1αþ ðX;X0ÞJðþÞαðX0ÞdX0
�����

x¼0 and x¼a
: ð3:24Þ

Since the sources Jð−ÞαðX0Þ and JðþÞαðX0Þ are arbitrary,
Eq. (3.24) implies that

G1α
− ðX;X0Þjx¼0andx¼a¼G1αþ ðX;X0Þjx¼0andx¼a¼0: ð3:25Þ

Note that when taking the BC, we are interested only in
the limit X → X0 of Gαβ

� ðX;X0Þ, such that we can take for
instance exp½−iωðt − t0Þ� ¼ exp½ikðy − y0Þ� ¼ 1, e.g., in
Eq. (3.12). Then, Eq. (3.25), when expressed in terms of
its Fourier transform, like in Eq. (3.12), gives that we can
write the BC equivalently as

G1α
� ðk;ω; x; x0Þjx¼0 and x¼a ¼ 0: ð3:26Þ

Hence, we note that in the present case, due to the BC, only
G00
� and G22

� will contribute to the Casimir force f, Eq. (3.14).
To find the required functions, we use the standard method
of continuity and also consider a notation similar to the one
used in Ref. [20] for convenience. Thus, we define

κ2� ¼ ω2 − k2 −m2
�; ð3:27Þ

ss� ¼ sinðκ�x<Þ sin½κ�ðx> − aÞ�; ð3:28Þ

cc� ¼ cosðκ�x<Þ cos½κ�ðx> − aÞ�; ð3:29Þ

sc� ¼
�
sinðκ�xÞ cos½κ�ðx0 − aÞ�; if x < x0;

cosðκ�x0Þ sin½κ�ðx − aÞ�; if x > x0;
ð3:30Þ

cs� ¼
�
cosðκ�xÞ sin½κ�ðx0 − aÞ�; if x < x0;

sinðκ�x0Þ cos½κ�ðx − aÞ�; if x > x0;
ð3:31Þ

where x> (x<) is the greater (smaller) value in the set fx; x0g.
To determine G22

� , it is useful to write it in terms of G1α
� ,

over which the BC is imposed directly. Using Eqs. (3.17)
and (3.20), we obtain

G22
� ðk;ω; x; x0Þ ¼ i

k2 − ω2

�
k∂xG12

� ðk;ω; x; x0Þ − G12
� ðk;ω; x; x0Þωm� þ k2

m2
�
δðx − x0Þ

�
: ð3:32Þ

We can drop the spatial Dirac delta function in
Eq. (3.32), since it gives no contribution to G22

� (we are
considering x ≠ x0). Note that dropping the spatial Dirac
delta function corresponds physically to a renormalization,
where an infinite contribution proportional to δð0Þ, when
evaluating the Green function at the same point, is removed
from the Casimir force. While this procedure is perfectly
fine for the present type of (rigid) BC and the Casimir force
is independent of this renormalization process, the reader
should be aware that this simple renormalization procedure
may not work for other types of BC. For instance, it is
known that for other types of geometries (like circular BC,
or including the case of smooth backgrounds), when
computing the Casimir energy special care must be taken
with this renormalization procedure, as shown in detail in
Refs. [24,25]. Physically, the restriction to the use of this
BC approach to Casimir problems is related to the physical
role of the BC: A real material at the boundaries cannot
constrain all modes of a field, as may be assumed in the
BC approach. In reality, the material that produces the BC

should be modeled by suitable interactions, and the
divergences must be removed by counterterms for these
interactions; the renormalization group then ensures that
the predictive power of the theory is not lost through the
subtraction.
Next, we have to find a PDE for G12

� subjected to the BC
G12
� ¼ 0 and to use this result in Eq. (3.32). With this aim,

we use again Eqs. (3.17) and (3.20), obtaining

ð∂2
x þ κ2þÞG12

� ðk;ω; x; x0Þ ¼ i

�
k
m�

∂x ∓ ω

	
δðx − x0Þ:

ð3:33Þ

We use the discontinuity method to solve Eq. (3.33),
obtaining

G12
� ðk;ω; x; x0Þ ¼ −

i
sinðaκ�Þ

�
k
m�

sc� � ω

κ�
ss�

	
:

ð3:34Þ
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By substituting Eq. (3.34) in Eq. (3.32), it follows that

G22
� ðk;ω; x; x0Þ ¼ k2κ2�cc� þ ω2m2

�ss� � kωκ�m�ðcs� þ sc�Þ
ðk2 − ω2Þm�κ� sinðaκ�Þ

: ð3:35Þ

Next, we follow an analogous procedure to find G00
� . First, we use Eqs. (3.16) and (3.19) to write these functions in terms

of G10
� :

