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We discuss the helicity spinors interpolating between the instant form dynamics (IFD) and the front form
dynamics, or the light-front dynamics (LFD), and present the interpolating helicity amplitudes as well as
their squares for the scattering of two fermions, and the annihilation of fermion and antifermion. We
parametrize the interpolation between the two dynamics, IFD and LFD, by an interpolation angle and
derive not only the generalized helicity spinors in the ð0; JÞ ⊕ ðJ; 0Þ chiral representation that links
naturally the two typical IFD vs LFD helicity spinors but also the generalized Melosh transformation that
relates these generalized helicity spinors to the usual Dirac spinors. Analyzing the directions of the particle
momentum and spin with the variation of the interpolation angle, we inspect the whole landscape of the
generalized helicity intermediating between the usual Jacob-Wick helicity in the IFD and the light-front
helicity in the LFD. Our analysis clarifies the characteristic difference of the helicity amplitudes between
the IFD and the LFD. In particular, we find that the behavior of the angle between the momentum direction
and the spin direction bifurcates at a critical interpolation angle and the IFD and the LFD separately belong
to the two different branches bifurcated at this critical interpolation angle. This finding further clarifies any
conceivable confusion in the prevailing notion of the equivalence between the infinite momentum frame
and the LFD. The existence of the universal J-curve found in our previous works of scalar field theory and
the sQED theory is confirmed in the present work of interpolating helicity amplitudes for the fermion
scattering and annihilation processes. In conjunction with the bifurcation of branches, the two boundaries
appear in the interpolating helicity amplitudes and interestingly the J-curve persists within these two
boundaries.
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I. INTRODUCTION

Among the three different forms of relativistic dynamics
proposed by Dirac [1] in 1949, the instant form (x0 ¼ 0)
and the front form [xþ ≡ ðx0 þ x3Þ= ffiffiffi

2
p ¼ 0] have been the

most popular choices in studying hadron physics. While the
quantization at the equal time t ¼ x0 (in c ¼ 1 unit)
produces the instant form dynamics (IFD) of quantum
field theory, the quantization at equal light-front time τ ¼
xþ ¼ ðtþ zÞ= ffiffiffi

2
p

yields the front form dynamics, now
known as the light-front dynamics (LFD). In an effort to
link these two popular but different forms of relativistic
dynamics, IFD and LFD, we have discussed [2–5] the
interpolation between the two forms of dynamics by
introducing a parameter δ called “interpolation angle.”
With this parameter δ, the interpolating space-time coor-
dinates between IFD and LFD are defined by a trans-
formation from the ordinary space-time coordinates,
xμ̂ ¼ Rμ̂

νxν, i.e.

0
BBB@

xþ̂

x1̂

x2̂

x−̂

1
CCCA ¼

0
BBB@

cos δ 0 0 sin δ

0 1 0 0

0 0 1 0

sin δ 0 0 − cos δ

1
CCCA
0
BBB@

x0

x1

x2

x3

1
CCCA; ð1Þ

where we use “hat” (“^”) on the indices to denote the
interpolating variables with the parameter 0 ≤ δ ≤ π=4. As

Rî
j ¼ δij for i; j ¼ 1; 2 in Eq. (1), we will however omit the

^ notation unless necessary for the perpendicular indices
j ¼ 1; 2 in a 4-vector. In the limits δ → 0 and δ → π=4, we
recover the corresponding variables in the instant form and
the front form, respectively. For example, the interpolating

coordinates x�̂ in the limit δ → π=4 become the light-front
coordinates x� ¼ ðx0 � x3Þ= ffiffiffi

2
p

without hat (^).
Our interpolation between the IFD and the LFD provides

the whole picture of the landscape between the two and
clarifies the issue, if any, in linking them to each other. The
same method of interpolating hypersurfaces has been used
by Hornbostel [6] to analyze various aspects of field
theories including the issue of nontrivial vacuum. The
same vein of application to study the axial anomaly in the
Schwinger model has been presented [2], and other related
works [7–11] can also be found in the literature.
We started out this effort by studying the Poincaré

algebra for any arbitrary interpolation angle [3] and
recently provided the physical meaning of the kinematic
vs dynamic operators by introducing the interpolating time-
ordered scattering amplitudes [4]. In particular, we dem-
onstrated that the longitudinal boost invariance of each
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individual xþ̂-ordered scattering amplitude is realized only
at δ ¼ π=4 and the disappearance of the connected con-
tributions to the current arising from the vacuum occurs
independent of the reference frame only when the inter-
polation angle is taken to yield the LFD. This affirms the
well-known saga of the longitudinal boost K3 which
maximizes the number of kinematic (i.e., interaction
independent) generators in LFD as seven out of ten
Poincaré generators. A dramatic character change of K3

from “dynamic” for 0 ≤ δ ≤ π=4 to “kinematic” in δ ¼ π=4
brings indeed a great benefit to use LFD for the study of
hadron physics. Our interpolation between IFD and LFD
made it also clear that the disappearance of the connected
contributions to the current arising from the vacuum in LFD
does not require the infinite momentum frame (IMF). It
thus resolves the confusion in the prevailing notion of
equivalence between the LFD and the IMF. For the study of
hadron physics in QCD, the built-in boost invariance
together with the simpler vacuum property in LFD is
certainly an appealing feature as it may save substantial
computational efforts in getting QCD solutions that respect
the full Poincaré symmetries.
Although we want ultimately to obtain a general for-

mulation for the QCD using the interpolation between the
IFD and the LFD, we start from the simpler theory to
discuss first the bare-bones structure that will persist even
in the more complicated theories. Subsequent to our study
of the simple scalar field theory [4] involving just the
fundamental degrees of freedom such as the momenta of
particles in scattering processes, we considered very
recently interpolating the electromagnetic gauge degree
of freedom between the IFD and the LFD and found that the
light-front gauge in the LFD is naturally linked to the
Coulomb gauge in the IFD through the interpolation angle
[5]. We also extended our interpolation of the scattering
amplitude presented in the simple scalar field theory [4] to
the case of the electromagnetic gauge field theory but still
with the scalar fermion fields known as the sQED theory
[5] and analyzed the lowest-order scattering processes in
sQED such as the analogues of the well-known QED
processes eμ → eμ and eþe− → μþμ−.
To promote the sQED calculation to the QED calcu-

lation, we now start discussing the fermion degrees of
freedom and their interpolation between IFD and LFD. Due
to a few different representations available for the spinors,
we examine the relationships among the available spinor
representations with the interpolation angle parameter 0 ≤
δ ≤ π=4 in this work. As the first step, we limit our
discussion here only for the on-mass-shell spinors and
analyze the interpolating helicity amplitudes for the proc-
esses involving fermions as the external particles. We
discuss a fermion and another fermion scattering process
as well as a fermion and antifermion pair annihilation and
creation process analogous to eμ → eμ and eþe− → μþμ−,
respectively. In this work, we focus on the effects from the

initial and final fermion degrees of freedom rather than
from the intermediate gauge boson which we have already
studied in our previous work [5].
For an overview of the available spinor representations,

we may provide a schematic illustration as shown in Fig. 1
and discuss the relationships among those representations.
In Fig. 1, we denote the so-called “standard representation”
and “chiral representation” as S and C. The transformation
between the two representations S and C can be made by
the transformation matrix S given by

