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Third order wave equation in Duffin-Kemmer-Petiau theory: Massive case
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Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a more consistent approach to the
derivation of the third order wave equation obtained earlier by M. Nowakowski [1] on the basis of heuristic
considerations is suggested. For this purpose an additional algebraic object, the so-called g-commutator
(g is a primitive cubic root of unity) and a new set of matrices 77, instead of the original matrices f3, of the
DKP algebra are introduced. It is shown that in terms of these 7, matrices we have succeeded in reducing a
procedure of the construction of cubic root of the third order wave operator to a few simple algebraic
transformations and to a certain operation of the passage to the limit z — ¢, where z is some complex
deformation parameter entering into the definition of the #-matrices. A corresponding generalization of the
result obtained to the case of the interaction with an external electromagnetic field introduced through the
minimal coupling scheme is carried out and a comparison with M. Nowakowski’s result is performed. A
detailed analysis of the general structure for a solution of the first order differential equation for the wave
function w (x; z) is performed and it is shown that the solution is singular in the z — g limit. The application
to the problem of construction within the DKP approach of the path integral representation in
parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed.
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I. INTRODUCTION

In the paper by Nowakowski [1] devoted to the problem
of electromagnetic coupling in the Duffin-Kemmer-Petiau
(DKP) theory several rather unusual circumstances relating
to a second order DKP equation have been pointed out. The
first of them is connected with the fact that the second order
Kemmer equation [2] in the presence of an external
electromagnetic field is only one member of a class of
second order equations which, in principle, can be derived
from the first order DKP equation. Their physical meaning
is therefore not entirely clear. Another circumstance is
connected with the fact that the second order Kemmer
equation lacks a back-transformation which would allow
one to obtain solutions of the first order DKP equation from
solutions of the second order equation. The reason for the
latter is that the Klein-Gordon-Fock divisor [3,4] in the
spin-1 case (throughout this work we put 7 =c = 1)

d(d) = — (O +m)I + if,0" - %ﬂ”ﬁbaﬂa” (1.1)

1
m
ceases to be commuted with the original DKP operator

L(0) = ip, 0" —ml, (1.2)
when we introduce the interaction with an external electro-
magnetic field within the framework of the minimal
coupling scheme O# — D# = O + ieAX, i.e.
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[d(D), L(D)] # 0.

Here I is the unity matrix; [1 = 6#8”, 8;4 = 0/0x", and the
matrices 3, obey the famous trilinear relation

ﬂﬂﬂvﬂi +ﬁlﬂuﬂﬂ = g/wﬂ/l + gﬁvﬂy (13)

with the metric g,, = diag(1,—1,—1,—1). As a result, the
analogy of the second order Kemmer equation to a similar
looking Dirac equation is very limited. Whereas in the
Dirac case one can transform solutions of the second order
equation to solutions of the Dirac equation and vice versa,
such a one-to-one correspondence is not possible in the
Kemmer case.

Nowakowski has suggested a way this problem may be
circumvented. To achieve the commutativity of the recip-
rocal operator d(D) and the DKP operator L(D) in the
presence of an external gauge field we have to give up the
requirement that the product of these two operators is an
operator of the Klein-Gordon-Fock type, i.e.

d(D)L(D) # —(D*+ m*)I + G[A,],

where G[A,] is a functional of the potential A,, which
vanishes in the interaction free case. In other words it is
necessary to introduce into consideration not the second
order, but a higher order wave equation which would have
the same virtue as the second order Dirac equation, i.e. a
back-transformation to the solutions of the first order
equation. In the paper [1] from heuristic considerations
such a higher (third) order wave equation possessing a
necessary property of the reversibility was proposed.
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However, by virtue of the fact that the higher order equation
is not reduced to the Klein-Gordon-Fock equation in the
interaction free case, this leads to the delicate question of
physical interpretation of the terms in such a higher order
equation (it is known that even for the second order
Kemmer equation there exists this kind of problem). In
particular, this is concerned with the interpretation of
parameter m as the mass of a particle since this is the
only possible interpretation in the free case when the
following equality,
d(0)L(9) = —(O + m?)I, (1.4)

holds.

It should be noted that the divisors with a minimal
electromagnetic coupling and, in particular, for the spin-1
case

d(D) = = (D* + w1 + if, D" —%ﬂ”ﬁDD/‘D” (1.5)

m
were first introduced into consideration in the earlier papers
by Nagpal [5], Cox [6], and Krajcik and Nieto [7]. The
divisors have been intensively used in analysis of causality
violation in higher spin theories in the presence of an
electromagnetic field. The suggested divisors represent
merely a straightforward generalization of the well-known
operators of Takahashi and Umezawa [3,4] by the replace-
ment d, — D,(A). However, a question of commutativity
of the generalized divisors with the initial first order
operators L(D) in these papers was not discussed at all,
although this can be of certain importance. Further, in the
papers mentioned above the questions of causality were
discussed on the basis of analysis of a product of two
operators d(D) and L(D). In particular, in the spin-1 case
when we take the divisor in the form (1.5), in the product
d(D)L(D) the principle part of interacting and free wave
operators remains the same as it was defined by Eq. (1.4).
This is connected with the fact that the terms of the third
order in derivatives reduce to the terms of the first order by
using the trilinear relation (1.3) and thus the effect of
electromagnetic interactions (or nonderivative coupling)
occurs only in lower derivatives. The resulting field
equation remains equivalent to a hyperbolic system with
light cone as ray cone; the same holds in the interacting and
free cases. Therefore, it is concluded that the spin-1 field
even in the presence of electromagnetic field in the system
possesses only causal modes of propagation.

The situation can qualitatively change if as d(D) one
takes a divisor such that

for example, the divisor suggested by Nowakovski [1]. In
this case in the product d(D)L(D) in accordance with
formula (6.10) in Sec. VII, the principle part of the
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interacting and free wave operators will be already the
third order in derivatives, instead of (1.4), and the terms
with the nonderivative coupling remain the terms of the first
order. The question of whether a change of the order of the
principle part of wave operator leads to a change of the
propagation properties of the equation

d(D)L(D)w(x) = 0.

generally speaking, has to be the subject of separate
research.

Further, in addition to the absence of required one-to-one
correspondence between solutions of the second order
Kemmer equation and the DKP equation, one can point
out one more negative consequence of the noncommuta-
tivity of the divisor (1.5) with the operator L(D) = i3, DV~
ml. The lack of commutativity does not give a possibility
within the framework of the DKP theory to construct the
path integral representation for the Green’s function of a
spin-1 particle in a background gauge field in a spirit of the
approaches developed for a spin-1/2 particle (see for
example [8,9]). Having obtained all the necessary expres-
sions, this very interesting question will be discussed in
more detail in Sec. VIIIL.

The purpose of this paper is to give a systematic way of
deriving the third order wave equation within the frame-
work of the massive Duffin-Kemmer-Petiau theory in the
free and interacting cases. However, first of all it should be
noted that the wave equations of the third order in
derivatives, as applied to the problems of classical and
quantum field theories, for any length of time have drawn
attention of researchers for various reasons. Below, we give
a number of examples related somehow to our problem.

In the papers by Finkelstein ez al. [10] in constructing the
theory of the nine-dimensional ternary hyperspin manifold
the so-called trine-Gordon equation, the unique scalar
wave equation of least differential order’

[det(9) — im’]p =0

was suggested. Here, det(0) is the determinant of a 3 x 3
matrix composed of partial derivatives in coordinates. The
authors have also performed an analysis of the correspond-
ing dispersion relation for plane waves and have suggested
the generalization to the case of a minimal interaction with
a gauge field. The questions close to this research were
considered independently in the papers by Solov’yov et al.
[11], where the general algebraic theory of the Finslerian
spinors was constructed. The generalized Duffin-Kemmer-
Petiau equation for a Finslerian 3-spinor wave function
of a free particle in the momentum representation was
also suggested there and it was shown that each of these

'All formulas cited below, up to Eq. (1.8), are given in the
notations of the authors of the corresponding works.
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3-spinor components of the wave function (i", ;) satisfies

the Finslerian analog of the Klein-Gordon-Fock equation
(GapcPAPEPC —MP)i" =0, r=1,2,3

and a similar equation holds for the ; components. Here,

G 4pc 1s a symmetric covariant tensor of the third order rank

that plays a role of the metric tensor in the nine-dimensional

linear Finslerian space.

Further, in the works by Yamaleev [12—14] an attempt
has been made to construct in a systematic way the
foundations of quantum mechanics on cubic forms (or
even more generally, polylinear forms). The mathematical
basis of the construction would become the cyclic algebras
of N > 2 degree. The cyclic algebra with respect to cubic
forms here plays a role like the Clifford algebra with respect
to the quadratic forms. In particular, the cubic generaliza-
tion of the standard relativistic relation between energy &,
momentum p = (p,, p,, p3) and mass m was suggested in
the following form:

(E—gqm)(E=gm)(E=m) = _p}=3pipaps. (1.6)

where ¢ is a primitive cubic root of unity

1 V3

g = eZni/3 — _§_|_ i?’
. 1 V3
q2:e4m/3:_5_17. (17)

As an analog of the Klein-Gordon-Fock equation [for
any of three possible correspondences: & — 6,0/0t,
p: — 0,0/0x;, where 60,=(q.¢*,1), k=1,2,3 in
Eq. (1.6)] the following equation of the third order,

0 P o 5
—_ _ - 7 - =0,
<8[3 ; 8x,3> ot 0x10x,0x3 pome

was used. The author also suggested cubic analogs of the
Dirac equation and the nonrelativistic Schrodinger
equation.

The third order wave equations arise, however, not only
in the generalization of quantum mechanics and quantum
field theory to more abstract spaces in the foundation of
which not the quadratic forms of various type (an interval,
relativistic relationship between mass, energy and momen-
tum, and so on), but the forms of one degree higher are laid.
These equations arise also within the framework of gen-
erally accepted physical theories for solving quite concrete
problems. Thus, one of the first generalizations of this kind
in the context of quantum electrodynamics can be found in
the paper by Pais and Uhlenbeck [15]. The latter have
considered the generalization of the Dirac equation to the
multimass Dirac equation like
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N

H(yﬂaﬂ + mj)l//(x) = O’

J=1

where N is an integer, which in particular can take the value
3. The purpose of this generalization of the spinor field
equation to equation of higher order was to eliminate by
this means the divergent features in quantum field theory.