G00
� ðk;ω; x; x0Þ ¼ i

k2 − ω2

�
� k
mþ

ðω2 − k2Þ þ ω∂x �
k
mþ

∂2
x

�
G10þ ðk;ω; x; x0Þ: ð3:36Þ

Using Eqs. (3.16) and (3.19), we obtain

ðκ2� þ ∂2
xÞG10

� ðk;ω; x; x0Þ ¼ i

�
ω

m�
∂x ∓ k

	
δðx − x0Þ: ð3:37Þ

From Eq. (3.37), we find

G10
� ðk;ω; x; x0Þ ¼ ∓ i

sinðκ�aÞ
�

k
κ�

ss� ∓ ω

m�
sc�

	
: ð3:38Þ

Substituting Eq. (3.38) in Eq. (3.36), we find

G00
� ðk;ω; x; x0Þ ¼ ω2κ2�cc� þ k2m2

�ss� �m�κ�kωðcs� þ sc�Þ
ðk2 − ω2Þm�κ� sinðaκ�Þ

: ð3:39Þ

Inserting the expressions for G00
� and G22

� , together with G11
� ¼ 0, in Eq. (3.14), we can write the Casimir force for the PC

BC case as

fPC ¼ ðhT11
− i þ hT11þ iÞjx¼0 and x¼a ¼

i
2

Z
dω
2π

Z
dk
2π

½κþ cotðaκþÞ þ κ− cotðaκ−Þ�: ð3:40Þ

The integrals appearing in Eq. (3.40) can be evaluated in
an analogous fashion as in Ref. [20]. First, we make a
complex rotation ω → iζ, where ζ is real (this is possible
since there are no poles in the first and in the third
quadrants). The effect of this rotation is to turn κ� ≡ ðω2 −
k2 −m2

�Þ1=2 into a purely complex variable. Then we can
redefine it as κ� ¼ iλ�, where λ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ k2 þm2

�
p

is a
real variable. Then, using the relation

cotðκ�aÞ ¼ −i
�
1þ 2

expð2λ�aÞ − 1

�
; ð3:41Þ

we can rewrite Eq. (3.40) as an integral defined entirely in
the real ðζ; kÞ plane, where

hT11
� ijx¼0andx¼a¼−

Z
dζ
2π

Z
dk
2π

λ�
½expð2λ�aÞ−1� : ð3:42Þ

We can also write Eq. (3.42) in terms of polar coor-
dinates ðr;ϕÞ, defined by

ζ ¼ r cosϕ; ð3:43Þ

k ¼ r sinϕ: ð3:44Þ

Substituting Eqs. (3.43)–(3.44) in Eq. (3.42) and per-
forming the integration over ϕ, we obtain

hT11
� ijx¼0 and x¼a ¼ −

Z
∞

0

dr
2π

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ r2
p

½exp ð2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ r2
p

Þ − 1�

¼ −
Z

∞

m�

dλ
2π

λ2

½expð2λaÞ − 1� ; ð3:45Þ

where to obtain the last expression on the right-hand side in
Eq. (3.45), we have made a change of integration variables,
using λ2 ¼ r2 þm2

�. From this equation, we can write the
Casimir force for the case of PC boundaries as (when
making the change of variables z ¼ 2λa)
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fPC ¼ −
1

16πa3

�Z
∞

2am−

dz
z2

ez − 1
þ
Z

∞

2amþ
dz

z2

ez − 1

�
:

ð3:46Þ

B. The Casimir force for perfect MP boundaries

Following an analogous derivation as outlined in the
previous subsection, we now derive the Casimir force for
the case of perfect MP lines. The same mapping relating the
MPCS with a doublet made of a self-dual and an antiself-
dual PCS model is, of course, still applicable, as is the
system of PDE, Eqs. (3.15)–(3.20), derived previously.
Perfect MP lines at the boundaries are represented by the
BC F0 ¼ 0. This BC, in turn, can be represented in terms of
Gμν
� , analogously to what we have done in the previous

subsection to obtain the BC given in Eq. (3.26). Thus, we
find that we can write the present BC as

G0α
� jx¼0 and x¼a ¼ 0: ð3:47Þ

Using Eqs. (3.14)–(3.47), we can see that G00
� do not

contribute to the Casimir force at the boundaries. Hence,
we only need to obtain G11

� and G22
� .

Using an analogous procedure as the one used in the
previous subsection, and noting that the BC is imposed
on G0α

� , we first find a relation between G22
� and G02

� .
Analogously, we need to find a relation between G11

� and
G01
� . For example, for G22þ , we can write (and again dropping

a space Dirac delta function for the same reason explained
in the previous subsection)

G22
� ðk;ω; x; x0Þ ¼ ðkω ∓ m∂xÞ

ω2 −m2
�

G02
� ðk;ω; x; x0Þ; ð3:48Þ

and

ð∂2
x þ κ2�ÞG02

� ðk;ω; x; x0Þ ¼ −
�
kω
m�

� ∂x

	
δðx − x0Þ;

