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When spatial boundaries are inserted, supersymmetry (SUSY) can be broken. We have shown that in an
N ¼ 2 supersymmetric theory, all local boundary conditions allowed by self-adjointness of the
Hamiltonian break N ¼ 2 SUSY, while only a few of these boundary conditions preserve N ¼ 1 SUSY.
We have also shown that for a subset of the boundary conditions compatible withN ¼ 1 SUSY, there exist
fermionic ground states which are localized near the boundary. We also show that only very few nonlocal
boundary conditions like periodic boundary conditions preserve full N ¼ 2 supersymmetry, but none of
them exhibits edge states.
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I. INTRODUCTION

Although supersymmetry (SUSY) as a fundamental
theory has eluded experimental evidence to date, there
has been a recent revival of interest in the subject because it
emerges naturally as an effective theory describing the
quantum phase transition at the boundary of topological
superconductors [1].
All real physical systems available for experiments are of

finite size and with spatial boundaries, which in general
reduce the symmetries of the system. Hence it is eminently
reasonable to ask if the SUSY of a ðdþ 1Þ-dimensional
finite size system (like the topological superconductor) can
be obtained by the consistent truncation of a parent SUSY
system in full ðdþ 1Þ-dimensional Minkowski spacetime.
Although one might expect that insertion of spatial boun-
daries generically breaks SUSY, we will show that there are
certain boundary conditions which do preserve supersym-
metry partially. Discussions of boundary conditions in this
context assume significance, and a clear classification of
such boundary conditions is required. The presence of
boundaries, on the other hand, naturally leads to the
question of edge states, which, if extant, play a vital role
in the physics at the boundary [2].
Boundary conditions in supersymmetric theories have

been studied in detail (for example see [3,4] and references
therein). We consider this problem from a different per-
spective. We show that self-adjoint domains of the
Hamiltonian are enough to obtain the boundary conditions
which preserve (or break) supersymmetry. Further, our
main objective is to show the existence of edge states in a
supersymmetric theory, which will be relevant in the

physics of the newly discovered supersymmetric phase in
topological superconductors. For this purpose, a simplified
treatment of a noninteracting scalar-fermion model is suffi-
cient. As discussed in [5–8], for the above-mentioned model,
it is not difficult to see that a supersymmetric variation in the
bulk gives boundary terms which vanish only when Dirichlet
or Neumann boundary conditions are chosen for the scalar.
It is well known that with Dirichlet or Neumann boundary
conditions there are no scalar edge localized states [9].
Nevertheless, we show that there can still be fermionic edge
states which do not break supersymmetry.
In [1] it was shown that in the phase that breaks SUSY

spontaneously, there are edge states on the surface (i.e., the
boundary) of the superconductor. However, it is not
obvious whether such edge states exist without breaking
SUSY. We will investigate the existence of such edge states
when the boundary conditions can be chosen to preserve
(some) supersymmetry. As we will show, such “SUSY
preserving” edge states do exist, and the ground states in
such theories are particularly interesting.
Our focus in this article will be on the insertion of a

spatial boundary ∂M in ðdþ 1Þ-dimensional Minkowski
space, in such a manner that the resulting space continues to
be a ðdþ 1Þ-dimensional manifoldM with a boundary ∂M
(which can be curved in general). The boundary conditions
on the (scalar and spinor) fields on M cannot be chosen
arbitrarily. They are obtained by demanding that the scalar
and Dirac Hamiltonians (Hs and HD respectively) be self-
adjoint. Of these boundary conditions, we expect that only
a subset will preserve supersymmetry (at least partially),
while generic boundary conditions will break supersym-
metry completely.
For Hs to be self-adjoint, it is necessary that the scalar

Laplacian ð−∇2 þm2Þ be self-adjoint [9]. Then, if we
demand locality of boundary conditions, the domainDHs

¼
DH�

s
of Hs contains all Φ ∈ L2ðMÞ satisfying
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½ΦðxÞ þ i∂nΦðxÞ� ¼ UBðxÞ½ΦðxÞ − i∂nΦðxÞ�;
U†

BðxÞUBðxÞ ¼ I; x ∈ ∂M; ð1Þ

where n̂ is the outward normal, ∂n ≡ n̂ · ~∇ is the normal
derivative at ∂M, and UBðxÞ is a unitary operator on ΦðxÞ
[if ΦðxÞ is the N component, UBðxÞ ∈ UðNÞ].
For the choices UBðxÞ ¼ −IN×N and UBðxÞ ¼ IN×N , we

get the Dirichlet and Neumann boundary conditions,
respectively. Other choices for UBðxÞ give more general
boundary conditions,

½∂nΦ − κΦ�ðxÞ ¼ 0; κ ¼ iðIþUBÞ−1ðI −UBÞ;
κðxÞ† ¼ κðxÞ; ð2Þ

whenever UB does not have unit eigenvalues.
To discuss the self-adjointness of HF ≡ iγ0γj∂j −mγ0,

we start by defining two chiralities (on the boundary) for
the Dirac spinors Ψ:

Ψ� ≡ 1

2
ð1� γ0~γ · n̂ÞΨ: ð3Þ

The γ-matrices here obey

fγμ; γνg ¼ 2ημν; γ0† ¼ γ0; γj† ¼ −γj; ð4Þ
where μ; ν ¼ 0; 1 � � � d, j ¼ 1; 2 � � � d, and ημν ¼
diagð1;−1;−1; � � � − 1Þ.
The essential self-adjointness of HF requires that the

domains DHF
and DH�

F
coincide. If M is compact, the most

general self-adjoint extension fulfilling the local boundary
condition is given byΨ ∈ W1;2ðMÞ ⊗ CN satisfying [9,10]

ðΨþ − UFγ
0Ψ−Þ∂M ¼ 0; U†

FUF ¼ 1;

½UF; γ0~γ · n̂� ¼ 0: ð5Þ

In Sec. VI, we consider also nonlocal boundary con-
ditions. They include in particular periodic and antiperiodic
boundary conditions on bosons and fermions. We also
briefly consider the possibility that the boundary conditions
are partly local and partly nonlocal.
We now analyze these general observations in various

dimensions.