Further, in the paper by Barut ef al. [16] another version
of the generalized Dirac equation of the third order in
derivatives describing particles with spin 1/2 and three
mass states was suggested. The aim of this paper was to
treat in a unified fashion all known at that time leptonic
matter. The case when one of the states is massless
(neutrino) and the corresponding generalized equation
takes the form

lia(y - 0) + a0 — a5 (y - 9) ]y (x) = 0

was studied in more detail. The parameters «;, a,, and o3
are related to the electron mass m, and muon one m,
through the relations a; /a3 = m,m,, a/az = m, + m,. It
is interesting to observe that the term of the third order in
derivatives in the equation above has the structure similar to
the corresponding term on the right-hand side of Eq. (1.11)
for the spin-1 case, which will be discussed further. In the
paper by Kruglov [17] this model was analyzed for the case
when all three states are massive. As was noted in the last
paper, such higher order differential equations may be
treated as effective equations and represent a nonperturba-
tive approach to quantum field theory.

In the spin—% theories by Joos [18], Weinberg [19], and
Shay et al. [20] it was shown that the corresponding wave
function w(x) in the interaction free case must satisfy
component by component not only the second order Klein-
Gordon-Fock equation, but also the third order wave
equation of the type

831//(x> 3 _
}’ﬂmm - m’y(x) = 0.
Here, the 8 x 8 matrices y,,, are defined in terms of the
spin—% matrices s;, i = 1,2,3 and obey the algebraic
relation representing the spin—% generalization of relation
for the Dirac matrices.

Finally, we can also mention that in the familiar
formulation of Bhabha [21] (see also [22]) of the multimass
high-spin theory, for the spin-1 case we have instead of the
Klein-Gordon-Fock equation the third order one

(a-0)(O0—m?)y =0.

The extra differential factor (a-J) comes from the sub-
sidiary components.
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The examples given above show that the higher order
systems, in particular the third order ones, might them-
selves have some applicability in field theories.

Before proceeding with the formal development of the
construction of the third order wave equation within the
framework of the DKP approach in the presence of an
electromagnetic field, it is necessary to ask what form the
equation should have in the interaction free case. It is
necessary to have at hand a certain simple rule of deriving
this equation (and perhaps the equations of higher order for
high-spin cases). Here, we attempt to follow as close as
possible the free Dirac theory added by some consider-
ations of algebraic character. For this purpose let us
introduce a set of the square roots of unity: (4, 1), where
A = —1 is the primitive square root. Then it is obvious that

(iy, 0 = AmlI)(iy, & —ml) = —(O+m*)I.  (1.8)
Let us state a question of defining such a matrix O that the
following equality holds:

[O(iy,0" —mI)|[O(iy, & —mI)| =—=(O+m*)I.  (1.9)
In fact it represents a solution of the problem of construct-
ing the square root of the Klein-Gordon-Fock operator.
Here, the answer is known. As such a matrix one has to take

O - Zl:i}/S,

where

i
Vs = =€y .05 73 =1 (1.10)

4!
Thus we can consider that the expression on the left-hand
side of (1.8) gives us the rule for the determination of
the right form of the second order wave operator [the
right-hand side of (1.8)] and in turn the expression on the
left-hand side of Eq. (1.9) gives its square root and thereby
the problem is reduced to the construction of an algorithm
of calculating the matrix O.

If one consider as a guiding principle the considerations
above, then the next step will be the following extension: as
a basis we take the cubic roots of unity (g, g*, 1), where the
primitive roots ¢ and ¢ are given by the formulas (1.7), and
as the spin matrices we take the S-matrices of the DKP
algebra. It is an easy matter to verify that an analog of
equation (1.8) will be that in the following form [cp. with
(1.6)]:

(i, — qmI) (if,& = ¢'mI)(ip, — mI)
= —ilB,0" — m’I. (1.11)

On the right-hand side of (1.11) we now have the differ-
ential operator of the third order, which we take as a
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“genuine” expression for the third order wave operator. It is
precisely this expression that arises from the Nowakowski’s
third order wave equation [1] in the limit when we switch
off an external electromagnetic field. In deriving (1.11) one
of the properties of the roots of unity, namely

l+qg+¢*=0 (1.12)

and the identity

B.p.p0" 00" = 0p,0" (1.13)
valid in view of the algebra of the f-matrices, Eq. (1.3),
were used. Besides, we have taken into account the fact
that the mass term ml/ is diagonal and commutes with
everything. We note that such an approach was used in the
papers by Kerner [23] devoted to a generalization of
supersymmetry based on Z3-qraded algebras, more exactly
in the construction of the operators whose trilinear combi-
nations yield the supersymmetric generators [cubic root of
the supersymmetry (SUSY) translations].

Further we can state a question of defining a matrix A
such that the following relation holds:

[A(ip, 0" = mD)][A(iB,0* — mI)][A(iB,0* — mI)]

= —iimﬁ”aﬂ - m?I. (1.14)
m

The latter solves the problem of calculating the cubic root
of the third order wave operator. In this paper we have
attempted to answer this question by using a very rich
apparatus of the matrix algebra in the DKP theory added by
new structures generated by algebra of the cubic roots of
unity. We have also performed a generalization of the
resulting equations to the case of the presence in the system
of an external electromagnetic field.

The paper is organized as follows. In Sec. II the
construction of cubic root of the second order Klein-
Gordon-Fock operator within the framework of DKP
formalism is considered. This problem has a purely
auxiliary character. However, a number of expressions
derived here are of decisive importance for subsequent
research. Section III is devoted to the construction of the
cubic root of the third order wave operator. For this purpose
an additional algebraic object, the g-commutator represent-
ing a generalization of the usual commutator by entering a
primitive cubic root of unity ¢ into the initial definition, is
introduced. This new algebraic object has allowed us to
remove not only the terms linear in derivatives, but also the
quadratic terms as it is required by virtue of the definition of
the third order wave operator, Eq. (1.14). However, at the
same time it is found that the necessary term cubic in
derivatives, on the symmetrization, vanishes identically.

In Sec. IV a new set of matrices 7, instead of the original
matrices f3, is introduced. It is shown that these matrices
possess rather nontrivial commutation relations which
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enable us to reduce the problem of the construction of the
desired cubic root to a number of simple algebraic
operations. On the basis of these matrices the reason for
vanishing the term of the third order in derivatives is
analyzed and a way to overcome this problem is suggested.
Section V is concerned with the discussion of various
properties of the n-matrices: commutation relations, the
trilinear relation (the analog of the trilinear relation for the
p-matrices), the behavior on Hermitian conjugation, etc. In
Sec. VI an extension of the results of the previous sections
to the case of the presence in the system of an external
electromagnetic field is performed. The detailed compari-
son of the expression for the third order wave operator with
a similar expression earlier obtained by Nowakowski [1] is
given. In Sec. VII an analysis of the general structure for a
solution of the first order differential equation for the wave
function y(x; z), where z is the deformation parameter, is
performed. It is shown that this solution is the singular one
in the limit z — ¢. In Sec. VIII a question of a possible
application of the results obtained to the problem of the
construction within the framework of the Duffin-Kemmer-
Petiau formalism of the path integral representation for the
propagator of a vector particle in a background gauge field
is discussed. In the concluding Sec. IX the key points of our
work are specified and the massless limit of the third order
wave operator is briefly discussed.

In Appendix A all of the necessary formulas of the DKP
algebra of the matrices f, are listed. In Appendix B a
procedure of the construction of a certain matrix A is
presented. This matrix formally can be considered as a
matrix analog of the primitive cubic roots of unity, i.e., a set
of the matrices (A, A%, A* =11) satisfies the properties
identical to those for a set of the cubic roots of unity:
(q.9>.¢*=1). In Appendix C a complete proof of
vanishing cube of matrix differential operator, where matrix
is defined through the deformed commutator, is produced.
In Appendix D the details of the proof of trilinear relation
of the type (1.3) for a new set of the matrices 7, are given.
Finally, in Appendix E the proof of the identity (6.3) for a
product of three covariant derivatives is presented.

I1. CUBIC ROOT OF THE KLEIN-GORDON-
FOCK EQUATION

Before proceeding to the problem stated in the intro-
duction, we first consider a question of the construction of
cubic root of the second order massive Klein-Gordon-Fock
operator. This problem in the general statement has been
investigated by Plyushchay and Rausch de Traubenberg in
the paper [24]. Here, we examine it again and look how far
we can proceed in solving this problem while remaining
within the framework of DKP formalism only.

Let us now turn to Eq. (1.14), but instead of the third
order operator we put the Klein-Gordon-Fock operator on
the right-hand side,

PHYSICAL REVIEW D 92, 105017 (2015)
[A(iB,0" — mD)][A(iB,0" — mI)][A(if,0" — mI)]

=—(O+m?)L. (2.1)

One can somewhat simplify the problem if one takes the
operator on the right-hand side in the factorized form

—-(O+ m2)1 = d(a)(iﬂ,ﬁ" —ml).
We recall that

: oo
d(a) =ml + lﬁﬂaﬂ + (29;11/ - {ﬂwﬂv})ﬁ
is the Klein-Gordon-Fock divisor in the spin-1 case; {, }
designates anticommutator. By virtue of this factorization
we can examine instead of (2.1) the following equation:
A(ip, 0" — mI)A(if,0" — mI)A = d(0). (2.2)
By equating the coefficients of partial derivatives we obtain
a system of algebraic equations for the unknown matrix A:

1
AP =—1 2.
1, (23)
1
Aﬂ”A2 + AzﬂﬂA = _Eﬁ’“ (2.4)

1
AﬂuAﬁuA + AﬂvAﬂ;tA = _E [29;41/1 - {ﬂuvﬂv}}' (25)

These equations can be paired with the corresponding
equations in the paper [24], if we correlate the generators g,
and g introduced in [24] with the matrices A and j3, by the
rules,
Gu ~ mAp,, g~ mA.

