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Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a more consistent approach to the
derivation of the third order wave equation obtained earlier by M. Nowakowski [1] on the basis of heuristic
considerations is suggested. For this purpose an additional algebraic object, the so-called q-commutator
(q is a primitive cubic root of unity) and a new set of matrices ημ instead of the original matrices βμ of the
DKP algebra are introduced. It is shown that in terms of these ημ matrices we have succeeded in reducing a
procedure of the construction of cubic root of the third order wave operator to a few simple algebraic
transformations and to a certain operation of the passage to the limit z → q, where z is some complex
deformation parameter entering into the definition of the η-matrices. A corresponding generalization of the
result obtained to the case of the interaction with an external electromagnetic field introduced through the
minimal coupling scheme is carried out and a comparison with M. Nowakowski’s result is performed. A
detailed analysis of the general structure for a solution of the first order differential equation for the wave
function ψðx; zÞ is performed and it is shown that the solution is singular in the z → q limit. The application
to the problem of construction within the DKP approach of the path integral representation in
parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed.
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I. INTRODUCTION

In the paper by Nowakowski [1] devoted to the problem
of electromagnetic coupling in the Duffin-Kemmer-Petiau
(DKP) theory several rather unusual circumstances relating
to a second order DKP equation have been pointed out. The
first of them is connected with the fact that the second order
Kemmer equation [2] in the presence of an external
electromagnetic field is only one member of a class of
second order equations which, in principle, can be derived
from the first order DKP equation. Their physical meaning
is therefore not entirely clear. Another circumstance is
connected with the fact that the second order Kemmer
equation lacks a back-transformation which would allow
one to obtain solutions of the first order DKP equation from
solutions of the second order equation. The reason for the
latter is that the Klein-Gordon-Fock divisor [3,4] in the
spin-1 case (throughout this work we put ℏ ¼ c ¼ 1)

dð∂Þ ¼ 1

m
ð□þm2ÞI þ iβμ∂μ −

1

m
βμβν∂μ∂ν ð1:1Þ

ceases to be commuted with the original DKP operator

Lð∂Þ≡ iβμ∂μ −mI; ð1:2Þ

when we introduce the interaction with an external electro-
magnetic field within the framework of the minimal
coupling scheme ∂μ → Dμ ≡ ∂μ þ ieAμ, i.e.

½dðDÞ; LðDÞ� ≠ 0:

Here I is the unity matrix;□≡ ∂μ∂μ, ∂μ ¼ ∂=∂xμ, and the
matrices βμ obey the famous trilinear relation

βμβνβλ þ βλβνβμ ¼ gμνβλ þ gλνβμ ð1:3Þ

with the metric gμν ¼ diagð1;−1;−1;−1Þ. As a result, the
analogy of the second order Kemmer equation to a similar
looking Dirac equation is very limited. Whereas in the
Dirac case one can transform solutions of the second order
equation to solutions of the Dirac equation and vice versa,
such a one-to-one correspondence is not possible in the
Kemmer case.
Nowakowski has suggested a way this problem may be

circumvented. To achieve the commutativity of the recip-
rocal operator dðDÞ and the DKP operator LðDÞ in the
presence of an external gauge field we have to give up the
requirement that the product of these two operators is an
operator of the Klein-Gordon-Fock type, i.e.

dðDÞLðDÞ ≠ −ðD2 þm2ÞI þ G½Aμ�;

where G½Aμ� is a functional of the potential Aμ, which
vanishes in the interaction free case. In other words it is
necessary to introduce into consideration not the second
order, but a higher order wave equation which would have
the same virtue as the second order Dirac equation, i.e. a
back-transformation to the solutions of the first order
equation. In the paper [1] from heuristic considerations
such a higher (third) order wave equation possessing a
necessary property of the reversibility was proposed.
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However, by virtue of the fact that the higher order equation
is not reduced to the Klein-Gordon-Fock equation in the
interaction free case, this leads to the delicate question of
physical interpretation of the terms in such a higher order
equation (it is known that even for the second order
Kemmer equation there exists this kind of problem). In
particular, this is concerned with the interpretation of
parameter m as the mass of a particle since this is the
only possible interpretation in the free case when the
following equality,

dð∂ÞLð∂Þ ¼ −ð□þm2ÞI; ð1:4Þ

holds.
It should be noted that the divisors with a minimal

electromagnetic coupling and, in particular, for the spin-1
case

dðDÞ ¼ 1

m
ðD2 þm2ÞI þ iβμDμ −

1

m
βμβνDμDν ð1:5Þ

were first introduced into consideration in the earlier papers
by Nagpal [5], Cox [6], and Krajcik and Nieto [7]. The
divisors have been intensively used in analysis of causality
violation in higher spin theories in the presence of an
electromagnetic field. The suggested divisors represent
merely a straightforward generalization of the well-known
operators of Takahashi and Umezawa [3,4] by the replace-
ment ∂μ → DμðAÞ. However, a question of commutativity
of the generalized divisors with the initial first order
operators LðDÞ in these papers was not discussed at all,
although this can be of certain importance. Further, in the
papers mentioned above the questions of causality were
discussed on the basis of analysis of a product of two
operators dðDÞ and LðDÞ. In particular, in the spin-1 case
when we take the divisor in the form (1.5), in the product
dðDÞLðDÞ the principle part of interacting and free wave
operators remains the same as it was defined by Eq. (1.4).
This is connected with the fact that the terms of the third
order in derivatives reduce to the terms of the first order by
using the trilinear relation (1.3) and thus the effect of
electromagnetic interactions (or nonderivative coupling)
occurs only in lower derivatives. The resulting field
equation remains equivalent to a hyperbolic system with
light cone as ray cone; the same holds in the interacting and
free cases. Therefore, it is concluded that the spin-1 field
even in the presence of electromagnetic field in the system
possesses only causal modes of propagation.
The situation can qualitatively change if as dðDÞ one

takes a divisor such that

½dðDÞ; LðDÞ� ¼ 0;

for example, the divisor suggested by Nowakovski [1]. In
this case in the product dðDÞLðDÞ in accordance with
formula (6.10) in Sec. VII, the principle part of the

interacting and free wave operators will be already the
third order in derivatives, instead of (1.4), and the terms
with the nonderivative coupling remain the terms of the first
order. The question of whether a change of the order of the
principle part of wave operator leads to a change of the
propagation properties of the equation

dðDÞLðDÞψðxÞ ¼ 0;

generally speaking, has to be the subject of separate
research.
Further, in addition to the absence of required one-to-one

correspondence between solutions of the second order
Kemmer equation and the DKP equation, one can point
out one more negative consequence of the noncommuta-
tivity of the divisor (1.5) with the operator LðDÞ ¼ iβμDμ−
mI. The lack of commutativity does not give a possibility
within the framework of the DKP theory to construct the
path integral representation for the Green’s function of a
spin-1 particle in a background gauge field in a spirit of the
approaches developed for a spin-1=2 particle (see for
example [8,9]). Having obtained all the necessary expres-
sions, this very interesting question will be discussed in
more detail in Sec. VIII.
The purpose of this paper is to give a systematic way of

deriving the third order wave equation within the frame-
work of the massive Duffin-Kemmer-Petiau theory in the
free and interacting cases. However, first of all it should be
noted that the wave equations of the third order in
derivatives, as applied to the problems of classical and
quantum field theories, for any length of time have drawn
attention of researchers for various reasons. Below, we give
a number of examples related somehow to our problem.
In the papers by Finkelstein et al. [10] in constructing the

theory of the nine-dimensional ternary hyperspin manifold
the so-called trine-Gordon equation, the unique scalar
wave equation of least differential order1

½detð∂Þ − im3�φ ¼ 0

was suggested. Here, detð∂Þ is the determinant of a 3 × 3
matrix composed of partial derivatives in coordinates. The
authors have also performed an analysis of the correspond-
ing dispersion relation for plane waves and have suggested
the generalization to the case of a minimal interaction with
a gauge field. The questions close to this research were
considered independently in the papers by Solov’yov et al.
[11], where the general algebraic theory of the Finslerian
spinors was constructed. The generalized Duffin-Kemmer-
Petiau equation for a Finslerian 3-spinor wave function
of a free particle in the momentum representation was
also suggested there and it was shown that each of these

1All formulas cited below, up to Eq. (1.8), are given in the
notations of the authors of the corresponding works.
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3-spinor components of the wave function (ir, β_s) satisfies
the Finslerian analog of the Klein-Gordon-Fock equation

ðGABCPAPBPC −M3Þir ¼ 0; r ¼ 1; 2; 3

and a similar equation holds for the β_s components. Here,
GABC is a symmetric covariant tensor of the third order rank
that plays a role of the metric tensor in the nine-dimensional
linear Finslerian space.
Further, in the works by Yamaleev [12–14] an attempt

has been made to construct in a systematic way the
foundations of quantum mechanics on cubic forms (or
even more generally, polylinear forms). The mathematical
basis of the construction would become the cyclic algebras
of N > 2 degree. The cyclic algebra with respect to cubic
forms here plays a role like the Clifford algebra with respect
to the quadratic forms. In particular, the cubic generaliza-
tion of the standard relativistic relation between energy E,
momentum ~p ¼ ðp1; p2; p3Þ and mass m was suggested in
the following form:

ðE −qmÞðE −q2mÞðE −mÞ ¼
X3
i¼1

p3
i − 3p1p2p3; ð1:6Þ

where q is a primitive cubic root of unity

q ¼ e2πi=3 ¼ −
1

2
þ i

ffiffiffi
3

p

2
;

q2 ¼ e4πi=3 ¼ −
1

2
− i

ffiffiffi
3

p

2
: ð1:7Þ

As an analog of the Klein-Gordon-Fock equation [for
any of three possible correspondences: E → θk∂=∂t,
pi → θk∂=∂xi, where θk ¼ ðq; q2; 1Þ, k ¼ 1; 2; 3 in
Eq. (1.6)] the following equation of the third order,

� ∂
∂t3 −

X3
i¼1

∂3

∂x3i
�
φþ ∂3

∂x1∂x2∂x3 φ −m3φ ¼ 0;

was used. The author also suggested cubic analogs of the
Dirac equation and the nonrelativistic Schrödinger
equation.
The third order wave equations arise, however, not only

in the generalization of quantum mechanics and quantum
field theory to more abstract spaces in the foundation of
which not the quadratic forms of various type (an interval,
relativistic relationship between mass, energy and momen-
tum, and so on), but the forms of one degree higher are laid.
These equations arise also within the framework of gen-
erally accepted physical theories for solving quite concrete
problems. Thus, one of the first generalizations of this kind
in the context of quantum electrodynamics can be found in
the paper by Pais and Uhlenbeck [15]. The latter have
considered the generalization of the Dirac equation to the
multimass Dirac equation like

YN
j¼1

ðγμ∂μ þmjÞψðxÞ ¼ 0;

whereN is an integer, which in particular can take the value
3. The purpose of this generalization of the spinor field
equation to equation of higher order was to eliminate by
this means the divergent features in quantum field theory.
Further, in the paper by Barut et al. [16] another version

of the generalized Dirac equation of the third order in
derivatives describing particles with spin 1=2 and three
mass states was suggested. The aim of this paper was to
treat in a unified fashion all known at that time leptonic
matter. The case when one of the states is massless
(neutrino) and the corresponding generalized equation
takes the form

½iα1ðγ · ∂Þ þ α2□ − iα3ðγ · ∂Þ□�ψðxÞ ¼ 0

was studied in more detail. The parameters α1, α2, and α3
are related to the electron mass me and muon one mμ

through the relations α1=α3 ¼ memμ, α2=α3 ¼ me þmμ. It
is interesting to observe that the term of the third order in
derivatives in the equation above has the structure similar to
the corresponding term on the right-hand side of Eq. (1.11)
for the spin-1 case, which will be discussed further. In the
paper by Kruglov [17] this model was analyzed for the case
when all three states are massive. As was noted in the last
paper, such higher order differential equations may be
treated as effective equations and represent a nonperturba-
tive approach to quantum field theory.
In the spin-3

