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Supersymmetry: Boundary conditions and edge states
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When spatial boundaries are inserted, supersymmetry (SUSY) can be broken. We have shown that in an
N =2 supersymmetric theory, all local boundary conditions allowed by self-adjointness of the
Hamiltonian break A/ = 2 SUSY, while only a few of these boundary conditions preserve N = 1 SUSY.
We have also shown that for a subset of the boundary conditions compatible with A" = 1 SUSY, there exist
fermionic ground states which are localized near the boundary. We also show that only very few nonlocal
boundary conditions like periodic boundary conditions preserve full N' = 2 supersymmetry, but none of

them exhibits edge states.
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I. INTRODUCTION

Although supersymmetry (SUSY) as a fundamental
theory has eluded experimental evidence to date, there
has been a recent revival of interest in the subject because it
emerges naturally as an effective theory describing the
quantum phase transition at the boundary of topological
superconductors [1].

All real physical systems available for experiments are of
finite size and with spatial boundaries, which in general
reduce the symmetries of the system. Hence it is eminently
reasonable to ask if the SUSY of a (d + 1)-dimensional
finite size system (like the topological superconductor) can
be obtained by the consistent truncation of a parent SUSY
system in full (d 4 1)-dimensional Minkowski spacetime.
Although one might expect that insertion of spatial boun-
daries generically breaks SUSY, we will show that there are
certain boundary conditions which do preserve supersym-
metry partially. Discussions of boundary conditions in this
context assume significance, and a clear classification of
such boundary conditions is required. The presence of
boundaries, on the other hand, naturally leads to the
question of edge states, which, if extant, play a vital role
in the physics at the boundary [2].

Boundary conditions in supersymmetric theories have
been studied in detail (for example see [3,4] and references
therein). We consider this problem from a different per-
spective. We show that self-adjoint domains of the
Hamiltonian are enough to obtain the boundary conditions
which preserve (or break) supersymmetry. Further, our
main objective is to show the existence of edge states in a
supersymmetric theory, which will be relevant in the
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physics of the newly discovered supersymmetric phase in
topological superconductors. For this purpose, a simplified
treatment of a noninteracting scalar-fermion model is suffi-
cient. As discussed in [5-8], for the above-mentioned model,
it is not difficult to see that a supersymmetric variation in the
bulk gives boundary terms which vanish only when Dirichlet
or Neumann boundary conditions are chosen for the scalar.
It is well known that with Dirichlet or Neumann boundary
conditions there are no scalar edge localized states [9].
Nevertheless, we show that there can still be fermionic edge
states which do not break supersymmetry.

In [1] it was shown that in the phase that breaks SUSY
spontaneously, there are edge states on the surface (i.e., the
boundary) of the superconductor. However, it is not
obvious whether such edge states exist without breaking
SUSY. We will investigate the existence of such edge states
when the boundary conditions can be chosen to preserve
(some) supersymmetry. As we will show, such “SUSY
preserving” edge states do exist, and the ground states in
such theories are particularly interesting.

Our focus in this article will be on the insertion of a
spatial boundary OM in (d + 1)-dimensional Minkowski
space, in such a manner that the resulting space continues to
be a (d + 1)-dimensional manifold M with a boundary OM
(which can be curved in general). The boundary conditions
on the (scalar and spinor) fields on M cannot be chosen
arbitrarily. They are obtained by demanding that the scalar
and Dirac Hamiltonians (H, and H, respectively) be self-
adjoint. Of these boundary conditions, we expect that only
a subset will preserve supersymmetry (at least partially),
while generic boundary conditions will break supersym-
metry completely.

For H, to be self-adjoint, it is necessary that the scalar
Laplacian (=V? + m?) be self-adjoint [9]. Then, if we
demand locality of boundary conditions, the domain Dy =
Dy: of Hy contains all ® € L*(M) satisfying
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[B(x) + i0,®(x)] = Up(x)[®(x) — i0, P(x)].
U};(x)UB(x):I], x € 0OM, (1)
where 7 is the outward normal, 0, = 7 - 6 is the normal
derivative at OM, and Up(x) is a unitary operator on ®(x)
[if ®(x) is the N component, Ug(x) € U(N)].

For the choices Ug(x) = —lyxy and Ug(x) = ly,y, we
get the Dirichlet and Neumann boundary conditions,
respectively. Other choices for Up(x) give more general
boundary conditions,

(0,8 —k®](x) =0, k=i(l+Up)~'(1-Up),
r(x)" = x(x), (2)
whenever Uy does not have unit eigenvalues.