In this case, Eq. (2.3) (up to a sign) will correspond to the
first equation of the system (2.3) in the paper [24], Eq. (2.4)
will correspond to the second equation of the same system
[or Eq. (2.6)], and (2.5) corresponds to the third equation.

Before turning to solving the matrix equations (2.3)—
(2.5), we make a few comments of a general character.
Equations (2.3)—(2.4) are universal in the determinate
sense. The former defines the mass term on the right-hand
side of the equality (2.1) [or (1.14)], and the latter enables
us to get rid of the term of the first order in the derivatives in
(2.1) [or (1.14)]. The universality of these matrix equations
lies in the fact that they must be satisfied in any case
irrespective of that we take as the right part: either the right-
hand side of (2.1) or the right-hand side of (1.14). As will
be shown below, Eqgs. (2.3)—(2.4) uniquely define the
required matrix A [more exactly, to within the choice of
one of three roots of the cubic equation for some parameter
a, see Eq. (2.8) below]. An explicit form of the matrix A
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and also the equalities (2.3)—(2.4) to which it satisfies are of
fundamental importance for further presentation. The third
equation (2.5) is not already universal and completely
depends on the specific choice of the right-hand side in
the equalities of the (2.1) type. This equation must be
identically satisfied. If not, we come to the contradiction.

Let us now introduce the matrix o setting by defining

= 2B, (2.6)

This matrix plays an important part in further consideration.
It was introduced into DKP theory for the first time by E.
Schrodinger [25]. Here, we follow the notation used in the
works by Harish-Chandra [26], where the properties of the
o matrix were studied in detail. In Appendix A we give
all necessary relations for the w-f, algebra. Let us note
only that the matrix @ is identically zero for the spin 0
(five-dimensional irreducible representation of the DKP
algebra). Therefore, only the ten-row representation needs
to be considered.

In spite of a formal similarity between definitions y5 and
o matrices (it is worthy of special emphasis that in the latter
case the factor 1/4 stands rather than 1/4!), Egs. (1.10) and
(2.6), as the matrix A we cannot simply take ﬁ . Really,

for example, on the left-hand side of Eq. (2.3) in view of
(A1) we will have Lw® =Law # 1],

We seek the matrix A in the form of the most general
expansion in powers of :

A =al + pw + yo?,

where «, f, and y are unknown, generally speaking
complex, scalar constants. By virtue of the property
(A1) it is easy to find that

A2 =1+ (2o + 2py)w + (B* + v* + 2ay)*  (2.7)

and further

A3 = @1 + [a(2ap + 2py) + & + y (20 + 2y)
+B(F* + 7+ 2ay)|o + [a(f* + y* + 2ay)

+ B(2ap + 2py) + a*y + y(B* + 7* + 2ay)|w?

1
=—1
m

The foregoing expression enables us to reduce Eq. (2.3)toa
system of three algebraic equations for unknown scalar
constants, the first of which defines the parameter «:

ad =

%. (2.8)

Two other equations follow from vanishing the expressions
in square brackets. However, instead of these equations it is
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convenient to consider their sum and difference, which after
simple algebraic transformations can be recast in a more
convenient form

BB +7)*+3a(f +7)+3a*] =0,
B=1IB~-r)=3af~r)+3a’] =0.

As solutions of these equations we take solutions of the
quadratic equations in square brackets for the variables

(B +7) and (f —7), namely

B+r)e= (—éiiLg)a,

272
B-r)s= (gii§>a-

We return to the obtained solutions just below, and now we
pass on the second matrix equation (2.4). By using the
properties (A1)—(A2), we get

(2.9)

APA*+ A2BA = 207 + &Py + a(B* + v + 2a7) B,
+ [@*B + a(2ap + 28y)|(wp, + B,w)

1
= _Eﬂﬂ7

which due to (2.8) gives us the second system of algebraic
equations:

a(f* + 7> + 3ay) = —%, a(3ap + 2py) = 0.

Since a # 0 and considering f # 0, from the very last
equation we obtain

Il
|
|
R

/4

Taking into account this fact, from the first equation we
derive > = —(3/4)a® or = +i(v/3/2)a. The solution
obtained for the parameter y is not in contradiction with the
solutions (2.9). As the f parameter one can take either of
the two solutions +i(1/3/2)a. It is also consistent with the
solutions (2.9). For definiteness let us fix the sign +, i.e.,
we set

p= i\/Tga.

The matrix A in this case takes the following form:

V3 03

A:a<l+i—a)——w2>. (2.10)

2 2

An explicit form of the matrix A% can be obtained by
squaring (2.10) or by making use of (2.7). Here, we have
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A2:a2(l—i£w—§w2). (2.11)

2 2

Note that A? is different from A not only by the extra
dimension factor a, but also by the opposite sign before the
second term (in fact, here we have the second possible
value of the parameter /). An explicit form of the matrices
A and A? hints that they are mutually conjugated. Indeed,
if one takes into account the Hermitian character of the
w-matrix,

o' =,

then the following two relations are true:

; . 1
AAT =ATA = — I

T /342
AT =m!'/B3A%, e

(2.12)
In principle, one can avoid the mass multipliers if one
overdetermines the matrix A, but we do not do it.

Furthermore, we can draw an interesting parallel
between a set of matrices (A,A2, A = il) and a set of
cubic roots of unity: (¢, ¢*,¢* = 1), Eq. (1.7). In the latter
case the following relations, which are similar to (2.12),
hold,

where ¢* is the complex conjugate of g. However, the cubic
roots (¢, g%, 1) possess one more important property (1.12),
whereas for the matrix set (A, A%, 1 1) we have

1 1
I+—-A+—5A?=3(I-a?).
a a

Nevertheless, it is possible to redefine the matrix A - A
such that the following equality will be held,

1 1
I+_A+—2A2:0,
a (04

and at the same time the properties

L=tr A= mse

m
will be survived. Since the matrix .4 will not play any role
later, we give its explicit form in Appendix B.

Now we turn to analysis of the remaining equation (2.5).
By making use of an explicit form of the matrix A,
Eq. (2.10), and the properties (A4)—(A7), we obtain for
the left-hand side of (2.5)

AﬂﬂAﬂyA +Aﬂl/AﬁﬂA
171 3 3 3
= 58+ 1D g+ 2007 3 5 10?|
(2.13)
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Comparing the expression with the right-hand side of (2.5),
we see that their matrix structure is sufficiently close to
each other. The main difference with (2.5) is the presence of
the term in (2.13) linear in the matrix w. We can remove
this term if we slightly complicate the left-hand side of
the initial expression (2.2), namely, we present it in the
following form:

1
2

where the operator L(9) was specified by Eq. (1.2). It is not
difficult to see that the first two equations (2.3)—(2.4)
remain unchanged and instead of (2.5) now we have

(AL(D)AL(9)A + mA2L(9)APL(D)A?),  (2.14)

[(AB,ABA + AP,AB,A)
+m(A’B,AB,A* + AB,A%B,A%)]

= —%(29”,/ - {ﬁp?ﬁl/})‘

N[ =

(2.15)

By using an explicit form of the matrix A one can see that
the expression on the left-hand side of (2.15) completely
coincides with (2.13) except for cancellation of the term
linear in @. Thus, the matrix equation (2.15) leads to
fulfilment of the following equality:

1 3 3
E{ﬂwﬂv} + Eg/wwz - E{ﬁwﬁv}wz = 29/41/ - {ﬂwﬂv}'

The relation is inconsistent. To verify this, it is sufficient to
contract it with ¢"*, for example. With the relations (A9) we
result in a contradiction,

8
B--=0.
3

One can look at the problem in a different way. As we
know in the interaction free case the divisor d(9) commutes
with the operator L(0), i.e.,

[d(0), L(9)] = 0.
Let us substitute now the operator (2.14) instead of the

divisor d(9). The result of calculations is very simple,
namely,

[(AL(O)AL(O)A + mA?L(9)A%L(D)A?), L(9)]

| =

3i
= - E D[a)z,ﬂﬂ]ﬁﬂ.

Most of the terms in expression (2.14) in calculating the
commutator vanish. The only term of the third order in
partial derivatives survives by virtue of [w?, 3] # 0.
Finally, we note that one can get rid of the matrix @’
before the higher order derivative if instead of the initial
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equation (2.1) (more exactly, its left-hand side) one con-
siders the most general and more symmetric expression

% {(AL(9)AL(D)A + mA>L(9)A2L(9)A?), L(9)}

i 3
= %Dﬂyaﬂ - Z ({ﬂﬂaﬁu} + g/u/wz

—{Bu. B }0?) 0¥ — m?1. (2.16)
The matrix @ in the first term disappears by virtue of the
property (A2). We cannot eliminate this term within the
framework of the Duffin-Kemmer-Petiau formalism in
principle. On the other hand its structure up to a numerical
factor coincides with the corresponding term on the right-
hand side of the equation (1.14). Here the other question
arises whether one could remove the term of the second
order in 0¥ in Eq. (2.16). The remainder of the paper will be
devoted to answering this question.

III. CUBIC ROOT OF THE THIRD ORDER
WAVE EQUATION

Let us consider now the construction of the cubic root of
the third order wave equation. It is clear that the “naive”
representation of the cubic root as was defined on the left-
hand side of expression (1.14) is unsuitable. Even with the
use of the most general representation [the left-hand side of
(2.16)] the undesirable term of the second order in the
derivatives survives. Besides, the coefficient of the operator

i
ZD/}”@M

differs from the corresponding coefficient on the right-hand
side of Eq. (1.14) by the factor (—1/8) and to correct it is
also by no means easy. This imply that we cannot get rid of
the unwanted term and correct the coefficient mentioned
above by making use of the properties of the matrices A and
B, only. Here, it is necessary to involve some additional
considerations of algebraic character. In this section we
attempt to outline a general approach to the stated problem.
Let us introduce the following deformed commutator,

= = A, —2p,A=[AB,]., (3.1)

where z is an arbitrary complex number and perform an
analysis of the following expression:

(2P 0n — Am)? = —i(EFEF 2 oror 0t — A3md
+m(EJEPA + AZPED
+ 2P Az oror
+im?(EF A2 + AZ A + A2ED) o,
(3.2)
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First, we consider the contribution linear in 0¥ in (3.2),
namely

im (57 A% + AZPA + A=) 0,

where by virtue of the definition (3.1) we have

— 1

=742 = 4p,A% - b
_ 1

AZZ,(f) _ Zﬂﬂ _ ZAzﬂﬂA,

AEYA = A2,A — ZAB, A2

A sum of these three expressions gives

(AﬁﬂA2 +AY,A + % ﬂﬂ)
_ Z(AﬂMAZ +AB,A + %ﬁ”).