ð3:49Þ

which has the solution

G02
� ðk;ω; x; x0Þ ¼ −

ðωkss� ∓ m�κ�sc�Þ
m�κ� sinðaκ�Þ

: ð3:50Þ

Hence,

G22
� ðk;ω; x; x0Þ ¼ m2

�κ
2
�cc� þ k2ω2ss� ∓ m�κ�kωðcs� þ sc�Þ

ðm2
� − ω2Þm�κ� sinðaκ�Þ

: ð3:51Þ

The procedure to find G11
� is completely analogous, leading to the result

G11
� ðk;ω; x; x0Þ ¼ ω2

�κ
2
�cc� þ k2m2

�ss� ∓ m�κ�kωðcs� þ sc�Þ
ðm2

� − ω2Þm�κ� sinðaκ�Þ
: ð3:52Þ

Using the above expressions for G11
� and G22

� , together
with G00

� ¼ 0, in Eq. (3.14), it can be easily verified that this
results again in the same Casimir force as derived in the
previous subsection, Eq. (3.40), leading also to Eq. (3.46),
i.e., fMP ¼ fPC. In the next two sections we try to under-
stand this rather surprising result.

IV. CASIMIR FORCE FROM THE MAPPING
BETWEEN THE MPCS MODEL AND A DOUBLET

OF MCS MODELS

In the previous section we have obtained that the Casimir
force for the MPCS model is independent of the two types
of BC considered, i.e., for PC and MP lines at the
boundaries. In this section we verify whether this result
is not a consequence of the particular mapping that we have
used, involving the relation of the MPCS model with a self-
dual and an antiself-dual PCS model, described in Sec. II B.
For this, we use the second relationship discussed in
Sec. II C, relating the MPCS model with a doublet of
MCS models, expressed by Eqs. (2.17)–(2.18).

A. Casimir force for perfect MP boundaries

We here specialize to the case of the perfect MP BC
F0 ¼ 0. This analysis is made easier by the fact that the
Casimir force for a MCS model under the BC F0 ¼ 0 was
already studied in Ref. [23]. The results found in that
reference can be easily extended to the Lagrangian den-
sities given by Eqs. (2.17)–(2.18), as we show below.
The Casimir force for the MPCS model can be obtained

from the sum of the 11 component of the total energy-
momentum tensor determined from the Lagrangian den-
sities (2.17)–(2.18), i.e.,

f ¼ ½hT11
ðPÞi þ hT11

ðQÞi�jx¼0 and x¼a; ð4:1Þ

where T11
ðPÞ and T11

ðQÞ are the 11 component of the total
energy-momentum tensor associated with ~L−ðPÞ and
~LþðQÞ, Eqs. (2.17)–(2.18), respectively.
Let us first consider T11

ðPÞ. Our considerations can be
easily extended to T11

ðQÞ. Using analogous procedures to the

ones used in the previous section, we can write
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hTμν
ðPÞijx¼0 and x¼a ¼

�
h ~Pμ ~Pνi − 1

2
ημνh ~Pα

~Pαi
	����

x¼0 and x¼a
;

ð4:2Þ

where ~Pμ ¼ ϵμαβ∂αPβ. Analogously, we define ~Qμ ¼
ϵμαβ∂αQβ. The VEV h ~Pμ ~Pνi can be obtained from

h ~PμðXÞ ~PνðX0Þi as

h ~Pμ ~Pνi ¼ lim
X→X0

h ~PμðXÞ ~PνðX0Þi; ð4:3Þ

and h ~PμðXÞ ~PνðX0Þi can be related to the Green function
Gμρ

ðPÞ for ~Pμ, as we show below.

We know that Gμρ
ðPÞ can be obtained from the Euler-

Lagrange equation associated with ~L−ðPÞ, written in terms
of ~Pμ, plus a source term:

~L−ðPÞ ¼ −
1

2
~Pμ

~Pμ þ 1

2
m− ~P

μPμ þ JμPμ: ð4:4Þ

Considering the equation of motion

−ϵμαβ∂α
~Pβ þm− ~P

μ þ Jμ ¼ 0; ð4:5Þ

with formal solution

~Pμ ¼
Z

Gμρ
ðPÞðX;X0ÞJρðX0ÞdX0; ð4:6Þ

we obtain the differential equation satisfied by Gμρ
ðPÞðX;X0Þ:

ðϵναβ∂α −m−ηνβÞGβρ
ðPÞðX;X0Þ ¼ δρνδðX − X0Þ: ð4:7Þ

We then solve Eq. (4.7) to find the functions Gβρ
ðPÞðX;X0Þ

that will be necessary to compute hTμν
ðPÞi in Eq. (4.2).

