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Twisted deformations of the conformal symmetry in the Hopf algebraic framework are constructed. The
first one is obtained by a Jordanian twist built up from dilatation and momenta generators. The second is the
lightlike κ-deformation of the Poincaré algebra extended to the conformal algebra, obtained by a twist
corresponding to the extended Jordanian r-matrix. The κ-Minkowski spacetime is covariant quantum space
under both of these deformations. The extension of the conformal algebra by the noncommutative
coordinates is presented in two cases. The differential realizations for κ-Minkowski coordinates, as well as
their left-right dual counterparts, are also included.
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I. INTRODUCTION

The conformal symmetry is considered as the funda-
mental symmetry of spacetime. Even though it cannot
describe massive particles and fields, many high-energy
physics theories admit the conformal symmetry. It also
includes two fundamental geometries—Poincaré and de
Sitter—as subcases. The conformal algebra c consists of
the Lorentz generators Mμν, translations Pμ, dilatations D
(which generate scaling transformations) and generators
of the special conformal transformations Kμ. The metric
tensor on the d-dimensional spacetime we denote as gμν (it
does not need to be in the diagonal form; it only has to be
symmetric and nondegenerate). The commutation relations
of the conformal algebra c for d > 2 [for example, for
d ¼ 4, we deal with c ¼ soð2; 4Þ], including the standard
Poincaré ones, are the following:

½Mμν;Mρσ� ¼ iðgμσMνρ þ gνρMμσ − gμρMνσ − gνσMμρÞ;
½Mμν; Pρ� ¼ iðgνρPμ − gμρPνÞ;
½D;Kμ� ¼ −iKμ; ½D;Pμ� ¼ iPμ;

½Kμ; Pν� ¼ 2iðgμνD −MμνÞ;
½Kμ;Mνρ� ¼ iðgμνKρ − gμρKνÞ;
½Kμ; Kν� ¼ 0; ½Mμν; D� ¼ 0; ½Pμ; Pν� ¼ 0: ð1Þ

Together with the rise of the interest in the deformations
of relativistic symmetries of spacetime [1,2], the quantum
deformations of the conformal algebra were investigated
already in the 1990s [3–10]. After the introduction of
the κ-deformed Poincaré algebra (with Mμν and Pμ as its
generators) with the dimensionful deformation parameter κ,

the same classical r-matrix as in Ref. [1] (r ¼ i
κM0ν ∧ Pν

with the special choice of the basis for which the metric
tensor is g00 ¼ 0) was used in the quantum deformation of
Poincaré–Weyl algebra [4]. Also, the deformations of the
full D ¼ 4 conformal symmetries were introduced [5,6],
corresponding to the standard (i.e., timelike) version of the
κ-deformation. The so-called null-plane (light-cone) defor-
mation of Poincaré algebra [7] has been extended as well to
the deformation of the Poincaré–Weyl group [8] and to the
conformal group [9] as well. All of the above-mentioned
deformations of conformal symmetry were corresponding
to the κ-Minkowski spacetime noncommutativity:
½x̂μ; x̂ν� ¼ iðaμx̂ν − aνx̂μÞ in either the timelike aμaμ < 0,
spacelike aμaμ > 0, or lightlike aμaμ ¼ 0 case. The defor-
mation parameter κ enters via aμ ¼ 1

κ τ
μ, with τ2 ∈

f−1; 0; 1g for the metric tensor with the Lorentzian (mostly
positive) signature.
Since the Poincaré–Weyl and conformal algebras contain

dilatation D as an additional generator, one can also
consider another classical r-matrix, r ¼ i

κD ∧ P0, as an
internal one for these algebras and the corresponding
quantum deformations. For example, in Ref. [10], the
so-called Jordanian deformations of the conformal algebra
(together with anti-de Sitter and de Sitter ones) were
considered. One should also mention that the same (time-
like) Jordanian r-matrix was also used in the twisted
deformation of the Poincaré–Weyl algebra [11] as well
as in the twisting of the inhomogeneous general linear
algebra [12] together with some applications found in field
and gauge theories [13,14]. A large class of Abelian twists
related to twisted statistics in κ-Minkowski spacetime was
considered in Ref. [15].
For the conformal algebra, the twist type of the deforma-