2
theories by Joos [18], Weinberg [19], and

Shay et al. [20] it was shown that the corresponding wave
function ψðxÞ in the interaction free case must satisfy
component by component not only the second order Klein-
Gordon-Fock equation, but also the third order wave
equation of the type

γμνλ
∂3ψðxÞ

∂xμ∂xν∂xλ −m3ψðxÞ ¼ 0:

Here, the 8 × 8 matrices γμνλ are defined in terms of the
spin-3

2
matrices si, i ¼ 1; 2; 3 and obey the algebraic

relation representing the spin-3
2
generalization of relation

for the Dirac matrices.
Finally, we can also mention that in the familiar

formulation of Bhabha [21] (see also [22]) of the multimass
high-spin theory, for the spin-1 case we have instead of the
Klein-Gordon-Fock equation the third order one

ðα · ∂Þð□ −m2Þψ ¼ 0:

The extra differential factor ðα · ∂Þ comes from the sub-
sidiary components.
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The examples given above show that the higher order
systems, in particular the third order ones, might them-
selves have some applicability in field theories.
Before proceeding with the formal development of the

construction of the third order wave equation within the
framework of the DKP approach in the presence of an
electromagnetic field, it is necessary to ask what form the
equation should have in the interaction free case. It is
necessary to have at hand a certain simple rule of deriving
this equation (and perhaps the equations of higher order for
high-spin cases). Here, we attempt to follow as close as
possible the free Dirac theory added by some consider-
ations of algebraic character. For this purpose let us
introduce a set of the square roots of unity: ðλ; 1Þ, where
λ≡ −1 is the primitive square root. Then it is obvious that

ðiγμ∂μ − λmIÞðiγν∂ν −mIÞ ¼ −ð□þm2ÞI: ð1:8Þ

Let us state a question of defining such a matrix O that the
following equality holds:

½Oðiγμ∂μ−mIÞ�½Oðiγν∂ν−mIÞ�¼−ð□þm2ÞI: ð1:9Þ

In fact it represents a solution of the problem of construct-
ing the square root of the Klein-Gordon-Fock operator.
Here, the answer is known. As such a matrix one has to take

O ¼ �iγ5;

where

γ5 ¼
i
4!
ϵμνλσγμγνγλγσ; γ25 ¼ 1: ð1:10Þ

Thus we can consider that the expression on the left-hand
side of (1.8) gives us the rule for the determination of
the right form of the second order wave operator [the
right-hand side of (1.8)] and in turn the expression on the
left-hand side of Eq. (1.9) gives its square root and thereby
the problem is reduced to the construction of an algorithm
of calculating the matrix O.
If one consider as a guiding principle the considerations

above, then the next step will be the following extension: as
a basis we take the cubic roots of unity ðq; q2; 1Þ, where the
primitive roots q and q2 are given by the formulas (1.7), and
as the spin matrices we take the β-matrices of the DKP
algebra. It is an easy matter to verify that an analog of
equation (1.8) will be that in the following form [cp. with
(1.6)]:

ðiβμ∂μ − qmIÞðiβν∂ν − q2mIÞðiβλ∂λ −mIÞ
¼ −i□βμ∂μ −m3I: ð1:11Þ

On the right-hand side of (1.11) we now have the differ-
ential operator of the third order, which we take as a

“genuine” expression for the third order wave operator. It is
precisely this expression that arises from the Nowakowski’s
third order wave equation [1] in the limit when we switch
off an external electromagnetic field. In deriving (1.11) one
of the properties of the roots of unity, namely

1þ qþ q2 ¼ 0 ð1:12Þ
and the identity

βμβνβλ∂μ∂ν∂λ ¼ □βμ∂μ ð1:13Þ

valid in view of the algebra of the β-matrices, Eq. (1.3),
were used. Besides, we have taken into account the fact
that the mass term mI is diagonal and commutes with
everything. We note that such an approach was used in the
papers by Kerner [23] devoted to a generalization of
supersymmetry based on Z3-qraded algebras, more exactly
in the construction of the operators whose trilinear combi-
nations yield the supersymmetric generators [cubic root of
the supersymmetry (SUSY) translations].
Further we can state a question of defining a matrix A

such that the following relation holds:

½Aðiβμ∂μ −mIÞ�½Aðiβν∂ν −mIÞ�½Aðiβλ∂λ −mIÞ�

¼ −i
1

m
□βμ∂μ −m2I: ð1:14Þ

The latter solves the problem of calculating the cubic root
of the third order wave operator. In this paper we have
attempted to answer this question by using a very rich
apparatus of the matrix algebra in the DKP theory added by
new structures generated by algebra of the cubic roots of
unity. We have also performed a generalization of the
resulting equations to the case of the presence in the system
of an external electromagnetic field.
The paper is organized as follows. In Sec. II the

construction of cubic root of the second order Klein-
Gordon-Fock operator within the framework of DKP
formalism is considered. This problem has a purely
auxiliary character. However, a number of expressions
derived here are of decisive importance for subsequent
research. Section III is devoted to the construction of the
cubic root of the third order wave operator. For this purpose
an additional algebraic object, the q-commutator represent-
ing a generalization of the usual commutator by entering a
primitive cubic root of unity q into the initial definition, is
introduced. This new algebraic object has allowed us to
remove not only the terms linear in derivatives, but also the
quadratic terms as it is required by virtue of the definition of
the third order wave operator, Eq. (1.14). However, at the
same time it is found that the necessary term cubic in
derivatives, on the symmetrization, vanishes identically.
In Sec. IVa new set of matrices ημ instead of the original

matrices βμ is introduced. It is shown that these matrices
possess rather nontrivial commutation relations which
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enable us to reduce the problem of the construction of the
desired cubic root to a number of simple algebraic
operations. On the basis of these matrices the reason for
vanishing the term of the third order in derivatives is
analyzed and a way to overcome this problem is suggested.
Section V is concerned with the discussion of various
properties of the η-matrices: commutation relations, the
trilinear relation (the analog of the trilinear relation for the
β-matrices), the behavior on Hermitian conjugation, etc. In
Sec. VI an extension of the results of the previous sections
to the case of the presence in the system of an external
electromagnetic field is performed. The detailed compari-
son of the expression for the third order wave operator with
a similar expression earlier obtained by Nowakowski [1] is
given. In Sec. VII an analysis of the general structure for a
solution of the first order differential equation for the wave
function ψðx; zÞ, where z is the deformation parameter, is
performed. It is shown that this solution is the singular one
in the limit z → q. In Sec. VIII a question of a possible
application of the results obtained to the problem of the
construction within the framework of the Duffin-Kemmer-
Petiau formalism of the path integral representation for the
propagator of a vector particle in a background gauge field
is discussed. In the concluding Sec. IX the key points of our
work are specified and the massless limit of the third order
wave operator is briefly discussed.
In Appendix A all of the necessary formulas of the DKP

algebra of the matrices βμ are listed. In Appendix B a
procedure of the construction of a certain matrix A is
presented. This matrix formally can be considered as a
matrix analog of the primitive cubic roots of unity, i.e., a set
of the matrices ðA;A2;A3 ≡ 1

m IÞ satisfies the properties
identical to those for a set of the cubic roots of unity:
ðq; q2; q3 ≡ 1Þ. In Appendix C a complete proof of
vanishing cube of matrix differential operator, where matrix
is defined through the deformed commutator, is produced.
In Appendix D the details of the proof of trilinear relation
of the type (1.3) for a new set of the matrices ημ are given.
Finally, in Appendix E the proof of the identity (6.3) for a
product of three covariant derivatives is presented.

II. CUBIC ROOT OF THE KLEIN-GORDON-
FOCK EQUATION

Before proceeding to the problem stated in the intro-
duction, we first consider a question of the construction of
cubic root of the second order massive Klein-Gordon-Fock
operator. This problem in the general statement has been
investigated by Plyushchay and Rausch de Traubenberg in
the paper [24]. Here, we examine it again and look how far
we can proceed in solving this problem while remaining
within the framework of DKP formalism only.
Let us now turn to Eq. (1.14), but instead of the third

order operator we put the Klein-Gordon-Fock operator on
the right-hand side,

½Aðiβμ∂μ −mIÞ�½Aðiβν∂ν −mIÞ�½Aðiβλ∂λ −mIÞ�
¼ −ð□þm2ÞI: ð2:1Þ

One can somewhat simplify the problem if one takes the
operator on the right-hand side in the factorized form

−ð□þm2ÞI ¼ dð∂Þðiβμ∂μ −mIÞ:

We recall that

dð∂Þ ¼ mI þ iβμ∂μ þ ð2gμν − fβμ; βνgÞ
∂μ∂ν

2m

is the Klein-Gordon-Fock divisor in the spin-1 case; f; g
designates anticommutator. By virtue of this factorization
we can examine instead of (2.1) the following equation:

Aðiβμ∂μ −mIÞAðiβν∂ν −mIÞA ¼ dð∂Þ: ð2:2Þ

By equating the coefficients of partial derivatives we obtain
a system of algebraic equations for the unknown matrix A:

A3 ¼ 1

m
I; ð2:3Þ

AβμA2 þ A2βμA ¼ −
1

m
βμ; ð2:4Þ

AβμAβνAþ AβνAβμA ¼ −
1

m
½2gμνI − fβμ; βνg�: ð2:5Þ

These equations can be paired with the corresponding
equations in the paper [24], if we correlate the generators gμ
and ~g introduced in [24] with the matrices A and βμ by the
rules,

gμ ∼mAβμ; ~g ∼mA:

In this case, Eq. (2.3) (up to a sign) will correspond to the
first equation of the system (2.3) in the paper [24], Eq. (2.4)
will correspond to the second equation of the same system
[or Eq. (2.6)], and (2.5) corresponds to the third equation.
Before turning to solving the matrix equations (2.3)–

(2.5), we make a few comments of a general character.
Equations (2.3)–(2.4) are universal in the determinate
sense. The former defines the mass term on the right-hand
side of the equality (2.1) [or (1.14)], and the latter enables
us to get rid of the term of the first order in the derivatives in
(2.1) [or (1.14)]. The universality of these matrix equations
lies in the fact that they must be satisfied in any case
irrespective of that we take as the right part: either the right-
hand side of (2.1) or the right-hand side of (1.14). As will
be shown below, Eqs. (2.3)–(2.4) uniquely define the
required matrix A [more exactly, to within the choice of
one of three roots of the cubic equation for some parameter
α, see Eq. (2.8) below]. An explicit form of the matrix A
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and also the equalities (2.3)–(2.4) to which it satisfies are of
fundamental importance for further presentation. The third
equation (2.5) is not already universal and completely
depends on the specific choice of the right-hand side in
the equalities of the (2.1) type. This equation must be
identically satisfied. If not, we come to the contradiction.
Let us now introduce the matrix ω setting by defining

ω ¼ i
4
ϵμνλσβμβνβλβσ: ð2:6Þ

This matrix plays an important part in further consideration.
It was introduced into DKP theory for the first time by E.
Schrödinger [25]. Here, we follow the notation used in the
works by Harish-Chandra [26], where the properties of the
ω matrix were studied in detail. In Appendix A we give
all necessary relations for the ω-βμ algebra. Let us note
only that the matrix ω is identically zero for the spin 0
(five-dimensional irreducible representation of the DKP
algebra). Therefore, only the ten-row representation needs
to be considered.
In spite of a formal similarity between definitions γ5 and

ωmatrices (it is worthy of special emphasis that in the latter
case the factor 1=4 stands rather than 1=4!), Eqs. (1.10) and
(2.6), as the matrix A we cannot simply take 1

m1=3 ω. Really,
for example, on the left-hand side of Eq. (2.3) in view of
(A1) we will have 1

mω
3 ¼ 1

mω ≠ 1
m I.