S ¼ S† ¼ 1ffiffiffi
2

p
�
I I

I −I

�
; ð2Þ

where I is the 2 × 2 identity matrix. As the Dirac matrices
are related by

γμS ¼ SγμCS
†;

γμC ¼ S†γμSS; ð3Þ

the spinors are related by

uSðpÞ ¼ SuCðpÞ;
uCðpÞ ¼ S†uSðpÞ; ð4Þ

FIG. 1 (color online). An illustration of the relations between
different conventions and names we use in this paper. The red
letters C and S stand for chiral and standard representations
respectively. The blue letters H and D stand for helicity spinor
and Dirac spinor respectively. The solid black arrow points from
the instant form to the light-front form, and the interpolation
angle δ goes from 0 to π=4. Both the helicity and Dirac spinors
can be generated for arbitrary interpolation angles. The dashed
purple arrow indicates the Melosh transformation, which relates
the instant Dirac spinor to the light-front helicity spinor.
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where the spinors uSðpÞ and uCðpÞ will be expressed
explicitly later as the four-component column vectors. The
six Lorentz group generators of rotation (J) and boost (K)
in S and C representations are also related by the trans-
formation matrix S such as JS ¼ SJCS†, KS ¼ SKCS†,
JC ¼ S†JSS, KC ¼ S†KSS, etc. as given by

JS ¼ JC ¼ 1

2

�
σ 0

0 σ

�
;

KS ¼ i
2

�
0 σ

σ 0

�
; KC ¼ i

2

�
σ 0

0 −σ

�
; ð5Þ

where σ denotes the Pauli matrices. It is clear that the
combinations of rotation and boost given by JC þ iKC
and JC − iKC operate only on the corresponding block-
diagonal 2 × 2 matrices as their explicit representations are

JC þ iKC ¼
�
0 0

0 σ

�
;

JC − iKC ¼
�
σ 0

0 0

�
: ð6Þ

Such decoupling in chiral representation may be under-
stood from the transformation of the Lorentz group algebra
with a single invariant SUð2Þ subalgebra of the rotation J
into two decoupled invariant SUð2Þ ⊗ SUð2Þ subalgebras
by defining a pair of specific combinations between
rotation and boost given by

A ¼ 1

2
ðJþ iKÞ; ð7Þ

B ¼ 1

2
ðJ − iKÞ; ð8Þ

which satisfy the following commutation relations:

½Ai; Aj� ¼ iϵijkAk;

½Bi; Bj� ¼ iϵijkBk;

½Ai; Bj� ¼ 0; ði; j; k ¼ 1; 2; 3Þ; ð9Þ

where A and B each generates a corresponding SUð2Þ
group algebra. The above specific combinations between
rotation and boost may suggest the two decoupled helical
motions of the particle that may be denoted as the right-
handed vs left-handed chirality. Such an idea motivates us
to consider the transformation S given by Eq. (2) between
the standard representation S and the chiral representation
C discussed above. The irreducible representation may then
be labeled by two angular momenta ðj; j0Þ in the decoupled
Lorentz group given by SUð2Þ ⊗ SUð2Þ, where j and j0
denote the quantum numbers corresponding to each indi-
vidual SUð2Þ subgroup consisting of A and B generators,

respectively. In the case that one of the two angular
momenta is absent (or zero), ðj; j0Þ corresponds to

ð0; jÞ → J ¼ −iK ðA ¼ 0Þ; ð10Þ

ðj; 0Þ → J ¼ iK ðB ¼ 0Þ; ð11Þ

as easily recognized in the chiral representation given by
Eq. (6). Due to such a transparent decoupling, we will write
all of our spinors for this work in the ð0; JÞ ⊕ ðJ; 0Þ chiral
representation of the Lorentz group. Corresponding
ð0; JÞ ⊕ ðJ; 0Þ standard representations can be found
straightforwardly using the transformation matrix S given
by Eq. (2):

ΨS ¼ SΨC ¼ 1ffiffiffi
2

p
�
1 1

1 −1

��
ϕR

ϕL

�
¼ 1ffiffiffi

2
p
�
ϕR þ ϕL

ϕR − ϕL

�
;

ð12Þ

where ϕR and ϕL are the right-handed and left-handed
components in the chiral representation. As one can easily
get the corresponding standard representation using the
above relation, we will not list them explicitly in this work.
In Fig. 1, we also denote the so-called “helicity spinors”

and “Dirac spinors” as H and D. They represent the spinors
obtained by two different procedures. Following the pro-
cedure laid out by Jacob and Wick [12] that defines the
helicity in the IFD and using the kinematic transformations
defined in our previous works [4,5], we may now define the
helicity applicable to any arbitrary interpolation angle δ. To
define the helicity spinor in IFD, Jacob and Wick [12]
started with a state at rest having a spin projection along the
z direction equal to the desired helicity, then boosted it in
the z direction to get the desired magnitude of momentum

j~Pj, and then rotated it subsequently to get the momentum
and spin projection in the desired direction. We follow the
same procedure in an arbitrary interpolation angle δ,
replacing the kinematic generators J1 and J2 in IFD by
the corresponding kinematic generators K1̂ and K2̂ given
by [4,5]

K1̂ ¼ −K1 sin δ − J2 cos δ;

K2̂ ¼ J1 cos δ − K2 sin δ; ð13aÞ

where the interpolating kinematic operators K1̂ and K2̂

coincide with the usual E1 and E2 of LFD modulo sign for
δ ¼ π=4. As extensively discussed in Ref. [3], the trans-
verse rotations (J1, J2) are kinematic in IFD (δ ¼ 0), while
the LF transverse boosts (E1, E2) are kinematic in LFD
(δ ¼ π

4
). The procedure set by Jacob and Wick [12] in IFD

can thus be generalized to any interpolation angle δ by the
transformation matrix T given by
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T ¼ T12T3 ¼ eiβ1K
1̂þiβ2K2̂

e−iβ3K
3

; ð14Þ

where the values of β1, β2, β3 for an interpolation angle δ
are related to the desired final momentum ~P ¼ ðP1; P2; P3Þ
of the particle with mass M. The detailed derivation of the
relationship between ðβ1; β2; β3Þ for a given δ and the
4-momentum components Pμ̂ has been worked out in our
previous work [5] and may be summarized as