tionwas first considered in theMoyal–Weyl case [16] related
with the Abelian classical r-matrix, r¼ iθμνPμ ∧Pν,
corresponding to the constant noncommutativity of the
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spacetime coordinates ½x̂μ; x̂ν� ¼ iθμν. The θ-deformation of
the conformal algebra found some applications in non-
commutative field theories, see, e.g., Ref. [17], and has been
extended also to the deformation of the superconformal
algebra [18] as well.
Recently, the Jordanian deformations have gained in

popularity in the applications in AdS/CFT correspondence
as some of the deformations of the Yang–Baxter sigma
models were shown to preserve the integrability [19,20].
The Jordanian deformations related with the classical r-
matrices (satisfying the classical or modified Yang–Baxter
equation) were applied to the anti-de Sitter (AdS) part of
the correspondence principle [21]. The κ-Minkowski
spacetime was also considered in this context in Ref. [22].
Our aim in this paper is to present the quantum

deformations of the conformal algebra which are described
by the classical r-matrices satisfying the classical Yang–
Baxter equation. For such cases, the Drinfeld twists
(satisfying the cocycle condition) provide explicitly the
star product in the algebra of spacetime coordinates. We are
interested in the Jordanian κ-deformation of the conformal
symmetry and the lightlike κ-deformation of the Poincaré
algebra extended to the conformal algebra which will
correspond to Jordanian and extended Jordanian r-matri-
ces, respectively. The deformed conformal algebra is
considered as Hopf algebra with twisted coproducts and
antipodes. Conformal invariance is compatible with the
κ-Minkowski spacetime which constitutes the covariant
quantum space under both of these deformations.
The paper is organized as follows. We start, in Sec. II,

with recalling the basics of the twist deformations and the
conditions for noncommutative spacetime covariance with
respect to the twisted symmetries. In Sec. III, we consider
the Jordanian twist [11,23] in the covariant form [24],
providing, for the metric with the Lorentzian signature,
three kinds (time-, light-, and spacelike) of deformations of
the conformal algebra depending on the type of the vector
aμ. The twisted coalgebra sector is presented together with
the corresponding κ-Minkowski spacetime realization con-
sistent with the Hopf-algebraic actions. Later, in Sec. IV,
we investigate another twist [25–27] related by trans-
position to the so-called extended Jordanian twist
[28,29]. The twist is built from only Poincaré generators,
and therefore it provides the extension of the lightlike κ-
deformation of the Poincaré algebra to the conformal
algebra. For the Poincaré subalgebra, the a2 ¼ 0 deforma-
tion reduces to the null-plane deformation of Refs. [7,29].
The realization for κ-Minkowski coordinates is also pre-
sented. In both cases, in Sec. III and IV, we include the
cross-commutation relations between the conformal alge-
bra generators and the noncommutative coordinates. Also,
the so-called left-right dual κ-Minkowski realizations are
constructed from the transposed twists in Secs. III and IV,
respectively. The last section concludes the paper with
some remarks.

II. TWIST DEFORMATIONS OF THE
CONFORMAL ALGEBRA

The twist deformation framework of spacetime sym-
metries requires us to deal with the Hopf algebras instead
of Lie algebras corresponding to the given symmetry. To
introduce this notion, we need to extend the Lie algebra [we
are interested in the conformal algebra c described by (1)]
into the universal enveloping algebra UðcÞ which can be
equipped with the Hopf algebra structures on its generators
L ¼ fMμν; Pμ; D; Kμg in the following standard way:

coproduct∶ ΔðLÞ ¼ L ⊗ 1þ 1 ⊗ L ð2Þ

counit∶ ϵðLÞ ¼ 0 ð3Þ

antipode∶ SðLÞ ¼ −L: ð4Þ

The above maps are then extended to the whole UðcÞ. Such
undeformed Hopf algebra can be seen as the conformal
symmetry of the usual Minkowski spacetime in the
algebraic form given by an Abelian algebra of coordinate
functions xμ ∈ A, which is itself a subalgebra of unde-
formed Heisenberg algebra H:

½xμ; xν� ¼ 0 ð5Þ

½xμ; Pν� ¼ iδμν ð6Þ

½Pμ; Pν� ¼ 0: ð7Þ

The conformal algebra has the following representation:

Mμν ¼ −xμPν þ xνPμ

D ¼ x · P

Kμ ¼ 2xμðx · PÞ − x2Pμ ¼ xμDþ xαMαμ; ð8Þ

where Pμ ¼ gμνPν. In general the compatibility of the
spacetimewith its symmetry in this “algebralized” setting is
via the action H ⊗ A → A of the Hopf algebra H on the
spacetime (module) algebra A such that

L ⊳ ðf · gÞ ¼ μ½ΔðLÞð⊳ ⊗ ⊳Þðf ⊗ gÞ�: ð9Þ
The multiplication in the module algebra μ∶ A ⊗ A → A
is compatible1 with the coproduct in the Hopf algebra
Δ∶H→H⊗H and Lð1Þ ¼ ϵðLÞ · 1, 1ðfÞ ¼ f for L ∈ H
and f ∈ A.
One can easily check that the above condition (9) is

satisfied for the undeformed spacetime described by
Abelian algebra (5) and the conformal Hopf algebra (1)

1It is also common to rewrite the condition (9) as L ⊳
ðf · gÞ ¼ ðLð1Þ ⊳ fÞ · ðLð2Þ ⊳ gÞ where Sweedler notation for
the coproduct is used ΔðLÞ ¼ Lð1Þ ⊗ Lð2Þ.
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with (2)–(4) as its symmetry and the condition reduces to
the usual Leibniz rule,

L ⊳ ðxμ · xνÞ ¼ ðL ⊳ xμÞxν þ xμðL ⊳ xνÞ;
L ¼ fMμν; Pμ; D; Kμg; ð10Þ

for any of the generators of the conformal algebra due
to (2).
For the deformation, we will use the (Drinfeld) twist

technique, which will provide the deformation of the
universal enveloping algebra of the conformal algebra
UðcÞ as Hopf algebra H ¼ ðUðcÞ;Δ; ϵ; SÞ. The twist F
is, in general, an invertible element of H ⊗ H satisfying
cocycle and normalization conditions:

ðF ⊗ 1ÞðΔ ⊗ idÞF ¼ ð1 ⊗ F Þðid ⊗ ΔÞF ; ð11Þ
ðid ⊗ ϵÞF ¼ ðϵ ⊗ idÞF ¼ 1 ⊗ 1. ð12Þ

One gets the new Hopf algebra structure HF ¼
ðUðcÞ;ΔF ; ϵ; SF Þ via modifying the coproduct and anti-
pode maps in the following way:

ΔF ðLÞ ¼ FΔðLÞF−1; L ∈ H

ϵðLÞ ¼ 0; SF ðLÞ ¼ fαSðfαÞSðLÞSðf̄βÞf̄β: ð13Þ

Here, we use the short notation for the twist asF ¼ fα ⊗ fα,
F−1 ¼ f̄α ⊗ f̄α. Both of the twisted deformations consid-
ered in this paper will be compatible with the κ-Minkowski
spacetime with the defining commutation relations as

½x̂μ; x̂ν� ¼ iðaμx̂ν − aνx̂μÞ: ð14Þ
This algebra will constitute the module algebra over the
deformed conformal Hopf algebra; i.e., it is its covariant
quantum space.
The cocycle condition (11) for the twist guarantees the

coassociativity of the deformed coproduct ΔF and also
associativity of the corresponding twisted star product in
the twisted module algebra AF ðA; μ⋆Þ,

f⋆g ¼ μ⋆ðf ⊗ gÞ ¼ μ ∘ F−1ð⊳⊗⊳Þðf ⊗ gÞ
¼ ðf̄α ⊳ fÞ · ðf̄α ⊳ gÞ; ð15Þ

for f; g ∈ A. Additionally, to a given twist, we can
associate the so-called realization of noncommuting coor-
dinate functions as follows:

x̂μ ¼ μ½F−1ð⊳ ⊗ 1Þðxμ ⊗ 1Þ� ¼ ðf̄α ⊳ xμÞ · f̄α; xμ ∈ A:

ð16Þ

For the twisted case, the compatibility between the
deformed coproduct ΔF and the star product in the module
algebra is analogous to (9)

L ⊳ ðμ⋆ðf ⊗ gÞÞ ¼ μ⋆ðΔF ðLÞð⊳⊗⊳Þðf ⊗ gÞÞ: ð17Þ

In the literature, this condition is known under twisted
covariance, and, for example, it was investigated in more
detail in the context of the conformal algebra undergoing
the Moyal–Weyl deformation with theta-deformed space-
time [16]. The covariance under twisted symmetry was
first proved in Ref. [2] for the Moyal–Weyl deformation of
the Poincaré symmetry and theta spacetime. In the Hopf
algebraic framework, when the noncommutative space-
times are Hopf modules and their deformed symmetry is
the Hopf algebra, the condition of covariance is automati-
cally satisfied via the requirements (9) and (17).