II. (1þ 1) DIMENSIONS

In the full (1þ 1)-dimensional Minkowski spacetime,
the simplest theory of a complex scalar Φ (with the number
of components N ¼ 1) and a Dirac fermion Ψ is N ¼ 2
supersymmetric [11]. It is described by the action

S ¼
Z

∞

−∞
dx0

Z
∞

−∞
dx1ðLS þ LDÞ; ð6Þ

where

LS ¼
1

2
ð∂μΦ�∂μΦ −m2Φ�ΦÞ; ð7Þ

LF ¼ 1

2
ðiΨ̄γμ∂μΨ −mΨ̄ΨÞ: ð8Þ

The SUSY transformations are

δΦ ¼ ϵ̄Ψ; δΨ ¼ −iγμϵ∂μΦ −mϵΦ;

δΦ� ¼ Ψ̄ϵ; δΨ̄ ¼ iϵ̄γμ∂μΦ� −mϵ̄Φ�; ð9Þ

with

ϵ ¼
�
ϵ1

ϵ2

�

where ϵi’s are Grassmann constants and ϵ̄ ¼ ϵ†γ0.
We consider the same system in a (1þ 1)-dimensional

manifold M with spatial boundary ∂M:

M ¼ fðx0; x1Þ∶ x1 ≤ 0g: ð10Þ

The action is given by

S ¼
Z

∞

−∞
dx0

Z
0

−∞
dx1ðLS þ LDÞ þ SB ð11Þ

and SB are the boundary terms on ∂M as in [5,6]:

SB ¼ 1

4

Z
∞

−∞
dx0ðΦ�∂nΦþ ð∂nΦ�ÞΦ − iΨ̄ ~γ ·n̂ΨÞ∂M: ð12Þ

The boundary terms are analogous to the Gibbons-
Hawking term. Its goal is to give rise to local equations
of motion independently of boundary conditions on the
fields.
The boundary conditions (1) and (5) are imposed on Φ

and Ψ at the boundary points x1 ¼ 0. Out of this family of
allowed boundary conditions, which ones are consistent
with the SUSY transformations (9)?
The SUSY transformation δΦ and δΨ must obey (1) and

(5) on the boundary. The variation of the scalar field on the
boundary leads to

½ð1 −UBÞϵ̄Ψþ ið1þ UBÞϵ̄ð∂1ΨÞ�∂M ¼ 0; ð13Þ

UB in this case being a phase. The variation of Ψ on the
boundary yields

½−iðγμϵÞþ∂μΦ −mϵþΦ�∂M
¼ ½−iUFγ

0ðγμϵÞ−∂μΦ −mUFγ
0ϵ−Φ�∂M; ð14Þ

which leads to
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½iγμϵ−∂μΦþmϵþΦ�∂M
¼ ½iγ0γμUFϵþ∂μΦþmUFγ

0ϵ−Φ�∂M: ð15Þ

It can be easily checked that (13) and (15) are incompatible
if UB ≠ �1 (Dirichlet or Neumann). Therefore if Robin
boundary conditions are imposed on scalars [κ ≠ 0 or
κ ≠ ∞, where κ is defined in (2)] in the (1þ 1)-
dimensional theory, then N ¼ 2 SUSY is completely
broken.
Dirichlet and Neumann boundary conditions: However,

Dirichlet and Neumann boundary conditions on the scalar
are consistent with SUSY. To show that let us consider the
massless and massive cases separately.
Massless case: If we impose the Dirichlet ðUB ¼ −1Þ or

Neumann ðUB ¼ 1Þ condition on the massless scalar Φ, the
supersymmetry condition (15) leads to

Dirichlet∶ iγ1ϵ−∂1Φj∂M ¼ −iγ0γ1UFϵþ∂1Φj∂M
Neumann∶ iγ0ϵ−∂0Φj∂M ¼ −iγ0γ0UFϵþ∂0Φj∂M; ð16Þ

which yields the following condition on the SUSY param-
eter ϵ:

Dirichlet∶ ϵ− ¼ −γ0UFϵþ; ð17Þ

Neumann∶ ϵ− ¼ γ0UFϵþ: ð18Þ

On the other hand, these choices UB ¼ �1 in (13) give

Dirichlet∶ ϵ̄Ψj∂M ¼ 0; ð19Þ

Neumann∶ ϵ̄∂1Ψj∂M ¼ 0: ð20Þ

For the Dirichlet boundary condition on the scalar, the
condition (19) is trivially satisfied when the boundary
condition (1) and the condition (17) on ϵ are used.
For Neumann boundary condition on the scalar, the

condition (20) [along with (18)] yields a new boundary
condition

ð∂1ΨÞþj∂M ¼ −UFγ
0ð∂1ΨÞ−j∂M: ð21Þ

However, the appearance of this extra boundary condition
is not surprising in a supersymmetric theory. The super-
charge Q obeys

fQ; Q̄gΨ ∝ HFΨ: ð22Þ

Hence, it is necessary to ensure that ðHFΨÞ is also in the
domain ofHF. Otherwise SUSY will change the domain of
HF. Hence, we must also impose

ðHFΨÞþj∂M ¼ UFγ
0ðHFΨÞ−j∂M ð23Þ

which in the massless (1þ 1)-dimensional case reduces
to (21).
Therefore, the Dirichlet (or Neumann) boundary con-

dition on massless Φ is consistent with the supersymmetry
transformations and the system is supersymmetric. But
owing to the relation (17) [or (18)], the system only has
N ¼ 1 supersymmetry.
Massive case: If the Dirichlet boundary condition