Pþ̂ ¼ ðcos δ cosh β3 þ sin δ sinh β3ÞM;

P1̂ ¼ β1
sin α
α

ðsin δ cosh β3 þ cos δ sinh β3ÞM;

P2̂ ¼ β2
sin α
α

ðsin δ cosh β3 þ cos δ sinh β3ÞM;

P−̂ ¼ SPþ̂ − P−̂

C
; ð15Þ

where S ¼ sin 2δ,C ¼ cos 2δ and P−̂¼cosαðsinδcoshβ3þ
cosδsinhβ3ÞM with α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðβ21 þ β22Þ
p

. Here, we kept the ^

notation for the transverse momentum Pĵðj ¼ 1; 2Þ due to
the apparent δ dependence in this equation although wewill
usually omit it as mentioned earlier.
From this set of equations in Eq. (15), one can get a few

equivalent useful relations between parameters β1, β2, β3, α
and the momentum components as shown in Eq. (A10). It
may be worth noting that P−̂ plays the role of the
longitudinal momentum and the factor ðsin δ cosh β3 þ
cos δ sinh β3Þ in the 3-momentum (P1̂, P2̂, P−̂) is due to
the first boost T3 ¼ e−iβ3K

3

. The helicity spinors denoted by
H are thus obtained by applying the transformation T given
by Eq. (14) to the initial state at rest that has a spin
projection along the z direction. On the other hand, the
Dirac spinors denoted by D are obtained by directly
boosting the initial state at rest that has a spin projection
along the z direction to the state with the desired momen-

tum ~P ¼ ðP1; P2; P3Þ. The Dirac spinors in IFD are the
familiar spinors that show up in many textbooks. In IFD,
however, the spin direction of the Dirac spinor is in general
not aligned to the moving direction (i.e. the 3-momentum
direction or in short the momentum direction) of the
particle represented by the same Dirac spinor while the
spin direction of the helicity spinor is always aligned to
the momentum direction of the particle represented by the
same helicity spinor. The reason for this alignment between
the spin and momentum direction of the particle repre-
sented by H in IFD is because the dynamical operation T3

in Eq. (14) is made in the same direction as the initial state
spin direction, i.e. the z direction, and followed up by the
entirely kinematical operation T12, i.e. the transverse
rotation in IFD, under which the alignment of the spin
and momentum direction is intact. One should note that the
boost operation to get the D spinors is entirely dynamical in
contrast to the H spinors, which would be the case even if

the interpolation angle δ is away from the IFD. Although
one may still consider such interpolating D representation
for any δ, the operation to get those interpolating D spinors
is too dynamical to lend any useful discussion for the
present work. Thus, we will refer the D spinors in this work
to the familiar Dirac spinors in IFD only. We exhibit them
for spin J ¼ 1

2
in Appendix D using the ð0; JÞ ⊕ ðJ; 0Þ

chiral representation.
To study the properties of a spinor in general, we need to

understand that a spinor for a particle is characterized by
two pieces of information: the momentum of the particle,
and the spin orientation. As discussed above, the helicity
spinor defined in the IFD has the spin of the particle either
aligned or antialigned with its momentum direction.
However, the generalized helicity spinor has its spin
oriented at some angle away from the momentum direction
in general because the interpolating kinematic operatorsK1̂

and K2̂ given by Eq. (13) in the T12 transformation involve
the transverse rotations as well as the transverse boosts. In
this work, we will derive how this spin orientation angle
changes with the interpolation angle. In particular, it is
useful to find a transformation which relates the usual Dirac
spinor in IFD, i.e. the D spinor defined in this work, with
the generalized helicity spinor because the initial state
operated by the T transformation given by Eq. (14) to get
the H spinor is nothing but the same initial state operated
by the boost to get the D spinor and thus the inverse boost
on the D spinor can be subsequently operated by T to link
the D spinor with the H spinor. Such transformation for the
LFD helicity spinor is the well-known Melosh transforma-
tion [13], often referred as the connection between the
Dirac spinors and the light-front spinors. In Fig. 1, this
Melosh transformation is schematically denoted by the
dashed purple arrow from D at δ ¼ 0 to H at δ ¼ π=4. In
this work, we will work out the detailed derivation of a
“generalized Melosh transformation” that links the usual D
spinor to any interpolating H spinor.
For explicit demonstration of the whole landscape

picture for the helicity amplitude squares, i.e. helicity
probabilities, depending on the reference frame as well
as the interpolation angle, we compute all 16 helicity
probabilities not only for a fermion-fermion scattering
process analogous to eμ → eμ but also for a fermion
and antifermion pair annihilation and creation process
analogous to eþe− → μþμ− focusing on the effects from
the initial and final fermion degrees of freedom. From this
picture, one can see clearly that the helicity probabilities in
LFD are independent of the reference frames while all other
interpolating helicity probabilities for 0 ≤ δ < π=4 do
depend on the reference frames. This can be understood
as a direct consequence of the remarkable character change
in the longitudinal boost K3 from “dynamic” for 0 ≤ δ <
π=4 to “kinematic” at δ ¼ π=4. A simple example of
the helicity that depends on the reference frame may be
the helicity of the particle in IFD: e.g. the particle moving in
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the z direction with the spin parallel to the z direction for
the observer at rest would be seen as moving in the −z
direction with the spin still parallel to the z direction for the
observer moving faster than the particle in the z direction so
that the helicity would flip from þ1 in the rest frame to −1
in the moving frame. If the helicity is kept as a fixed value,
then the spin direction would flip depending on the
reference frame. Unless δ ¼ π=4 or LFD, the interpolating
helicity is in general dependent on the reference frames as
gleaned from this simple example. Thus, the landscape of
the helicity probabilities will exhibit the boundaries that
depend on the reference frame and the interpolation angle,
indicating the change of spin configurations for the
particles involved in the process for the helicity probabil-
ities. In fact, we find that the angle difference between the
momentum and the spin directions as a function of the
momentum direction bifurcates at a critical interpolation
angle as shown in Fig. 4. This bifurcation at the critical
interpolation angle separates the branch that the LFD
belongs to from the branch that the IFD belongs to. This
further clarifies the confusion in the prevailing notion of the
equivalence between the IMF in IFD and the LFD,
demanding a clear distinction between the IMF and the
LFD. Moreover, it is interesting to note that the particular
correlation, coined as the J-curve, between the total
momentum of the system and the interpolation angle found
in the scattering amplitude of the scalar field theory [4] as
well as the sQED theory [5] persists even in the helicity
amplitudes analyzed in the present work. Remarkably, the
J-curve appears always within the two boundaries that
define the changes of the initial two particle spin configu-
rations in each and every helicity amplitude. We discuss the
singular behavior of this remarkable correlation in con-
junction with the zero-mode issue in the LFD.
The rest of the paper is organized as follows. In Sec. II, we

derive the generalized helicity operator for any interpolation
angle and the corresponding ð0; 1

2
Þ ⊕ ð1

2
; 0Þ helicity spinors.