We seek the matrix A in the form of the most general
expansion in powers of ω:

A ¼ αI þ βωþ γω2;

where α, β, and γ are unknown, generally speaking
complex, scalar constants. By virtue of the property
(A1) it is easy to find that

A2 ¼ α2I þ ð2αβ þ 2βγÞωþ ðβ2 þ γ2 þ 2αγÞω2 ð2:7Þ
and further

A3 ¼ α3I þ ½αð2αβ þ 2βγÞ þ α2β þ γð2αβ þ 2βγÞ
þ βðβ2 þ γ2 þ 2αγÞ�ωþ ½αðβ2 þ γ2 þ 2αγÞ
þ βð2αβ þ 2βγÞ þ α2γ þ γðβ2 þ γ2 þ 2αγÞ�ω2

¼ 1

m
I:

The foregoing expression enables us to reduce Eq. (2.3) to a
system of three algebraic equations for unknown scalar
constants, the first of which defines the parameter α:

α3 ¼ 1

m
: ð2:8Þ

Two other equations follow from vanishing the expressions
in square brackets. However, instead of these equations it is

convenient to consider their sum and difference, which after
simple algebraic transformations can be recast in a more
convenient form

ðβ þ γÞ½ðβ þ γÞ2 þ 3αðβ þ γÞ þ 3α2� ¼ 0;

ðβ − γÞ½ðβ − γÞ2 − 3αðβ − γÞ þ 3α2� ¼ 0:

As solutions of these equations we take solutions of the
quadratic equations in square brackets for the variables
ðβ þ γÞ and ðβ − γÞ, namely

ðβ þ γÞ� ¼
�
−
3

2
� i

ffiffiffi
3

p

2

�
α;

ðβ − γÞ� ¼
�
3

2
� i

ffiffiffi
3

p

2

�
α: ð2:9Þ

We return to the obtained solutions just below, and now we
pass on the second matrix equation (2.4). By using the
properties (A1)–(A2), we get

AβμA2 þ A2βμA ¼ ½2α3 þ α2γ þ αðβ2 þ γ2 þ 2αγÞ�βμ
þ ½α2β þ αð2αβ þ 2βγÞ�ðωβμ þ βμωÞ

≡ −
1

m
βμ;

which due to (2.8) gives us the second system of algebraic
equations:

αðβ2 þ γ2 þ 3αγÞ ¼ −
3

m
; αð3αβ þ 2βγÞ ¼ 0:

Since α ≠ 0 and considering β ≠ 0, from the very last
equation we obtain

γ ¼ −
3

2
α:

Taking into account this fact, from the first equation we
derive β2 ¼ −ð3=4Þα2 or β ¼ �ið ffiffiffi

3
p

=2Þα. The solution
obtained for the parameter γ is not in contradiction with the
solutions (2.9). As the β parameter one can take either of
the two solutions �ið ffiffiffi

3
p

=2Þα. It is also consistent with the
solutions (2.9). For definiteness let us fix the sign þ, i.e.,
we set

β ¼ i

ffiffiffi
3

p

2
α:

The matrix A in this case takes the following form:

A ¼ α

�
I þ i

ffiffiffi
3

p

2
ω −

3

2
ω2

�
: ð2:10Þ

An explicit form of the matrix A2 can be obtained by
squaring (2.10) or by making use of (2.7). Here, we have
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A2 ¼ α2
�
I − i

ffiffiffi
3

p

2
ω −

3

2
ω2

�
: ð2:11Þ

Note that A2 is different from A not only by the extra
dimension factor α, but also by the opposite sign before the
second term (in fact, here we have the second possible
value of the parameter β). An explicit form of the matrices
A and A2 hints that they are mutually conjugated. Indeed,
if one takes into account the Hermitian character of the
ω-matrix,

ω† ¼ ω;

then the following two relations are true:

A† ¼ m1=3A2; AA† ¼ A†A ¼ 1

m2=3 I: ð2:12Þ

In principle, one can avoid the mass multipliers if one
overdetermines the matrix A, but we do not do it.
Furthermore, we can draw an interesting parallel

between a set of matrices ðA; A2; A3 ≡ 1
m IÞ and a set of

cubic roots of unity: ðq; q2; q3 ≡ 1Þ, Eq. (1.7). In the latter
case the following relations, which are similar to (2.12),
hold,

q� ¼ q2; qq� ¼ 1;

where q� is the complex conjugate of q. However, the cubic
roots ðq; q2; 1Þ possess one more important property (1.12),
whereas for the matrix set ðA; A2; 1m IÞ we have

I þ 1

α
Aþ 1

α2
A2 ¼ 3ðI − ω2Þ:

Nevertheless, it is possible to redefine the matrix A → A
such that the following equality will be held,

I þ 1

α
Aþ 1

α2
A2 ¼ 0;

and at the same time the properties

A3 ¼ 1

m
I; A† ¼ m1=3A2

will be survived. Since the matrix A will not play any role
later, we give its explicit form in Appendix B.
Now we turn to analysis of the remaining equation (2.5).

By making use of an explicit form of the matrix A,
Eq. (2.10), and the properties (A4)–(A7), we obtain for
the left-hand side of (2.5)

AβμAβνAþAβνAβμA

¼−
1

m

�
1

2
fβμ;βνgþ i

ffiffiffi
3

p

2
gμνωþ 3

2
gμνω2−

3

2
fβμ;βνgω2

�
:

ð2:13Þ

Comparing the expression with the right-hand side of (2.5),
we see that their matrix structure is sufficiently close to
each other. The main difference with (2.5) is the presence of
the term in (2.13) linear in the matrix ω. We can remove
this term if we slightly complicate the left-hand side of
the initial expression (2.2), namely, we present it in the
following form:

1

2
ðALð∂ÞALð∂ÞAþmA2Lð∂ÞA2Lð∂ÞA2Þ; ð2:14Þ

where the operator Lð∂Þwas specified by Eq. (1.2). It is not
difficult to see that the first two equations (2.3)–(2.4)
remain unchanged and instead of (2.5) now we have

1

2
½ðAβμAβνAþ AβνAβμAÞ
þmðA2βμA2βνA2 þ A2βνA2βμA2Þ�

¼ −
1

m
ð2gμν − fβμ; βνgÞ: ð2:15Þ

By using an explicit form of the matrix A2 one can see that
the expression on the left-hand side of (2.15) completely
coincides with (2.13) except for cancellation of the term
linear in ω. Thus, the matrix equation (2.15) leads to
fulfilment of the following equality:

1

2
fβμ; βνg þ

3

2
gμνω2 −

3

2
fβμ; βνgω2 ¼ 2gμν − fβμ; βνg:

The relation is inconsistent. To verify this, it is sufficient to
contract it with gμν, for example. With the relations (A9) we
result in a contradiction,

B −
8

3
¼ 0:

One can look at the problem in a different way. As we
know in the interaction free case the divisor dð∂Þ commutes
with the operator Lð∂Þ, i.e.,

½dð∂Þ; Lð∂Þ� ¼ 0:

Let us substitute now the operator (2.14) instead of the
divisor dð∂Þ. The result of calculations is very simple,
namely,

1

2
½ðALð∂ÞALð∂ÞAþmA2Lð∂ÞA2Lð∂ÞA2Þ; Lð∂Þ�

¼ −
3i
m
□½ω2; βμ�∂μ:

Most of the terms in expression (2.14) in calculating the
commutator vanish. The only term of the third order in
partial derivatives survives by virtue of ½ω2; βμ� ≠ 0.
Finally, we note that one can get rid of the matrix ω2

before the higher order derivative if instead of the initial
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equation (2.1) (more exactly, its left-hand side) one con-
siders the most general and more symmetric expression

1

4
fðALð∂ÞALð∂ÞAþmA2Lð∂ÞA2Lð∂ÞA2Þ; Lð∂Þg

¼ i
8m

□βμ∂μ −
3

4
ðfβμ; βνg þ gμνω2

− fβμ; βνgω2Þ∂μ∂ν −m2I: ð2:16Þ

The matrix ω2 in the first term disappears by virtue of the
property (A2). We cannot eliminate this term within the
framework of the Duffin-Kemmer-Petiau formalism in
principle. On the other hand its structure up to a numerical
factor coincides with the corresponding term on the right-
hand side of the equation (1.14). Here the other question
arises whether one could remove the term of the second
order in ∂μ in Eq. (2.16). The remainder of the paper will be
devoted to answering this question.

III. CUBIC ROOT OF THE THIRD ORDER
WAVE EQUATION

Let us consider now the construction of the cubic root of
the third order wave equation. It is clear that the “naïve”
representation of the cubic root as was defined on the left-
hand side of expression (1.14) is unsuitable. Even with the
use of the most general representation [the left-hand side of
(2.16)] the undesirable term of the second order in the
derivatives survives. Besides, the coefficient of the operator

i
m
□βμ∂μ

differs from the corresponding coefficient on the right-hand
side of Eq. (1.14) by the factor ð−1=8Þ and to correct it is
also by no means easy. This imply that we cannot get rid of
the unwanted term and correct the coefficient mentioned
above by making use of the properties of the matrices A and
βμ only. Here, it is necessary to involve some additional
considerations of algebraic character. In this section we
attempt to outline a general approach to the stated problem.
Let us introduce the following deformed commutator,

ΞðzÞ
μ ≡ Aβμ − z βμA≡ ½A; βμ�z; ð3:1Þ

where z is an arbitrary complex number and perform an
analysis of the following expression:

ðiΞðzÞ
μ ∂μ − AmÞ3 ¼ −iðΞðzÞ

μ ΞðzÞ
ν ΞðzÞ

λ Þ∂μ∂ν∂λ − A3m3

þmðΞðzÞ
μ ΞðzÞ

ν Aþ AΞðzÞ
μ ΞðzÞ

ν

þ ΞðzÞ
μ AΞðzÞ

ν Þ∂μ∂ν

þ im2ðΞðzÞ
μ A2 þ AΞðzÞ

μ Aþ A2ΞðzÞ
μ Þ∂μ:

ð3:2Þ

First, we consider the contribution linear in ∂μ in (3.2),
namely

im2ðΞðzÞ
μ A2 þ AΞðzÞ

μ Aþ A2ΞðzÞ
μ Þ∂μ;

where by virtue of the definition (3.1) we have

ΞðzÞ
μ A2 ¼ AβμA2 − z

1

m
βμ;

A2ΞðzÞ
μ ¼ 1

m
βμ − zA2βμA;

AΞðzÞ
μ A ¼ A2βμA − zAβμA2:

A sum of these three expressions gives

�
AβμA2 þ A2βμAþ 1

m
βμ

�

− z

�
AβμA2 þ A2βμAþ 1

m
βμ

�
:

We see that for any value of the parameter z this expression
vanishes by virtue of (2.4).
Let us consider the contribution quadratic in ∂μ:

mðΞðzÞ
μ ΞðzÞ

ν Aþ AΞðzÞ
μ ΞðzÞ

ν þ ΞðzÞ
μ AΞðzÞ

ν Þ∂μ∂ν: ð3:3Þ

Note that we have written out the expression (3.3) with no
explicit symmetrization with respect to the vector indices μ
and ν. Analysis of the expression in parentheses in (3.3) is
now more cumbersome. Our first step is to write out
explicitly each term in the expression (3.3),

ΞðzÞ
μ ΞðzÞ

ν A¼AβμAβνA−zβμA2βνA−zAβμβνA2þz2βμAβνA2;

AΞðzÞ
μ ΞðzÞ

ν ¼A2βμAβν−zAβμA2βν−zA2βμβνAþz2AβμAβνA;

ΞðzÞ
μ AΞðzÞ

ν ¼AβμA2βν−zAβμAβνA−
1

m
zβμβνþz2βμA2βνA:

A sum of these three expressions after collecting similar
terms is

ð1 − zþ z2ÞAβμAβνA −
1

m
zβμβν

− zðAβμβνA2 þ A2βμβνAÞ
þ ½ð−zþ z2ÞβμA2βνAþ z2βμAβνA2�
þ ½ð1 − zÞAβμA2βν þ A2βμAβν�:

Further the use of the identity
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AβμAβνA ¼ −
1

2
½ðAβμβνA2 þ A2βμβνAÞ

þ ðAβμA2βν þ βμA2βνAÞ�

enables us to rewrite the sum in a more compact form,

εðzÞ 1
2

�
1

m
βμβν − ðAβμβνA2 þ A2βμβνAÞ

þ ðA2βμAβν þ βμAβνA2Þ
�
:

Here, we have introduced the function

εðzÞ ¼ 1þ zþ z2 ≡ ðz − qÞðz − q2Þ; ð3:4Þ

which is of great importance for the subsequent discussion.
From the expression obtained we see that the quadratic
contribution (3.3) may vanish if as the parameter z one
takes a primitive root of equation z3 − 1 ¼ 0, i.e., q or q2,
Eq. (1.7). In addition, it should be noted especially that the
expression (3.3) vanishes without any symmetrization over
the vector indices.
Now we need to analyze the term cubic in ∂μ in (3.2).