To discuss the self-adjointness of Hy = iy’y/0; — my°,

we start by defining two chiralities (on the boundary) for
the Dirac spinors W:

(1 4% - 2)w, (3)
The y-matrices here obey

j=12---d, and np* =

{rry =2 "=y
where p,v=0,1---4d,
diag(l,-1,-1,---=1).
The essential self-adjointness of Hy requires that the
domains Dy, and Dy coincide. If M is compact, the most
general self-adjoint extension fulfilling the local boundary
condition is given by ¥ € W'2(M) ® CV satisfying [9,10]

(U, = Upy®W_)yy =0, UpUp =1,
[Up.y°7 - 2] = 0. (5)

In Sec. VI, we consider also nonlocal boundary con-
ditions. They include in particular periodic and antiperiodic
boundary conditions on bosons and fermions. We also
briefly consider the possibility that the boundary conditions
are partly local and partly nonlocal.

We now analyze these general observations in various
dimensions.

II. (1 + 1) DIMENSIONS

In the full (1 + 1)-dimensional Minkowski spacetime,
the simplest theory of a complex scalar ¢ (with the number
of components N = 1) and a Dirac fermion ¥ is N = 2
supersymmetric [11]. It is described by the action

S = /oo dX() /°° dxl(ﬁg-l-[:D), (6)

where
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1
Ls= 3 (#®*0,D — m*P*P), (7)
1 _
Lp= 5 (iUy0,¥ — m¥¥). (8)

The SUSY transformations are

oD = eV,
5P* = Ve,

oV = —iyted, ® — me®,
sV = igy'0, " — me®*, 9)

€]
€ =
€2
where €,’s are Grassmann constants and & = e'y?.

We consider the same system in a (1 + 1)-dimensional
manifold M with spatial boundary OM:

with

M = {(x" x"): x! <0}. (10)

The action is given by

o0 0
S = / dxo/ dx(Ls+ Lp) + S5 (1)
and Sy are the boundary terms on OM as in [5,6]:

I [e U7
Sp = Z/ dxo(70,P + (0,27)® — iVy V). (12)

(So]

The boundary terms are analogous to the Gibbons-
Hawking term. Its goal is to give rise to local equations
of motion independently of boundary conditions on the
fields.

The boundary conditions (1) and (5) are imposed on
and U at the boundary points x' = 0. Out of this family of
allowed boundary conditions, which ones are consistent
with the SUSY transformations (9)?

The SUSY transformation 6® and 6¥ must obey (1) and
(5) on the boundary. The variation of the scalar field on the
boundary leads to

(1= Up)e¥ +i(1 + Up)e(01¥)]oy =0, (13)

Uj in this case being a phase. The variation of W on the
boundary yields

[=i(r'e).0,® — me, Dl
= [<iUF(r"€)_0,® — mUpy%e_®|yy,,  (14)

which leads to
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liyte_0,® 4 me |y,
=iy’ Ure 0,® + mUpy’e_®yy.  (15)

It can be easily checked that (13) and (15) are incompatible
if Uy # £1 (Dirichlet or Neumann). Therefore if Robin
boundary conditions are imposed on scalars [k #0 or
kK # oo, where k is defined in (2)] in the (1 + 1)-
dimensional theory, then A =2 SUSY is completely
broken.

Dirichlet and Neumann boundary conditions: However,
Dirichlet and Neumann boundary conditions on the scalar
are consistent with SUSY. To show that let us consider the
massless and massive cases separately.

Massless case: If we impose the Dirichlet (Uz = —1) or
Neumann (U g = 1) condition on the massless scalar ®, the
supersymmetry condition (15) leads to

Dirichlet: iy'e_0,®|yy = —iy’7' Ure, 0P|y,
Neumann: iy%e_0y®|,y, = =iy’ 7' Ure 0y®|oy, (16)

which yields the following condition on the SUSY param-
eter €:

Dirichlet: e_ = —y°Upe_, (17)
Neumann: e_ = y'Uye,. (18)
On the other hand, these choices U = £1 in (13) give
Dirichlet: |y, = 0, (19)
Neumann: &0, ¥|,,, = 0. (20)

For the Dirichlet boundary condition on the scalar, the
condition (19) is trivially satisfied when the boundary
condition (1) and the condition (17) on € are used.

For Neumann boundary condition on the scalar, the
condition (20) [along with (18)] yields a new boundary
condition

(D019) oyr = —Urr°(019)_|ous- (21)

However, the appearance of this extra boundary condition
is not surprising in a supersymmetric theory. The super-
charge Q obeys

{0, 0}V «x Hp V. (22)

Hence, it is necessary to ensure that (H ;W) is also in the
domain of H. Otherwise SUSY will change the domain of
Hp. Hence, we must also impose

(Hp) oy = Ury*(Hp®)_|oy (23)
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which in the massless (1 4 1)-dimensional case reduces
to (21).