First, we need a relation between Gβρ
ðPÞðX;X0Þ and

h ~PβðXÞ ~PρðX0Þi. For this purpose, we consider the propa-
gator for Pμ,

ΔβρðX;X0Þ ¼ ihPβðXÞPρðX0Þi; ð4:8Þ

where hPβðXÞPρðX0Þi is the Green function for Pμ, which
can be obtained directly from the equation of motion
generated by Eq. (2.17), when including a source term
JμPμ, as above. Hence, we can write [20]

Gβρ
ðPÞðX;X0Þ¼ ϵβαν∂αΔν

ρðX;X0Þ¼ ih ~PβðXÞPρðX0Þi: ð4:9Þ

From Eq. (4.9), we obtain

h ~PβðXÞ ~PρðX0Þi ¼ −iϵραγ∂ 0
αG

β
ðPÞγðX;X0Þ: ð4:10Þ

Using Eq. (4.2), we can write

hT11
ðPÞijx¼0 and x¼a

¼ 1

2
ðhP0P0i þ hP1P1i − hP2P2iÞjx¼0 and x¼a; ð4:11Þ

where

hPμPνijx¼0 and x¼a

¼ −i lim
X→X0

ϵνλρ∂ 0λGμρ
ðPÞðX;X0Þjx¼0 and x¼a; ð4:12Þ

and Gμρ
ðPÞðX;X0Þ satisfies

ðϵναβ∂α −m−ηνβÞGβρ
ðPÞðX;X0Þ ¼ δρνδðX − X0Þ: ð4:13Þ

Considering the Fourier transform of Gμρ
ðPÞ (with respect

to t and y),

Gμρ
ðPÞðX;X0Þ

¼
Z

dω
2π

e−iωðt−t0Þ
Z

dk
2π

eikðy−y0ÞGμρ
ðPÞðk;ω;x;x0Þ; ð4:14Þ

we can write, using Eqs. (4.11)–(4.12), that

hT11
ðPÞijx¼0 and x¼a

¼ lim
X→X0

Z
dω
2π

e−iωðt−t0Þ
Z

dk
2π

eikðy−y0Þt11ðPÞ
���
x¼0 and x¼a

;

ð4:15Þ

where

t11ðPÞ ¼
i
2

∂
∂x0 ðG

02
ðPÞ − G20

ðPÞÞ −
k
2
ðG01

ðPÞ þ G10
ðPÞÞ

þ ω

2
ðG12

ðPÞ þ G21
ðPÞÞ: ð4:16Þ

The required functions Gμν
ðPÞ can be obtained from

Eqs. (4.13)–(4.14), analogously to what we have done in
the previous sections. We can write

8>>><
>>>:

−ikG01
ðPÞ þm−G11

ðPÞ þ iωG21
ðPÞ ¼ δðx − x0Þ;

m−G01
ðPÞ − ikG11

ðPÞ þ ∂xG21
ðPÞ ¼ 0;

∂xG01
ðPÞ − iωG11

ðPÞ þm−G21
ðPÞ ¼ 0;

ð4:17Þ
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8>>><
>>>:

−m−G00
ðPÞ þ ikG10

ðPÞ − ∂xG20
ðPÞ ¼ δðx − x0Þ;

−ikG00
ðPÞ þm−G10

ðPÞ þ iωG20
ðPÞ ¼ 0;

∂xG00
ðPÞ − iωG10

ðPÞ þm−G20
ðPÞ ¼ 0;

ð4:18Þ

8>>><
>>>:

∂xG22
ðPÞ − ikG12

ðPÞ þm−G02
ðPÞ ¼ 0;

iωG22
ðPÞ þm−G12

ðPÞ − ikG02
ðPÞ ¼ 0;

m−G22
ðPÞ − iωG12

ðPÞ þ ∂xG02
ðPÞ ¼ δðx − x0Þ:

ð4:19Þ

We note that the above equations are the same ones as
those treated in Ref. [23] and, also, the forms of T11

ðPÞ and
t11ðPÞ are analogous to the ones derived in that reference. In
the present case, where we are considering the BC F0 ¼ 0,
using Eq. (2.19), we obtain that

ffiffiffiffiffiffiffi
m−

p ~P0ðXÞ ¼ ffiffiffiffiffiffiffi
mþ

p ~Q0ðXÞ
at the boundaries. Hence, using an analogous procedure as

used to obtain Eq. (3.26) and considering Eq. (4.6), we can
write the BC in the present case as

G0ρ
ðPÞðk;ω; x; x0Þjx¼0 and x¼a

¼ G0ρ
ðQÞðk;ω; x; x0Þjx¼0 and x¼a ¼ 0: ð4:20Þ

Hence, we conclude from Eqs. (4.15)–(4.16) and (4.20)
that we only need to find ∂

∂x0 G20
ðPÞ,

∂
∂x0 G02

ðPÞ, G
10
ðPÞ, G

12
ðPÞ and

G21
ðPÞ to compute hT11

ðPÞi at x ¼ 0 and x ¼ a. As already

commented on in the introduction, we note that the number
of functions that we need to find, in the case of the mapping
treated in this section, is greater than the number of required
functions in the case considered in the previous section
(where we considered the mapping between the MPCS
model and the two PCS models).
The solutions to Eq. (4.13), considering the BC given in

Eq. (4.20), are given by [23]