The initial expression is

−iΞðzÞ
μ ΞðzÞ

ν ΞðzÞ
λ ∂μ∂ν∂λ; ð3:5Þ

where by virtue of the definition of the matrix ΞðzÞ
μ we have

ΞðzÞ
μ ΞðzÞ

ν ΞðzÞ
λ ¼ AβμAβνAβλ − βμAβνAβλA − zAβμβνA2βλ

− zβμA2βνAβλ þ z2βμAβνA2βλ

− zAβμAβνβλAþ z2AβμβνAβλA

þ z2βμA2βνβλA: ð3:6Þ

A somewhat lengthy computation has shown (see
Appendix C) that the contribution cubic in ∂μ, Eq. (3.5),
in the choice z ¼ q and symmetrization over the vector
indices turns to zero. Here we only note that the following
two equalities,

AβμA2 ¼ −
1

2m
ðβμ − i

ffiffiffi
3

p
ξμÞ;

A2βμA ¼ −
1

2m
ðβμ þ i

ffiffiffi
3

p
ξμÞ; ð3:7Þ

are rather useful in the analysis given in Appendix C. In the
equalities (3.7) we have introduced the matrices ξμ setting
by definition

ξμ ≡ ½ω; βμ� ¼ −
i
2
ϵμνλσβ

νβλβσ:

These matrices have already been considered in the paper
by Azimov and Ryndin [27], where they played a role of a
spin pseudovector for a spin-1 particle. Besides, the
matrices were intensively used by Fushchich et al. [28]
for establishment of the complementary (non-Lie) sym-
metry of the Duffin-Kemmer-Petiau equation.

IV. THE ημ MATRICES

Let us analyze the results of the previous section from a
slightly different point of view. For this purpose we
introduce a new set of matrices ημ that would satisfy the
following condition,

Aημ ¼ wημA; ð4:1Þ

and as an immediate consequence

A2ημ ¼ w2ημA2; ð4:2Þ

where w is some complex number. We return to the
expression (1.14). Here, on the left-hand side, instead of
the original matrices βμ, we set ημ:

½Aðiημ∂μ −mIÞ�3 ¼ −iðAημAηνAηλÞ∂μ∂ν∂λ −m3A3

þmðAημAηνAþ AημA2ην

þ A2ημAηνÞ∂μ∂ν

þ im2ðA3ημ þ AημA2 þ A2ημAÞ∂μ:

ð4:3Þ

We use the rules of the rearrangements (4.1)–(4.2) to bring
the matrix coefficients preceding the partial derivatives into
a simple form:

AημAηνAηλ ¼ w3
1

m
ημηνηλ;

AημAηνAþ AημA2ην þ A2ημAην ¼ wεðwÞ 1
m
ημην;

A3ημ þ AημA2 þ A2ημA ¼ εðwÞ 1
m
ημ; ð4:4Þ

where the function εðwÞ is defined by the expression (3.4).
It is evident that if we set the complex number w equal to q
(or q2), then (4.3) reduces to

−i
1

m
ημηνηλ∂μ∂ν∂λ −m2I: ð4:5Þ

Further, if the matrices ημ satisfied the identity of the form
(1.13) we could reproduce the right-hand side of the
relation (1.14) (with the replacement βμ by ημ).
Let us now turn to the construction of an explicit form of

the matrices ημ. To this end, we return to the generalized
commutator (3.1) in which for definiteness we set z ¼ q.
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We rearrange the matrix A to the left,

½A; βμ�q ≡ Aβμ − qβμA ¼ Aðβμ −mqA2βμAÞ:

Here, we have taken into account that A−1 ¼ mA2. On the
other hand we can rearrange the same matrix to the right,

½A; βμ�q ≡ Aβμ − qβμA ¼ ðmAβμA2 − qβμÞA:

Finally, with the use of an explicit form of the matrices
AβμA2 and A2βμA, Eq. (3.7), we derive the final form of
two equivalent representations of the q-commutator,

½A; βμ�q ¼ A

��
1þ 1

2
q

�
βμ þ

�
i

ffiffiffi
3

p

2

�
qξμ

�

¼
�
−
�
1

2
þ q

�
βμ þ

�
i

ffiffiffi
3

p

2

�
ξμ

�
A:

The expressions in square brackets are related with each
other by a simple relation

�
−
�
1

2
þ q

�
βμ þ

�
i

ffiffiffi
3

p

2

�
ξμ

�

¼ q2
��

1þ 1

2
q

�
βμ þ

�
i

ffiffiffi
3

p

2

�
qξμ

�
:

It is clear that as the matrix ημ in (4.1) it is necessary to take
the following expression,2

ημ ¼
�
1þ 1

2
q

�
βμ þ

�
i

ffiffiffi
3

p

2

�
qξμ; ð4:6Þ

and the complex parameter w should be set equal to q2.
Thus, the rules of the rearrangements of the matrices A and
ημ can be written in the final form,

Aημ ¼ q2ημA; A2ημ ¼ qημA2: ð4:7Þ

In the choice w ¼ q2 according to (4.4) the linear and
quadratic in ∂μ contributions in (4.3) vanish. However, as
we already know from the results of the previous section,
the contribution in (4.5) cubic in the derivatives after
symmetrization with respect to the vector indices also
vanishes. Here we can trace in more detail the reason of
this strange fact. By using an explicit form of the
η-matrices, it is not difficult to see that now instead of
the identity (1.13) we have

ημηνηλ∂μ∂ν∂λ ¼
��

1þ 1

2
q

�
2

−
�
i

ffiffiffi
3

p

2

�
2

q2
�
□ημ∂μ:

ð4:8Þ

The expression in square brackets is formally equal to

��
1þ 1

2
q

�
2

−
�
i

ffiffiffi
3

p

2

�
2

q2
�
¼ 1þ qþ q2 ≡ lim

z→q
εðzÞ ¼ 0:

ð4:9Þ

Let the function εðzÞ be a small but finite quantity. It is clear
that the quantity is defined correctly to an arbitrary numeric
factor. For example, the left-hand side of (4.9) can be
formally represented as a product of two multipliers,

��
1þ 1

2
q

�
2

−
�
i

ffiffiffi
3

p

2

�
2

q2
�
¼

��
1þ 1

2
q

�
−
�
i

ffiffiffi
3

p

2

�
q

���
1þ 1

2
q

�
þ
�
i

ffiffiffi
3

p

2

�
q

�

¼
�
1 − q

�
−
1

2
þ i

ffiffiffi
3

p

2

���
1 − q

�
−
1

2
− i

ffiffiffi
3

p

2

��
≡ ð1 − q2Þð1 − q3Þ

¼ ð1 − q2Þð1 − qÞð1þ qþ q2Þ≡ 3lim
z→q

εðzÞ ¼ 0:

Here, we have used the definition of cubic roots of unity (1.7). The expression obtained differs from (4.9) by the factor 3.
Instead of the operator ðiημ∂μ −mIÞ, we introduce the following operator:

�
i

ε1=3ðzÞ ημðzÞ∂
μ −mI

�
;

and correspondingly instead of the expression on the left-hand side of (4.3) we put

2The notation ημ we have introduced for the matrices (4.6) is not quite appropriate. In the general theory of the DKP algebra [2,29,30]
usually by this symbol the specific expression, namely, ημ ≡ 2β2μ − gμμ, is meant. However, by virtue of the fact that we do not use these
matrices in the text, this should not mislead. The only exception is Sec. V, where we will need a particular value of the expression written
out just above for μ ¼ 0. To avoid confusion, we set off the symbol η0ð≡2β20 − 1Þ in bold.
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�
A

�
i

ε1=3ðzÞ ημðzÞ∂
μ −mI

��
3

;

where we have introduced the notation

ημðzÞ≡
�
1þ 1

2
z

�
βμ þ z

�
i

ffiffiffi
3

p

2

�
ξμ:

In the limit z → q according to the formulas (4.4), the
contribution that is linear in ∂μ behaves as ε2=3ðzÞ → 0 and
the one that is quadratic in ∂μ behaves as ε1=3ðzÞ → 0. On
the strength of Eqs. (4.8)–(4.9), nonvanishing contribution
gives us only the term cubic in ∂μ and thus we finally obtain
the desired expression,

lim
z→q

�
A

�
i

ε1=3ðzÞ ημðzÞ∂
μ −mI

��
3

¼
�
−i

1

m
□ημ∂μ −m2I

�
;

ð4:10Þ

where

lim
z→q

ημðzÞ ¼ ημðqÞ≡ ημ

and ημ is defined by the expression (4.6).

V. PROPERTIES OF THE η-MATRICES

Let us derive a number of relations to which the matrices
ημ satisfy. Our first step is to consider the commutator of
two η-matrices. In view of the original definition (4.6) we
have

½ημ; ην� ¼
�
1þ 1

2
q

�
2

½βμ; βν� þ q2
�
i

ffiffiffi
3

p

2

�
2

½ξμ; ξν�

þ q

�
1þ 1

2
q

��
i

ffiffiffi
3

p

2

�
ð½ξμ; βν� þ ½βμ; ξν�Þ:

We recall that ξμ ¼ ½ω; βμ�. By making use of the formulas
of the ω-βμ algebra in Appendix A, it is not difficult to
obtain the following relations:

½ξμ; ξν� ¼ −½βμ; βν�

and

½ξμ; βν� þ ½βμ; ξν� ¼ ½ω; ½βμ; βν��;

whereupon

i½ημ; ην� ¼
��

1þ 1

2
q

�
2

−
�
i

ffiffiffi
3

p

2

�
2

q2
�
SðβÞμν

þ q

�
1þ 1

2
q

��
i

ffiffiffi
3

p

2

�
½ω; SðβÞμν �:

Here, we have denoted

SðβÞμν ≡ i½βμ; βν�: ð5:1Þ

In view of the property (A8) the last term on the right-
hand side of the above expression is equal to zero. In the

first term by the coefficient preceding the matrix SðβÞμν ,
the expression (4.9) is meant. Thus, as the commutation
relation for the η-matrices we take the following
expression:

lim
z→q

1

εðzÞ i½ημðzÞ; ηνðzÞ� ¼ SðβÞμν : ð5:2Þ

This relation will be extensively used in the next section in
analysis of the interacting case.
In addition, the relation (5.2) enables us to clear up a

question about the relativistic invariance of equation

A

�
i

ε1=3ðzÞ ημðzÞ∂
μ −mI

�
ψðx; zÞ ¼ 0 ð5:3Þ

(in the notation of the wave function ψ we have explicitly
separated out the dependence on the deformation param-
eter z). In fact, let us consider the double commutation
relation with the η-matrices. By using (5.2) we have

lim
z→q

1

εðzÞ i½½ημðzÞ; ηνðzÞ�; ηλðzÞ� ¼ ½SðβÞμν ; ηλ�: ð5:4Þ

On the strength of the definition of the η-matrices we
write out the right-hand side

½SðβÞμν ; ηλ� ¼
�
1þ 1

2
q

�
½SðβÞμν ; βλ� þ q

�
i

ffiffiffi
3

p

2

�
½SðβÞμν ; ξλ�:

The first commutator, by virtue of the trilinear algebra of
β-matrices, equals

½SðβÞμν ; βλ� ¼ iðβμgλν − βνgλμÞ;

and the second one by using the same algebra and the
property (A8) does

½SðβÞμν ; ξλ� ¼ iðξμgλν − ξνgλμÞ:

Gathering the expressions obtained, we finally find

½SðβÞμν ; ηλ� ¼ iðημgλν − ηνgλμÞ: ð5:5Þ

If by analogy with (5.1) we introduce a new matrix SðηÞμν ðzÞ
setting by definition
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SðηÞμν ðzÞ≡ 1

ε2=3ðzÞ i½ημðzÞ; ηνðzÞ�;

then the double commutator can be presented in a more
customary form,

lim
z→q

�
SðηÞμν ðzÞ; 1

ε1=3ðzÞ ηλðzÞ
�
¼ iðημgλν − ηνgλμÞ:

This relationship ensures us the invariance of equation for
the wave function ψðx; zÞ under a Lorentz transformation
when we pass to the limit as z tends to q.
Further, let us consider the question of a trilinear relation

to which the matrices ημ have to satisfy. In other words,
what is analog of the relation (1.3) for these matrices? Here,
we skip the calculational details and give only the final
result

lim
z→q

1

εðzÞ ðημðzÞηλðzÞηνðzÞ þ ηνðzÞηλðzÞημðzÞÞ

¼ gμλην þ gνλημ: ð5:6Þ

The proof of the trilinear relation is presented in
Appendix D.
One more interesting question is connected with the

behavior of the η-matrices under the operation of Hermitian
conjugation (denoted by the symbol †). First of all we note
that instead of the expression (4.10) for the cube of the first
order differential operator, an equivalent expression could
be used,

lim
z→q

�
m1=3A2

�
1

ε1=3ðzÞ iη̄μðzÞ∂
μ −mI

��
3

¼
�
−i

1

m
□ η̄μ∂μ −m2I

�
;

where the matrices η̄μ ð≡limz→qη̄μðzÞÞ satisfy the
q-commutation relations

A2η̄μ ¼ qη̄μA2; Aη̄μ ¼ q2η̄μA;

and their explicit form is defined by the following expres-
sion:

η̄μ ¼
�
1þ 1

2
q2
�
βμ −

�
i

ffiffiffi
3

p

2

�
q2ξμ:

The matrices η̄μ and ημ are related by the simple relation-
ship

η̄μ ¼
1 − q
1 − q2

ημ ≡ −qημ: ð5:7Þ

By virtue of the initial definition (4.6) we have

η†μ ¼
�
1þ 1

2
q�
�
β†μ −

�
i

ffiffiffi
3

p

2

�
q�ξ†μ: ð5:8Þ

On the strength of the properties of cubic roots of unity the
equality q� ¼ q2 holds. Further, for the β-matrices the
following relation,

β†μ ¼ η0βμη0;

is true. Here, η0 ¼ 2ðβ0Þ2 − 1 (see footnote 2 in the
preceding section). Besides, by making use of the
Hermitian character of the ω-matrix, we find

ξ†μ ¼ ðη0βμη0Þω − ωðη0βμη0Þ:
Under these circumstances, multiplying the expression
(5.8) on both sides by η0 and taking into account the
properties

η0βi ¼ −βiη0; η0β0 ¼ β0η0;

η0ωη0 ¼ −ω; η20 ¼ 1;

we finally obtain

η0η
†
μη0 ¼

�
1þ 1

2
q2
�
βμ −

�
i

ffiffiffi
3

p

2

�
q2ξμ ≡ η̄μ:

Comparing the expression above with (5.7), we derive the
desired rule of Hermitian conjugation

η0η
†
μη0 ¼ −qημ:

In closing this section we discuss the question of the
existence of such a nonsingular transformation T that
would connect the matrices βμ with the matrices ημ, i.e.,

TβμT−1 ¼ ημ: ð5:9Þ

Let us seek the matrices T and T−1 in the form of an
expansion in powers of ω,

T ¼ aþ bωþ cω2; T−1 ¼ āþ b̄ωþ c̄ω2;

where a; b;… are some unknown constants. Substituting
these expansions into the left-hand side of Eq. (5.9) and
using the formulas (A1)–(A3), we derive the first system of
algebraic equations for unknown quantities

�
aāþ ac̄ ¼ ð1þ 1

2
qÞ;

cā − ac̄ ¼ 0;

8>><
>>:

bā ¼ q

�
i

ffiffiffi
3

p

2

�
;

ab̄ ¼ −q
�
i

ffiffiffi
3

p

2

�
:

We define a solution of this system as a function of two
arbitrary quantities ā and c̄,

YU. A. MARKOV, M. A. MARKOVA, AND A. I. BONDARENKO PHYSICAL REVIEW D 92, 105017 (2015)

105017-12



a ¼ 1

ðāþ c̄Þ
�
1þ 1

2
q

�
;

b ¼ q
1

ā

�
i

ffiffiffi
3

p

2

�
;

c ¼ c̄
ā

1

ðāþ c̄Þ
�
1þ 1

2
q

�
;

b̄ ¼ −
q

ð1þ 1
2
qÞ ðāþ c̄Þ

�
i

ffiffiffi
3

p

2

�
: ð5:10Þ

Further, we require the fulfilment of the relation

TT−1 ¼ I ð5:11Þ
that gives us the second algebraic system:

8>><
>>:

aā ¼ 1;

ðab̄þ bāÞ þ ðbc̄þ cb̄Þ ¼ 0;

ðac̄þ cāÞ þ ðbb̄þ cc̄Þ ¼ 0:

ð5:12Þ

The use of the first equation in (5.12) enables us to express
all coefficients through an arbitrary constant ā,

a ¼ 1

ā
; b ¼ 1

ā

�
i

ffiffiffi
3

p

2

�
q; c ¼ 1

2

1

ā
q

b̄ ¼ −ā
�
i

ffiffiffi
3

p

2

�
q; c̄ ¼ 1

2
āq; ð5:13Þ

and ipso facto the required transformation has the following
structure:

T ¼ 1

ā

�
I þ

�
i

ffiffiffi
3

p

2

�
qωþ 1

2
qω

�
;

T−1 ¼ ā

�
I −

�
i

ffiffiffi
3

p

2

�
qωþ 1

2
qω

�
:

However, a straightforward multiplication of these two
expressions leads to

TT−1 ¼ I − ω2;

instead of the desired one (5.11). This points to the fact that
there is a contradiction in two remaining equations of the
system (5.12). Substitution of the solution (5.13) into the
second equation of (5.12) results in the identity, and
the third equation gives

1

2
qþ 1

2
q −

�
i

ffiffiffi
3

p

2

�
q2 þ 1

4
q2 ¼ qþ q2 ¼ −1:

The equation does not vanish. This tells us that there is
no nonsingular similarity transformation connecting the

matrices βμ with ημ and in this sense, they are nonequiva-
lent. However, it can be supposed that these matrices are
related in a somewhat weak (limiting) sense.

VI. INTERACTING CASE

In the interaction free case we have derived the expres-
sion for the third order wave operator as a limit of cube of a
certain first order operator, namely,

lim
z→q

�
A

�
i

ε1=3ðzÞ ημðzÞ∂
μ −mI

��
3

¼
�
−i

1

m
□ημ∂μ −m2I

�
: ð6:1Þ

It remains to take up the question of a modification of this
expression in the presence of an external electromagnetic
field. We introduce the interaction via the minimal
substitution:

∂μ → Dμ ≡ ∂μ þ ieAμðxÞ:

With an external gauge field in the system the left-hand side
of Eq. (6.1) takes the form

lim
z→q

�
A

�
i

ε1=3ðzÞ ημðzÞD
μ −mI

��
3

:

From the last two terms in (4.3) and from the corresponding
relations in (4.4) it is not difficult to see that the contri-
butions linear and quadratic in the derivatives vanish in the
limit z → q in the interacting case also. This is independent
of the eventual noncommutativity of Ds and in doing
so, as in the interaction free case, we have the following
expression3:

i3lim
z→q

1

ε
ðAημAηνAηλDμDνDλÞ − A3m3

¼ −i
1

m
lim
z→q

1

ε
ðημηνηλDμDνDλÞ −m2: ð6:2Þ

However, here one can already expect that by virtue of
noncommutativity of the covariant derivative this limit will
have overwhelmingly more complicated structure in com-
parison with the right-hand side of (6.1).
For analysis of the expression (6.2) we make use

the following identity for a product of three covariant
derivatives,

3In the subsequent discussion for simplicity the z-dependence
of the various quantities under the limit sign is understood
although not written out explicitly.
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6DμDνDλ ¼ fDμ; Dν; Dλg
þ ½3DμðieFνλÞ þDλðieFμνÞ þDνðieFμλÞ�
þ ½2ðieFμλÞDν þ 2ðieFμνÞDλ�; ð6:3Þ

where for brevity by the symbol fDμ; Dν; Dλg we mean a
product of three D-operators completely symmetrized over
the vector indices μ, ν and λ:

fDμ; Dν; Dλg≡ ðDμDνDλ þDλDνDμÞ
þ ðDνDμDλ þDλDμDνÞ
þ ðDμDλDν þDνDλDμÞ: ð6:4Þ

The Abelian strength tensor FμνðxÞ is defined by

½Dμ; Dν� ¼ ieFμνðxÞ:

The proof of the identity (6.3) is given in Appendix E.
Our first step is to consider the contribution in (6.2) due

to the symmetrized part (6.4). In view of a total symmetry
over permutation of the indices, we get

−i
1

m
lim
z→q

1

ε
ημηνηλfDμ; Dν; Dλg

¼ −i
1

6m
lim
z→q

1

ε
½ðημηνηλ þ ηληνημÞ þ ðηνημηλ þ ηλημηνÞ

þ ðηνηλημ þ ημηληνÞ�fDμ; Dν; Dλg

¼ −i
1

3m
ðgμνηλ þ gνλημ þ gμληνÞfDμ; Dν; Dλg:

In the last line we have taken into account the trilinear
relation (5.6). By making use of an explicit form of the
symmetrized expression (6.4) and collecting similar terms
we obtain finally the desired limit

−i
1

m
lim
z→q

1

ε
ημηνηλfDμ; Dν; Dλg

¼ −i
2

m
½D2ðηλDλÞ þDμðηλDλÞDμ þ ðηλDλÞD2�:

Let us next consider the contribution from the expression
in the first square brackets in (6.3). The initial expression
for our analysis is

− i
1

m
lim
z→q

1

ε
ημηνηλ½3DμðieFνλÞ þDλðieFμνÞ þDνðieFμλÞ�

¼ e
1

2m
lim
z→q

1

ε
DμFνλf3ημ½ην; ηλ� þ ½ην; ηλ�ημ

þ ðηνημηλ − ηλημηνÞg: ð6:5Þ

For the first two terms in braces by virtue of the property
(5.2) we can set at once

lim
z→q

1

ε
i½ημ; ην� ¼ SðβÞμν ð≡i½βμ; βν�Þ: ð6:6Þ

For the contribution in parentheses we use the identity

ηνημηλ − ηλημην ¼ ημ½ην; ηλ� − ð½ημ; ην�ηλ − ½ημ; ηλ�ηνÞ
ð6:7Þ

and then the relation (6.6). Eventually the limit of expres-
sion (6.5) takes the form

−
1

2m
DμðieFνλÞð4ημSðβÞνλ þ SðβÞνλ ημÞ

þ 1

2m
DμðieFνλÞðSðβÞμν ηλ − SðβÞμλ ηνÞ:

The expression in the second square brackets in (6.3) is
analyzed in just the same way with the use of Eqs. (6.6)–
(6.7). Collecting all of the above calculated in (6.2) and
recalling the factor 6 on the left-hand side of the identity
(6.3), we derive the desired expression for the cube of the
linear operator in the presence of an electromagnetic field,

lim
z→q

�
A

�
i

ε1=3ðzÞημðzÞD
μ−mI

��
3

¼−i
1

6m

�
2½D2ðηλDλÞþDμðηλDλÞDμþðηλDλÞD2�

þ1

2
e½DμFνλð4ημSðβÞνλ þSðβÞνλ ημÞ−DμFνλðSðβÞμν ηλ−SðβÞμλ ηνÞ�

þe½FνλDμðημSðβÞνλ þSðβÞνλ ημÞ−FνλDμðSðβÞμν ηλ−SðβÞμλ ηνÞ�
�

−m2I: ð6:8Þ

The above expression has been presented in the most
symmetric form. However, it can be rewritten in a slightly
different form. This will enable us, in particular, to compare
it with a similar expression suggested earlier by
Nowakowski [1]. At the beginning we consider the
expression in the first square brackets on the right-hand
side of (6.8). In the second term there we rearrange the
operator Dμ to the right,