Therefore, the Dirichlet (or Neumann) boundary con-
dition on massless @ is consistent with the supersymmetry
transformations and the system is supersymmetric. But
owing to the relation (17) [or (18)], the system only has
N =1 supersymmetry.

Massive case: 1f the Dirichlet boundary condition
(Up = —1) is imposed on the scalar, the supersymmetry
condition (13) and the boundary condition (5) lead to

e.=—y"Uge.. (24)

With the Dirichlet boundary condition on ® and (24), it is
easy to see from (15) that

SV, = Upy’s0, (25)

is satisfied. Therefore, this choice of boundary conditions is
consistent with SUSY.

If the Neumann boundary condition (Uz =1) is
imposed on the scalar, the supersymmetry condition (13)
gives

é0,%)l, =0, (26)
while (15) leads to

[iy’e_0p® + me, Py
= [iy%°Ure_0y® + mU gy e_®]yy,. (27)

In contrast to the massless case, here, because of the extra
mass term in (27), this cannot be made compatible with
(26) just by a condition on €. However, the two can be made
compatible by imposing the further condition Uy = U;.
Hence the Neumann boundary condition on the massive
scalar in (1 + 1) dimensions is consistent with SUSY when

e_=yUpe., Up = U}. (28)

As a result, in the massive (1 + 1)-dimensional theory,
imposing the Dirichlet or Neumann boundary condition on
the scalar breaks /' =2 SUSY to A/ =1 SUSY.

With the choice y° = 6, and y' = isy, in the (1 4 1)-
dimensional massless case and in the massive case with
Dirichlet boundary condition, the most general U satisfy-
ing (5) is

eiﬂ 0 »
Ur={", L) 00€R (29)

For the massive case with the Neumann boundary con-
dition, because of the condition (28), only =60 =0 or z
are allowed by supersymmetry and hence the only Uf’s that
preserve SUSY partially are
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oi-s(!9) 50

In the case of a system with two boundaries, like an open
superstring, the standard boundary conditions are Neumann
boundary conditions for scalars and (30) for fermions at
both boundaries. The case with Uy = I at both boundaries
is called the Ramond (R) sector, while the case with Uy = 1
at one boundary and Uy = —I at the other is termed the
Neveu-Schwarz (N-S) sector.
Using the above in (17), (18), (24), and (28), we get

Dirichlet: €, = —ie e,, (31)
Neumann (massless): ¢, = ie ¢,, (32)
Neumann (massive): ¢, = %ie,. (33)

The closure of the SUSY algebra is given by
[56‘7 517] = _i(STW - ﬂTe)ao + Zm(én - ’716) (34)

The unbroken A/ = 2 SUSY algebra in (1 + 1) dimen-
sions is generated by two supercharges Q. :

{Q—» Q+} = Z,
P, 2] =0, (35)

{0, 0.} =Py £ P,
{Q+’ Q—} = Z,

where Z is the central charge. In the N' = 1 theory, as the
SUSY parameter satisfies (17) or (18) in the massless case
and (24) or (28) in the massive case, the super charges are

Dirichlet: Q = Q, +ie?Q_, (36)
Neumann (massless): Q = Q, —ie?Q_,  (37)
Neumann (massive): Q = Q, £iQ_, (38)
satisfying
Dirichlet: {Q,Q} =2Py—i(e™Z - ¢ Z),
Neumann (massless): {Q, 0} = 2P, + i(e™?Z — ¢ Z),
Neumann (massive): {Q, 0} =2P, +i(Z-2), (39)
and
[Q.Py] = 0. (40)

In (34), the mass term is the central charge contribution
(i.e., the massless theory has Z = 0). In the massless case,
this term vanishes and we get the usual N =1 SUSY
algebra. But in the massive case, the central charge term can
be absorbed by rescaling P, and the usual N' =1 SUSY
algebra can be recovered:
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Dirichlet (massive) : Py =Py — é (eT0Z — ¢0Z),
!
2
[0, Po] = 0. (41)

Neumann (massive): Py = Py + = (Z — Z),

{Q7 Q} = 2750’

Hence, if the theory is massless, the N =2 SUSY is
broken to a family (characterized by 6 and 6) of N' = 1
supersymmetric theories by introducing the boundary
with a Dirichlet or Neumann boundary condition on the
scalar.

On the other hand, if the theory is massive, in the
presence of a boundary with only the Dirichlet boundary
condition on the scalar, it breaks A" = 2 SUSY to a family
of N = 1 supersymmetric theories. In the case of Neumann
boundary conditions, A/ =2 SUSY is broken to one of
the two possible N' = 1 SUSY theories, depending on the
fermionic boundary conditions (i.e., only when Uyp = %1,
and for any other choice of Up, SUSY is completely
broken). Any other boundary condition on the scalar breaks
SUSY completely.