(UB ¼ −1) is imposed on the scalar, the supersymmetry
condition (13) and the boundary condition (5) lead to

ϵ− ¼ −γ0UFϵþ: ð24Þ

With the Dirichlet boundary condition on Φ and (24), it is
easy to see from (15) that

δΨþ ¼ UFγ
0δΨþ ð25Þ

is satisfied. Therefore, this choice of boundary conditions is
consistent with SUSY.
If the Neumann boundary condition (UB ¼ 1) is

imposed on the scalar, the supersymmetry condition (13)
gives

ϵ̄ð∂1ΨÞj∂M
¼ 0; ð26Þ

while (15) leads to

½iγ0ϵ−∂0ΦþmϵþΦ�∂M
¼ ½iγ0γ0UFϵ−∂0ΦþmUFγ

0ϵ−Φ�∂M: ð27Þ

In contrast to the massless case, here, because of the extra
mass term in (27), this cannot be made compatible with
(26) just by a condition on ϵ. However, the two can be made
compatible by imposing the further condition UF ¼ U†

F.
Hence the Neumann boundary condition on the massive
scalar in (1þ 1) dimensions is consistent with SUSY when

ϵ− ¼ γ0UFϵþ; UF ¼ U†
F: ð28Þ

As a result, in the massive (1þ 1)-dimensional theory,
imposing the Dirichlet or Neumann boundary condition on
the scalar breaks N ¼ 2 SUSY to N ¼ 1 SUSY.
With the choice γ0 ¼ σ2 and γ1 ¼ iσ1, in the (1þ 1)-

dimensional massless case and in the massive case with
Dirichlet boundary condition, the most general UF satisfy-
ing (5) is

UF ¼
�
eiθ 0

0 ei~θ

�
; θ; ~θ ∈ R: ð29Þ

For the massive case with the Neumann boundary con-
dition, because of the condition (28), only θ ¼ ~θ ¼ 0 or π
are allowed by supersymmetry and hence the onlyUF’s that
preserve SUSY partially are

SUPERSYMMETRY: BOUNDARY CONDITIONS AND EDGE … PHYSICAL REVIEW D 92, 105016 (2015)

105016-3



UF ¼ �
�
1 0

0 1

�
: ð30Þ

In the case of a system with two boundaries, like an open
superstring, the standard boundary conditions are Neumann
boundary conditions for scalars and (30) for fermions at
both boundaries. The case with UF ¼ I at both boundaries
is called the Ramond (R) sector, while the case withUF ¼ I
at one boundary and UF ¼ −I at the other is termed the
Neveu-Schwarz (N-S) sector.
Using the above in (17), (18), (24), and (28), we get

Dirichlet∶ ϵ1 ¼ −ie−iθϵ2; ð31Þ

Neumann ðmasslessÞ∶ ϵ1 ¼ ie−iθϵ2; ð32Þ

Neumann ðmassiveÞ∶ ϵ1 ¼ �iϵ2: ð33Þ

The closure of the SUSY algebra is given by

½δϵ; δη� ¼ −iðϵ†η − η†ϵÞ∂0 þ 2mðϵ̄η − η̄ϵÞ: ð34Þ

The unbroken N ¼ 2 SUSY algebra in (1þ 1) dimen-
sions is generated by two supercharges Q�:

fQ�; Q̄�g ¼ P0 � P1; fQ−; Q̄þg ¼ Z;

fQþ; Q̄−g ¼ Z̄; ½Pμ;Z� ¼ 0; ð35Þ

where Z is the central charge. In the N ¼ 1 theory, as the
SUSY parameter satisfies (17) or (18) in the massless case
and (24) or (28) in the massive case, the super charges are

Dirichlet∶ Q ¼ Qþ þ ieiθQ−; ð36Þ

Neumann ðmasslessÞ∶ Q ¼ Qþ − ieiθQ−; ð37Þ

Neumann ðmassiveÞ∶ Q ¼ Qþ � iQ−; ð38Þ

satisfying

Dirichlet∶ fQ; Q̄g ¼ 2P0 − iðe−iθZ̄ − eiθZÞ;
Neumann ðmasslessÞ∶ fQ; Q̄g ¼ 2P0 þ iðe−iθZ̄ − eiθZÞ;
Neumann ðmassiveÞ∶ fQ; Q̄g ¼ 2P0 � iðZ̄ − ZÞ; ð39Þ

and

½Q;P0� ¼ 0: ð40Þ

In (34), the mass term is the central charge contribution
(i.e., the massless theory has Z ¼ 0). In the massless case,
this term vanishes and we get the usual N ¼ 1 SUSY
algebra. But in the massive case, the central charge term can
be absorbed by rescaling P0 and the usual N ¼ 1 SUSY
algebra can be recovered:

Dirichlet ðmassiveÞ∶ ~P0 ¼ P0 −
i
2
ðe−iθZ̄ − eiθZÞ;

Neumann ðmassiveÞ∶ ~P0 ¼ P0 �
i
2
ðZ̄ − ZÞ;

fQ; Q̄g ¼ 2 ~P0; ½Q; ~P0� ¼ 0: ð41Þ

Hence, if the theory is massless, the N ¼ 2 SUSY is
broken to a family (characterized by θ and ~θ) of N ¼ 1
supersymmetric theories by introducing the boundary
with a Dirichlet or Neumann boundary condition on the
scalar.
On the other hand, if the theory is massive, in the

presence of a boundary with only the Dirichlet boundary
condition on the scalar, it breaks N ¼ 2 SUSY to a family
ofN ¼ 1 supersymmetric theories. In the case of Neumann
boundary conditions, N ¼ 2 SUSY is broken to one of
the two possible N ¼ 1 SUSY theories, depending on the
fermionic boundary conditions (i.e., only when UF ¼ �1,
and for any other choice of UF, SUSY is completely
broken). Any other boundary condition on the scalar breaks
SUSY completely.