The spin orientations of these spinors are discussed in
Sec. III, considering the two subsequent operations
BðηÞDðm̂; θsÞ on a spin-up spinor in the rest frame with
the first operation Dðm̂; θsÞ ¼ e−im̂·Jθs that rotates the spin
around the axis unit vector m̂ ¼ ð− sinϕs; cosϕs; 0Þ by
angle θs and the second operation BðηÞ ¼ e−iη·K that boosts
the spinor to momentum P. In Sec. III, we also derive the
generalized Melosh transformation that relates these gener-
alized helicity spinors to the Dirac spinors. In Sec. IV, we
calculate the generalized helicity probabilities for the fer-
mion-fermion scattering process analogous to eμ → eμ and
plot their results in terms of both the total momentum Pz of
the system and the interpolation angle δ to reveal the entire
landscape of the frame dependence and interpolation angle
dependence of these probabilities. The summary and con-
clusions follow in Sec. V.
For the completeness and clarity, we added several

appendixes. Although the readers may refer to our previous

work [3–5] for the detailed discussion of the interpolation
method, a brief review of the interpolation angle method
with some useful formulas for this paper can be found in
Appendix A. We exhibit the explicit matrix form of
operators T and BðηÞDðm̂; θsÞ in Appendix B, the ð0; 1

2
Þ ⊕

ð1
2
; 0Þ helicity spinors for antiparticles in Appendix C, and

the Dirac spinors in Appendix D. In Appendices E and F,
we list the ð0; JÞ ⊕ ðJ; 0Þ helicity spinors and correspond-
ing generalized Melosh transformations for higher spins up
to J ¼ 2. In Appendix G, the “apparent” spin orientation
angle θa plotted in Fig. 5 is derived for the discussion
presented in Sec. III. The plots of the scattering amplitudes
corresponding to the generalized helicity probabilities
presented in Sec. IV are shown in Appendix H. We also
calculate and plot the generalized helicity amplitudes and
probabilities for the fermion and antifermion pair annihi-
lation and creation process analogous to eþe− → μþμ− in
Appendix I.

II. HELICITY OPERATOR AND HELICITY
SPINOR FOR ANY INTERPOLATION ANGLE

As introduced in Sec. I, the helicity spinors denoted
by H are obtained by applying the transformation T given
by Eq. (14) to the initial state at rest that has a spin
projection along the z direction. We may denote a
generalized helicity spinor in a given interpolation angle
δ as jp; j; miδ for a particle of spin j moving with
momentum p and helicity m. This state jp; j; miδ is
obtained by the transformation T from the spin eigenstate
j0; j; mi at rest, which has a spin projection along the z
direction satisfying J3j0; j; mi ¼ mj0; j; mi. Thus, we may
specify jp; j;miδ ¼ Tj0; j; mi.
Following the procedure of Leutwyler and Stern [14], we

may then define a new spin operator J i for a moving
particle as J i ¼ TJiT−1 to get

J 3jp; j; miδ ¼ TJ3T−1Tj0; j; mi ¼ mjp; j;miδ; ð16Þ

wherem is now not only the eigenvalue of the ordinary spin
operator J3 for the initial state at rest j0; j;mi but also the
eigenvalue of the operator J 3 for the generalized helicity
spinor state jp; j; miδ. It is straightforward to verify that J i
satisfies the SU(2) algebra as Ji does:

½J i;J j� ¼ TJiJjT−1 − TJjJiT−1

¼ T½Ji; Jj�T−1

¼ iϵijkTJkT−1

¼ iϵijkJ k: ð17Þ

As we have shown in the previous work [3], the new spin
operatorJ i commutes with the mass operatorM defined by
M2 ¼ Pμ̂Pμ̂ ¼ P2

þ̂C − P2
−̂Cþ 2Pþ̂P−̂S − P2⊥ for any gen-

eralized helicity spinor state, i.e. ½J i;M�jp; j; miδ ¼ 0.
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The operator J 3 intermediates between the usual Jacob-
Wick helicity operator in IFD and the light-front helicity
operator in LFD and thus offers the role of general helicity
operator in between for any interpolation angle δ as we now
discuss below.
Using the Poincaré algebra for any arbitrary interpolation

angle [3], we find that the new spin operator written in
terms of the parameters β1, β2 and β3 remains unchanged
with or without including T3 [3] as ½J3; K3� ¼ 0 and is
given by

J 3 ¼ J3 cos αþ ðβ1K2̂ − β2K1̂Þ sin α
α

: ð18Þ

We can then use the relations in Eq. (A10) to rewrite J 3 in
terms of the particle’s momentum, and get

J 3 ¼
1

P
ðP−̂J3 þ P1K2̂ − P2K1̂Þ; ð19Þ

where P≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂Þ2 −M2C

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
−̂ þ P2⊥C

p
. It is interest-

ing to note that this operator J 3 can also be written in terms
of the Pauli-Lubanski operator [14] Wμ ¼ 1

2
ϵμναβPνMαβ

simply as J 3 ¼ Wþ̂=P. In the instant form limit
(δ → 0), K1̂ → −J2, K2̂ → J1, P−̂ → P3 and P →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP0Þ2 −M2

p
¼ jPj, and thus the operator J 3 coincides

with the familiar IFD helicity operator P · J=jPj. In the
light-front limit (δ → π=4), K1̂ → −E1, K2̂ → −E2, P−̂ →
Pþ and P →

ffiffiffiffiffiffiffiffiffiffiffiffi
ðPþÞ2

p
¼ Pþ, and thus the operator J 3

coincides with the light-front helicity operator J3 þ
1
Pþ ðP2E1 − P1E2Þ as discussed in Ref. [15]. Thus, J 3

intermediates between the usual Jacob-Wick helicity oper-
ator in IFD and the light-front helicity operator in LFD and
it is reasonable to identify the operator J 3 as the general
helicity operator for any interpolation angle δ. The helicity
eigenvalue for the state jp; j; miδ is m as previously given
in Eq. (16). One should note, however, that the generalized
helicity defined by the operator J 3 agrees with the ordinary
notion of helicity defined usually by the spin parallel or
antiparallel to the particle momentum direction only in the
IFD. For different interpolation angles, in general, there is a
relative angle between the spin orientation and the momen-
tum direction according to the generalized helicity desig-
nated by J 3. In LFD, the transverse light-front boost
operators E1 and E2 involve the rotations and they generate
the angle between the spin orientation and the momentum
direction.
If the particle is moving in theþz or −z direction, so that