DμðηλDλÞDμ ≡ ðηλDλÞD2 þ ηλ½Dμ; Dλ�Dμ

¼ ðηλDλÞD2 þ 1

2
ieFνλDμðgμνηλ − gμληνÞ:

Similarly, in the first term at the same place we rearrange
the operator D2 also to the right,

D2ðηλDλÞ ¼ ðηλDλÞD2 þ 1

2
ieFνλDμðgμνηλ − gμληνÞ

þ 1

2
ieDμFνλðgμνηλ − gμληνÞ:
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Thus, instead of the expression in the first square brackets
now we have

3ðηλDλÞD2 þ ieFνλDμðgμνηλ − gμληνÞ

þ 1

2
ieDμFνλðgμνηλ − gμληνÞ:

Further we rearrange the matrix ημ in the terms SðβÞνλ ημ
[the second and third square brackets in (6.8)] to the left,

SðβÞνλ ημ ≡ ημS
ðβÞ
νλ þ ½SðβÞνλ ; ημ� ¼ ημS

ðβÞ
νλ − iðgμνηλ − gμληνÞ:

Here we have used the property (5.5). Gathering all of the
above calculated and collecting similar terms, finally, we
derive instead of (6.8) the following expression:

lim
z→q

�
A

�
i

ε1=3ðzÞ ημðzÞD
μ −mI

��
3

¼ −i
1

m
ðημDμÞD2 −m2I

−
5

6

�
ie
2m

�
ðημSðβÞνλ ÞDμFνλ

þ 1

3

�
ie
2m

�
ðSðβÞμν ηλ − gμνηλÞDμFνλ

−
4

6

�
ie
2m

�
ðημSðβÞνλ ÞFνλDμ

þ 2

3

�
ie
2m

�
ðSðβÞμν ηλ − gμνηλÞFνλDμ: ð6:9Þ

Let us compare the right-hand side of this expression with
that of Nowakowski [Eq. (5.7) in [1]]. In our notation, we
have here

−i
1

m
ðβμDμÞD2 −m2I −

�
ie
2m

�
ðβμSðβÞνλ ÞDμFνλ

−
1

2

�
ie
2m

�
ðβμSðβÞνλ ÞFνλDμ

þ
�
ie
2m

�
ðSðβÞμν βλ − gμνβλÞFνλDμ: ð6:10Þ

In rewriting this expression we have used the identity for
the β-matrices

iðβνβμβλ − βλβμβνÞ ¼ βμS
ðβÞ
νλ − ðSðβÞμν βλ − SðβÞμλ βνÞ:

The first difference between (6.9) and (6.10) is that in (6.9)
in all terms instead of the matrices βμ we have the matrices

ημ (except for the spin structure SðβÞνλ ¼ i½βν; βλ�, which is
the same in both cases). Besides, in (6.9) the third term has
no analog at all. It is also interesting to note that the
numerical coefficients in the last four terms in (6.9) were

generated in such a manner that if the operator Dμ

commuted with the function FνλðxÞ the structure of two
expressions (6.9)–(6.10) (up to the corresponding matrices)
might have perfectly coincided.
Thus, in this section we have shown that our approach

correctly reproduces the general structure of the third order
wave operator in the interacting DKP theory as it was
suggested by Nowakowski in [1] on the basis of purely
heuristic considerations. The expression obtained has a
more symmetric form in comparison with Nowakowski’s
one, Eq. (6.10). However, the main difference of our
expression (6.9) from the corresponding expression
(6.10) is that here instead of the original β-matrices we
need to introduce more complicated combinations, namely
η-matrices. The physical meaning of this fact so far is not
clear for us.

VII. THE GENERAL STRUCTURE OF A
SOLUTION OF THE FIRST ORDER
DIFFERENTIAL EQUATION (5.3)

In this section we analyze the general structure of a
solution of the equation of the first order in the derivatives,
Eq. (5.3). With an external electromagnetic field in the
system, the equation takes the form

L̂ðz;DÞψðx; zÞ ¼ 0: ð7:1Þ

Here, we have introduced a short-hand notation for the first
order differential operator

L̂ðz;DÞ≡ A

�
i

ε1=3ðzÞ ημðzÞD
μ −mI

�
: ð7:2Þ

In the notation of this operator we have explicitly separated
out the dependence on the deformation parameter z. A
solution of Eq. (7.1) can be unambiguously presented in the
following form:

ψðx; zÞ ¼ ½L̂ðz;DÞ�2φðx; zÞ; ð7:3Þ

where in turn the function φðx; zÞ is a solution of the third
order wave equation

½L̂ðz;DÞ�3φðx; zÞ ¼ 0: ð7:4Þ

Such a representation of the general solution of the main
first order equation (7.1) is the most convenient in practice
by virtue of the fact that the wave function φðx; zÞ is a
regular function of the parameter z in the limit z → q,
whereas ψðx; zÞ, generally speaking, is not regular (see
below). The regularity of the function φðx; zÞ is a conse-
quence of the existence of a well-defined limit of the cube
of the operator L̂:
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lim
z→q

½L̂ðz;DÞ�3 ¼ rhs of Eq: ð6.9Þ:

Let us analyze in more detail the structure of the solution
ψðx; zÞ in the form (7.3). For simplicity we restrict our
attention to the interaction free case. We introduce the
following notation:

δ≡ z − q:

Then one can present the matrices4 ημðzÞ in the form of an
expansion in terms of δ:

ημðzÞ ¼
�
1þ 1

2
z

�
βμ þ z

�
i

ffiffiffi
3

p

2

�
ξμ ¼ ημ þ δ η0μ: ð7:5Þ

Here, the matrices ημ are defined by the formula (4.6), and
the matrices η0μ have the form

η0μ ≡ 1

2
βμ þ

�
i

ffiffiffi
3

p

2

�
ξμ: ð7:6Þ

Taking into account the expansion (7.5) and the definition
of the function εðzÞ, Eq. (3.4), the first order differential
operator L̂ðz; ∂Þ can be rewritten as follows:

L̂ðz; ∂Þ ¼
�
A
�

1

δ1=3
i

ϱ1=3
ημ∂μ þ δ2=3

i

ϱ1=3
η0μ∂μ −mI

��
;

ϱ≡ q − q2: ð7:7Þ

From an explicit form of this operator it is clear that a
solution of the equation (7.1) can be obtained in the form of
a formal series in positive and negative powers of the
parameter δ1=3:

ψðx; zÞ ¼ � � � þ 1

δ
ψ−1ðxÞ þ

1

δ2=3
ψ−2=3ðxÞ þ

1

δ1=3
ψ−1=3ðxÞ

þ ψ0ðxÞ þ δ1=3ψ1=3ðxÞ þ � � � : ð7:8Þ

It is naturally to be expected that the wave function ψðx; zÞ
will be singular in the limit z → q. It can be seen more
precisely from analysis of the representation (7.3). Really,
an expansion of the square of the operator L̂ðz; ∂Þ has the
form

½L̂ðz; ∂Þ�2 ¼ −
1

δ2=3
1

ϱ2=3
ðAημAηνÞ∂μ∂ν

−
1

δ1=3
i

ϱ1=3
mðAημAþ A2ημÞ∂μ þm2A2

− δ1=3
1

ϱ2=3
ðAημAη0ν þ Aη0μAηνÞ∂μ∂ν

− δ2=3
i

ϱ1=3
mðAη0μAþ A2η0μÞ∂μ

− δ4=3
1

ϱ2=3
ðAη0μAη0νÞ∂μ∂ν: ð7:9Þ

Further, by virtue of the fact that the solution φðx; zÞ is
regular at z ¼ q, it can be presented in the form of a formal
series in positive powers of δ1=3:

φðx;zÞ¼φ0ðxÞþδ1=3φ1=3ðxÞþδ2=3φ2=3ðxÞþδφ1ðxÞþ �� � :
ð7:10Þ

Substituting the expansions (7.8)–(7.10) into the relation
(7.3) and collecting terms of the same power in δ1=3, we
obtain that ψ−1ðxÞ ¼ ψ−4=3ðxÞ ¼ … ¼ 0 and

ψ−2=3ðxÞ ¼ −
1

ϱ2=3
ðAημAηνÞ∂μ∂νφ0ðxÞ;

ψ−1=3ðxÞ ¼ −
i

ϱ1=3
mðAημAþ A2ημÞ∂μφ0ðxÞ

−
1

ϱ2=3
ðAημAηνÞ∂μ∂νφ1=3ðxÞ;

ψ0ðxÞ ¼ m2A2φ0ðxÞ −
i

ϱ1=3
mðAημAþ A2ημÞ∂μφ1=3ðxÞ

−
1

ϱ2=3
ðAημAηνÞ∂μ∂νφ2=3ðxÞ; ð7:11Þ

and so on. Thus, if φ0ðxÞ ≠ 0 and/or φ1=3ðxÞ ≠ 0, then the
solution of the first order differential equation (7.1) is
singular with respect to the parameter δ1=3 in the δ → 0
limit. The maximal power of the singularity is equal to 2.
The differential equations to which the functions

φ0ðxÞ;φ1=3ðxÞ;… must satisfy are defined by the corre-

sponding expansion of the cube of the operator L̂ðz; ∂Þ.
With allowance for the expressions (7.7) and (7.9), we get
the following:
(1) the singular contributions:

δ−1 ∶ −
i
ϱ
ðAημAηνAηλÞ∂μ∂ν∂λ;

δ−2=3 ∶
1

ϱ2=3
mðAημA2ηνþA2ημAηνþAημAηνAÞ∂μ∂ν;

δ−1=3 ∶
i

ϱ1=3
m2ðA3ημþAημA2þA2ημAÞ∂μ:

4It should be noted that the matrices ημðzÞ, generally speaking,
are defined up to an arbitrary matrix function T μðzÞ such that
limz→qT μðzÞ ¼ 0. However, we set for simplicity T μðzÞ≡ 0
throughout this paper.
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The first expression vanishes by virtue of the nilpotency property: ðη · ∂Þ3 ¼ 0. The other two vanish on the strength of the
properties (4.7) and (1.12). Further, we have
(2) the regular contributions:

δ0 ∶ −
i
ϱ
½Aη0μAηνAηλ þ AημAη0νAηλ þ AημAηνAη0λ�∂μ∂ν∂λ −m2I ≡ Û0ð∂Þ;

δ1=3 ∶
1

ϱ2=3
m½ðAη0μA2ην þ A2η0μAηνÞ þ ðAημA2η0ν þ A2ημAη0νÞ þ ðAη0μAηνAþ AημAη0νAÞ�∂μ∂ν ≡ Û1=3ð∂Þ;

δ2=3 ∶ …:

Substituting this expansion of the cube of the operator
L̂ðz; ∂Þ and the expansion (7.10) in (7.4), we obtain the
desired equations for the functions φ0ðxÞ;φ1=3ðxÞ;…,

δ0∶ Û0ð∂Þφ0ðxÞ ¼ 0; ð7:12Þ

δ1=3∶ Û0ð∂Þφ1=3ðxÞ þ Û1=3ð∂Þφ0ðxÞ ¼ 0;

δ2=3∶ …: ð7:13Þ

By using the following relations5 between the η- and
η0-matrices,

8>><
>>:

A2η0μA ¼ 1

m
ðημ þ q2η0μÞ;

Aη0μA2 ¼ 1

m
ð−ημ þ qη0μÞ;

ðη0μηλην þ ηνηλη
0
μÞ þ ðημη0λην þ ηνη

0
λημÞ

þ ðημηλη0ν þ η0νηλημÞ ¼ ϱðgμλην þ gνλημÞ

and the properties (4.7), it is not difficult to show that the
operator Û0ð∂Þ is reduced to our third order wave operator

Û0ð∂Þ ¼
�
−i

1

m
□ημ∂μ −m2I

�
:

The corresponding first “correction” to the operator can
result in the following simple form:

Û1=3ð∂Þ ¼ −ϱ1=3½ημην − qη0μην þ q2ημη0ν�∂μ∂ν:

By this means in this section we have presented a simple
scheme of calculating the wave function ψðx; zÞ satisfying
the basic first order matrix equation (5.3). The scheme is
based on using the solution φðx; zÞ of well-defined third
order wave equation (7.4). We have shown that the required

solution ψðx; zÞ exhibits a singular character in the limit
z → q. This singularity has a finite (the second) order in the
small expansion parameter δ1=3. The crucial equation in all
schemes of calculations is the equation (7.12). It is the
solution φ0ðxÞ of the third order wave equation that enables
us to define a complete solution φðx; zÞ by means of the
relations of (7.13) type and then via the relations of (7.11)
type to define a complete solution ψðx; zÞ with any degree
of accuracy in the parameter δ1=3. The generalization of the
results of this section for the case of the presence of an
external electromagnetic field in the system under consid-
eration is straightforward.