III. JORDANIAN DEFORMATION OF THE
CONFORMAL ALGEBRA

We can deform the conformal Hopf algebraUðcÞ (1), (2),
(3), (4) with the Jordanian twist [11,23,24,27],

F J ¼ exp ½i lnð1 − a · PÞ ⊗ D�; ð18Þ
where a · P ¼ aμPμ. The corresponding classical r-matrix
is r ¼ iaμD ∧ Pμ. For the metric with the Lorentzian
signature, we can distinguish here three cases when vector
aμ can be either timelike, lightlike or spacelike; never-
theless, the formulas presented below are valid for arbitrary,
symmetric, and nondegenerate metric.
For simplicity, we introduce the shortcut notation

Z ¼ 1 − a · P.
The algebra relations (1) and counits (3) stay unde-

formed. The deformed coproducts are

ΔF JðPμÞ ¼ Pμ ⊗ 1þ Z ⊗ Pμ ð19Þ

ΔF JðMμνÞ ¼ ΔðMμνÞ − ðaμPν − aνPμÞZ−1 ⊗ D ð20Þ

ΔF JðDÞ ¼ D ⊗ 1þ Z−1 ⊗ D ð21Þ

ΔF JðKμÞ ¼ Kμ ⊗ 1þ Z−1 ⊗ Kμ

þ 2½aαMαμ þ aμD�Z−1 ⊗ D

− ½2aμða · PÞ þ a2Pμ�Z−2 ⊗ iDðiDþ 1Þ;
ð22Þ

and the deformed antipodes are

SF JðPμÞ ¼ −Z−1Pμ ð23Þ

SF JðMμνÞ ¼ −Mμν − ðaμPν − aνPμÞD ð24Þ

SF JðDÞ ¼ −ZD ð25Þ
SF JðKμÞ ¼ −ZfKμ − 2½aαMαμ þ aμD�D

þ ½2aμða · PÞ þ a2Pμ�iDðiDþ 1Þg: ð26Þ
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The corresponding covariant quantum spacetime is the
κ-Minkowski one (14) with the realization for coordinates
given via (16) as

x̂μJ ¼ μ½F−1
J ð⊳ ⊗ 1Þðxμ ⊗ 1Þ�

¼ xμ − aμD ¼ xμ − aμðx · PÞ: ð27Þ

It is called right covariant realization [30,31], and commu-
tators with generators of the conformal algebra are

½Pμ; x̂νJ� ¼ −iðgμν − aνPμÞ
½D; x̂μJ� ¼ −ixμ

½Mμν; x̂λJ� ¼ iðxμgνλ − xνgμλÞ
½Kμ; x̂νJ� ¼ ið2x2gμν − xμxν − aνKμÞ; ð28Þ

where

xμ ¼ x̂μJ þ aμD: ð29Þ

Note that the commutators are closed in the conformal
algebra and noncommutative coordinates x̂μJ.
The spacetime algebra (14) obtained via (15) is invariant

under the twisted conformal transformations which can be
seen from action of the conformal symmetry generators on
the algebra of functions of κ-Minkowski coordinates, i.e.,
via the compatibility condition (17). One can check that
indeed the twisted case of the Leibniz rule:

L ⊳ ½μ∘F−1
J ð⊳ ⊗ ⊳Þðxμ ⊗ xν − xν ⊗ xμÞ� ¼

L ⊳ ½iðaμxν − aνxμÞ� ð30Þ

is satisfied for any of the generators L ¼ fMμν;Pμ;D;Kμg.
Transposed twist ~F J ¼ τ0F Jτ0 is obtained from F J by

interchanging the left and right sides of the tensor product
[i.e., τ0ða ⊗ bÞ ¼ b ⊗ a], and it is also a Drinfeld twist
satisfying the cocycle (11) and normalization condition