A. Variation of the action

One can verify that the above results can be simply
rederived by requiring invariance of the full action. Indeed,
the variation of the action (11) under SUSY yields

δS ¼ 1

4

Z
∂M

dx0½Φ�ðϵ̄∂1ΨÞ þ ð∂1Ψ̄ϵÞΦ

− Ψ̄γ1γ0ϵ∂0Φþ ϵ̄γ1γ0Ψ∂0Φ��x1¼0

þ im
4

Z
∂M

dx0½Ψ̄γ1ϵΦ − ϵ̄γ1ΨΦ��x1¼0; ð42Þ

which does not vanish with an arbitrary choice of boundary
condition. However, it can be easily shown that the above
vanishes for those boundary conditions which preserve
N ¼ 1 SUSY (discussed in the previous section).
When the Dirichlet boundary condition is imposed on

the scalar,

Φjx1¼0 ¼ 0; ∂0Φjx1¼0 ¼ 0; ð43Þ

it is easy to see that δS vanishes.
When the Neumann boundary is imposed on the scalar

and the theory is massless, the SUSY conditions (18)
and (20) give

ϵ̄∂1Ψjx1¼0 ¼ 0; ϵ− ¼ γ0UFϵþ; ð44Þ

and the boundary condition (5) yields
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ϵ̄γ1γ0Ψjx1¼0 ¼ −½ϵ†þγ1Ψ− þ ϵ†−γ
1Ψþ�x1¼0

¼ −½ϵ†þγ1Ψ− þ ϵ†þU
†
Fγ

0γ1UFγ
0Ψþ�x1¼0

¼ −½ϵ†þγ1Ψ− þ ϵ†þγ0γ1U
†
FUFγ

0Ψþ�x1¼0

¼ −½ϵ†þγ1Ψ− þ ϵ†þγ0γ1γ0Ψþ�x1¼0

¼ −½ϵ†þγ1Ψ− − ϵ†þγ1Ψþ�x1¼0

¼ 0: ð45Þ

Using (44) and (45) in (42), it is easy to check that in the
massless case δS vanishes.
In the massive theory, when the Neumann boundary

condition is imposed on the scalar, along with (44) and
(45), UF also satisfies U†

F ¼ UF. Owing to the last
condition on UF, it follows that

ϵ̄γ1Ψjx1¼0 ¼ ½ϵ†þγ0γ1Ψþ þ ϵ†−γ
0γ1Ψ−�x1¼0

¼ ½ϵ†þγ0γ1UFγ
0Ψ− þ ϵ†þU

†
Fγ

0γ0γ1Ψ−�x1¼0

¼ ½ϵ†þUFγ
0γ1γ0Ψ− þ ϵ†þU

†
Fγ

1Ψ−�x1¼0

¼ ½−ϵ†þUFγ
1Ψ− þ ϵ†þU

†
Fγ

1Ψ−�x1¼0

¼ 0: ð46Þ

When (44)–(46) are substituted in (42), in the massive case
also, we find,

δS ¼ 0: ð47Þ

Therefore, these results are consistent with the findings of
the previous section.

III. EDGE STATES IN (1þ 1) DIMENSIONS

In these massive N ¼ 1 theories, for the choice of
θ ¼ ð2nþ 1Þ π

2
in (29), there are zero-energy fermionic

modes:

Ψe ¼ Gebx1
�

1

−ð−1Þn
�
; b ¼ ð−1Þnm; n ∈ Z: ð48Þ

G is the normalization constant. These modes are normal-
izable only form > 0 andn ¼ even orm < 0 andn ¼ odd. If
jmj is sufficiently large, the zero modes are exponentially
damped in thebulkx1 < 0 and are therefore localized near the
boundary. For the scalar Φ, however, there is no zero-energy
modewith aDirichlet boundary condition.Thus the fermionic
edge states, when present, are not paired with bosonic edge
states. But such unpaired states do not break SUSYas they are
zero-energy modes and singlets under SUSY. Consequently,
when the boundary conditions are suitably chosen such that
the edge states exist, the residual N ¼ 1 supersymmetric
theory has a fermionic ground state.
It is interesting to note that edge states do exist in

Ramond and Neveu-Schwarz sectors in the massive case.

In the massless theory, such fermionic edge states do not
exist because there is no mass gap.

IV. (3þ 1)-DIMENSIONS

In the full ð3þ 1Þ-dimensional Minkowski spacetime, a
theory with two complex scalars Φa’s ða ¼ 1; 2Þ and a
Dirac spinor Ψ with the action

S ¼
Z

∞

−∞
d4xðLkin þ LmÞ ð49Þ

Lkin ¼
1

2
∂μΦ†

a∂μΦa þ iΨ̄γμ∂μΨþ 1

2
F†
aFa;

Lm ¼ m

�
i
2
Φ†

aFa −
i
2
F†
aΦa þ Ψ̄Ψ

�
ð50Þ

is N ¼ 2 supersymmetric with a central charge Z ¼ PμPμ.
Here Fa’s are two complex scalar auxiliary fields which are
necessary to close SUSY off-shell. The nonzero central
charge ensures that particles with spin > 1

2
are absent from

the multiplet (for details see pages 150–152 in [12]).
The supersymmetry transformations are

δΦa ¼ 2ϵ̄aΨ; ð51Þ

δΨ ¼ −iγμð∂μΦaÞϵa − iFaϵ
a; ð52Þ

δFa ¼ 2ϵ̄aγμ∂μΨ; ð53Þ

where ϵa’s are a pair of constant four-component spinors
satisfying the reality condition:

ϵ1 ¼ −Cϵ2�; ϵ2 ¼ Cϵ1�; C ¼ γ1γ3γ0: ð54Þ
When a spatial boundary ∂M is inserted at x1 ¼ 0, in the

resulting manifold M the set of allowed uniform boundary
conditions for the scalarsΦa’s is again given by (1). ButUB
in this case is a 2 × 2 matrix:

UB ¼
�
U11

B U12
B

U21
B U22

B

�
; U†

BUB ¼ I2×2: ð55Þ

Therefore, the local boundary conditions on the Φa’s are

ðΦa þ i∂nΦaÞ∂M ¼ Uab
B ðΦb − i∂nΦbÞ∂M: ð56Þ

For the choice Uab
B ¼ −δab and Uab

B ¼ δab, we get the
Dirichlet and Neumann boundary conditions, respectively.
For Uab

B ≠ �δab, we get the another type of boundary
condition: ∂nΦaj∂M¼κabΦbj∂M, where κab ¼ iððIþUBÞ−1
ðI−UBÞÞab.
On the spinor Ψ, again the boundary conditions (5) and

(23) are imposed. But unlike (21) in the (1þ 1)-
dimensional massless case, (23) involves the tangential
derivatives of Ψ at the boundary.
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The supersymmetry transformation at the boundary must
obey

δðΦa þ i∂nΦaÞ∂M ¼ Uab
B δðΦb − i∂nΦbÞ∂M: ð57Þ

Using (51), the above yields

½ðδab −Uab
B Þϵ̄bΨþ iðδab þ Uab

B Þϵ̄b∂nΨ�∂M ¼ 0: ð58Þ

Dirichlet boundary condition: If we impose Dirichlet
boundary conditions on both the scalars, UB ¼ −I2×2, then
(58) and (5) give [similar to the (1þ 1)-dimensional case]

ϵaþ ¼ −U†
Fγ

0ϵa−: ð59Þ

Because ϵa’s are constant spinors, the above is true not only
on the boundary but also in the bulk. Further, using
Dirichlet boundary conditions on Φa’s and (59), it is easy
to check that on the boundary ∂M [similar to the (1þ 1)-
dimensional case]

δΨþ ¼ UFγ
0δΨþ; δðHDΨÞþ ¼ UFγ

0δðHDΨÞþ:
ð60Þ

Thus the Dirichlet boundary conditions on both scalars are
compatible with supersymmetry transformations. But as
the ϵa’s are related by (59), the theory is only N ¼ 1
supersymmetric.
The closure of the SUSY algebra is governed by

½δϵ; δη� ¼ 2iϵ̄aγμηa∂μ þ 2iϵ̄aηaδZ; ð61Þ

where δZ gives the action of the central charge on the fields.
The second term in the above vanishes in the massless case
and in the massive case it can be absorbed by rescaling the
momenta, in a similar fashion as in the (1þ 1)-dimensional
case [see (41)].
Neumann and Robin boundary conditions: It is easy to

check that if we impose a Neumann- or Robin-type
boundary condition on either or both of the scalar fields
Φa’s, then (5), (23), and (58) cannot be satisfied. Thus such
boundary conditions on scalars are not consistent with
supersymmetry and SUSY is completely broken.
However, if we insert a boundary ∂M with Dirichlet

boundary conditions on scalars, then the theory can still be
supersymmetric. The theory with N ¼ 2 SUSY breaks to
an N ¼ 1 supersymmetric theory for every allowed UF.
For any other choice of boundary conditions, SUSY is
completely broken.

V. EDGE STATES IN (3þ 1)-DIMENSIONS

In the following we investigate the possibility of the
existence of edge states in theories which have residual
N ¼ 1 SUSY. For simplicity, let us consider the region
x3 ≤ 0 as the ð3þ 1Þ-dimensional flat manifold M. On the

boundary plane x3 ¼ 0, the direction of the outward normal
is n̂ ¼ ð0; 0; 1Þ. We choose the γ-matrices in the repre-
sentation

γμ ¼
�
0 σμ

σ̄μ 0

�
; σμ ¼ ð1; σiÞ; σ̄μ ¼ ð1;−σiÞ:

ð62Þ

In this case UF satisfies

½UF; γ0γ3� ¼ 0; U†
FUF ¼ I; CUT

F − U†
FC ¼ 0:

ð63Þ

The last condition in the above is imposed by (54) and (59).
Therefore, the most general UF in this case is given by (a
detailed derivation is given in Appendix A)

UF ¼

0
BBB@

v1 0 0 v2
0 u�1 −u�2 0

0 u2 u1 0

−v�2 0 0 v�1

1
CCCA; u1; u2; v1; v2 ∈ C;

ð64Þ

with ju1j2 þ ju2j2 ¼ 1 and jv1j2 þ jv2j2 ¼ 1.
(i) Massless case: In the massless case, if u1 ¼ 0,

Reðu2Þ ≠ 0, and Imðu2Þ ≠ 0 are chosen in (64),
there exist two zero-energy edge localized states for
arbitrary b > 0:

Ψ0
e1 ¼ Ak

0
BBB@

1

−u2�
0

0

1
CCCAebx

3þik1x1þik2x2 ; ð65Þ

with k1 ¼ bImðu2Þ, k2 ¼ bReðu2Þ, and

Ψ0
e2 ¼ Dk

0
BBB@

0

0

u2
1

1
CCCAebx

3þik1x1þik2x2 ; ð66Þ

with k1 ¼ −bImðu2Þ, k2 ¼ −bReðu2Þ. Ak and Dk

are normalization constants. As Ψ0†
e1Ψ

0
e2 ¼ 0, these

two modes are linearly independent. For sufficiently
large b, these modes are localized near the edge and
are exponentially damped in the bulk.
For this choice of u1 and u2, there does not exist

any other normalizable zero-energy edge state.
(ii) Massive case: If we choose Reðu1Þ¼ 0, Imðu1Þ ≠ 0,

Reðu2Þ ≠ 0, and Imðu2Þ ≠ 0 in (64), there exist
either of the following two zero-energy states:
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(a) For Imðu1Þ < 0,

Ψm
e1 ¼ Ak

0
BBB@

1

−u�2
u1
0

1
CCCAebx

3þik1x1þik2x2 ; ð67Þ

with b ¼ − m
Imðu1Þ, k1 ¼ bImðu2Þ, and k2 ¼ bReðu2Þ.