VIII. THE FOCK-SCHWINGER PROPER-TIME
REPRESENTATION

In this section we discuss in more detail another
difficulty (it has already been mentioned to some extent
in the introduction) closely related to noncommutativity of
the Duffin-Kemmer-Petiau operator in the presence of an
external electromagnetic field

LDKPðDÞ ¼ iβμDμ −mI; ð8:1Þ

and the proper divisor dDKPðDÞ, Eq. (1.5) among them-
selves. This difficulty is associated with the impossibility of
defining the path integral representation for the spin-1
particle propagator interacting with a background gauge
field within the standard DKP theory only. To understand
why this is so, we turn again to the Dirac theory. For the
spin-1

2
case there are a number of well-developed tech-

niques of deriving the path integral representation for the
Green’s function of a spinor particle in background Abelian
[9,31] or non-Abelian [8,32] gauge fields. Our main
interest here is with the very first step in such a con-
struction. It is connected with the Fock-Schwinger proper-
time representation of the inverse Dirac operator
L−1
DiracðDÞ ¼ ðiγμDμ −mIÞ−1. This step consists in “squar-

ing” the denominator through multiplying the latter by the
corresponding Klein-Gordon-Fock divisor

1

LDiracðDÞ ¼
dDiracðDÞ

dDiracðDÞLDiracðDÞ ; ð8:2Þ

5The first pair of the relations is a direct consequence of (3.7)
and (4.7). The third relation is easiest to obtain from Eq. (5.6) by
differentiating with respect to z and setting then z ¼ q or by a
straightforward calculation with the use of the original definitions
of the η- and η0-matrices [Eqs. (4.6), (7.6)] and of the relations
(D2)–(D4) from Appendix D.
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where dDiracðDÞ ¼ ðiγμDμ þmIÞ followed by the Fock-
Schwinger proper-time representation (see below). It is
worthy of special emphasis that the basis for this “obvious”
passage is a simple, but very important fact: commutativity
of the operators dDiracðDÞ and LDiracðDÞ among themselves.
Let us return to the Duffin-Kemmer-Petiau theory. Given

the explicit expressions for the operators LDKPðDÞ and
dDKPðDÞ, Eqs. (8.1) and (1.5) correspondingly, by analogy
with the Dirac case, we seemingly could write at once

1

LDKPðDÞ ¼
dDKPðDÞ

dDKPðDÞLDKPðDÞ ;

and further follow the known procedure. However, by
virtue of noncommutativity of these two operators among
themselves, the expression on the right-hand side is clearly
meaningless. For the construction of the needed path
integral representation for the L−1

DKPðDÞ operator we inevi-
tably come to the necessity of introducing into consider-
ation a divisor that would commute with LDKPðDÞ and
eventually result in the third order wave equation. Below
we will briefly describe our approach to the problem under
consideration.
We return again to the spin-1

2
case. Following the paper

by Fradkin and Gitman [9] instead of the initial Dirac
operator LDiracðDÞ we introduce the operator transformed
by the factor iγ5,

L̂≡ L̂DiracðDÞ ¼ iγ5ðiγμDμ −mIÞ:

We know this operator to be the square root of the Klein-
Gordon-Fock operator (more exactly, one of its roots), as it
is defined by means of Eq. (1.9) with the replacement
∂μ → Dμ. It is precisely for the inverse operator L̂−1 that it
is natural to determine the Fock-Schwinger proper-time
representation. We believe the operator L̂ to be an odd
(Fermi) one by definition. Instead of (8.2) we have now

1

L̂
≡ L̂

L̂2
¼ i

Z
∞

0

dτ
Z

dχ
τ
e−iτðĤ−iϵÞþτχL̂; ϵ → þ0;

ð8:3Þ
where

Ĥ ≡ L̂2 ¼ −ðD2 þm2ÞI þ e
2
σμνFμνðxÞ;

σμν ¼
1

2i
½γμ; γν�;

τ is an even variable and χ is an odd (Grassmann) variable,
anticommuting by definition with L̂. The pair ðτ; χÞ is
treated as a proper supertime. By virtue of the fact that the
Hamilton operator Ĥ is represented by a product of two
Fermi operators, it is an effective Bose operator as it
must be.

For the case of DKP theory as the operator L̂ we take the
cubic root of the third order wave operator, namely, the
expression (7.2). Let us assume that this operator is a para-
Fermi operator (parastatistics of order two). In this case it is
not difficult to write an analog of the Fock-Schwinger
proper-time representation for the inverse operator L̂−1

similar to (8.3),

1

L̂
≡ L̂2

L̂3
¼ i

Z
∞

0

dτ
Z

d2χ
τ2

e−iτðĤðzÞ−iϵÞþ 1
2
ðτ½χ;L̂� þ 1

4
τ2½χ;L̂�2Þ;

ð8:4Þ

where now

ĤðzÞ≡ L̂3ðz;DÞ

and χ is a para-Grassmann variable of order p ¼ 2 (i.e.,
χ3 ¼ 0) with the rules of an integration [33]

Z
d2χ ¼ 0 ¼

Z
d2χ½χ; L̂�;

Z
d2χ½χ; L̂�2 ¼ 4L̂2:

We consider that the para-Grassmann variable χ and the
operator L̂ conform to the following rules of commutation:

½½χ; L̂�; L̂� ¼ 0; ½½χ; L̂�; χ� ¼ 0:

As a proper para-supertime here it is necessary to take a
triple ðτ; χ; χ2Þ. The Hamilton operator ĤðzÞ represents a
product of three para-Fermi operators; therefore, in this
case, too, the ĤðzÞ is an effective Bose operator. Of course,
only its limiting value has a physical meaning

Ĥ ¼ lim
z→q

ĤðzÞ

¼ lim
z→q

L̂3ðz;DÞ ¼ lim
z→q

�
A

�
i

ε1=3ðzÞ ημðzÞD
μ −mI

��
3

;

where the most right-hand side limit is defined by the
expression (6.9).
However, it should be specially noted that the expression

(8.4) for an arbitrary value of the deformation parameter z
is meant here as a purely formal one, since the fact of the
presence of supersymmetry corresponding to parastatistics
of order two has not been demonstrated by us explicitly. In
addition, the indicated parasupersymmetry most likely does
not take place for z distinct from q (or from q2). The final
conclusion about the existence of this symmetry can be
made only after constructing the appropriate path integral
representation and passage to the limit z → q. In this
connection one should point out a similar situation taking
place in the case of the so-called deformed Heisenberg
algebra with reflection R introduced by Wigner [34]. The
algebra includes a real-valued parameter ν, and reveals very
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peculiar properties for special, discrete values of this
parameter ðν ¼ −ð2pþ 1Þ; p ¼ 1; 2;…Þ. This very non-
trivial fact was first found by Plyushchay [35], who pointed
out the relationship of the ð2pþ 1Þ- dimensional repre-
sentations of the R-deformed Heisenberg algebra to par-
afermions of order 2p. These special values of the
parameter ν also reveal themselves in the context of
supersymmetry as well as field theory [36].
Besides the presence of (local) parasupersymmetry of

order two in the system under consideration will ensure the
consistency of the minimal coupling prescription for the
case of the DKP theory considered in our paper, as it is, for
example, for the spin-1=2 charged field. In the latter case a
local supersymmetric structure associated with the Dirac
equation guarantees a consistency of the minimal coupling
prescription when a free theory is generalized for the case
of interactions with an external electromagnetic field.
The expression (8.4) can be taken as the starting one for

the construction of the desired path integral representation
with the use of an appropriate system of coherent states in a
close analogy with the approach proposed by Borisov and
Kulish [8] for the spin-1

2
case. Here, it would be possible to

make good use of the known for a long time [37–39]
connection between the trilinear algebra of β-matrices and
the para-Fermi algebra of order two. In fact all apparatus
needed for the construction of the path integral representa-
tion (coherent states, formulas of orthonormality and
completeness, and so on) can be found in the papers by
Kamefuchi and coworkes [33]. However, in our case
instead of the matrices βμ we have the matrices ημðzÞ.
The trilinear relations for these matrices formally coincide
only in the limit z → q. As a hint of what we shall do in this
more complicated situation, the unpublished paper by
Dunne [40] can serve. In the latter it was shown how
one can define the creation and annihilation operators
explicitly depending on the deformation parameter z and
the corresponding relations of commutation with the
subsequent passage to the limit z → q resulting in the
finite expressions.
In closing let us mention another fact closely related to

the subject matter of this section. In the literature there are
very few papers dealing with the problem of construction of
an action for a relativistic classical spinning particle using
the para-Grassmann variables with subsequent quantization
of the classical model [41–43]. Here we note only that in
the action suggested in these papers there are the linear and
quadratic in para-Grassmann variable χ (in our notations)
terms, which are similar to those in the exponential function
in the expression (8.4). In our case these terms automati-
cally appear in defining the Fock-Schwinger proper-time
representation, and in the works [41–43] they insure the
invariance of the action under the local world line para-
SUSY transformation. However, the kinetic part of the
action in [41–43] was chosen in a complete analogy with
the kinetic one for the classical models of a Dirac particle,

whereas we expect based on the general formula (8.4) that
the situation here may be more complicated.