(12). A set of left-right dual generators of κ-Minkowski
space can be obtained from the transposed twist:

ŷμJ ¼ μ½ ~F J
−1ð⊳ ⊗ 1Þðxμ ⊗ 1Þ� ¼ xμð1 − a · PÞ: ð31Þ

Generators ŷμJ satisfy κ-Minkowski algebra with aμ → −aμ,

½ŷμJ; ŷνJ� ¼ −iðaμŷνJ − aνŷμJÞ; ð32Þ

and they commute with generators x̂μJ:

½x̂μJ; ŷνJ� ¼ 0: ð33Þ

IV. LIGHTLIKE κ-DEFORMATION OF
POINCARÉ ALGEBRA EXTENDED
TO THE CONFORMAL ALGEBRA

For the purpose of this section, we consider the metric
tensor with Lorentzian signature and use mostly positive
sign convention, i.e., gμν ¼ diagð−;þ;þ; � � � ;þÞ. We
deform the conformal Hopf algebra UðcÞ (1), (2), (3),
(4) with the twist FLL leading to lightlike κ-deformation of
the Poincaré algebra [14,25,27,29] (which is related to the
extended Jordanian twist [28,32])2:

FLL ¼ exp

�
−iaαPβ

lnð1þ a · PÞ
a · P

⊗ Mαβ

�
: ð34Þ

The above twist satisfies the cocycle condition (11) [27]
with the lightlike vector aμ [25,27], and the classical
r-matrix is r ¼ aμMμν ∧ Pν. We also introduce the follow-
ing notation:

~Z ¼ 1

1þ a · P
; mμ ¼ aαMαμ: ð35Þ

Coproducts are

ΔFLLðPμÞ ¼ ΔðPμÞ þ
�
Pμaα − aμ

�
Pα þ 1

2
aαP2

�
~Z

�
⊗ Pα ð36Þ

ΔFLLðMμνÞ ¼ ΔðMμνÞ þ ðδαμaν − δανaμÞ
�
Pβ þ 1

2
aβP2

�
~Z ⊗ Mαβ ð37Þ

ΔFLLðmαÞ ¼ ΔðmαÞ þ aμ

�
Pα þ 1

2
aαP2

�
~Z ⊗ mα ð38Þ

ΔFLLðDÞ ¼ ΔðDÞ − Pα
~Z ⊗ mα ð39Þ

2The explicit relation between the twist (34) and the standard extended Jordanian twist corresponding to the lightlike case (up to the
transposition) is presented in detail in Sec. VIII B in Ref. [27].
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ΔFLLðKμÞ ¼ Kμ ⊗ 1þ
�
δαμ þ Pμaα − aμ

�
Pα þ 1

2
aαP2

�
~Z

�
⊗ Kα

þ f½2ðaμðiDþ ~ZÞ − imμÞPα þ iMμ
α� − 2Dgμαg ⊗ mα

þ ½iPμgαβ − 2iðδαμ − aμPα ~ZÞPβ ~Z� ⊗ mαmβ: ð40Þ

Antipodes are

SFLLðPμÞ ¼ −
�
Pμ þ aμ

�
Pα þ 1

2
aαP2

�
Pα

�
~Z ð41Þ

SFLLðMμνÞ ¼ −Mμν − ðδαμaν − δανaμÞ
�
Pβ þ

1

2
aβP2

�
Mαβ ð42Þ

SFLLðmμÞ ¼ −mμ − aμ

�
Pα þ 1

2
aαP2

�
mα ð43Þ

SFLLðDÞ ¼ − ~Z−1D ð44Þ

SFLLðKμÞ ¼ −
�
δγμ þ Pγaμ − aγ

�
Pμ þ

1

2
aμP2

�
~Z

�

× fKγ þ ½2ðaγðiDþ ~ZÞ − imγÞPα þ iMγ
α�SðmαÞ − 2DSðmγÞ

þ iPγSðm2Þ − 2iðδαγ − aγPα ~ZÞPβ ~ZSðmαmβÞg: ð45Þ

In this case, the realization (16) is given as

x̂μLL ¼ μ½F−1
LLð⊳ ⊗ 1Þðxμ ⊗ 1Þ� ¼ xμ þ aαMαμ ¼ xμð1þ a · PÞ − ða · xÞPμ: ð46Þ

It corresponds to the natural realization of κ-Minkowski
space [30,31]. Commutators with generators of the con-
formal algebra are