A. Variation of the action

One can verify that the above results can be simply
rederived by requiring invariance of the full action. Indeed,
the variation of the action (11) under SUSY yields

1 -
5 =1 / A0 (20,T) + (9, e)D
4 Jom

— Uy Y00, @ + 7' y' WO, P*]

x1=0

+ / dxO[yle® — gy 0], . (42)
4 Jom !

which does not vanish with an arbitrary choice of boundary
condition. However, it can be easily shown that the above
vanishes for those boundary conditions which preserve
N =1 SUSY (discussed in the previous section).

When the Dirichlet boundary condition is imposed on
the scalar,

Dl =0, Iyl =0, (43)

it is easy to see that S vanishes.

When the Neumann boundary is imposed on the scalar
and the theory is massless, the SUSY conditions (18)
and (20) give

€01V u_o =0, e_=yUpe,, (44)

and the boundary condition (5) yields
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&'y Wla_o = —[ely' V. +ely' W,

[€+7’1‘I/ +€+U} YOYIUF}’ L
—lely" W+ Y UL U UL,
—[e U+ €],
[€+71‘I’— - €+7 B TR

|
e

(45)

Using (44) and (45) in (42), it is easy to check that in the
massless case S vanishes.

In the massive theory, when the Neumann boundary
condition is imposed on the scalar, along with (44) and
(45), Up also satisfies Uy = Up. Owing to the last
condition on Uy, it follows that

&'y = [€+7’ r'y ety
= [ U 0 +€1UF7/M‘I’] 1=
= [\ U’y " U_ + e Uy _] i
= [~ Up'U_+ el Uly! @_]xl:o
0.

(46)

When (44)—(46) are substituted in (42), in the massive case
also, we find,
oS =0. (47)

Therefore, these results are consistent with the findings of
the previous section.

III. EDGE STATES IN (1 + 1) DIMENSIONS

In these massive A =1 theories, for the choice of

0= (2n+1)% in (29), there are zero-energy fermionic
modes:

1
U, = Gebn ( ( 1)n>, b=(-1)"m, neZz. (48)

G is the normalization constant. These modes are normal-
izableonly form > Qandn = evenorm < Oandn = odd. If
|m| is sufficiently large, the zero modes are exponentially
damped in the bulk x! < 0 and are therefore localized near the
boundary. For the scalar ®, however, there is no zero-energy
mode with a Dirichlet boundary condition. Thus the fermionic
edge states, when present, are not paired with bosonic edge
states. But such unpaired states do not break SUSY as they are
zero-energy modes and singlets under SUSY. Consequently,
when the boundary conditions are suitably chosen such that
the edge states exist, the residual N' =1 supersymmetric
theory has a fermionic ground state.

It is interesting to note that edge states do exist in
Ramond and Neveu-Schwarz sectors in the massive case.
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In the massless theory, such fermionic edge states do not
exist because there is no mass gap.
IV. (3 + 1)-DIMENSIONS

In the full (3 + 1)-dimensional Minkowski spacetime, a
theory with two complex scalars ®,’s (a = 1,2) and a
Dirac spinor W with the action

s= [ (L + L) (49)
Can = 2 04010, 8, + iTp"0, 0 + L FiFe
kin_i aﬂa+l}/ " +§a s
i T ra i T dHa I
L,=m E(I)HF —EFQCD + v (50)
is N = 2 supersymmetric with a central charge Z = P*P,,.

Here F,’s are two complex scalar auxiliary fields which are
necessary to close SUSY off-shell. The nonzero central
charge ensures that particles with spin > % are absent from
the multiplet (for details see pages 150-152 in [12]).

The supersymmetry transformations are

50, = 2890, (51)
oV = —iy#(0,®,)e" — iF ,e, (52)
6F, = 2&%"0,V, (53)

where €%’s are a pair of constant four-component spinors
satisfying the reality condition:
el = —Ce*, €2 = Cel, C=y'y3%0  (54)
When a spatial boundary M is inserted at x' = 0, in the
resulting manifold M the set of allowed uniform boundary
conditions for the scalars ®,’s is again given by (1). But Ug
in this case is a 2 x 2 matrix:

vy up

Therefore, the local boundary conditions on the ®,’s are

UpUp = lhyr.  (55)

(q)a + ian(ba)@M = U%b<q)b - ianq)b)BM (56)
For the choice U4’ = —§% and U4 = 5, we get the
Dirichlet and Neumann boundary conditions, respectively.
For U$ # +5%, we get the another type of boundary
condition: 9,®,|gy =k P, |50 Where k¥ =i((1+Ug)~!
(1 Up))®.