P1 ¼ P2 ¼ 0, then the generalized helicity operator given
by Eq. (19) becomes

J 3 ¼
P−̂J3
P

¼ P−̂

jP−̂j
J3: ð20Þ

Thus, for an arbitrary interpolation angle, the helicity sign
of a particle moving in the�z direction depends on the sign
of P−̂. In the light-front limit, P−̂ → Pþ which is always
positive, and thus the light-front helicity of the particle is
positive once the spin is parallel to the þz direction
regardless of whether the particle is moving in the þz
direction or the −z direction. This is dramatically different
from the ordinary helicity defined in the IFD where
P−̂ → P3. For a particle moving in the −z direction, the
light-front helicity and the ordinary Jacob-Wick helicity are
therefore opposite to each other. The swap of helicity
amplitudes caused by such dramatic difference between the
light-front helicity and the ordinary Jacob-Wick helicity
has been noticed previously in deeply virtual Compton
scattering process [16]. We will discuss the sign flip effect
of the P−̂ factor in Eq. (20) for the more general directions
of the particle spin and momentum in the next section,
Sec. III.
As mentioned in Sec. I, we write all of our spinors in the

ð0; JÞ ⊕ ðJ; 0Þ chiral representation of the Lorentz group
due to a clear decoupling between the right-handed and
left-handed components in the chiral representation. In this
representation, the transformation T given by Eq. (14)
decouples as a block diagonal matrix given by

T ¼
�
TR 0

0 TL

�
: ð21Þ

For spin 1=2 fermions in the chiral representation ð0; 1
2
Þ ⊕

ð1
2
; 0Þ of the Lorentz group, the right-handed part TR

corresponds to the ð0; 1
2
Þ representation (A ¼ 0):

K ¼ iJ ¼ iσ=2. Plugging K and J into Eq. (14), we get

TR ¼ eb⊥·σ⊥=2eβ3σ3=2; ð22Þ

where b⊥ ¼ ðβ1 sin δþ iβ2 cos δ;−iβ1 cos δþ β2 sin δÞ.
This transforms the right-handed component of the spinor.
Using the relation ðb⊥ · σ⊥Þ2 ¼ −α2 · I and σ23 ¼ I where
we recall α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðβ21 þ β22Þ

p
, we obtain

T12R ¼ eb⊥·σ⊥=2 ¼ cos

�
α

2

�
· I þ b⊥ · σ⊥

α
sin

�
α

2

�
; ð23Þ

T3R ¼ eβ3σ3=2 ¼
�
eβ3=2 0

0 e−β3=2

�
: ð24Þ

Similarly, the left-handed part TL corresponds to the ð1
2
; 0Þ

representation (B ¼ 0): K ¼ −iJ ¼ −iσ=2. Thus, we get

TL ¼ e−b
�⊥·σ⊥=2e−β3σ3=2; ð25Þ

where b�⊥ ¼ ðβ1 sin δ− iβ2 cos δ; iβ1 cos δþ β2 sin δÞ. With
this, we obtain
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T12L ¼ e−b
�⊥·σ⊥=2 ¼ cos

�
α

2

�
· I −

b�⊥ · σ⊥
α

sin

�
α

2

�
; ð26Þ

T3L ¼ e−β3σ3=2 ¼
�
e−β3=2 0

0 eβ3=2

�
: ð27Þ

The explicit matrix form of T can be found in Appendix B.
To obtain the helicity spinor with arbitrary momentum,

we apply this T transformation on a spin eigenstate in its
rest frame. The definition for helicity operator J 3 in
Eq. (16) assures that if j0; j; mi is an eigenstate of J3,
then Tj0; j; mi is an eigenstate of J 3. Because here we use
the chiral representation, the spinors in the rest frame are
given by

uð½Þ ð0Þ ¼

0
BB@

ffiffiffiffiffi
M

p
0ffiffiffiffiffi
M

p
0

1
CCA; uð−½Þð0Þ ¼

0
BB@

0ffiffiffiffiffi
M

p
0ffiffiffiffiffi
M

p

1
CCA; ð28Þ

with the normalization ūðλÞuðλÞ ¼ 2M. After the T trans-
formation given by Eq. (21), we obtain

uð½Þ
H ðβÞ ¼

ffiffiffiffiffi
M

p

0
BBBBB@

cos α
2
eβ3=2

βRðsin δþcos δÞ
α sin α

2
eβ3=2

cos α
2
e−β3=2

βRðcos δ−sin δÞ
α sin α

2
e−β3=2

1
CCCCCA; ð29aÞ

uð−½ÞH ðβÞ ¼
ffiffiffiffiffi
M

p

0
BBBBB@

− βLðcos δ−sin δÞ
α sin α

2
e−β3=2

cos α
2
e−β3=2

− βLðsin δþcos δÞ
α sin α

2
eβ3=2

cos α
2
eβ3=2

1
CCCCCA; ð29bÞ

where βR ¼ β1 þ iβ2 and βL ¼ β1 − iβ2. The subscript H is
used to denote that these are the generalized helicity spinors
as mentioned in Sec. I to distinguish them from the Dirac
spinors that we will discuss in the next section, Sec. III.
With the relations listed in Eq. (A10), these spinors can be
rewritten in terms of the particle’s momentum:

uð½ÞH ðPÞ ¼

0
BBBBBBBBB@

ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

ðsin δþcos δÞ
q

PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin δþcos δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂−P

ðcos δ−sin δÞ
q

PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos δ−sin δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ − P

p

1
CCCCCCCCCA

ð30aÞ

and

uð−½ÞH ðPÞ ¼

0
BBBBBBBBB@

−PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos δ−sin δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ − P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂−P

ðcos δ−sin δÞ
q

−PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin δþcos δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

ðsin δþcos δÞ
q

1
CCCCCCCCCA
; ð30bÞ

where PR ¼ P1 þ iP2 and PL ¼ P1 − iP2. From
P2 ¼ ðPþ̂Þ2 −M2C ¼ P2

−̂ þ P2⊥C, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − P−̂Þ=ðP2⊥CÞ

q
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ P−̂

p
ð31Þ

and use this equation, i.e. Eq. (31), to obtain the above
results given by Eqs. (30a) and (30b). One should note that
there are two equivalent ways of writing the same factor as
given by Eq. (31), i.e. the left-hand side or the right-hand
side of Eq. (31). The form in the right-hand side is
convenient for obtaining the light-front limit of these
spinors since both P → Pþ and P−̂ → Pþ are positive
and they cannot cancel each other. On the other hand, P−̂
can be negative for other interpolation angle δ ≠ π=4 and
may cancel P to end up with a treacherous singularity in the
form of the right-hand side. In such a case, it would be more
convenient to use the form in the left-hand side as C ≠ 0
and instead take care of the limit P⊥ → 0 noting that the
factor 1=jP⊥j comes with PR or PL in Eqs. (30a) and (30b)
and the factor PR=jP⊥j or PL=jP⊥j may be taken as unity
by choosing an appropriate coordinate system.
The antiparticle spinors are generated through charge

conjugation as v ¼ CūT ¼ iγ0γ2γ0u�. Here, the gamma
matrices are written on the chiral basis as (see e.g.
Ref. [17]):