½Pμ; x̂νLL� ¼ −i½gμνð1þ a · PÞ − aμPν�
½D; x̂μLL� ¼ −ixμ

½Mμν; x̂λLL� ¼ iðx̂μLLgνλ − x̂νLLg
μλ − aμMνλ þ aνMμλÞ

½Kμ; x̂νLL� ¼ ið2x2gμν − xμxν þ aμKν − gμνða · KÞÞ;
ð47Þ

where

xμ ¼ x̂μLL − aαMαμ: ð48Þ

Note that, like in the Jordanian case, the above commu-
tators (47) are also closed in the conformal algebra and
noncommutative coordinates x̂μLL.
Let us also comment on the fact that, even though the

above twist (34) is written in a covariant form (valid for
the aμ as a time-, light-, and spacelike vector), it satisfies the
cocycle condition (11) only for the lightlike case, a2 ¼ 0
[25,27]. Therefore, only in this case, it corresponds to an

associative star product (15) of κ-Minkowski coordinates
(14). The two remaining cases (time- and spacelike) lead to
deformations of κ-Snyder type with a nonassociative star
product.
Again, one can easily check that the noncommutative

spacetime (14) is invariant under this twisted conformal
symmetry via the analogous condition as (30) in Sec. III:

L ⊳ ½μ∘F−1
LLð⊳ ⊗⊳Þðxμ ⊗ xν − xν ⊗ xμÞ�

¼ L ⊳ ½iðaμxν − aνxμÞ�: ð49Þ

Transposed twist ~FLL ¼ τ0FLLτ0 is obtained from FLL
by interchanging the left and right sides of the tensor
product, and it is also a Drinfeld twist satisfying the cocycle
(11) and normalization condition (12). A set of left-right
dual generators of κ-Minkowski space can be obtained
from transposed twist:

ŷμLL ¼ μ½ ~F−1
LLð⊳ ⊗ 1Þðxμ ⊗ 1Þ�

¼ xμ þ ða · xÞPμ − aμ
�
Dþ a · x

2
P2

�
~Z: ð50Þ
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Generators ŷμLL satisfy κ-Minkowski algebra with
aμ → −aμ,

½ŷμLL; ŷνLL� ¼ −iðaμŷνLL − aνŷμLLÞ; ð51Þ

and they commute with generators x̂μLL:

½x̂μLL; ŷνLL� ¼ 0: ð52Þ

Realizations ŷμJ and ŷμLL cannot be expressed in terms of xμ

and generators of conformal algebra (whereas realizations
x̂μJ and x̂μLL are expressed in terms of these generators).
Note that x̂μJ [Eq. (27)] and x̂μLL [Eq. (46)] are different

realizations of κ-Minkowski space x̂μJ ≠ x̂μLL, related by
similarity transformation. There is also another point of
view, so that, for a2 ¼ 0, x̂μJ and x̂μLL can be identified, but
generators xμ and generators of conformal algebra have
different realizations in two cases (Secs. III and IV), related
by similarity transformation. In this case, let us denote as
ðxμJ; Pμ

JÞ and ðxμLL; Pμ
LLÞ two pairs of commutative coor-

dinates and momenta, each satisfying undeformed
Heisenberg algebra (5)–(7), which are related by similarity
transformation:

Pμ
J ¼

�
Pμ
LL þ aμ

2
P2
LL

�
~ZLL ð53Þ

Pμ
LL ¼

�
Pμ
J −

aμ

2
P2
J

�
Z−1
J ð54Þ

xμJ ¼ ½xμLL þ aμðxLL · PLLÞ� ~Z−1
LL

− ða · xLLÞ
�
Pμ
LL þ aμ

2
P2
LL

�
ð55Þ

xμLL ¼ ½xμJ − aμðxJ · PJÞ�ZJ þ ða · xJÞ
�
Pμ
J −

aμ

2
P2
J

�
;

ð56Þ

where

ZJ ≡ 1 − a · PJ ¼
1

1þ a · PLL
≡ ~ZLL: ð57Þ

Hence, x̂μ¼xμJ−aμðxJ ·PJÞ¼xμLLð1þa·PLLÞ−ða·xLLÞPμ
LL

and two sets of conformal generators, fPμ
J;M

μν
J ; DJ; K

μ
Jg

and fPμ
LL;M

μν
LL;DLL; K

μ
LLg, are related by similarity

transformation.