IX. CONCLUSION

In this paper, we have set up the formalism needed to
construct a cubic root of the third order wave operator
within the framework of Duffin-Kemmer-Petiau theory.
One of the key points in our approach is the introduction
into consideration of the so-called deformed relation of
commutation, Eq. (3.1). On the basis of the latter a new set
of the spin matrices ημ was defined instead of the standard
DKP matrices βμ. It was shown that the third order wave
operator is obtained as a formal limit of the cube of a certain
first order differential operator. This operator is singular
with respect to the deformation parameter z when the latter
approaches the primitive cubic root of unity q. Finally, we
suggested a way to apply the derived expression for the
cubic root to the problem of the construction of the path
integral representation for the Green’s function of a spin-1
particle in an external electromagnetic field.
A few words may be said here about the para-Grassmann

variables, which will be used in the construction of the
desired path integral representation. Although the para-
Grassmann algebra of order p ¼ 2 is still quite visible for
concrete calculations, however, probably in the situation
under consideration the use of its bilinear version [44–49]
(sometimes it is named the generalized Grassmann algebra)
is more suitable. It is connected with the fact that on the one
hand the primitive cubic root q explicitly enters into the
definition of the η-matrices, into the commutation relations
and so on, and on the other hand the use of a primitive nth
root of unity (in particular for n ¼ 3) is directly laid in the
basis of the new para-Grassmann calculus.
It only remains for us to say a few words about the

massless limit of the third order wave operator. Throughout
this paper we have considered that the parameter m, which
by convention is responsible for the mass of a particle, was
not equal to zero. As it is known [26] in the massless variant
of DKP theory the scalar “mass matrix” mI must be
replaced by a singular matrixMω2, whereM is an arbitrary
constant with the dimension of mass. The matrixMω2 does
not commute any more with everything, as this occurs for
mI [see the text after Eq. (1.13)]. The last circumstance
qualitatively changes the whole picture of calculations in
comparison with the massive case. Thus, for example, here
there is no analog of the formula (1.11). Therefore, now we
can only speculate that in the massless case instead of the
expression (1.14) there should be something of the type

½Bðiβμ∂μ −Mω2Þ�3 ¼ −i
1

M
□βμ∂μ;

where B is a certain matrix depending on ω and additional
parameters, with a possible replacement of the matrices
βμ by a more complicated combination. Preliminary
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consideration has shown that, probably, one of the crucial
factors here is the use of the cubic roots of minus unity
rather than of unity. This problem requires separate careful
consideration.
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APPENDIX A: THE ω-βμ MATRIX ALGEBRA

In this appendix we give some necessary formulas of
the ω-βμ matrix algebra for the spin-1 case, which are
used throughout in the text. Details of the proof of
these formulas and also their generalizations to higher
dimensions can be found in the papers by Harish-
Chandra [26] and Fujiwara [29]. We use the metric
gμν ¼ diagð1;−1;−1;−1Þ. Let us recall the definition of
the ω matrix:

ω ¼ i
4
ϵμνλσβμβνβλβσ:

Then in view of the above definition and the trilinear
relation for β-matrices, Eq. (1.3), we have

ω3 ¼ ω; ðA1Þ

ω2βμ þ βμω
2 ¼ βμ; ðA2Þ

ωβμω ¼ 0; ðA3Þ

βμβνωþ ωβνβμ ¼ ωgμν; ðA4Þ

ω2βμβν ¼ βμβνω
2; ðA5Þ

βμωβν þ βνωβμ ¼ 0: ðA6Þ

The next formulas

fβμ; βνgωþ ωfβμ; βνg ¼ 2ωgμν; ðA7Þ

½βμ; βν�ω − ω½βμ; βν� ¼ 0 ðA8Þ

are an obvious consequence of (A4). If one defines the
matrixB≡ βμβμ, then the following relations are also valid:

ω2 ¼ 3 − B; Bω ¼ ωB ¼ 2ω: ðA9Þ

Besides the useful contractions are

βμω2βμ ¼ 3ð1 − ω2Þ;
βμβνβμβν ¼ 3 − ω2;

βμβνβμ ¼ βν:

APPENDIX B: CONSTRUCTION OF
THE MATRIX A

We write down once again an explicit form of the
matrices ðA; A2; A3Þ obtained in Sec. II,

A ¼ α

�
I þ i

ffiffiffi
3

p

2
ω −

3

2
ω2

�
;

A2 ¼ α2
�
I − i

ffiffiffi
3

p

2
ω −

3

2
ω2

�
;

A3 ¼ α3I ≡ 1

m
I: ðB1Þ

An immediate consequence of (B1) is the following
relation:

1

α
Aþ 1

α2
A2 þ 1

α3
A3 ¼ 3ðI − ω2Þ: ðB2Þ

Let us construct such a matrix A that simultaneously
satisfies two requirements:

1

α
Aþ 1

α2
A2 þ 1

α3
A3 ¼ 0 ðB3Þ

and

A3 ¼ 1

m
I: ðB4Þ

We search for this matrix in the following form,

A ¼ Aþ xðI − ω2Þ;
where x is an unknown parameter. It follows that

A2 ¼ A2 þ xð2αþ xÞðI − ω2Þ ðB5Þ
and

A3 ¼ 1

m
I þ xðx2 þ 3αxþ 3α2ÞðI − ω2Þ: ðB6Þ

Substituting the obtained expressions into the left-hand side
of the expression (B3) and considering (B2), we obtain

1

α
Aþ 1

α2
A2 þ 1

α3
A3

¼ 1

α3
ðx3 þ 4αx2 þ 6α2xþ 3α3ÞðI − ω2Þ:
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The requirement of vanishing the expression on the
right-hand side results in the following equation for the
parameter x:

x3 þ 4αx2 þ 6α2xþ 3α3 ≡ ðxþ αÞðx2 þ 3αxþ 3α2Þ ¼ 0:

It is apparent that the given algebraic equation has three
roots but only two of them are compatible to the additional
requirement (B4). Actually, by virtue of (B6) we have
another equation for the unknown parameter x,

xðx2 þ 3αxþ 3α2Þ ¼ 0:

The two roots needed are

x ¼
�
−
3

2
þ i

ffiffiffi
3

p

2

�
α;

x� ¼
�
−
3

2
− i

ffiffiffi
3

p

2

�
α:

Thus, we find the required expressions for a new set of
matrixes ðA;A2;A3Þ:

A ¼ Aþ xðI − ω2Þ;
A2 ¼ A2 þ αx�ðI − ω2Þ;

A3 ¼ 1

m
I:

In deriving the expression for A2 here, we have considered
in (B5) the identity

xð2αþ xÞ ¼ αx�:

APPENDIX C: THE PROOF OF VANISHING (3.5)

By using the relations (2.3)–(2.4) one can rewrite the first, second, fifth and seventh terms in (3.6) in an identical form:

AβμAβνAβλ ¼ −AβμβνA2βλ − AβμA2βνβλA;

βμAβνAβλA ¼ −βμA2βνβλA − βμβνA2βλA;

AβμβνAβλA ¼ −AβμβνβλA2 − AβμβνA2βλ;

βμAβνA2βλ ¼ −βμA2βνAβλ −
1

m
βμβνβλ:

Substituting these relations into (3.6) and collecting similar terms, we obtain then

−
1

m
z2βμβνβλ þ ðβμβνA2βλA − AβμA2βνβλÞ − ðzþ z2ÞβμA2βνAβλ þ ðzA2βμβνβλA − z2AβμβνβλA2Þ

þ εðzÞðβμA2βνβλA − AβμβνA2βλÞ:

The last term here can be turned into zero if one sets z ¼ q. Taking into account another identity

−AβμA2βνβλ ¼ A2βμAβνβλ þ
1

m
βμβνβλ

and the equality qþ q2 ¼ −1, we derive further

1

m
ð1 − q2Þβμβνβλ þ ðqA2βμβνβλA − q2AβμβνβλA2Þ þ ðA2βμAβνβλ þ βμA2βνAβλ þ βμβνA2βλAÞ:

The final step is a contraction of this expression with ∂μ∂ν∂λ. Making use again of the relation q ¼ −1 − q2, the identity
(1.13) and the property (2.4), we obtain

1

m
□βμ∂μ −□ðA2βμAÞ∂μ þ ðA2βμAβνβλ þ βμA2βνAβλ þ βμβνA2βλAÞ∂μ∂ν∂λ: ðC1Þ

Now we are concerned with an analysis of terms containing the matrices A and A2. With allowance made for (3.7), the
expression (C1) turns to
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1

m
□βμ∂μ −

3

2m
βμβνβλ∂μ∂ν∂λ þ 1

2m
□βμ∂μ −

1

2m
i

ffiffiffi
3

p
ðξμβνβλ þ βμξνβλ þ βμβνξλÞ∂μ∂ν∂λ þ 1

2m
i

ffiffiffi
3

p
□ξμ∂μ: ðC2Þ

By using once more the identity (1.13) we see that the first three terms here mutually cancel. Furthermore, it is not difficult
to verify that the following equality holds:

ξμβνβλ þ βμξνβλ þ βμβνξλ ¼ ωβμβνβλ − βμβνβλω: ðC3Þ

In view of (C3) the last but one term in (C2) takes the form

−
1

2m
i

ffiffiffi
3

p
ðωβμβνβλ − βμβνβλωÞ∂μ∂ν∂λ ≡ −

1

2m
i

ffiffiffi
3

p
□ξμ∂μ:

This term is canceled precisely by the last term in (C2).

APPENDIX D: TRILINEAR RELATION FOR THE η-MATRICES

By a direct multiplication of the matrices ημ, Eq. (4.6), we derive the starting expression

ημηνηλ þ ηληνημ ¼
�
1þ 1

2
q

�
3

ðβμβνβλ þ βλβνβμÞ þ
�
1þ 1

2
q

�
2
�
i

ffiffiffi
3

p

2

�
q½ðβμβνξλ þ βμξνβλ þ ξμβνβλÞ þ ðμ↔λÞ�

þ
�
1þ 1

2
q

��
i

ffiffiffi
3

p

2

�
2

q2½ðξμξνβλ þ ξμβνξλ þ βμξνξλÞ þ ðμ↔λÞ� þ
�
i

ffiffiffi
3

p

2

�
3

q3ðξμξνξλ þ ξλξνξμÞ:

ðD1Þ

For the first term on the right-hand side we use the basic relation for the β-matrices, Eq. (1.3). For the second term it is
necessary to use the relation (C3), which in view of Eq. (1.3) leads to

ðβμβνξλ þ βμξνβλ þ ξμβνβλÞ þ ðμ↔λÞ ¼ gμνξλ þ gλνξμ: ðD2Þ

In analysis of the third term in (D1) we first note that

ξμξν ¼ fβμ; βνgω2 − gμνω2 − βμβν

and

ξμβνξλ ¼ gμνω2βλ þ gλνβμω2 − ðω2βνβμβλ þ βμβλβνω
2Þ − ωβμβνβλω;

then

ðξμξνβλ þ ξμβνξλ þ βμξνξλÞ þ ðμ↔λÞ ¼ −2ðβμβνβλ þ βλβνβμÞ þ ω2½fβμ; βνgβλ þ fβλ; βνgβμ − βνfβμ; βλg�
þ ½βλfβμ; βνg þ βμfβλ; βνg − fβμ; βλgβν�ω2

¼ −2ðgμνβλ þ gλνβμÞ þ ω2ðgμνβλ þ gλνβμÞ þ ðgμνβλ þ gλνβμÞω2

¼ −ðgμνβλ þ gλνβμÞ: ðD3Þ

In the last step we have used the property (A2).
Finally, for the last term in (D1) we have

ξμξνξλ þ ξλξνξμ ¼ βνðβμωβλ þ βλωβνÞ − ωðgμνβλ þ gλνβμÞ þ ðgμνβλ þ gλνβμÞω≡ −ðgμνξλ þ gλνξμÞ: ðD4Þ

Here, for the first term on the right-hand side we have used the property (A6). Gathering the expressions calculated above
and collecting similar terms, we obtain instead of (D1)
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ημηνηλ þ ηληνημ ¼
��

1þ 1

2
q

�
2

−
�
i

ffiffiffi
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p

2

�
2

q2
���

1þ 1

2
q

�
ðgμνβλ þ gλνβμÞ þ

�
i

ffiffiffi
3

p

2

�
qðgμνξλ þ gλνξμÞ

�

≡ εðqÞðgμνηλ þ gλνημÞ;

whence it follows the trilinear relation (5.6).

APPENDIX E: PROOF OF THE IDENTITY (6.3)

Let us present a product of three covariant derivations Dμ in an identical form

DμDνDλ ¼ fDμ; Dν; Dλg − ðDλDνDμ þDνDμDλ þDλDμDν þDμDλDν þDνDλDμÞ: ðE1Þ
By the symbol fDμ; Dν; Dλg one means a completely symmetrized expression defined by the formula (6.4). We transform
each term in parentheses in such a manner so that the expression obtained contains the term DμDνDλ. Here, we have

DλDνDμ ¼ DμDνDλ −Dμ½Dν; Dλ� − ½Dμ; Dλ�Dν −Dλ½Dμ; Dν�;
DνDμDλ ¼ DμDνDλ − ½Dμ; Dν�Dλ;

DλDμDν ¼ DμDνDλ − ½Dμ; Dν�Dλ −Dν½Dμ; Dλ�;
DμDλDν ¼ DμDνDλ −Dμ½Dν; Dλ�;
DνDλDμ ¼ DμDνDλ − ½Dμ; Dν�Dλ −Dν½Dμ; Dλ�:

Substituting these expressions into (E1), taking into account the equality

½Dμ; Dν� ¼ ieFμνðxÞ;
and collecting similar terms, leads to (6.3).
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