On the spinor W, again the boundary conditions (5) and
(23) are imposed. But unlike (21) in the (14 1)-
dimensional massless case, (23) involves the tangential
derivatives of W at the boundary.
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The supersymmetry transformation at the boundary must
obey

5(q)a + ianq)a)aM = U%b(s((bb - ianq>b)8M' (57)
Using (51), the above yields
(5% — U)W + i(5% + U9, Wy = 0. (58)

Dirichlet boundary condition: If we impose Dirichlet
boundary conditions on both the scalars, Ug = —1l,,,, then
(58) and (5) give [similar to the (1 4 1)-dimensional case]

et = —Ulyle. (59)

Because ¢,’s are constant spinors, the above is true not only
on the boundary but also in the bulk. Further, using
Dirichlet boundary conditions on ®,’s and (59), it is easy
to check that on the boundary OM [similar to the (1 + 1)-
dimensional case]

SV, = Upy's¥,, S(HpV), = Upy’5(HpV). .

(60)

Thus the Dirichlet boundary conditions on both scalars are
compatible with supersymmetry transformations. But as
the €*’s are related by (59), the theory is only N =1
supersymmetric.

The closure of the SUSY algebra is governed by

[0, 8, = 2i€,y"n"0, + 2i€,n"57, (61)
where 6, gives the action of the central charge on the fields.
The second term in the above vanishes in the massless case
and in the massive case it can be absorbed by rescaling the
momenta, in a similar fashion as in the (1 + 1)-dimensional
case [see (41)].

Neumann and Robin boundary conditions: It is easy to
check that if we impose a Neumann- or Robin-type
boundary condition on either or both of the scalar fields
®,’s, then (5), (23), and (58) cannot be satisfied. Thus such
boundary conditions on scalars are not consistent with
supersymmetry and SUSY is completely broken.

However, if we insert a boundary OM with Dirichlet
boundary conditions on scalars, then the theory can still be
supersymmetric. The theory with ' = 2 SUSY breaks to
an N = 1 supersymmetric theory for every allowed Up.
For any other choice of boundary conditions, SUSY is
completely broken.

V. EDGE STATES IN (3 + 1)-DIMENSIONS

In the following we investigate the possibility of the
existence of edge states in theories which have residual
N =1 SUSY. For simplicity, let us consider the region
x3 < 0 as the (3 4 1)-dimensional flat manifold M. On the
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boundary plane x;3 = 0, the direction of the outward normal
is 7 =1(0,0,1). We choose the y-matrices in the repre-
sentation

0 o . .
r= ( ), o =(l,0'), o = (1,-0").

o 0
(62)
In this case U satisfies
[Ur. 7] =0, UUr=1  CUL-ULC=0.
(63)

The last condition in the above is imposed by (54) and (59).
Therefore, the most general U in this case is given by (a
detailed derivation is given in Appendix A)

Uy 0 0 Uy
0 wu —-uy O

UF _ 1 2 ’
0 u u 0

* *
-v; 0 0 ]

Uy, Uy, V1,0, € C,

(64)

with [u;]? + [up)? = 1 and |v > + |v,|* = 1.

(1) Massless case: In the massless case, if u; =0,
Re(u,) #0, and Im(u,) #0 are chosen in (64),
there exist two zero-energy edge localized states for
arbitrary b > 0:

1
—Upy 3, 1y 2
\I](e)l _ Ak 02 ebx +ikyx!+ikyx , (65)
0

with k; = bIm(u,), k, = bRe(u,), and
0
ebx3+ik1xl+ik2x2’ (66)

0 _
Ve, = Dy
U

1

with kl = —blm(l/lz), k2 = —bRe(uz). Ak and Dk
are normalization constants. As ‘I/QT\PQZ = 0, these
two modes are linearly independent. For sufficiently
large b, these modes are localized near the edge and
are exponentially damped in the bulk.
For this choice of u; and u,, there does not exist
any other normalizable zero-energy edge state.
(ii) Massive case: If we choose Re(u;) =0, Im(u,) # 0,
Re(u,) #0, and Im(u,) #0 in (64), there exist
either of the following two zero-energy states:
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(a) For Im(u;) <0,
1

_u*
2 ebx3+ik1x'+ik2x2
b
uy

0
with b = — s, ky = bIm(u,), and k, = bRe(u,).