(Ak is the normalization constant.)
(b) For Imðu1Þ > 0,

Ψm
e2 ¼ Dk

0
BBB@

0

u�1
u2
1

1
CCCAebx

3þik1x1þik2x2 ; ð68Þ

with b ¼ m
Imðu1Þ, k1 ¼ −bImðu2Þ, and k2 ¼ −bReðu2Þ. (Dk

is the normalization constant.) If m is very large and/or
jImðu1Þj is very small, these states are exponentially
damped in the bulk and are localized near the edge.
For these choices of u1 and u2, there does not exist any

other normalizable edge state.
For a scalar field obeying Dirichlet boundary conditions,

there are no zero-energy modes of the Laplacian (for details
see Appendix B). On the other hand, it is possible to choose
boundary conditions for the fermion such that there exist
fermionic zero modes. In such a situation, the ground state
is made up of a fermion but no boson. This however does
not break supersymmetry, precisely because it is a zero-
energy state.
If such fermionic edge states exist, it should be possible

to experimentally detect them in condensed matter systems,
especially in the supersymmetric phase of superconductors.

VI. NONLOCAL BOUNDARY CONDITIONS

Although the main goal of this work is to analyze the
possibility of existence of edge states in supersymmetric
theories associated to topological superconductors, since
the problem of SUSY breaking by boundary conditions has
been addressed in other contexts we shall extend our
analysis to more general boundary conditions. In the case
of topological superconductors all relevant physical con-
ditions are local and they were analyzed in the previous
sections. However, it is well known that in superstring
theory SUSY is preserved by periodic boundary conditions.
These kinds of boundary conditions are highly nonlocal
and the natural question one can raise is, Are there other
nonlocal boundary conditions which preserve SUSY totally
or partially? We shall focus now on this problem.

A. Periodic boundary conditions on both
scalars and fermions

Consider (1þ 1)-dimensional N ¼ 2 supersymmetric
theory with action (6) and SUSY transformations (9).

We introduce spatial boundaries at x1 ¼ 0 and x1 ¼ a.
In the manifold

M ¼ fðx0; x1Þ∶ 0 ≤ x1 ≤ ag; ð69Þ

it is easy to see that boundary conditions

Φjx1¼0 ¼ Φjx1¼a; ∂1Φjx1¼0 ¼ ∂1Φjx1¼a;

Ψjx1¼0 ¼ Ψjx1¼a ð70Þ
give a self-adjoint domain of Hs and HD.
With these boundary conditions, it is straightforward to

show that the SUSY transformations (9) satisfy

δΦjx1¼0 ¼ δΦjx1¼a; δΨjx1¼0 ¼ δΨjx1¼a ð71Þ

without any condition ϵ.
Hence, these boundary conditions are consistent with

SUSY transformations and preserve N ¼ 2 SUSY. They
describe a closed superstring with Ramond-Ramond (RR)
boundary conditions. It is quite easy to extend the above to
higher dimensions and the result holds true there as well.

B. Periodic boundary conditions on scalars and
antiperiodic boundary conditions on fermions

However, from a physical viewpoint it is more natural to
consider periodic boundary conditions on the scalars and
antiperiodic ones for fermions. In field theories at finite
temperature these are the natural boundary conditions,
because positivity preserving requires antiperiodic boun-
dary conditions for fermions in the temporal direction, and
by Euclidean symmetry it is also convenient to have such
conditions also in space dimensions [13].
Again, we consider a (1þ 1)-dimensionalN ¼ 2 super-

symmetric theory with action (6) and SUSY transforma-
tions (9). On introduction of spatial boundaries at x1 ¼ 0
and x1 ¼ a, it is easy to see that on the manifold

M ¼ fðx0; x1Þ∶0 ≤ x1 ≤ ag; ð72Þ
the boundary conditions

Φjx1¼0 ¼ Φjx1¼a; ∂1Φjx1¼0 ¼ ∂1Φjx1¼a;

Ψjx1¼0 ¼ −Ψjx1¼a ð73Þ
give a self-adjoint domain of Hs and HD.
On demanding that the SUSY transformations are

consistent with the boundary conditions, we get

δΦjx1¼0 ¼ δΦjx1¼a: ð74Þ
This leads to

ϵ½Ψjx1¼0 −Ψjx1¼a� ¼ 0: ð75Þ
This is inconsistent with the fermionic boundary condi-
tion Ψjx1¼0 ¼ −Ψjx1¼a.
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Therefore, when such boundary conditions are imposed
on the fields, SUSY is completely broken. It is easy to see
that the same result is valid in any spacetime dimension.

C. Dirichlet boundary condition on scalar and (anti)
periodic boundary condition on fermion

Again consider the action (6) and SUSY transformations
(9) on the manifold

M ¼ fðx0; x1Þ∶ 0 ≤ x1 ≤ ag: ð76Þ
If we impose

Φjx1¼0 ¼ 0 ¼ Φjx1¼a; Ψjx1¼0 ¼ �Ψjx1¼a; ð77Þ

then the supersymmetry transformations (9) lead to

ϵ½∂1Φjx1¼0 ∓ ∂1Φjx1¼a� ¼ 0: ð78Þ

The above can be satisfied only if we demand

∂1Φjx1¼0 ¼ �∂1Φjx1¼a: ð79Þ
Therefore, the requirement to preserve SUSY is that the
domain of Hs must be

DHs
¼ fΦ∶Φjx1¼0 ¼ 0 ¼ Φjx1¼a;

∂1Φjx1¼0 ¼ �∂1Φjx1¼ag: ð80Þ
However, this is not a self-adjoint domain ofHs. Hence, we
cannot demand (79). Thus the boundary conditions (77) are
not consistent with (9) and imposing such boundary
conditions will break SUSY completely.