We see that for any value of the parameter z this expression
vanishes by virtue of (2.4).
Let us consider the contribution quadratic in O*:

m(EPVEPA + AZPED 4 204z orr. (3.3)

Note that we have written out the expression (3.3) with no
explicit symmetrization with respect to the vector indices
and v. Analysis of the expression in parentheses in (3.3) is
now more cumbersome. Our first step is to write out
explicitly each term in the expression (3.3),

==Y A=A, A, A~ 2B, AXB,A—ZAB,B, A% +72B,AB, A,
AE/(42> EI(JZ> = AzﬂﬂAﬁv - ZA:ByA2:By - ZAzﬂﬂﬂt/A + ZzAﬁﬂAﬂyA7

PR 1
= AS = AP AP, ~ AR ABA~—2f,f, 43P, APA.

A sum of these three expressions after collecting similar
terms is
) 1
(1 —zZ+z )AﬁﬂAﬁvA - Zzﬁyﬂu

- Z(AﬂﬂﬂvAz + AzﬁﬂﬂbA)
+ [(—z + 22)B,A’B,A + 22B,AB,A%]
+ [(1 = 2)AB,AB, + A2B,AB,).

Further the use of the identity
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1
AﬂuAﬂuA = 5 [(AﬁyﬂyAz + Azﬁ,uﬁl/A)
+ (ABA%B, + BA’B,A)]

enables us to rewrite the sum in a more compact form,

1|1
S(Z) 5 Zﬂﬂﬂu - (Aﬁyﬂqu + Azﬂ/uﬁUA)
+ (A, AB, + BABA%) |-

Here, we have introduced the function

ez)=1+z+22=(z-q)(z— ¢*). (3.4)
which is of great importance for the subsequent discussion.
From the expression obtained we see that the quadratic
contribution (3.3) may vanish if as the parameter z one
takes a primitive root of equation z> — 1 = 0, i.e., g or ¢°,
Eq. (1.7). In addition, it should be noted especially that the
expression (3.3) vanishes without any symmetrization over
the vector indices.

Now we need to analyze the term cubic in 0¥ in (3.2).
The initial expression is

~isY == oo, (3.5)

where by virtue of the definition of the matrix E,(f) we have

=0ENEY = AB,ABAB, — BABABA — ZAB,B,A%,
- Zﬂ/AAzﬁuA:Bll + ZzﬂﬂAﬂyAzﬂ/I
— ZABABBIA + Z2ABB,ABA

+ 22,A%B,BA. (3.6)

A somewhat lengthy computation has shown (see
Appendix C) that the contribution cubic in 9, Eq. (3.5),
in the choice 7 = ¢ and symmetrization over the vector

indices turns to zero. Here we only note that the following
two equalities,

1

ABA® = =2 (B, = IV3E,),
1

AP A == (B +iV3E,), (3.7)

are rather useful in the analysis given in Appendix C. In the
equalities (3.7) we have introduced the matrices &, setting
by definition

5;4 = [ah .By] = _%eﬂulﬂﬂyﬂﬂﬁﬁ-
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These matrices have already been considered in the paper
by Azimov and Ryndin [27], where they played a role of a
spin pseudovector for a spin-1 particle. Besides, the
matrices were intensively used by Fushchich et al. [28]
for establishment of the complementary (non-Lie) sym-
metry of the Duffin-Kemmer-Petiau equation.

IV. THE 7, MATRICES

Let us analyze the results of the previous section from a
slightly different point of view. For this purpose we
introduce a new set of matrices 7, that would satisfy the
following condition,

An, = wn,A, (4.1)
and as an immediate consequence
Azr]ﬂ = wznﬂAz, (4.2)

where w is some complex number. We return to the
expression (1.14). Here, on the left-hand side, instead of
the original matrices f,, we set 7,

[A(in, 0" —ml))* = —i(An,An,An,) 0" 0¥ 0" — m*A3
+ m(An,An,A + An, A%,
+ A%y, An, ) O* 0
+ im*(A%n, + An,A? + A, A)0".
(4.3)

We use the rules of the rearrangements (4.1)—(4.2) to bring
the matrix coefficients preceding the partial derivatives into
a simple form:

1
An,An,An; = w? — Mz

1
An,An,A + An, Ay, + A*n,An, = we(w) Ml

1
A, + An, A% 4 AT, A = e(w) o

(4.4)
where the function &(w) is defined by the expression (3.4).
It is evident that if we set the complex number w equal to ¢
(or g?), then (4.3) reduces to

—i%nﬂmma“a’“a’l — m?I. (4.5)
Further, if the matrices 7, satisfied the identity of the form
(1.13) we could reproduce the right-hand side of the
relation (1.14) (with the replacement f, by 7,).

Let us now turn to the construction of an explicit form of
the matrices 7,. To this end, we return to the generalized
commutator (3.1) in which for definiteness we set z = g.
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We rearrange the matrix A to the left,

[A’ﬂﬂ]q = Aﬁﬂ - QﬂﬂA = A(ﬂ[l - qu2ﬂﬂA)

Here, we have taken into account that A~! = mAZ2. On the
other hand we can rearrange the same matrix to the right,

[Avﬁﬂ]q = Aﬁﬂ - QﬂﬂA = (mAﬂﬂAz - Qﬂﬂ)A
Finally, with the use of an explicit form of the matrices

Ap,A? and A*$,A, Eq. (3.7), we derive the final form of
two equivalent representations of the g-commutator,

(o (]
e (R

The expressions in square brackets are related with each
other by a simple relation

i ()
e[ ()]

Itis clear that as the matrix 7, in (4.1) it is necessary to take
the following expression,

1 i3

(3 (][40
b

[A’ﬂﬂ]q

(4.6)

N\»—v

q2

2l
(D)oo

)(l+q+q)—3hme(
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and the complex parameter w should be set equal to g>.
Thus, the rules of the rearrangements of the matrices A and
17, can be written in the final form,
An, = qznﬂA, Aznﬂ = qnﬂA2. (4.7)
In the choice w = ¢ according to (4.4) the linear and
quadratic in 9* contributions in (4.3) vanish. However, as
we already know from the results of the previous section,
the contribution in (4.5) cubic in the derivatives after
symmetrization with respect to the vector indices also
vanishes. Here we can trace in more detail the reason of
this strange fact. By using an explicit form of the
n-matrices, it is not difficult to see that now instead of
the identity (1.13) we have

1 \2 i3\ 2
n oot = [(1 +2q> - <l\2[) qz] Un,, 0%
(4.8)
The expression in square brackets is formally equal to
1 \2
1+=-q| - l\/_ =1+q+q* —hme() 0.
2 2
(4.9)

Let the function &(z) be a small but finite quantity. It is clear
that the quantity is defined correctly to an arbitrary numeric
factor. For example, the left-hand side of (4.9) can be
formally represented as a product of two multipliers,

SR

—-q

Here, we have used the definition of cubic roots of unity (1.7). The expression obtained differs from (4.9) by the factor 3.
Instead of the operator (in,0" — mlI), we introduce the following operator:

(81/3;(1) 1.(2)

8”—ml>,

and correspondingly instead of the expression on the left-hand side of (4.3) we put

*The notation 11, we have introduced for the matrices (4.6) is not quite appropriate. In the general theory of the DKP algebra [2,29,30]

usually by this symbol the specific expression, namely, 7, = ZﬂM

Guu» 1s meant. However, by virtue of the fact that we do not use these

matrices in the text, this should not mislead. The only exception is Sec. V, where we will need a particular value of the expression written
out just above for y = 0. To avoid confusion, we set off the symbol no(z2ﬁ(2) — 1) in bold.
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[ (o =]

where we have introduced the notation

n@=(1+52)n+ ("2 )e

In the limit z — ¢ according to the formulas (4.4), the
contribution that is linear in 9 behaves as £*/3(z) — 0 and
the one that is quadratic in 9 behaves as €'/3(z) — 0. On
the strength of Egs. (4.8)—(4.9), nonvanishing contribution
gives us only the term cubic in 9* and thus we finally obtain
the desired expression,

1 ; o 3: _'l W 13,2
ll_r)l;{A(gl/%z)nﬂ(z)@ ml lmDn”(’? m-I |,

(4.10)

where

lim n,(z) = n,(q) =n,

7=q

and 7, is defined by the expression (4.6).

V. PROPERTIES OF THE -MATRICES

Let us derive a number of relations to which the matrices
1, satisfy. Our first step is to consider the commutator of
two n-matrices. In view of the original definition (4.6) we
have

mend = (1430) Bt + () el

ra(1+30) () @ + s

We recall that &, = [w, §,]. By making use of the formulas
of the w-f, algebra in Appendix A, it is not difficult to
obtain the following relations:

[é;w gu] = _Lﬁﬂ’ﬁl/]

and

[fuvﬁy] + [ﬁw éu] = [a)’ [ﬁwﬁu“’

whereupon

. 1\ [iV3)2
inen) = <1+261> - <2> qz]S;%)

o1 3) (st
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Here, we have denoted

#V - l[ﬂwﬂv] (51)
In view of the property (A8) the last term on the right-
hand side of the above expression is equal to zero. In the

first term by the coefficient preceding the matrix S,(ﬁ),
the expression (4.9) is meant. Thus, as the commutation
relation for the #x-matrices we take the following
expression:

im0 (<) .(2) = 51

(5.2)
This relation will be extensively used in the next section in
analysis of the interacting case.