G21
ðPÞðk;ω; x; x0Þ ¼

−iω
ðω2 −m2

−Þ sinðaκ−Þ
�
k2

κ−
ss− þ kω

m−
sc− þ km−

ω
cs− þ κ−cc−

	
; ð4:21Þ

G12
ðPÞðk;ω; x; x0Þ ¼

iω
ðω2 −m2

−Þ sinðaκ−Þ
�
k2

κ−
ss− þ kω

m−
cs− þ km−

ω
sc− þ κ−cc−

	
; ð4:22Þ

G20
ðPÞðk;ω; x; x0Þ ¼

−1
sinðaκ−Þ

�
ωk

m−κ−
ss− þ cs−

	
; ð4:23Þ

G10
ðPÞðk;ω; x; x0Þ ¼

i
sinðaκ−Þ

�
ω

m−
cs− þ k

κ−
ss−

	
: ð4:24Þ

Substituting Eqs. (4.21)–(4.24) in Eqs. (4.15)–(4.16), we
obtain

hT11
ðPÞijx¼0 and x¼a ¼

i
2

Z
dω
2π

Z
dk
2π

κ− cotðaκ−Þ: ð4:25Þ

The derivation of hT11
ðQÞi is completely analogous and the

result found is

hT11
ðQÞijx¼0andx¼a¼

i
2

Z
∞

−∞

dω
2π

Z
∞

−∞

dk
2π

κþcotðaκþÞ: ð4:26Þ

Thus, from Eqs. (4.1) and (4.25), we obtain again
Eq. (3.40). This confirms our previous result and at the
same time it shows that the result obtained for the Casimir
force is independent of the mapping used for the case of a
MP BC.

B. Casimir force for PC boundaries

We can also use the mapping between the MPCS model
and ~L−ðPÞ þ ~LþðQÞ to also confirm our result for the
Casimir force in the case of a PC BC, F1 ¼ 0. The MCS
model under this BC was considered in Ref. [20] and the
results found there can be easily extended to the case
treated here, in the same way as we did in the previous
subsection.
In this case Eqs. (4.15)–(4.16) still remain valid, as do

the PDE satisfied by Gμν
ðPÞ and Gμν

ðQÞ. We then have that

hT11
ðPÞijx¼0 and x¼a

¼ lim
X→X0

Z
dω
2π

e−iωðt−t0Þ
Z

dk
2π

eikðy−y0Þt11ðPÞ
���
x¼0 and x¼a

;

ð4:27Þ
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where

t11ðPÞ ¼
1

2i
∂
∂x0 ðG

02
ðPÞ − G20

ðPÞÞ þ
k
2
ðG01

ðPÞ þ G10
ðPÞÞ

þ ω

2
ðG12

ðPÞ þ G21
ðPÞÞ: ð4:28Þ

As in the previous cases, we can conclude that the BC
F1 ¼ 0 implies in

G1ν
ðPÞðk;ω; x; x0Þjx¼0 and x¼a

¼ G1ν
ðQÞðk;ω; x; x0Þjx¼0 and x¼a ¼ 0: ð4:29Þ

To obtain the Casimir force f at the boundaries, we need
∂
∂x0 G02

ðPÞ,
∂
∂x0 G20

ðPÞ, G
01
ðPÞ, G

21
ðPÞ and the corresponding Gμν

ðQÞ. The
required functions are now found to be given by

G02
ðPÞðk;ω; x; x0Þ ¼

1

sinðaκ−Þ
�
km−ω

κ−ρ
2
−
ss− þ k2

ρ2−
sc− þ ω2

ρ2−
cs− þ ωkκ−

m−ρ
2
−
cc−

	
; ð4:30Þ

G20
ðPÞðk;ω; x; x0Þ ¼

1

sinðaκ−Þ
�
km−ω

κ−ρ
2
−
ss− þ k2

ρ2−
cs− þ ω2

ρ2−
sc− þ ωkκ−

m−ρ
2
−
cc−

	
; ð4:31Þ

G01
ðPÞðk;ω; x; x0Þ ¼

i
sinðaκ−Þ

�
k
κ−

ss− þ ω

m−
cs−

	
; ð4:32Þ

G21
ðPÞðk;ω; x; x0Þ ¼

i
sinðaκ−Þ

�
ω

κ−
ss− þ k

m−
cs−

	
: ð4:33Þ

Using Eq. (4.28) and Eqs. (4.30)–(4.33), we obtain

hT11
ðPÞijx¼0 and x¼a ¼

i
2

Z
dω
2π

Z
dk
2π

κ− cotðaκ−Þ: ð4:34Þ

The procedure to find hT11
ðQÞi is again completely analogous

and we do not need to repeat it again here. The final result
that we find is once again the same one given in Eq. (4.26).
Thus, we are again lead to the very same previous result for
the Casimir force, given by Eq. (3.46).