(A; is the normalization constant.)
(b) For Im(u;) > 0,

0
m MT b3 ik x' ik, x?
\I/ez = Dk e ! 2 (68)
u
1
with b = ﬁ, k1 = —bIm(uz), and k2 = —bRe(l/t2>. (Dk

is the normalization constant.) If m is very large and/or
[Im(u,)| is very small, these states are exponentially
damped in the bulk and are localized near the edge.

For these choices of u; and u,, there does not exist any
other normalizable edge state.

For a scalar field obeying Dirichlet boundary conditions,
there are no zero-energy modes of the Laplacian (for details
see Appendix B). On the other hand, it is possible to choose
boundary conditions for the fermion such that there exist
fermionic zero modes. In such a situation, the ground state
is made up of a fermion but no boson. This however does
not break supersymmetry, precisely because it is a zero-
energy state.

If such fermionic edge states exist, it should be possible
to experimentally detect them in condensed matter systems,
especially in the supersymmetric phase of superconductors.

VI. NONLOCAL BOUNDARY CONDITIONS

Although the main goal of this work is to analyze the
possibility of existence of edge states in supersymmetric
theories associated to topological superconductors, since
the problem of SUSY breaking by boundary conditions has
been addressed in other contexts we shall extend our
analysis to more general boundary conditions. In the case
of topological superconductors all relevant physical con-
ditions are local and they were analyzed in the previous
sections. However, it is well known that in superstring
theory SUSY is preserved by periodic boundary conditions.
These kinds of boundary conditions are highly nonlocal
and the natural question one can raise is, Are there other
nonlocal boundary conditions which preserve SUSY totally
or partially? We shall focus now on this problem.

A. Periodic boundary conditions on both
scalars and fermions

Consider (1 + 1)-dimensional N =2 supersymmetric
theory with action (6) and SUSY transformations (9).
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We introduce spatial boundaries at x; =0 and x; = a.
In the manifold

M ={(x%x":0<x! <a}, (69)
it is easy to see that boundary conditions
(I)‘)q:() = (I)|x|:a7 alq)|x|:0 = 61(P|x|:a’
\IJ‘xIZO = \Il‘x]:a (70)

give a self-adjoint domain of H, and Hp.

With these boundary conditions, it is straightforward to

show that the SUSY transformations (9) satisfy
5(I)|x1:0 = 5(I>|x1:a’ 5\Illx1:0 = 5\Il|x1:a (71)
without any condition e.

Hence, these boundary conditions are consistent with
SUSY transformations and preserve N' =2 SUSY. They
describe a closed superstring with Ramond-Ramond (RR)
boundary conditions. It is quite easy to extend the above to
higher dimensions and the result holds true there as well.

B. Periodic boundary conditions on scalars and
antiperiodic boundary conditions on fermions

However, from a physical viewpoint it is more natural to
consider periodic boundary conditions on the scalars and
antiperiodic ones for fermions. In field theories at finite
temperature these are the natural boundary conditions,
because positivity preserving requires antiperiodic boun-
dary conditions for fermions in the temporal direction, and
by Euclidean symmetry it is also convenient to have such
conditions also in space dimensions [13].

Again, we consider a (1 + 1)-dimensional ' = 2 super-
symmetric theory with action (6) and SUSY transforma-
tions (9). On introduction of spatial boundaries at x; = 0
and x; = a, it is easy to see that on the manifold

M = {(x%x"):0 < x! <a}, (72)
the boundary conditions
<I)‘xlz() - q>|x1=a7 81q>|x1=0 = 81(I>|x1=a’
\Il‘xlz() = _\I,|x1=a (73)

give a self-adjoint domain of H; and Hp,.
On demanding that the SUSY transformations are
consistent with the boundary conditions, we get
5(I>|x1:0 = 5<I)|x]:a' (74)
This leads to
6[\1}|x1=0 - \Il|x1=a] =0. (75)

This is inconsistent with the fermionic boundary condi-
tion W[, o = -V, _,.

105016-7



ACHARYYA et al.

Therefore, when such boundary conditions are imposed
on the fields, SUSY is completely broken. It is easy to see
that the same result is valid in any spacetime dimension.

C. Dirichlet boundary condition on scalar and (anti)
periodic boundary condition on fermion

Again consider the action (6) and SUSY transformations
(9) on the manifold

M={(x"x":0<x' <a}. (76)

If we impose

Plyo=0=2, o  V|,o=FV], , (77)
then the supersymmetry transformations (9) lead to
6[81(1)|x1=0 + 81(1)|x1=a] =0. (78)
The above can be satisfied only if we demand
a1‘I)|x,=0 = ial(mxl:a- (79)

Therefore, the requirement to preserve SUSY is that the
domain of H; must be

DHS = {(I) <I)|x1:0 =0= q)|x1:a’
alq)l)Cl:O = :l:alq)|x1=a}' (80)
However, this is not a self-adjoint domain of H. Hence, we
cannot demand (79). Thus the boundary conditions (77) are

not consistent with (9) and imposing such boundary
conditions will break SUSY completely.