γ0¼
�
0 I

I 0

�
; γi¼

�
0 −σi

σi 0

�
; γ5¼

�
I 0

0 −I

�
: ð32Þ

The results of antiparticle spinors are summarized in
Appendix C.
In the instant form limit (δ → 0), C → 1, Pþ̂ → P0 ¼ E,

P−̂ → P3 and P → jPj. Using the relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� jPjÞ

p
¼ ðEþM � jPjÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþMÞ

p
; ð33Þ

one can show that spinors in Eqs. (30a) and (30b) reduce to
their instant form in chiral representation as follows:

INTERPOLATING HELICITY SPINORS BETWEEN THE … PHYSICAL REVIEW D 92, 105014 (2015)

105014-7



uð½ÞH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM

2

r
0
BBBBBB@

EþMþjPj
EþM cos θ

2

EþMþjPj
EþM sin θ

2
eiϕ

EþM−jPj
EþM cos θ

2

EþM−jPj
EþM sin θ

2
eiϕ

1
CCCCCCA
; ð34aÞ

uð−½ÞH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM

2

r
0
BBBBBB@

− EþM−jPj
EþM sin θ

2
e−iϕ

EþM−jPj
EþM cos θ

2

− EþMþjPj
EþM sin θ

2
e−iϕ

EþMþjPj
EþM cos θ

2

1
CCCCCCA
; ð34bÞ

where θ and ϕ specify the direction of the momentum
P: sin θ cosϕ ¼ P1=jPj, sin θ sinϕ ¼ P2=jPj and
cos θ ¼ P3=jPj, i.e.

cosðθ=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjPj þ P3Þ=ð2jPjÞ

q
; ð35aÞ

sinðθ=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjPj − P3Þ=ð2jPjÞ

q
; ð35bÞ

expðiϕÞ ¼ PR=jP⊥j; ð35cÞ

expð−iϕÞ ¼ PL=jP⊥j: ð35dÞ

In the light-front limit (δ → π=4), C → 0, Pþ̂ → Pþ,
P−̂ → Pþ, P → Pþ, and ðPþ̂ − PÞ=C!δ→π=4 M2=ð2PþÞ.
One can show that the spinors in Eqs. (30a) and (30b)
become the light-front spinors in the chiral representation
[17], or identically the Kogut-Soper spinors [18]:

uð½ÞH ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
Pþ

p
0
BBB@

ffiffiffi
2

p
Pþ

PR

M

0

1
CCCA;

uð−½ÞH ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
Pþ

p
0
BBB@

0

M

−PLffiffiffi
2

p
Pþ

1
CCCA: ð36Þ

The
ffiffiffi
2

p
factors in front of Pþ in Eq. (36) are due to our

definition of Pþ with the factor 1=
ffiffiffi
2

p
, i.e. Pþ ¼

ðP0 þ P3Þ= ffiffiffi
2

p
.

It is straightforward to extend our discussion for spin 1=2
fermions and derive the generalized helicity spinors for any
spin J. The only thing one needs to do is to change the K
and J matrices as well as the spinors in Eq. (28) from spin
1=2 representation to spin J representation. The results of
the generalized helicity spinors for spin-up to J ¼ 2 are
summarized in Appendix E. It is interesting to note that the

spin 1 bosons in the chiral representation ð0; 1Þ ⊕ ð1; 0Þ of
the Lorentz group are represented by the column vectors of
six components as given by Eq. (E1) while the spin 1
polarization vectors such as transverse ϵμð�; pÞ and longi-
tudinal ϵμð0; pÞ are typically given by four components. We
note that the typical four-component polarization vectors
correspond to the chiral representation ð1=2; 1=2Þ of the
Lorentz group and the relationship between the two
representations ð0; 1Þ ⊕ ð1; 0Þ and ð1=2; 1=2Þ is analogous
to the relationship between the six-component electromag-

netic fields, i.e. electric field ~E and magnetic field ~B or en
masse Fμν, and the four-component electromagnetic poten-

tial, i.e. scalar potential Φ and vector potential ~A or en
masse Aμ, respectively. The details of discussion regarding
this relationship will be presented somewhere else [19].

III. SPIN ORIENTATION AND GENERALIZED
MELOSH TRANSFORMATION

A. Spin orientation for generalized helicity spinors

A spinor carries two pieces of information: the momen-
tum of the particle and its spin orientation. We may denote
the momentum as P, and the direction of momentum P as
ðθ;ϕÞ, where θ is the angle between the momentum
direction and the z axis, and ϕ is the azimuthal angle.
Likewise, we may denote spin as S, and the direction of
spin S as ðθs;ϕsÞ. Since the direction of S depends on the
reference frame in general, we take ðθs;ϕsÞ in the rest
frame for the discussion of this section.
We consider the following transformation on a spin-up

spinor in the rest frame:

BðηÞDðm̂; θsÞ ¼ e−iη·Ke−im̂·Jθs ; ð37Þ

where the first operation Dðm̂; θsÞ ¼ e−im̂·Jθs rotates the
spin around the axis given by a unit vector m̂ ¼
ð− sinϕs; cosϕs; 0Þ by angle θs and then the second
operation BðηÞ ¼ e−iη·K boosts the spinor to momentum
P. By combining these two operations, all possible spinors
can be reached. Therefore, we should be able to rewrite the
T transformation that we defined in Sec. II as a combination
of a rotation and a boost with a suitable set of ðθs;ϕsÞ:

T ¼ BðηÞDðm̂; θsÞ: ð38Þ

In the ð0; 1
2
Þ ⊕ ð1

2
; 0Þ chiral representation, we have

Dðm̂; θsÞ ¼ e−im̂·Jθs ¼
�
e−im̂·σθs=2 0

0 e−im̂·σθs=2

�
; ð39aÞ

BðηÞ ¼ e−iη·K ¼
�
eη·σ=2 0

0 e−η·σ=2

�
; ð39bÞ

with
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e−im̂·σθs=2 ¼ I cos
θs
2
− im̂ · σ sin

θs
2
; ð40aÞ

e�σ·η=2 ¼ I cosh
η

2
� n̂ · σ sinh

η

2
: ð40bÞ

In the above expressions, n̂ ¼ ðsin θ cosϕ; sin θ sinϕ;
cos θÞ is the unit vector in the momentum P direction,

and the magnitude of η is given by sinhðηÞ ¼ jPj=M and
coshðηÞ ¼ E=M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
=M. The explicit matrix

form of BðηÞDðm̂; θsÞ is written in Appendix B.
Comparing the explicit matrix representations of T and

BðηÞDðm̂; θsÞ that result in the identical spinor, i.e. the
same momentum and spin, we find that indeed Eq. (38)
holds, provided that the angles ðθs;ϕsÞ are given by

cos
θs
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

EþM

r
cos

α

2
cosh

β3
2
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

EþM

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P−̂ þ P
2P

r 0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

Mðsin δþ cos δÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðsin δþ cos δÞ

Pþ̂ þ P

s 1
CA; ð41aÞ

cosϕs ¼
β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β21 þ β22
p ¼ P1ffiffiffiffiffiffi

P2⊥
p ¼ cosϕ; sinϕs ¼

β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21 þ β22

p ¼ P2ffiffiffiffiffiffi
P2⊥

p ¼ sinϕ; ð41bÞ

where we used sinhðη=2Þ ¼ jPj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðEþMÞp

and
coshðη=2Þ ¼ ðEþMÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MðEþMÞp
.