V. INTERPRETING THE INDEPENDENCE
OF THE RESULTS FOR DIFFERENT

BOUNDARY CONDITIONS

Casimir forces are, in general, sensible to the BC
changes. However, in the previous calculations, we have
shown that, for the MPCS model, it does not depend
whether we have MP or PC BC. In this section, we are
willing to find an argument that sustains this coincidence,
as well as to find out some other equivalent BC. The fact
that the Casimir force obtained with both the PC and MP
boundaries is the same can be understood as a consequence
of the fact that the components fμ (or gμ) are not
independent from each other (since there are three compo-
nents Aμ and just two degrees of freedom). To see this
interdependence more clearly, we can use the relations
obtained for the canonical momenta in the model,

πν ¼
∂L
∂ _Aν

; ð5:1Þ

where L is given in Eq. (2.1). The MPCS model has two
constraints:

π0 ≈ 0 ð5:2Þ

and

∂iπi −
μ

4
ϵij∂iAj −m2A0 ≈ 0; ð5:3Þ

where the “≈” symbol is used to emphasize that both
constraints are secondary and πi ¼ F0i þ ðμ=4ÞϵjiAj. The
second constraint, Eq. (5.3), shows us that A0 is not an
independent variable (the same can be said about f0 and
also for g0). Indeed, using Eqs. (5.2)–(5.3), we can write the
generating functional Z only in terms of fAi; πig (and
analogously for fμ and gμ).
Another important conclusion about the Casimir force,

concerning the interdependence of fμ and gμ, in the case of
the BC F0 ¼ 0, can be obtained as follows. Using the
equations of motion for gμ and fμ, given by Eqs. (3.6)–
(3.7), respectively, we can obtain [10]

mþϵμνγ∂νfγ ¼ −∂αfμα; ð5:4Þ

m−ϵ
μνγ∂νgγ ¼ ∂αgμα: ð5:5Þ

Thus, we find the following relations satisfied by the vector
field fμ:

mþf0 ¼ f21; ð5:6Þ
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mþf1 ¼ f20; ð5:7Þ

mþf2 ¼ f01; ð5:8Þ

m2þf1 ¼ ∂μf1μ; ð5:9Þ

∂μfμ ¼ 0; ð5:10Þ

where fαβ ¼ ∂αfβ − ∂βfα. Similar relations also follow for
the vector field gμ when considering Eq. (5.5).
Considering the BC f0 ¼ 0, we obtain, from Eq. (5.6)

that ∂1f2 ¼ ∂2f1 or, using Eqs. (5.7)–(5.8), that

∂0ð∂1f1 þ ∂2f2Þ − ∂1∂1f0 − ∂2∂2f0 ¼ 0: ð5:11Þ

We make use of a transverse Fourier transform for f0,
similar to the one used in Eq. (3.12),

f0ðx; y; tÞ ¼
Z

dω
2π

e−iωt
Z

dk
2π

eikyF 0ðk;ω; xÞ: ð5:12Þ

Since we are considering f0 ¼ 0 at the boundaries, we
can write

f0ðx; y; tÞjx¼0 and x¼a

¼
Z

dω
2π

e−iωt
Z

dk
2π

eikyF 0ðk;ω; xÞ
���
x¼0 and x¼a

¼ 0:

ð5:13Þ

Since Eq. (5.13) must be valid for all y and t, we
conclude that F 0ðk;ω; xÞ ¼ 0 at x ¼ 0 and x ¼ a. Thus,
we can write

∂2f0ðx; y; tÞjx¼0 and x¼a

¼
Z

dω
2π

e−iωt
Z

dk
2π

eikyikF 0ðk;ω; xÞ
���
x¼0 and x¼a

¼ 0:

ð5:14Þ

The condition above has a simple geometric interpretation:
f0ðxÞ ¼ 0 for all points ð0; yÞ and ða; yÞ. Therefore, at
x ¼ 0 and at x ¼ a the variation of f0ðx; y; tÞ with respect
to y (∂f=∂y) is null. In a similar way we can conclude that
(the following expressions are to be assumed to be
implicitly valid always at the boundaries, unless specified
otherwise)

∂2g0 ¼ 0; ð5:15Þ

∂0∂0f0 ¼ 0; ð5:16Þ

∂2∂2f0 ¼ 0: ð5:17Þ

From Eqs. (2.13) and (5.14)–(5.15), we can conclude that
the imposition of the BC F0 ¼ 0 is equivalent to the BC
∂2A0 ¼ 0. Analogously, we can obtain that ∂0A0 ¼ 0.
Also, from Eqs. (5.11) and (5.17), we can write

∂0ð∂1f1 þ ∂2f2Þ − ∂1∂1f0 ¼ 0: ð5:18Þ
Using Eq. (5.10), we can rewrite Eq. (5.18) as