In addition, the relation (5.2) enables us to clear up a
question about the relativistic invariance of equation

A( 1/3.( )nﬂ(z) mI)l;/(x; z) =0 (5.3)

(in the notation of the wave function y we have explicitly
separated out the dependence on the deformation param-
eter 7). In fact, let us consider the double commutation
relation with the #-matrices. By using (5.2) we have

lim—— ([, (2)- ()] ()] = (S n,).

lim (5.4)

On the strength of the definition of the n-matrices we
write out the right-hand side

s = (1450t + o ().

The first commutator, by virtue of the trilinear algebra of
p-matrices, equals

[Sl(ﬁ)’ﬂ/l] = i(ﬂugllu - ﬂvg/w)’

and the second one by using the same algebra and the
property (A8) does

[ uv 75}»} = l(é:yg/lu gugﬁﬂ)'

Gathering the expressions obtained, we finally find

3 .
(S8 1] = (1,930 = 1.930)- (5.5)
If by analogy with (5.1) we introduce a new matrix S ,(,',7,> (2)

setting by definition
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82/3(Z)

then the double commutator can be presented in a more
customary form,

) 1 _;
ll_lg S (Z)’£1/3(Z> m(2)| = i(n,9n

— Ny Go)-

This relationship ensures us the invariance of equation for
the wave function y(x; z) under a Lorentz transformation
when we pass to the limit as z tends to g.

Further, let us consider the question of a trilinear relation
to which the matrices 7, have to satisfy. In other words,
what is analog of the relation (1.3) for these matrices? Here,
we skip the calculational details and give only the final
result

131% 1@ (2) + 1 (@02 (2))

= g;M’/]u + gui"ﬂ' (56)
The proof of the trilinear relation is presented in
Appendix D.

One more interesting question is connected with the
behavior of the #-matrices under the operation of Hermitian
conjugation (denoted by the symbol ). First of all we note
that instead of the expression (4.10) for the cube of the first
order differential operator, an equivalent expression could
be used,

i 4 o= )|

1
- (—i—D . m21),
m

where the matrices 7, (=lim,_,7,(z)) satisfy the
g-commutation relations
A%, = qi, A%, AR, = ¢*i,A,

and their explicit form is defined by the following expres-

sion:
1
My = <l+§q2>ﬂﬂ_ (z\/‘) 25/4

The matrices 7, and 7,
ship

are related by the simple relation-

_ l-¢q
’1/4 _liqznﬂ quﬂ

(5.7)
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By virtue of the initial definition (4.6) we have

mt:(w— >ﬂy (’q 7.

On the strength of the properties of cubic roots of unity the
equality g* = ¢> holds. Further, for the p-matrices the
following relation,

(5.8)

ﬁ)l = ’10[7';4’107

is true. Here, ny = 2(By)> —1 (see footnote 2 in the
preceding section). Besides, by making use of the
Hermitian character of the w-matrix, we find

& = (moP.mo) @ — o (MoBmo).-

Under these circumstances, multiplying the expression
(5.8) on both sides by 7, and taking into account the
properties

noPo = Potlo

=1,

e (st

Comparing the expression above with (5.7), we derive the
desired rule of Hermitian conjugation

noBi = —Pino,
Nowty = —w,

we finally obtain

'10’7;’10 = (

nonitlo = —qi,.

In closing this section we discuss the question of the
existence of such a nonsingular transformation T that
would connect the matrices f, with the matrices 7, i.e.,

-1 _
T8, T =n,. (5.9)
Let us seek the matrices T and T~! in the form of an
expansion in powers of w,
T=a+bo+ca?, T'=a+bo+in?
where a, b, ... are some unknown constants. Substituting
these expansions into the left-hand side of Eq. (5.9) and

using the formulas (A1)-(A3), we derive the first system of
algebraic equations for unknown quantities

o)
az;—_q(%§>.

We define a solution of this system as a function of two
arbitrary quantities @ and c,
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=g ae)

. q i\/§>
b= a+c)|l—|. 5.10
Enile 10
Further, we require the fulfilment of the relation
TT-!' =1 (5.11)
that gives us the second algebraic system:
aa = 1,
(ab + ba) + (b + cb) =0, (5.12)
(ac + ca) + (bb + ct) = 0.

The use of the first equation in (5.12) enables us to express
all coefficients through an arbitrary constant a,

1 ) 1 /iv3 11
a=—, == — s c=——
a a\ 2 )1 227

“(5)e oo
q, sza%

and ipso facto the required transformation has the following

structure:
1 1
v::[1+<’f>qw+ }
a 2

(D)oo

However, a straightforward multiplication of these two
expressions leads to

S
||

(5.13)

T-!

QI

TT! =1-?,

instead of the desired one (5.11). This points to the fact that
there is a contradiction in two remaining equations of the
system (5.12). Substitution of the solution (5.13) into the
second equation of (5.12) results in the identity, and
the third equation gives

1 1

54+74- (lg—)q +4q =q+q¢ =-L

The equation does not vanish. This tells us that there is
no nonsingular similarity transformation connecting the
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matrices 3, with n, and in this sense, they are nonequiva-
lent. However, it can be supposed that these matrices are
related in a somewhat weak (limiting) sense.

VI. INTERACTING CASE

In the interaction free case we have derived the expres-
sion for the third order wave operator as a limit of cube of a
certain first order operator, namely,

i G )]

1
= (—i—[!n,ﬁ" - m21>.
m

It remains to take up the question of a modification of this
expression in the presence of an external electromagnetic
field. We introduce the interaction via the minimal
substitution:

(6.1)

oM - DF = 0F + ieA*(x).

With an external gauge field in the system the left-hand side
of Eq. (6.1) takes the form

iy -m) |

From the last two terms in (4.3) and from the corresponding
relations in (4.4) it is not difficult to see that the contri-
butions linear and quadratic in the derivatives vanish in the
limit z — ¢ in the interacting case also. This is independent
of the eventual noncommutativity of Ds and in doing
s0, as in the interaction free case, we have the following
expressi0n3:

1
*lim — (AnﬂAnUAn ,D*D*D*) — A3m?

—q

1 1
= _l_hm (ﬂﬂ”p’hDﬂDyDﬂ)
mz

(6.2)
However, here one can already expect that by virtue of
noncommutativity of the covariant derivative this limit will
have overwhelmingly more complicated structure in com-
parison with the right-hand side of (6.1).

For analysis of the expression (6.2) we make use
the following identity for a product of three covariant
derivatives,

*In the subsequent discussion for simplicity the z-dependence
of the various quantities under the limit sign is understood
although not written out explicitly.
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6D*D'D* = {D*, D*, D*}
+ [3D*(ieF**) + D*(ieF*) + D (ieF**)]
+ [2(ieF*)D* + 2(ieF*™)D*), (6.3)

where for brevity by the symbol {D*, D¥, D*} we mean a
product of three D-operators completely symmetrized over
the vector indices y, v and A:

{D",D¥, D*} = (D*D"D* + D*D"D*)
+ (D*D*D* + D*D*D")

+ (D*D*D* + D*D*D*). (6.4)

The Abelian strength tensor F,, (x) is defined by
[DF, D¥] = ieF*(x).

The proof of the identity (6.3) is given in Appendix E.

Our first step is to consider the contribution in (6.2) due
to the symmetrized part (6.4). In view of a total symmetry
over permutation of the indices, we get

1 1
—i— lim - DH,. DV, D*
i lim Snﬂmm{ }

11
= —ie lim - [(umomy + maniy) + (ns + mmuny)

m z—q &€
+ (myman, + numan,)|{D*, D¥, D*}

1

= _l% (g/wnll + gul’?ﬂ + gulrlu){DM? Dy’ D/l}

In the last line we have taken into account the trilinear
relation (5.6). By making use of an explicit form of the
symmetrized expression (6.4) and collecting similar terms
we obtain finally the desired limit

1 1
—i— lim — D*, D¥, D*
ol LU B VN }

2

=—i_ [D*(n,D*) + D*(n;D*)D,, + (n,D*)D?].
Let us next consider the contribution from the expression

in the first square brackets in (6.3). The initial expression

for our analysis is

1 1
—i— lim —p,n,m[3D*(ieF**) + D*(ieF*) + D*(ieF**)]
m z—q &

r .1
= e% 11_11} ED#FIM{:%YIF[T’]D, ’7/1] + [’71/7 ’7/1]77/4

+ (= mamuiy) }- (6.5)

For the first two terms in braces by virtue of the property
(5.2) we can set at once
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1
lim—ifn,. n,] = S (=i[B,. B,)-

6.6
Lim = (6.6)
For the contribution in parentheses we use the identity

Mt m2) = (sl = [ malmy)
(6.7)

M5 — MMy =

and then the relation (6.6). Eventually the limit of expres-
sion (6.5) takes the form

12

1
—— Dt (ieF) (4,8 + sV,
2m
o
+ %D”(ZEF A)(S%)m - S/(fl)”v)'

The expression in the second square brackets in (6.3) is
analyzed in just the same way with the use of Egs. (6.6)—
(6.7). Collecting all of the above calculated in (6.2) and
recalling the factor 6 on the left-hand side of the identity
(6.3), we derive the desired expression for the cube of the
linear operator in the presence of an electromagnetic field,

i 3
i - o
i A (Ggmtor - )
1
= —i@ {2[D2 (,D%) + D*(,D*)D,, + (1, D*) D?]
1 5
5 e[ D F (S, 45, m,) = D PS8, n,)]
5 p
el D480 +5n) - DA -5 |
-m?I. (6.8)
The above expression has been presented in the most
symmetric form. However, it can be rewritten in a slightly
different form. This will enable us, in particular, to compare
it with a similar expression suggested -earlier by
Nowakowski [1]. At the beginning we consider the
expression in the first square brackets on the right-hand

side of (6.8). In the second term there we rearrange the
operator D* to the right,

D¥(n,D*)D,, = (n,D*)D* + n,[D*, D*|D,

1.
= (m,D")D* + S ieF D (Gt — Gually)-

Similarly, in the first term at the same place we rearrange
the operator D? also to the right,

I
D*(n,D*) = (n,D*)D* + 3 ieF** D (g,,m) = 9uuly)

1 . VA
+ 3 ieDHF (g,wm - 9,4,1771/)-
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Thus, instead of the expression in the first square brackets
now we have

3(m,D*)D* + ieF*D*(g,,n; = gual,)
1 ; U VA
+ 5 ieD'F (g/wr//l - !JMMD)-

Further we rearrange the matrix 7, in the terms S%)nﬂ
[the second and third square brackets in (6.8)] to the left,

SO, =Y + 188 ] = 8% = igums = gum)-

Here we have used the property (5.5). Gathering all of the
above calculated and collecting similar terms, finally, we
derive instead of (6.8) the following expression:

4 g ~mi)|

1
= —i— (n,D*)D?> — m*I

~

m
5/ ie
-2 (50 ) st e
1/ ie
+§ (%) (Sl(l/li)’/l/l - g/w’/lxl>DﬂFM
4 (e B gwa Y
~ e\ 5, ) (1S2)F“D
2 (ie
+3 (50 ) 52 = gunrpr. (69)

Let us compare the right-hand side of this expression with
that of Nowakowski [Eq. (5.7) in [1]]. In our notation, we
have here

ie
m

1
—i—($,D")D? — m2I — (2—> (B, SV D F
m

1 ie B v
(@)

ie

T (2—> (S Bs = Gl ) FD". (6.10)
m

In rewriting this expression we have used the identity for

the f-matrices

i(B.BB: — BiBB) = BuSY) = (S0, - SU)p,).