Because our generalized helicity spinors are obtained by
applying the T transformation on a rest spinor, and now we
know that the T transformation is equivalent to performing
first a rotation around the axis m̂ and then a boost, we
conclude that for the positive helicity spinors the spin
points in the ðθs;ϕsÞ direction, and for the negative helicity
spinors, the spin will point in the exact opposite direction,
namely ðπ − θs; π þ ϕsÞ. Since Eq. (38) is an operator
equation, which does not depend on the total spin of the
system, this expression should also hold for higher spins
although we obtained it using the J ¼ 1=2 representation.
We notice that the spin S, momentum P and z axis are all

in the same plane due to the fact that ϕs is the same as ϕ as
shown in Eq. (41b). Therefore, for the following discus-
sions, we may take ϕ ¼ ϕs ¼ 0 without loss of any
generality and focus on the relation between θ and θs.
First of all, in the instant form limit (δ → 0),

Pþ̂ → P0 ¼ E, P−̂ → P3 and P → jPj, and we get

cosðθs=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjPj þ P3Þ=ð2jPjÞ

q
¼ cosðθ=2Þ: ð42Þ

So θ ¼ θs when δ ¼ 0, and the spin and the momentum
directions are aligned, as expected from the usual Jacob and
Wick helicity [12] defined in the IFD. However, as δ
becomes different from zero, the two angles θ and θs differ
from each other. To give an illustration of the angles, we
plot in Fig. 2 the spin orientation (red solid vector) and the
momentum direction (black dashed vector) of the positive

helicity spinor uð½ÞH for a particle with mass M ¼ 1 GeV
and total momentum jPj ¼ 1 GeV when θ ¼ π=3 and
δ ¼ π=6. It is clear from Eq. (41a) that the spin orientation
depends on both the particle’s momentum and the inter-
polation angle. In particular, using Eq. (41a), one can

analyze how the angle difference between the momentum
direction and the spin direction, i.e. θ − θs, changes as the
momentum direction θ changes for each different inter-
polation angle δ.
To show how the spin orientation changes with the

interpolation angle and the momentum direction, we plot θs
of a positive helicity spinor uð½ÞH given by Eq. (41a) in terms
of both δ and θ in Fig. 3. Here again, we take the particle
mass M ¼ 1 GeV and total momentum jPj ¼ 1 GeV for
illustration. For δ ¼ 0, the equality θ ¼ θs from Eq. (42)
yields the straight line relation at δ ¼ 0 as shown in Fig. 3.
As we vary the interpolation angle between δ ¼ 0 and
δ ¼ π=4, we see that for a fixed θ, i.e. fixed momentum
direction, θs decreases as δ increases in general, and
correspondingly the angle between the spin and the
momentum will increase with δ. In fact, the angle between
the momentum and the spin directions, i.e. θ − θs, increases
with the interpolation angle δ and becomes the largest at the
light front. This feature is shown in Fig. 4 as what is shown

s
z

FIG. 2 (color online). At interpolation angle δ ¼ π=6, a
particle’s momentum direction at θ ¼ π=3 (dashed black arrow)
and the corresponding spin orientation (solid red arrow) of the
positive helicity spinor. We take as an example a particle with
mass M ¼ 1 GeV and total momentum jPj ¼ 1 GeV.

INTERPOLATING HELICITY SPINORS BETWEEN THE … PHYSICAL REVIEW D 92, 105014 (2015)

105014-9



in Fig. 3 is now plotted in terms of the angle difference
θ − θs between the momentum and the spin directions for
various interpolation angles listed in the legend. Note here
that the increment of the angle difference θ − θs with the
increment of the interpolation angle δ bifurcates at a critical
interpolation angle δc. This bifurcation of two branches
shown in Fig. 4 is also indicated by the transparent vertical
plane in Fig. 3. At a fixed interpolation angle δ < δc, the
spin orientation θs increases with θ, and when θ ¼ π, we
also have θs ¼ π. On the other hand, at a fixed interpolation
angle δ > δc, θs does not follow θ all the way to π, but
instead starts to decrease beyond a certain point and goes
back to 0 when θ ¼ π. This phenomenon is due to the
change of sign for P−̂ in Eq. (20) as we discussed in Sec. II,
and the critical interpolation angle δc is thus given by P−̂ ¼
0 when θ ¼ π:

δc ¼ arctan

�jPj
E

�
: ð43Þ

The critical value for the case M ¼ jPj ¼ 1 GeV shown in
Figs. 3 and 4 is δc ≈ 0.61548. If we change the particle’s
mass and total momentum, the position of this critical plane
in Fig. 3 will change accordingly. The swap of helicity
amplitudes [16] mentioned in the previous section, Sec. II,
is directly linked to the fact that the IFD and the LFD
separately belong to the two different branches bifurcated
and divided out at the critical interpolation angle δc. This
bifurcation indicates the necessity of the distinction in the
spin orientation between the IFD and the LFD and clarifies
further the characteristic of helicity amplitudes in the two
distinguished forms of the relativistic dynamics. In par-
ticular, the discussion of the spin orientation and the
helicity amplitudes clarifies any conceivable confusion in
the prevailing notion of the equivalence between the IMF
formulated in the IFD and LFD. We thus discuss below the
distinguished features of the light-front helicity.
As we get to the light-front limit (δ → π=4), Pþ̂ → Pþ,

P−̂ → Pþ, P → Pþ, Eq. (41a) becomes

cos
θs
2
¼

ffiffiffi
2

p
Pþ þMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
2

p
PþðEþMÞ

q : ð44Þ

For a particle that is moving in the �z direction, the
numerator becomes E� jPj þM and the denominator
becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� jPjÞðEþMÞp

. Using Eq. (33), we get
cosðθs=2Þ → 1. Therefore in the light-front limit, a positive
helicity spinor, regardless of whether the particle is moving
in the þz or −z direction, always has its spin pointed in the
þz direction. This produces the feature of θs ¼ 0 at both
θ ¼ 0 and θ ¼ π as shown in Fig. 3 as well as in Fig. 4. By
the same token, a negative helicity spinor moving in the�z
direction always has its spin pointed to the −z direction in
LFD, even when the particle is moving in the −z direction.
This already reveals a distinct feature of the light-front
helicity and provides the rationale for the swap of helicity
amplitudes discussed in the deeply virtual Compton scat-
tering process [16]. Because the light-front helicity is
obtained in general by the two kinds of boost operations,
i.e. the light-front transverse boost E⊥ and the longitudinal
boost K3, as one can get T ¼ e−iβ⊥·E⊥e−iβ3K

3

from Eq. (14)
in the limit δ → π=4, we now discuss the salient features of
the spin orientations due to each of these two kinds of light-
front kinematic operations separately.