∂0∂0f0 − ∂1∂1f0 ¼ 0. Thus, using Eq. (5.16), we can
conclude that

∂1∂1f0 ¼ 0: ð5:19Þ
Making analogous considerations as the ones that lead to

Eqs. (5.14) and (5.16)–(5.17), we can conclude from
Eq. (5.19) that

∂0∂1∂1f0 ¼ 0: ð5:20Þ
Using now Eqs. (5.6) and (5.9), we can write

m2þf1 ¼ ∂0f10 −mþ∂2f0. But since ∂2f0 ¼ 0, we
obtain that

m2þf1 ¼ ∂0f10 ⇒ m2þ∂1f1 ¼ ∂0∂1∂1f0 − ∂0∂0∂1f1:

ð5:21Þ

Using Eq. (5.20), we conclude, from Eq. (5.21), that

m2þ∂1f1 ¼ −∂0∂0∂1f1: ð5:22Þ

We can now also use a transverse Fourier transform for
f10 ¼ ∂1f1 to write

f10ðx; y; tÞ ¼
Z

dω
2π

e−iωt
Z

dk
2π

eikyF 10ðk;ω; xÞ: ð5:23Þ

Using Eqs. (5.22)–(5.23), we conclude that

m2þF 10 ¼ ω2F 10: ð5:24Þ
Since Eq. (5.24) must be valid for all ω, we conclude that

F 10 ¼ 0. Thus, from Eq. (5.23), we obtain that
f10 ¼ ∂1f1 ¼ 0. We can also draw analogous conclusions
as applied for the field gμ. Thus, we can conclude that the
imposition of the BC F0 ¼ 0 (which is here seen in terms of
the equivalent strong BC imposed on the fields g and f, i.e.,
~f0 ¼ ~g0 ¼ 0 and f0 ¼ g0 ¼ 0) is equivalent to the BC
∂1F1 ¼ 0. Therefore, the same Casimir force should be
obtained in the cases of these two BC.
We can collect all the results found up to now to study

the behavior of F1. First, using the BC ∂2A0 ¼ 0 in the
definition (3.21), we obtain

F1 ¼ −∂0A2: ð5:25Þ

Also, from Eq. (3.21), we deduce that ∂μFμ ¼ 0. But since
∂1F1 ¼ 0 (at the boundaries), we obtain
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∂0F0 þ ∂2F2 ¼ 0: ð5:26Þ

We are considering the BC F0 ¼ 0. Then, analogously to
what we have done in Eqs. (5.13)–(5.14), we can conclude
that (recalling that the relations below are meant to be valid
at the boundaries) ∂0F0 ¼ 0. Then, from Eq. (5.26), we can
write that ∂2F2 ¼ 0. Using again the reasoning that lead us
from Eq. (5.13) to Eq. (5.14), we obtain that
F2 ¼ ϵ2νγ∂νAγ ¼ 0. Using the relation (2.13), we conclude
that ϵ2νγ∂νgγ ¼ 0 (analogously to fγ). We can use then the
self duality of gγ [represented by Eq. (3.6), with Jð−Þμ ¼ 0]
to obtain g2 ¼ 0 (analogously to f2).
Hence we conclude that A2 ¼ 0 is also a BC for our

model. Analogously to what we have done above
[Eqs. (5.13)–(5.14)], we conclude then that ∂0A2 ¼ 0
and, hence, using Eq. (5.25), we obtain an equivalent
BC: F1 ¼ 0.
Summarizing, we can conclude that the BC F1 ¼ 0,

F2 ¼ 0, ∂1F1 ¼ 0 and ∂2F2 ¼ 0 are all equivalent to the
BC F0 ¼ 0. Therefore, the same Casimir force is expected
to be obtained for all these cases. Here, we have made

explicit calculations for the BC F0 ¼ 0 and F1 ¼ 0,
confirming that the results obtained are the same in both
cases. We note that the particular case for the Neumann BC
∂1F1 ¼ 0 was studied in Ref. [9], where it was shown to
also lead to the same result for the Casimir force,
Eq. (3.46).1

VI. SUPPRESSION OF THE CASIMIR FORCE
IN THE PRESENCE OF VORTEX
PARTICLELIKE EXCITATIONS

As shown in the previous sections, the Casimir force for
the cases of PC (F1 ¼ 0), MP (F0 ¼ 0) and also Neumann
(∂1F1 ¼ 0) BC all leads to the same result,

f ¼ −
1

16πa3

�Z
∞

2am−

dz
z2

ez − 1
þ
Z

∞

2amþ
dz

z2

ez − 1

�
: ð6:1Þ

Note that Eq. (6.1) is of the form of a second Debye
function [26],

Z
∞

b
dz

zn

ez − 1
¼

X∞
k¼1

e−kb
�
bn

k
þ n

bn−1

k2
þ nðn − 1Þ b

n−2

k3
þ � � � þ n!