D. Neumann boundary condition on scalar and (anti)
periodic boundary condition on fermion

Again consider the action (6) and SUSY transformations
(9) on the manifold

M= {(x%x"):0<x! <a}. (81)
If we impose

8I(I)|)c1=0 =0= aICI)|)CI \I/|x1=0 = :l:\I’|x1=a’ (82)

=a’

then the supersymmetry transformations (9) lead to

8O[y06<q>|x1:0 + q)|x1:a>] + me[q)'x]:O + q)‘xl:a} =0.
(83)

The above can be satisfied only if we demand
q>|x1:0 = iq)‘xl:a' (84)

Therefore, the requirement to preserve SUSY is that the
domain of H,; must be

PHYSICAL REVIEW D 92, 105016 (2015)
DHS = {(I>:81(D|x1:0 =0= 81<1)|x1:a7
q’|x1:0 = j:q>|x1:a}‘ (85)

Again, this is not a self-adjoint domain of H,. Hence, we
cannot demand (84). Thus the boundary conditions (82) are
not consistent with (9) and imposing such boundary
conditions will break SUSY completely.

In a similar fashion, one can show that imposing a Robin
boundary condition on the scalar and (anti)periodic boun-
dary condition on the fermion also breaks SUSY completely.
These results are also valid in any spacetime dimension.

E. Periodic boundary conditions on scalar and local
boundary conditions on fermion

Consider the action (6) and SUSY transformations (9) on
the manifold

M={(x"x":0<x! <a}. (86)

The boundary conditions

¢|x1=0 = (I)|x1=a’ aICI)l)q:O = alq)|x]=a’
\II+|x1:0 =Up(x; = 0)\I]+|x,:0’
\Ij+|x1:a = UF(x] = a)\Ij+|x1:a (87)

give a self-adjoint domain of H; and Hp,.
For the above boundary conditions to be consistent with
SUSY transformations, the following must be satisfied:

52, o = 5%, _,. (88)
This yields
€W,z = ¥l =] = 0, (89)
which can only be satisfied if we further impose
Uli—0 = Y=o (90)

However, imposing this condition on ¥ shrinks the domain
of Hp and in that shrunk domain, Hj, is not self-adjoint.
Hence, (90) cannot be imposed. Thus the boundary con-
ditions (87) cannot be made consistent with the supersym-
metry transformation (9). As a result, imposing (87) will
break SUSY completely.

One can easily show that these results are also valid in
any spacetime dimension.

F. Other nonlocal boundary conditions

Finally, we discuss some boundary conditions which are
similar to Ramond and Neveu-Schwarz boundary condi-
tions that are well known in the context of string theory.
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Consider (1 + 1)-dimensional A = 2 supersymmetric
theory with action (6) and SUSY transformations (9) in the
manifold

M= {(x%x"):0<x! <a}. (91)
The Dirac operator is
Hp = iy%' 0y — my". (92)
We choose the representation of the y-matrices

Y’ = o2, y' =ic!, (93)

where ¢’s are the Pauli matrices.
For any W € Dy, and ¢ € Dy, , the self-adjointness
demands that the conditions

5-1-63\14)61:(1 - §+O-3\Il|x]:a =0 (94)

are satisfied with the same condition on ¥ and &.
U and £ are two-component Dirac spinors:

() @) e

In terms of the components, the condition (94) can be
written as

G0, - &), _, — 60, =& W,], _=0. (%)

We discuss two types of boundary conditions which can
satisfy the above.

1. Pseudoperiodic boundary conditions

It can be easily seen that (96) can be satisfied by the
boundary condition

\Ill |x1=a = e \Ill |x1=07

, 0,,0, eR.  (97)
\Il2|x]:a = 6”92\:[]2|x1:07 }

Hence,
DHD = {\P:qll‘xlza = eml\pl‘,\q:o’
\I/2|x1:a = eigqu2|x1:0} (98)

is a self-adjoint domain of Hp.
The supersymmetry transformation (9) can only be made
compatible with the boundary condition (97) if we impose

91 = 62 = 0’ (I>|x1:a = eigq)|x]:07 61(1)‘,\6]:(1 = eigalq)|x1:0'
(99)

It is easy to see that

PHYSICAL REVIEW D 92, 105016 (2015)
IDHS = {q):q)‘xl:a = e[6q>|x1:0’ 8lq)|x]:a = ei981q>|x1:0}
(100)

is a self-adjoint domain of H.