D. Neumann boundary condition on scalar and (anti)
periodic boundary condition on fermion

Again consider the action (6) and SUSY transformations
(9) on the manifold

M ¼ fðx0; x1Þ∶ 0 ≤ x1 ≤ ag: ð81Þ
If we impose

∂1Φjx1¼0 ¼ 0 ¼ ∂1Φjx1¼a; Ψjx1¼0 ¼ �Ψjx1¼a; ð82Þ
then the supersymmetry transformations (9) lead to

∂0½γ0ϵðΦjx1¼0 ∓ Φjx1¼aÞ� þmϵ½Φjx1¼0 ∓ Φjx1¼a� ¼ 0:

ð83Þ
The above can be satisfied only if we demand

Φjx1¼0 ¼ �Φjx1¼a: ð84Þ

Therefore, the requirement to preserve SUSY is that the
domain of Hs must be

DHs
¼ fΦ∶∂1Φjx1¼0 ¼ 0 ¼ ∂1Φjx1¼a;

Φjx1¼0 ¼ �Φjx1¼ag: ð85Þ

Again, this is not a self-adjoint domain of Hs. Hence, we
cannot demand (84). Thus the boundary conditions (82) are
not consistent with (9) and imposing such boundary
conditions will break SUSY completely.
In a similar fashion, one can show that imposing a Robin

boundary condition on the scalar and (anti)periodic boun-
dary condition on the fermion also breaks SUSY completely.
These results are also valid in any spacetime dimension.

E. Periodic boundary conditions on scalar and local
boundary conditions on fermion

Consider the action (6) and SUSY transformations (9) on
the manifold

M ¼ fðx0; x1Þ∶ 0 ≤ x1 ≤ ag: ð86Þ

The boundary conditions

Φjx1¼0 ¼ Φjx1¼a; ∂1Φjx1¼0 ¼ ∂1Φjx1¼a;

Ψþjx1¼0 ¼ UFðx1 ¼ 0ÞΨþjx1¼0;

Ψþjx1¼a ¼ UFðx1 ¼ aÞΨþjx1¼a ð87Þ

give a self-adjoint domain of Hs and HD.
For the above boundary conditions to be consistent with

SUSY transformations, the following must be satisfied:

δΦjx1¼0 ¼ δΦjx1¼a: ð88Þ

This yields

ϵ̄½Ψjx1¼0 −Ψjx1¼a� ¼ 0; ð89Þ

which can only be satisfied if we further impose

Ψjx1¼0 ¼ Ψjx1¼a: ð90Þ

However, imposing this condition on Ψ shrinks the domain
of HD and in that shrunk domain, HD is not self-adjoint.
Hence, (90) cannot be imposed. Thus the boundary con-
ditions (87) cannot be made consistent with the supersym-
metry transformation (9). As a result, imposing (87) will
break SUSY completely.
One can easily show that these results are also valid in

any spacetime dimension.

F. Other nonlocal boundary conditions

Finally, we discuss some boundary conditions which are
similar to Ramond and Neveu-Schwarz boundary condi-
tions that are well known in the context of string theory.
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Consider (1þ 1)-dimensional N ¼ 2 supersymmetric
theory with action (6) and SUSY transformations (9) in the
manifold

M ¼ fðx0; x1Þ∶ 0 ≤ x1 ≤ ag: ð91Þ
The Dirac operator is

HD ¼ iγ0γ1∂1 −mγ0: ð92Þ

We choose the representation of the γ-matrices

γ0 ¼ σ2; γ1 ¼ iσ1; ð93Þ

where σ’s are the Pauli matrices.
For any Ψ ∈ DHD

and ξ ∈ DHD
, the self-adjointness

demands that the conditions

ξ†σ3Ψjx1¼a − ξ†σ3Ψjx1¼a ¼ 0 ð94Þ

are satisfied with the same condition on Ψ and ξ.
Ψ and ξ are two-component Dirac spinors:

Ψ ¼
�
Ψ1

Ψ2

�
; ξ ¼

�
ξ1

ξ2

�
: ð95Þ

In terms of the components, the condition (94) can be
written as

½ξ†1Ψ1 − ξ†2Ψ2�x1¼a − ½ξ†1Ψ1 − ξ†2Ψ2�x1¼0 ¼ 0: ð96Þ

We discuss two types of boundary conditions which can
satisfy the above.

1. Pseudoperiodic boundary conditions

It can be easily seen that (96) can be satisfied by the
boundary condition

Ψ1jx1¼a ¼ eiθ1Ψ1jx1¼0;

Ψ2jx1¼a ¼ eiθ2Ψ2jx1¼0;

�
θ1; θ2 ∈ R: ð97Þ

Hence,

DHD
¼ fΨ∶Ψ1jx1¼a ¼ eiθ1Ψ1jx1¼0;

Ψ2jx1¼a ¼ eiθ2Ψ2jx1¼0g ð98Þ

is a self-adjoint domain of HD.
The supersymmetry transformation (9) can only be made

compatible with the boundary condition (97) if we impose

θ1 ¼ θ2 ¼ θ;Φjx1¼a ¼ eiθΦjx1¼0; ∂1Φjx1¼a ¼ eiθ∂1Φjx1¼0:

ð99Þ
It is easy to see that

DHs
¼ fΦ∶Φjx1¼a ¼ eiθΦjx1¼0; ∂1Φjx1¼a ¼ eiθ∂1Φjx1¼0g

ð100Þ

is a self-adjoint domain of Hs.
Hence, these boundary conditions are consistent with

SUSY transformations and preserve N ¼ 2 SUSY.
The cases considered in Sec. VI A are special cases of
these conditions with θ ¼ nπ where n ∈ Z.