The first difference between (6.9) and (6.10) is that in (6.9)
in all terms instead of the matrices f, we have the matrices

1, (except for the spin structure SI(J/? = i[p,, B,], which is
the same in both cases). Besides, in (6.9) the third term has
no analog at all. It is also interesting to note that the
numerical coefficients in the last four terms in (6.9) were
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generated in such a manner that if the operator D¥
commuted with the function F**(x) the structure of two
expressions (6.9)—(6.10) (up to the corresponding matrices)
might have perfectly coincided.

Thus, in this section we have shown that our approach
correctly reproduces the general structure of the third order
wave operator in the interacting DKP theory as it was
suggested by Nowakowski in [1] on the basis of purely
heuristic considerations. The expression obtained has a
more symmetric form in comparison with Nowakowski’s
one, Eq. (6.10). However, the main difference of our
expression (6.9) from the corresponding expression
(6.10) is that here instead of the original f-matrices we
need to introduce more complicated combinations, namely
n-matrices. The physical meaning of this fact so far is not
clear for us.

VII. THE GENERAL STRUCTURE OF A
SOLUTION OF THE FIRST ORDER
DIFFERENTIAL EQUATION (5.3)

In this section we analyze the general structure of a
solution of the equation of the first order in the derivatives,
Eq. (5.3). With an external electromagnetic field in the
system, the equation takes the form

L(z.D)y(x;z) = 0. (7.1)
Here, we have introduced a short-hand notation for the first
order differential operator

L(z.D)=A ((91/3’m nu(z) D" — m1> .

(7.2)
In the notation of this operator we have explicitly separated
out the dependence on the deformation parameter z. A
solution of Eq. (7.1) can be unambiguously presented in the
following form:

w(x:2) = [£(z.D)Po(x:2), (7.3)
where in turn the function ¢(x; z) is a solution of the third
order wave equation

[L(z.D)Pg(x;z) = 0. (7.4)
Such a representation of the general solution of the main
first order equation (7.1) is the most convenient in practice
by virtue of the fact that the wave function ¢(x;z) is a
regular function of the parameter z in the limit z — ¢,
whereas y(x;z), generally speaking, is not regular (see
below). The regularity of the function ¢(x;z) is a conse-

quence of the existence of a well-defined limit of the cube
of the operator L:

105017-15



YU. A. MARKOV, M. A. MARKOVA, AND A.1. BONDARENKO

lim[£(z, D))* = thsof Eq. (6.9).

7=q

Let us analyze in more detail the structure of the solution
w(x;z) in the form (7.3). For simplicity we restrict our
attention to the interaction free case. We introduce the
following notation:

0=z—q.

Then one can present the matrices” 1,(z) in the form of an
expansion in terms of o:

n(z) = (1+1z>ﬂﬂ+z<l\/_)§ﬂ M+ o0, (1.5)

Here, the matrices 77, are defined by the formula (4.6), and
the matrices #, have the form

. (zf)(gﬂ

Taking into account the expansion (7.5) and the definition
of the fur}ction €(z), Eq. (3.4), the first order differential
operator L(z,d) can be rewritten as follows:

(7.6)

o 1
<51/3 1/3’7ﬂaﬂ+5 1/3’7/18” ﬂ

L(z.0) = [
q-q (7.7)

QE

From an explicit form of this operator it is clear that a
solution of the equation (7.1) can be obtained in the form of
a formal series in positive and negative powers of the
parameter 6'/3:

1 1 1
ot 51/1—1(76) + Wvl—w(x) TSiEY-13 (x)

+ wo(x) + 8Py 5(x) + - - (7.8)

w(xz) =

It is naturally to be expected that the wave function y(x; z)
will be singular in the limit z — g. It can be seen more
precisely from analysis of the representation (7.3). Really,
an expansion of the square of the operator £(z, 9) has the
form

*It should be noted that the matrices 11,(2), generally speaking,
are defined up to an arbitrary matrix function 7 ,(z) such that
lim,_,7,(z) = 0. However, we set for simplicity 7 ,(z) =0
throughout this paper.
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1

[£(z. 0)) = 52/3 /3

(An,An,)o"o”

1
5]/3 m(An,A + Aznﬂ)(‘?" + m*A

A — e (An,An,, + A, An, )0+ 0"

1

Further, by virtue of the fact that the solution ¢(x;z) is
regular at z = ¢, it can be presented in the form of a formal
series in positive powers of §'/3:

@(x:2) = o (x) + 831 ;3(x) + 67305 3(x) + 5901 (x) +- -
(7.10)

Substituting the expansions (7.8)—(7.10) into the relation
(7.3) and collecting terms of the same power in 8'/3, we
obtain that y_;(x) = w_4/3(x) = ... = 0 and

Was(x) = —# (A AR )0 (),
wo1/3(x) = =z m(An,A + A%, )0 g (x)
- ﬁ (An,An, )0 & @ 3(x),
wolx) = m2A20(x) - Q%M(AnﬂA - A1 5(0)

1
—gn (An,An, ) 0" 0¥ @3 3(x), (7.11)

and so on. Thus, if ¢,(x) # 0 and/or ¢, 3(x) # O, then the
solution of the first order differential equation (7.1) is
singular with respect to the parameter §'/3 in the § — 0
limit. The maximal power of the singularity is equal to 2.

The differential equations to which the functions
@o(x), @1/3(x), ... must satisfy are defined by the corre-

sponding expansion of the cube of the operator £(z, ).
With allowance for the expressions (7.7) and (7.9), we get
the following:

(1) the singular contributions:

51 —é(An,,AnyAm)aﬂa”aﬁ,

5723 Wm(An”Azn,, +A%n,An, + An,An,A) 040",

5—1/3 .

L
. sz(A%ﬂ +A7’]MA2 +A27]MA)8”
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The first expression vanishes by virtue of the nilpotency property: (5 - 3)* = 0. The other two vanish on the strength of the

properties (4.7) and (1.12). Further, we have
(2) the regular contributions:

P
T

_ Substituting this expansion of the cube of the operator
L(z;0) and the expansion (7.10) in (7.4), we obtain the
desired equations for the functions ¢ (x), @;/3(x), ...,

801 Uy(d)go(x) =0, (7.12)
8131 Us(0)g1/3(x) + Uy 3(0) g (x) = 0,
3. (7.13)

By using the following relations’ between the n- and
#'-matrices,

1
A A =—(n, + 4*n),).
m
1

A A> = —(=n, + qn,),

m
(mumany + namy,) + (i, + nunin,)
+ (e, + mnan,) = (Guatly + Gually)

and the properties (4.7), it is not difficult to show that the
operator U, (0) is reduced to our third order wave operator

1
<—i—Dl1ﬂ8” - m21>.
m

The corresponding first “correction” to the operator can
result in the following simple form:

Uy(0) =

Uy5(0) = —0"Plnm, — g, + q*n,m, 040"

By this means in this section we have presented a simple
scheme of calculating the wave function y(x; z) satisfying
the basic first order matrix equation (5.3). The scheme is
based on using the solution ¢(x;z) of well-defined third
order wave equation (7.4). We have shown that the required

>The first pair of the relations is a direct consequence of (3.7)
and (4.7). The third relation is easiest to obtain from Eq. (5.6) by
differentiating with respect to z and setting then z = ¢ or by a
straightforward calculation with the use of the original definitions
of the - and #'-matrices [Egs. (4.6), (7.6)] and of the relations
(D2)—(D4) from Appendix D.

[An,An,An; + An,Anl,An, + An,An, An,]0* 04 0% — m*I = U (9),

1 R
3 S m|(An, A%y, + AP An,) + (An, A%, + A%n,An) + (A, An A + An, A, A)|040 = U, 5(9),
Q /

|

solution w(x; z) exhibits a singular character in the limit
7z — q. This singularity has a finite (the second) order in the
small expansion parameter §'/3. The crucial equation in all
schemes of calculations is the equation (7.12). It is the
solution ¢ (x) of the third order wave equation that enables
us to define a complete solution ¢(x;z) by means of the
relations of (7.13) type and then via the relations of (7.11)
type to define a complete solution y/(x; z) with any degree
of accuracy in the parameter 5'/3. The generalization of the
results of this section for the case of the presence of an
external electromagnetic field in the system under consid-
eration is straightforward.