Hence, these boundary conditions are consistent with
SUSY transformations and preserve AN =2 SUSY.
The cases considered in Sec. VI A are special cases of
these conditions with € = nz where n € Z.

VII. CONCLUSIONS AND DISCUSSIONS

We have shown that SUSY can be broken when spatial
boundaries are introduced in an N = 2 supersymmetric
theory. Only very few boundary conditions partially pre-
serve SUSY. For most boundary conditions, SUSY is
completely broken.

The results for (1 4+ 1)-dimensional systems are sum-
marized in the following Table 1.

Similar results were obtained in two-dimensional kink
backgrounds with space boundaries as infrared cutoffs [14].
The breaking of SUSY by effect of branes and/or domain
walls is well known and can be related to our results (see,
e.g., [15] and references therein). However, the most
interesting result is that edge states can appear even if
SUSY is not completely broken.

As we have shown, it is possible to extend our analysis to
any spacetime dimension. Though we have considered only
flat boundaries for the simplicity of our analysis, it is not
difficult to see that the results will be true in general, for any
curved boundary. Also, the above analysis is valid not only
for N = 2, but also for any N = 2¢ (even) supersymmetric
theory. In our analysis, we considered free theories.
However, one might consider interactions as well and in
that case, it is not difficult to convince oneself that the
results should be consistent with [16]. We expect that edge
states in these interacting theories (more realistic in the
context of, say, a superconductor) exist in a similar fashion.

TABLE I. Boundary conditions and SUSY in 1 + 1 dimensions.
Edge
Boson Fermion m N=2 N=1 states
Dirichlet Ur(6.0) 0 No Yes No
_ #0 Yes
Neumann Ur(9,0) 0 No Yes No
Up == #0 Yes
Dirichlet Periodic Any No No No
Neumann Periodic Any No No No
Periodic Ur(0,0) Any No No No
xUr(6,0)
Antiperiodic No No
Periodic Yes Yes
Antiperiodic Antiperiodic  Any  Yes Yes No

Pseudoperiodic Pseudoperiodic Any  Yes Yes No
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Nonetheless, the details of the properties of these states
need to be studied.

The presence of the edge localized fermions as ground
states of these supersymmetric theories is important in the
context of systems like topological superconductors. For
example, these fermions localized on the boundary will
contribute to the Meissner effect of the superconductor and
thus experimental verification of these fermions localized
in the boundary is possible.
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APPENDIX A: THE MOST GENERAL Ug
In the (3 + 1)-dimensional manifold M = {x3 < 0}, Up

is of the form
Uu, U
U, = ( 1 2)’
U U,

where U, U,, U, and U, are 2 x 2 matrices. Also Up
satisfies

(A1)

[Ur.?°7]=0, cCUL-ULC=0, ULUp=L.

(A2)

With the choice of y-matrices as in (62), the condition
[Ur.7%7"] = 0 yields

-[U1.6] {Uy, 0’} _
(Zoveh fonef)=0 W
Hence,
[U1.6%] =0, {Uy. 0’} =0, {U;5,0°} =0,
[Uy,0°] = 0. (A4)
Therefore, the most general U; and U, are
v 0 u; 0
0(i ) (s D) v
0 Vy 0 Uy

where u, vy, uy, v4 € C and the most general U, and U,
are

PHYSICAL REVIEW D 92, 105016 (2015)

N N

Us 0
where u,, v,, uz, v3 € C.
From (AY), it is easy to see that

ui=uv:, U'=vu,, U,=U; UI=U,.

(A7)

Hence, the condition CUL — UL.C = 0 leads to

UL - Uie> =0, o*Us-Ujc>=0.  (AS8)
These yield
vy =uj, Uy =0, v3=-uj, uz=-0v; (A9)
Therefore,

(2 0 0 (%)

0 uy —-u; O
UF - )
0 u ug 0

* *
-v; 0 0 V]

uy, Uy, V1, Uy e C.

(A10)
The unitarity condition ULU; = I gives

012 + [v,* = 1, ug [+ |up|* = 1.

APPENDIX B: ZERO MODES OF THE
SCALAR FIELD

In the (3 + 1)-dimensional manifold M = {x; < 0}, the
zero modes of the scalar field are

(=V2 + m?)®(x) = 0, (B1)
B(x) = (Ape? + Bre %) eilhinithan) (B2)

with
b* =k} + k3. (B3)

As x3 —» —oo0, & must go to zero. Hence, B, = 0 and
D(x) = Agebstillin+hon) (B4)
Imposing the Dirichlet boundary condition at x; = 0,
D(x)|om =0, (B5)
yields
A, =0. (B6)

Hence, there are no zero-energy scalar modes.
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