V. CONCLUDING REMARKS

We have presented the two different κ-deformations of
the conformal symmetry within the Drinfeld twist frame-
work. Both twists provide the κ-Minkowski star product;
therefore, the κ-Minkowski spacetime stays covariant under

the twisted conformal symmetries. Thanks to the twist, we
are also able to obtain the differential realization for the
noncommutative coordinates. The extension of the con-
formal algebra by the noncommutative coordinates is also
presented, and it includes the deformed phase space
(deformed Heisenberg algebra) as subalgebra. For an
alternative point of view, where the phase space stays
undeformed but the realizations of the conformal algebra
generators are modified, see, e.g., Ref. [33]. Additionally,
we have constructed, from transposed twists, another set
of realizations satisfying the κ-Minkowski relations (with
aμ → −aμ). Both of the deformations presented in this
paper (Jordanian and extended Jordanian) provide the so-
called triangular deformation as the corresponding classical
r-matrices satisfy the classical Yang–Baxter equation.
Interestingly, the Jordanian and extended Jordanian defor-
mations can be generated by other (than already mentioned)
classical r-matrices. One can notice that the form of the
conformal algebra (1) does not change if we exchange
the generators (see also a similar comment in Ref. [6]) in
the following way:

Pμ → Kμ; Kμ → Pμ; D → −D; κ →
1

~κ
:

ð58Þ

This allows us, to distinguish yet another classical r-matrix
for the conformal algebra (besides, for example, the one
investigated in Sec. III for the Jordanian case
r ¼ iaμD ∧ Pμ), i.e., r ¼ −i ~aμD ∧ Kμ with a new defor-
mation parameter ~κ and ~aμ ¼ ~κ2aμ. Such an r-matrix is
satisfying the classical Yang–Baxter equation, and the
classical limit is obtained for ~κ → 0 (which corresponds
to κ → ∞). The new Jordanian twist (18) with (58) for any
~aμ will satisfy the cocycle condition (11) as well. Formal
expressions for the twisted deformation of coproducts
and antipodes in ðUðcÞ;ΔF ; ϵ; SF Þ (as twisted conformal
Hopf algebra) generated by this r-matrix will stay the same
up to (58).
One way of interpreting the exchange in the deformation

parameter κ → 1
~κ (related with aμ → ~aμ as above) could be

the following. Instead of considering the minimal length, as
it happens when introducing the noncommutative coordi-
nates x̂μ, we should consider the minimal momentum and
introduce the noncommutative momenta p̂μ. This way the
~κ-deformation would appear in the momentum space
½p̂μ; p̂ν� ¼ ið ~aμp̂ν − ~aνp̂μÞ instead of (14). Other physical
consequences of such an exchange are still an open
issue.
Nevertheless, the deformations of the conformal sym-

metry introduced in this paper can be of interest in many
physical applications. For example, the Jordanian defor-
mations are also appearing in the context of AdS/CFT
correspondence [21,22]; therefore, the corresponding
deformations of the conformal field theory part in the
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twisted framework could be of interest as well. Another
point to consider would be, for example, the extension of
the deformations introduced in this paper to the super-
symmetric case, as it was already considered for the
Moyal–Weyl deformation of the conformal superalgebra
[18]. Additionally extending the presented framework into
the Hopf algebroid language [24] would allow us to
introduce yet another example for the twisted deformation
of Hopf algebroids as well. Also, the deformations of the
conformal symmetry presented here could be considered as
a starting point in the study on deformed (noncommutative)
cosmology. Recently a short review on models of the
inflating Universe based on conformal symmetry was
presented [34]. The straightforward way to make them
noncommutative would be to introduce the star product
(15) related with the twists in the conformally invariant
actions corresponding to different models. This way, one

could investigate, for example, if introducing the deforma-
tion parameter (as a quantum gravity scale) would have any
influence on the scale invariance of the power spectrum of
the scalar perturbations.
Our results, however, provide only the starting point for

such investigations.
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