VIII. THE FOCK-SCHWINGER PROPER-TIME
REPRESENTATION

In this section we discuss in more detail another
difficulty (it has already been mentioned to some extent
in the introduction) closely related to noncommutativity of
the Duffin-Kemmer-Petiau operator in the presence of an
external electromagnetic field

(8.1)

and the proper divisor dpgp(D), Eq. (1.5) among them-
selves. This difficulty is associated with the impossibility of
defining the path integral representation for the spin-1
particle propagator interacting with a background gauge
field within the standard DKP theory only. To understand
why this is so, we turn again to the Dirac theory. For the
spin—% case there are a number of well-developed tech-
niques of deriving the path integral representation for the
Green’s function of a spinor particle in background Abelian
[9,31] or non-Abelian [8,32] gauge fields. Our main
interest here is with the very first step in such a con-
struction. It is connected with the Fock-Schwinger proper-
time representation of the inverse Dirac operator
Lii(D) = (iy,D* — mI)~". This step consists in “squar-
ing” the denominator through multiplying the latter by the
corresponding Klein-Gordon-Fock divisor

Lpgp(D) = if,D* — ml,

1 _ dDirac (D)
LDirac (D) dDirac (D)LDirac (D) ’

(8.2)
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where dpjrc (D) = (iy,D* + mlI) followed by the Fock-
Schwinger proper-time representation (see below). It is
worthy of special emphasis that the basis for this “obvious”
passage is a simple, but very important fact: commutativity
of the operators dpj,. (D) and Lp;,.(D) among themselves.
Let us return to the Duffin-Kemmer-Petiau theory. Given
the explicit expressions for the operators Lpgp(D) and
dpkp(D), Egs. (8.1) and (1.5) correspondingly, by analogy
with the Dirac case, we seemingly could write at once

1 _ dpkp(D)
Lpgp(D)  dpkp(D)Lpkp(D)

and further follow the known procedure. However, by
virtue of noncommutativity of these two operators among
themselves, the expression on the right-hand side is clearly
meaningless. For the construction of the needed path
integral representation for the Lpkp(D) operator we inevi-
tably come to the necessity of introducing into consider-
ation a divisor that would commute with Lpgp(D) and
eventually result in the third order wave equation. Below
we will briefly describe our approach to the problem under
consideration.

We return again to the spin-1 case. Following the paper
by Fradkin and Gitman [9] instead of the initial Dirac
operator Lp;,.(D) we introduce the operator transformed
by the factor iys,

’

2 = zDirac(D) = i}/s(i]/”D” - ml)

We know this operator to be the square root of the Klein-
Gordon-Fock operator (more exactly, one of its roots), as it
is defined by means of Eq. (1.9) with the replacement
d, — D,. Itis precisely for the inverse operator L7 that it
is natural to determine the Fock-Schwinger proper-time
representation. We believe the operator L to be an odd
(Fermi) one by definition. Instead of (8.2) we have now

1 L S dy o s
ZE?_I/ dT/_Xe—lT(H—IS)+T)(£’ € — +0,
0 T
(8.3)

where

A

. e
H=1L%=—(D*+m?)I + EO-IU’F”D(X)’

1
Oy = 2 [7/4’ 71/];

7 is an even variable and y is an odd (Grassmann) variable,
anticommuting by definition with £. The pair (z,y) is
treated as a proper supertime. By virtue of the fact that the
Hamilton operator H is represented by a product of two
Fermi operators, it is an effective Bose operator as it
must be.
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For the case of DKP theory as the operator L we take the
cubic root of the third order wave operator, namely, the
expression (7.2). Let us assume that this operator is a para-
Fermi operator (parastatistics of order two). In this case it is
not difficult to write an analog of the Fock-Schwinger
proper-time representation for the inverse operator L
similar to (8.3),

7 2 (o] 2 A P N
L_ L[ g [ 4 minttroie) + el 2y + 1202
L I 0 = ’

(8.4)

where now

A

H(z) =13z, D)

and y is a para-Grassmann variable of order p =2 (i.e.,
7* = 0) with the rules of an integration [33]

/d2x=0=/d%(,3],

We consider that the para-Grassmann variable y and the

/d%(, L] = 41>,

operator L conform to the following rules of commutation:

2.2 =0,  [lx.L].4]=0.

As a proper para-supertime here it is necessary to take a
triple (z,y.x?). The Hamilton operator H(z) represents a
product of three para-Fermi operators; therefore, in this
case, t00, the A (z) is an effective Bose operator. Of course,
only its limiting value has a physical meaning

H=1imH(z)

7—q
a3 L i u 3
= 11_125 (z,D) = 11_1)1; [A <—81/3(Z) 1,(z)D: mlﬂ ,

where the most right-hand side limit is defined by the
expression (6.9).

However, it should be specially noted that the expression
(8.4) for an arbitrary value of the deformation parameter z
is meant here as a purely formal one, since the fact of the
presence of supersymmetry corresponding to parastatistics
of order two has not been demonstrated by us explicitly. In
addition, the indicated parasupersymmetry most likely does
not take place for z distinct from g (or from ¢?). The final
conclusion about the existence of this symmetry can be
made only after constructing the appropriate path integral
representation and passage to the limit z — ¢. In this
connection one should point out a similar situation taking
place in the case of the so-called deformed Heisenberg
algebra with reflection R introduced by Wigner [34]. The
algebra includes a real-valued parameter v, and reveals very
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peculiar properties for special, discrete values of this
parameter (v =—(2p+1),p =1,2,...). This very non-
trivial fact was first found by Plyushchay [35], who pointed
out the relationship of the (2p + 1)- dimensional repre-
sentations of the R-deformed Heisenberg algebra to par-
afermions of order 2p. These special values of the
parameter v also reveal themselves in the context of
supersymmetry as well as field theory [36].

Besides the presence of (local) parasupersymmetry of
order two in the system under consideration will ensure the
consistency of the minimal coupling prescription for the
case of the DKP theory considered in our paper, as it is, for
example, for the spin-1/2 charged field. In the latter case a
local supersymmetric structure associated with the Dirac
equation guarantees a consistency of the minimal coupling
prescription when a free theory is generalized for the case
of interactions with an external electromagnetic field.

The expression (8.4) can be taken as the starting one for
the construction of the desired path integral representation
with the use of an appropriate system of coherent states in a
close analogy with the approach proposed by Borisov and
Kulish [8] for the spin—% case. Here, it would be possible to
make good use of the known for a long time [37-39]
connection between the trilinear algebra of f-matrices and
the para-Fermi algebra of order two. In fact all apparatus
needed for the construction of the path integral representa-
tion (coherent states, formulas of orthonormality and
completeness, and so on) can be found in the papers by
Kamefuchi and coworkes [33]. However, in our case
instead of the matrices f8, we have the matrices 7,(z).
The trilinear relations for these matrices formally coincide
only in the limit z — ¢. As a hint of what we shall do in this
more complicated situation, the unpublished paper by
Dunne [40] can serve. In the latter it was shown how
one can define the creation and annihilation operators
explicitly depending on the deformation parameter z and
the corresponding relations of commutation with the
subsequent passage to the limit z — ¢ resulting in the
finite expressions.

In closing let us mention another fact closely related to
the subject matter of this section. In the literature there are
very few papers dealing with the problem of construction of
an action for a relativistic classical spinning particle using
the para-Grassmann variables with subsequent quantization
of the classical model [41-43]. Here we note only that in
the action suggested in these papers there are the linear and
quadratic in para-Grassmann variable y (in our notations)
terms, which are similar to those in the exponential function
in the expression (8.4). In our case these terms automati-
cally appear in defining the Fock-Schwinger proper-time
representation, and in the works [41-43] they insure the
invariance of the action under the local world line para-
SUSY transformation. However, the kinetic part of the
action in [41-43] was chosen in a complete analogy with
the kinetic one for the classical models of a Dirac particle,
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whereas we expect based on the general formula (8.4) that
the situation here may be more complicated.

IX. CONCLUSION

In this paper, we have set up the formalism needed to
construct a cubic root of the third order wave operator
within the framework of Duffin-Kemmer-Petiau theory.
One of the key points in our approach is the introduction
into consideration of the so-called deformed relation of
commutation, Eq. (3.1). On the basis of the latter a new set
of the spin matrices 77, was defined instead of the standard
DKP matrices f3,. It was shown that the third order wave
operator is obtained as a formal limit of the cube of a certain
first order differential operator. This operator is singular
with respect to the deformation parameter z when the latter
approaches the primitive cubic root of unity ¢. Finally, we
suggested a way to apply the derived expression for the
cubic root to the problem of the construction of the path
integral representation for the Green’s function of a spin-1
particle in an external electromagnetic field.

A few words may be said here about the para-Grassmann
variables, which will be used in the construction of the
desired path integral representation. Although the para-
Grassmann algebra of order p = 2 is still quite visible for
concrete calculations, however, probably in the situation
under consideration the use of its bilinear version [44—49]
(sometimes it is named the generalized Grassmann algebra)
is more suitable. It is connected with the fact that on the one
hand the primitive cubic root g explicitly enters into the
definition of the #-matrices, into the commutation relations
and so on, and on the other hand the use of a primitive nth
root of unity (in particular for n = 3) is directly laid in the
basis of the new para-Grassmann calculus.