knþ1

	
; ð6:2Þ

indicating that the Casimir force for both cases decays
exponentially with am�.
Specific limits for am�, like for small or large values,

can be easily derived using directly the expression (3.46) or
from (6.2). These results can also be readily expressed in
terms of the Proca and Chern-Simons masses, m and μ,
respectively, using Eq. (2.16), or also from Eqs. (2.2)–(2.3),
relating these masses to the original parameters of the
effective particle-vortex dual Lagrangian density model.
By expressing m� in terms of the original parameters of

the particle-vortex dual Lagrangian density model, i.e., in
terms of the vacuum expectation values for the Higgs field,
ρ0, for the vortex field, ψ0, and the CS parameter Θ, we
have that

m� ¼ e2ρ20
2Θ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
8π

Θψ0

e2ρ0

	
2

s
∓ 1

#
: ð6:3Þ

As it was shown in Ref. [13], vortices are energetically
favored to condense for values of the CS parameter

below a critical value Θc ≈ ðe2=πÞ ln 6≃ 0.57e2. For
Θ < Θc the vortex condensate can be written as
ψ2
0 ≈ ðe2ρ20=ΘÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − expðπΘ=e2Þ

p
. The condensed vortex

phase can be interpreted as being equivalent to the
Shubnikov phase for type-II superconductors in the pres-
ence of a magnetic field [27], with a Ginzburg-Landau
parameter κ≡ eρ0=Θ > 1=

ffiffiffi
2

p
. In the analysis that follows,

we remain within parameter values satisfying these con-
ditions. In Fig. 1 we show the result for the Casimir force

1It should be noticed that in Ref. [9] there is a misprint in the
expression for the masses m1 and m2 considered there by a factor
two. With this correction, those two masses considered in that
reference just correspond to m� considered here. This in turn
corresponds to a correction in Sec. IVof that reference, where the
CS parameter considered there should be replaced by 2Θ instead.

FIG. 1. The (normalized) Casimir force as a function of the
vortex condensate ψ0. The following representative values of
parameters were used: Θ=e2 ¼ 0.1 and ρ0a1=2 ¼ 1.
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Eq. (6.1) as a function of the vortex condensate ψ0,
normalized by the Casimir force in the absence of a vortex
condensate, fðψ0 ¼ 0Þ. The result shows that the Casimir
force can become strongly suppressed in the presence of
vortex matter as compared to the absence of it. This
suppression of the Casimir force can be interpreted as a
result of the repelling force between vortices, analogously
to what happens in the phenomenology of type-II super-
conductors, when in the Shubnikov phase [27], which
opposes the attractive Casimir force.

VII. CONCLUSIONS

In this work, we have analyzed the Casimir force for the
MPCS model. As explained in Sec. II, this model can be
interpreted as an effective (dual) model describing vortex
excitations for a CSH model. We have obtained the Casimir
force for the cases of perfect conductor and perfect
magnetically permeable BC. This has been possible by
mapping the MPCS model into a doublet consisting of a
self-dual and an antiself-dual PCS model. We found that the
Casimir force remains the same when computed using the
two forms of BC considered in this paper. The result found
here for the Casimir force also agrees with the case of
considering the Neumann BC, which was derived previ-
ously in Ref. [9]. The reason for these results being the
same has been explained to be a consequence of the
symmetry and constraints satisfied by these models involv-
ing a CS term. These results have also been confirmed by
using the mapping of the MPCSmodel in a doublet of MCS
models. The derivation using these two independent map-
pings also helps to show that the result obtained for the
Casimir force (for the type of BC considered here) is not
some particular consequence of the mapping used. Thus,
our results also highlight a symmetry found when we
consider various types of BC in the computation of the
Casimir effect.
Even though it can be argued that the model we have

studied here, which can be associated with the vacuum state
of a system of vortex excitations in a plane, is mostly of
theoretical interest and might be far from describing real
physical systems of interest, our results are indicative of a
behavior that can manifest in these systems. As such, our
results might be of relevance for the next generation of

experiments involving the Casimir effect [28], or those
involving, for example, vortex-based superconducting
detectors [29,30]. Usually, such systems involve nanometer
scales, in which the Casimir force turns out to be relevant,
and possibly also alter the microscopic parameters of the
detectors [31]. Our results can also be of relevance when
devising materials based on superconducting films to work
as possible suppressors of the Casimir force, such as in
those laboratory experiments that require performing
extremely careful force measurements near surfaces.
This might be the case of the searches for possible
deviations of the Newtonian gravity.
The study performedhere for theMPCSmodel also has its

ownmerits, independent of its connection to a vortexmodel.
The MPCS model constitutes massive gauge particles, with
mass terms that have both topological and nontopological
origins. Also, the Maxwell-Proca and the MCS models can
be seen as particular cases of the MPCS model. So, we
expect that a better comprehension of the roles of the mass
terms, either of topological or nontopological origin, in the
derivation of the Casimir force might eventually provide
arguments in favor of one or the other, when using these
models with the objective of understanding some of the
properties of real planar systems with massive excitations.
This also includes, of course, deriving the Casimir force
under different BC, as we have studied in this work.
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