VII. CONCLUSIONS AND DISCUSSIONS

We have shown that SUSY can be broken when spatial
boundaries are introduced in an N ¼ 2 supersymmetric
theory. Only very few boundary conditions partially pre-
serve SUSY. For most boundary conditions, SUSY is
completely broken.
The results for (1þ 1)-dimensional systems are sum-

marized in the following Table I.
Similar results were obtained in two-dimensional kink

backgrounds with space boundaries as infrared cutoffs [14].
The breaking of SUSY by effect of branes and/or domain
walls is well known and can be related to our results (see,
e.g., [15] and references therein). However, the most
interesting result is that edge states can appear even if
SUSY is not completely broken.
As we have shown, it is possible to extend our analysis to

any spacetime dimension. Though we have considered only
flat boundaries for the simplicity of our analysis, it is not
difficult to see that the results will be true in general, for any
curved boundary. Also, the above analysis is valid not only
forN ¼ 2, but also for anyN ¼ 2q (even) supersymmetric
theory. In our analysis, we considered free theories.
However, one might consider interactions as well and in
that case, it is not difficult to convince oneself that the
results should be consistent with [16]. We expect that edge
states in these interacting theories (more realistic in the
context of, say, a superconductor) exist in a similar fashion.

TABLE I. Boundary conditions and SUSY in 1þ 1 dimensions.

Boson Fermion m N ¼ 2 N ¼ 1
Edge
states

Dirichlet UFðθ; ~θÞ 0 No Yes No
≠ 0 Yes

Neumann UFðθ; ~θÞ 0 No Yes No
UF ¼ �I ≠ 0 Yes

Dirichlet Periodic Any No No No
Neumann Periodic Any No No No
Periodic UFðθ; ~θÞ

×UFðθ; ~θÞ
Any No No No

Antiperiodic No No
Periodic Yes Yes

Antiperiodic Antiperiodic Any Yes Yes No
Pseudoperiodic Pseudoperiodic Any Yes Yes No

SUPERSYMMETRY: BOUNDARY CONDITIONS AND EDGE … PHYSICAL REVIEW D 92, 105016 (2015)

105016-9



Nonetheless, the details of the properties of these states
need to be studied.
The presence of the edge localized fermions as ground

states of these supersymmetric theories is important in the
context of systems like topological superconductors. For
example, these fermions localized on the boundary will
contribute to the Meissner effect of the superconductor and
thus experimental verification of these fermions localized
in the boundary is possible.
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APPENDIX A: THE MOST GENERAL UF

In the (3þ 1)-dimensional manifold M ¼ fx3 ≤ 0g, UF
is of the form

UF ¼
�
U1 U2

U3 U4

�
; ðA1Þ

where U1; U2; U3, and U4 are 2 × 2 matrices. Also UF
satisfies

½UF; γ0γ3� ¼ 0; CUT
F − U†

FC ¼ 0; U†
FUF ¼ I:

ðA2Þ
With the choice of γ-matrices as in (62), the condition

½UF; γ0γ3� ¼ 0 yields

�
−½U1; σ3� fU2; σ3g
−fU3; σ3g ½U4; σ3�

�
¼ 0: ðA3Þ

Hence,

½U1; σ3� ¼ 0; fU2; σ3g ¼ 0; fU3; σ3g ¼ 0;

½U4; σ3� ¼ 0: ðA4Þ

Therefore, the most general U1 and U4 are

U1 ¼
�
v1 0

0 v4

�
; U4 ¼

�
u1 0

0 u4

�
; ðA5Þ

where u1; v1; u4; v4 ∈ C and the most general U2 and U3

are

U2 ¼
�

0 v2
v3 0

�
; U3 ¼

�
0 u2
u3 0

�
; ðA6Þ

where u2; v2; u3; v3 ∈ C.
From (A5), it is easy to see that

U†
1 ¼ U�

1; UT
1 ¼ U1; U†

4 ¼ U�
4; UT

4 ¼ U4:

ðA7Þ

Hence, the condition CUT
F −U†

FC ¼ 0 leads to

σ2UT
2 −U†

3σ
2 ¼ 0; σ2U4 −U�

1σ
2 ¼ 0: ðA8Þ

These yield

v4 ¼ u�1; u4 ¼ v�1; v3 ¼ −u�2; u3 ¼ −v�2: ðA9Þ

Therefore,

UF ¼

0
BBB@

v1 0 0 v2
0 u�1 −u�2 0

0 u2 u1 0

−v�2 0 0 v�1

1
CCCA; u1; u2; v1; v2 ∈ C:

ðA10Þ

The unitarity condition U†
FUF ¼ I gives

jv1j2 þ jv2j2 ¼ 1; ju1j2 þ ju2j2 ¼ 1:

APPENDIX B: ZERO MODES OF THE
SCALAR FIELD

In the (3þ 1)-dimensional manifold M ¼ fx3 ≤ 0g, the
zero modes of the scalar field are

ð−∇2 þm2ÞΦðxÞ ¼ 0; ðB1Þ

ΦðxÞ ¼ ðAkebx3 þ Bke−bx3Þeiðk1x1þk2x2Þ; ðB2Þ

with

b2 ¼ k21 þ k22: ðB3Þ
As x3 → −∞, Φ must go to zero. Hence, Bk ¼ 0 and

ΦðxÞ ¼ Akebx3þiðk1x1þk2x2Þ: ðB4Þ
Imposing the Dirichlet boundary condition at x3 ¼ 0,

ΦðxÞj∂M ¼ 0; ðB5Þ
yields

Ak ¼ 0: ðB6Þ
Hence, there are no zero-energy scalar modes.
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