It only remains for us to say a few words about the
massless limit of the third order wave operator. Throughout
this paper we have considered that the parameter m, which
by convention is responsible for the mass of a particle, was
not equal to zero. As it is known [26] in the massless variant
of DKP theory the scalar “mass matrix” ml must be
replaced by a singular matrix Mw?, where M is an arbitrary
constant with the dimension of mass. The matrix Ma? does
not commute any more with everything, as this occurs for
ml [see the text after Eq. (1.13)]. The last circumstance
qualitatively changes the whole picture of calculations in
comparison with the massive case. Thus, for example, here
there is no analog of the formula (1.11). Therefore, now we
can only speculate that in the massless case instead of the
expression (1.14) there should be something of the type

[B(ip, 0" — Ma?)]* = —i%Dﬂﬂaﬂ,

where B is a certain matrix depending on @ and additional
parameters, with a possible replacement of the matrices
f, by a more complicated combination. Preliminary
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consideration has shown that, probably, one of the crucial
factors here is the use of the cubic roots of minus unity
rather than of unity. This problem requires separate careful
consideration.
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APPENDIX A: THE w-f, MATRIX ALGEBRA

In this appendix we give some necessary formulas of
the w-f, matrix algebra for the spin-1 case, which are
used throughout in the text. Details of the proof of
these formulas and also their generalizations to higher
dimensions can be found in the papers by Harish-
Chandra [26] and Fujiwara [29]. We use the metric
g = diag(1,—1,—1,—1). Let us recall the definition of
the @ matrix:

i
o = Zeﬂﬂaﬁyﬁvﬁiﬂa'

Then in view of the above definition and the trilinear
relation for f-matrices, Eq. (1.3), we have

o =, (A1)
0*f + pu@* = P, (A2)
wf,w =0, (A3)
Puboo + op,p, = wg,,, (A4)
BB, = PufLa’, (AS)
Buop, + B,op, = 0. (A6)
The next formulas
{B Bt + w{p. B} =200, (A7)
Bu-Blo = olp,.p.] =0 (A8)

are an obvious consequence of (A4). If one defines the
matrix B = ff,,, then the following relations are also valid:

w?=3-B, Bw = wB =2w. (A9)

Besides the useful contractions are
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ﬁﬂwzﬂy = 3(1 - (1)2>,
ﬂ”ﬁvﬁyﬁv =3- a)Z’
ﬂ”ﬂyﬂy = :Bv-

APPENDIX B: CONSTRUCTION OF
THE MATRIX A

We write down once again an explicit form of the
matrices (A, A%, A%) obtained in Sec. II,

V3 o3
A=all+i—w-=w?
a[ +120) 260},
V3 o3
A2 — 2T =i -2
a[ 12w za)],
1
A =dlI=—1I (Bl)
m

An immediate consequence of (Bl) is the following
relation:

1

1 1
“A+ A2+ A =3(1 - o). (B2)
a (04 [04

Let us construct such a matrix A that simultaneously
satisfies two requirements:

LAt Mg A =0 (B3)
and
Oy (B4)
m
We search for this matrix in the following form,
A=A+x(I-a?),
where x is an unknown parameter. It follows that
A? = A% + x(2a + x)(I — ?) (B5)
and
A3 = %I + x(x? + 3ax + 3a%) (I — w?). (B6)

Substituting the obtained expressions into the left-hand side
of the expression (B3) and considering (B2), we obtain

1 1 1

— A+ A+ A
a a a

1

a3

(x3 + 4ax? + 6a*x + 30%) (I — w?).
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The requirement of vanishing the expression on the
right-hand side results in the following equation for the
parameter x:

X} +dax? + 6a%x 4 3’ = (x + a)(x* 4+ 3ax + 3a?) = 0.

It is apparent that the given algebraic equation has three
roots but only two of them are compatible to the additional
requirement (B4). Actually, by virtue of (B6) we have
another equation for the unknown parameter x,

x(x? + 3ax 4 3a%) = 0.

The two roots needed are
|
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Thus, we find the required expressions for a new set of
matrixes (A, A%, A3):
A=A+x(I - ?),
A2 = A% + ax* (I — ?),
1
AP =—1.
m

In deriving the expression for A2 here, we have considered
in (B5) the identity

x(2a+ x) = ax*.

APPENDIX C: THE PROOF OF VANISHING (3.5)

By using the relations (2.3)—(2.4) one can rewrite the first, second, fifth and seventh terms in (3.6) in an identical form:

ABABAB, = —ABBA B, — ABALBA,
ﬁﬂAﬂyAﬂﬁA = _ﬁyAzﬁuﬁAA - ﬁuﬁyA2ﬁﬂA’
AﬂﬂﬂyAﬂﬁA = _AﬁyﬂvﬂiAz - AﬁyﬂvAzﬂ}n

1
BuABABy = =By A’ BuApy = — uBub-

Substituting these relations into (3.6) and collecting similar terms, we obtain then

1
_Ezzﬁﬂﬂl/ﬂﬂ + (ﬁyﬂyAzﬂlA - AﬁyAzﬂuﬁl) - (Z + Zz)ﬂ,uA2ﬁvAﬂ/l + (ZAzﬁﬂﬂbﬂiA - Z2AﬁﬂﬁyﬁﬂA2)

+&(2) (B ABBIA = ABBLA%B,).-

The last term here can be turned into zero if one sets z = ¢. Taking into account another identity

1
_Aﬂquﬁbﬁl = AzﬂﬂAﬁuﬂl + Eﬂﬂﬂuﬂl

and the equality ¢ + ¢*> = —1, we derive further

1
E (1 - qz)ﬂyﬂuﬁﬂ + (qAZﬂyﬂuﬁ/lA - quﬂﬂﬂuﬂlAz) + (AzﬁﬂAﬂuﬁi +:B/4A2:BDA:H}L + ﬂﬂﬂvAzﬂlA)'

The final step is a contraction of this expression with 9#3*9*. Making use again of the relation ¢ = —1 — ¢, the identity

(1.13) and the property (2.4), we obtain

O~ DR+ (BARS, + BABAB, + BENBANFP Y.

(C1)

Now we are concerned with an analysis of terms containing the matrices A and A2. With allowance made for (3.7), the

expression (C1) turns to
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1 3 1 1 1
Z Dﬂﬂaﬂ - %ﬂuﬁuﬁiaﬂayy + % Dﬂﬂaﬂ - % i\/g(fﬂﬂyﬂ/l + ﬁyfuﬂﬂ =+ ﬂﬂﬂy&&)aﬂayal + % i\/gméuaﬂ' (CZ)

By using once more the identity (1.13) we see that the first three terms here mutually cancel. Furthermore, it is not difficult
to verify that the following equality holds:

gﬂﬂyﬁl + ﬂuévﬁ/{ + ﬂﬂﬂyfﬁ = wﬂyﬂyﬂl - ﬂﬂﬂl/ﬂ/{w' (C3)

In view of (C3) the last but one term in (C2) takes the form
1 . " L.
=5 VOB, = Bubufr0) OO = = i3, 0",

This term is canceled precisely by the last term in (C2).

APPENDIX D: TRILINEAR RELATION FOR THE 5-MATRICES

By a direct multiplication of the matrices 7,, Eq. (4.6), we derive the starting expression

13 1 \2/iV3
MMM + M, = <1 + 2Q> (ﬂuﬂuﬁi +ﬁ/1ﬂl/ﬂﬂ) + (1 + CI> < )q[(ﬂuﬂygi +ﬁy§zxﬂ/1 + gyﬂuﬁl) + (ﬂ(—);{)]

2 2
1 iv/3) 2 iv3\ 3
+ <1 + 54) <%> qz[(éﬂé:vﬂﬂ + éﬂﬂué:ﬂ +ﬂﬂ§u§i) + (MQA)} + (%) q3 (§M§V§A + éﬁgugﬂ)‘
(D1)

For the first term on the right-hand side we use the basic relation for the f-matrices, Eq. (1.3). For the second term it is
necessary to use the relation (C3), which in view of Eq. (1.3) leads to

(ﬂﬂﬁyél + ﬁyéuﬂﬁ =+ éﬂﬁuﬂl) + (ﬂ(—)ﬂ) = g;wg/l =+ g/lvé:/r (D2)

In analysis of the third term in (D1) we first note that

éﬂgl/ = {ﬁwﬂu}wz - gﬂywz _ﬂﬂﬁy

and

gﬂﬂuéﬁ = g;wa)zﬁll + gﬂuﬁyw2 - (wzﬁuﬂuﬁl +ﬂﬂﬂlﬂuw2) - wﬂuﬁmﬁAO);
then
(éﬂgyﬂl + éﬂﬂbéﬂ +ﬁy5v§l) + (/,l(—)/l) = _Z(ﬂﬂﬁuﬁi +ﬂﬂﬂyﬂﬂ) + wz[{ﬁﬂ’ﬁv}ﬂﬂ + {ﬁbﬂv}ﬂu _ﬁv{ﬁﬂvﬂl}}
+ Lﬁl{ﬁwﬂu} +ﬂﬂ{ﬂbﬂv} - {ﬁwﬁl}ﬂu]wz

- _Z(Qﬂyﬂﬂ + g/ll/ﬂ/l) + wz(g/wﬁ/l + g/lyﬁ/t) + (g/wﬂ/l + gﬂyﬂﬂ)wz
= _(gﬂuﬂl + gﬂvﬂu)' (D3)

In the last step we have used the property (A2).
Finally, for the last term in (D1) we have

§ﬂ§y§2 + 5};51/6}4 = ﬂy(ﬂuwﬂﬂ +ﬂiwﬂv) - w(gﬁwﬂl + gﬂvﬂﬂ) + (g;wﬁll + g/luﬁu)w = _(gﬂvéﬂ + .gxlvgﬂ)' (D4)

Here, for the first term on the right-hand side we have used the property (A6). Gathering the expressions calculated above
and collecting similar terms, we obtain instead of (D1)
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(30 - (5 {0

nu”ur/ﬂ + ’1/1’71/’1;4 =

= e(q) (gt + guy)

whence it follows the trilinear relation (5.6).
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i3

1
+ 5‘]) (gm/ﬂi + gﬂuﬂy) + < 2 )q(glwéﬂ + gﬂuép)}

APPENDIX E: PROOF OF THE IDENTITY (6.3)

Let us present a product of three covariant derivations D* in an identical form

D“D'D* = {D*,D*, D*} — (D*D*D* + D*D*D* + D*D*D" + D*D*D* + D*D*D"). (E1)

By the symbol {D*, D¥, D*} one means a completely symmetrized expression defined by the formula (6.4). We transform
each term in parentheses in such a manner so that the expression obtained contains the term D*D*D*. Here, we have

D*D'D* = D*D'D* — D¥|D¥, D*] — [D*, D*|D* — D*[D*, D"],
D*D*D* = D*D*D* — [D*, D*|D*,

D*D*D¥ = D*D*D* — [D*, D*|D* — D¥|D*, D*],

D*D*D¥ = D*D*D* — D*[D¥, D],

D*D*D* = D*D*D* — [D*, D*|D* — D*[D*, D*].

Substituting these expressions into (E1), taking into account the equality

[D*, D] = ieF™(x),

and collecting similar terms, leads to (6.3).
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