1. Light-front transverse boost E⊥ operation

Without loss of any generality, we may take the
coordinate system where everything lies in the x − z plane
and consider just the transverse boost E1 ¼ ðK1 þ J2Þ= ffiffiffi

2
p

to discuss the effect of the light-front boost operation on the

FIG. 3 (color online). The dependence of θs of a positive
helicity spinor on the θ angle and the interpolation angle δ. Again
we take a particle with mass M ¼ 1 GeV and total momentum
jPj ¼ 1 GeV as our illustrative example.

FIG. 4 (color online). The angle between the momentum
direction and the spin direction, i.e. θ − θs, as a function of θ
with the variation of the interpolation angle δ. The bifurcation

point appears at the critical interpolation angle δc ¼ arctanðjPjE Þ ≈
0.61548 as discussed in the text.
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spin orientation. Suppose that the particle at rest with the
spin-up in the positive z direction is boosted by E1 to gain
the particle energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
. As E1 consists of not

only the boost in the x direction, K1, but also the rotation
around the y axis, J2, the particle gains the momentum in
the −z direction as well as in the x direction. Interestingly,
the momentum gained in the −z direction takes the non-

relativistic form Pz ¼ − ~P2
⊥

2M (here of course ~P⊥ ¼ Pxx̂) in

such a way that the energy of the particle becomes E ¼
P0 ¼ M þ ~P2

⊥
2M while the light-front plus momentum Pþ ¼

ðP0 þ PzÞ= ffiffiffi
2

p
becomes invariant [4]. Of course, the

relativistic energy-momentum dispersion relation still holds
as one may expect:

ðP0Þ2 − ~P2 ¼
�
M þ

~P2
⊥

2M

�2

− ~P2
⊥ −

�
−

~P2
⊥

2M

�2

¼ M2:

ð45Þ

In terms of the energy E and the particle mass M, one may
express the particle momentum components as Px ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðE −MÞp

and Pz ¼ − ðPxÞ2
2M ¼ M − E as well asffiffiffi

2
p

Pþ ¼ M. Thus, the resulting momentum direction is

given by cos θ0 ¼ Pz

jPj ¼ M−Effiffiffiffiffiffiffiffiffiffiffi
E2−M2

p ¼ −
ffiffiffiffiffiffiffiffi
E−M
EþM

q
. Since the

4-vector of the particle spin Sμ is transverse to the
4-momentum Pμ, i.e. S · P ¼ 0, while its normalization
is fixed by S2 ¼ −1, one can find the specific direction of
the spin that the particle takes under the E1 operation. Thus,
we consider here effectively the E1 operation that results in
the final state with the four-momentum Pμ and the spin
4-vector Sμ starting from the initial state at rest with the
spin-up in the ẑ direction. As the E1 operation is the only
source of the spin rotation here, the rotated spin angle
becomes maximum only when the given energy E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
is attained entirely by the E1 operation. If

the particle is tempered with the K3 operation prior to the
E1 operation, then the amount of the E1 operation required
to achieve the same energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
would be

reduced. We may discuss the apparent orientation of the
spin in the moving frame by analyzing Sμ directly as we
describe in Appendix G, where we define the apparent spin
orientation angle θa and derive the relationship between θa
and θ. Using Eq. (37), however, one may also take a look at
the spin orientation in the particle’s rest frame, i.e. the
rotated θs angle prior to the boost operation BðηÞ ¼ e−iη·K

with which the final 4-momentum Pμ and the spin 4-vector
Sμ are obtained. The maximum apparent spin orientation in
the moving frame, i.e. the final state, must correspond to the
maximum initial spin orientation ðθsÞmax since the boost
BðηÞ ¼ e−iη·K tilts the initial spin orientation toward the
direction of the rapidity η or the final momentum P.

Therefore, for a certain total momentum jPj or energy E,
ðθsÞmax should also be obtained at θ ¼ θ0 that was attained
entirely by the E1 operation.
This initial spin orientation θs given by Eq. (44) can be

written as

θs
2
¼ π

2
− arctan

� ffiffiffi
2

p
Pþ þM
Px

�
; ð46Þ

since cot θs
2
¼ ð

ffiffi
2

p
PþþM
Px Þ or tan θs

2
¼ ð Pxffiffi

2
p

PþþM
Þ. One may

obtain ðθsÞmax from Eq. (46) by taking Px ¼ jPj sin θ
and

ffiffiffi
2

p
Pþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þM2

p
þ jPj cos θ and differentiating

θs with respect to θ to get zero. As expected, we find the

angle θ0 precisely given by cos θ0 ¼ − jPj
EþM ¼ −

ffiffiffiffiffiffiffiffi
E−M
EþM

q
with the corresponding ðθsÞmax ¼ π − 2 arctanð

ffiffiffiffiffiffiffiffi
2M
E−M

q
Þ or

equivalently ðθsÞmax ¼ 2 arctan
ffiffiffiffiffiffiffiffi
E−M
2M

q
. The negative sign

here indicates that the z component of the particle momen-
tum must be negative. As jPj (or E) gets larger, θ0 gets
closer to π. This behavior is shown in Fig. 5. We choose
M ¼ 1 GeV for an illustration and first plot θs given by
Eq. (46) as a function of θ for fixed values of jPj, e.g.
jPj ¼ 1, 1.2, 2, 4, 100 GeV, as indicated in the legend of
Fig. 5. The values of ðθsÞmax are traced out with the thick
gray dashed line along the values of θ0 as jPj varies in
Fig. 5. This thick gray dashed line is obtained entirely by
the E1 operation on the initial rest particle and thus the
value of

ffiffiffi
2

p
Pþ is identical to the particle mass M

FIG. 5 (color online). The light-front profiles of θs vs θ for a
particle with mass M ¼ 1 GeV and the magnitude of the
momentum jPj ¼ 1, 1.2, 2, 4, 100 GeV. The thick gray dashed
line indicates the position of θ0 which provides the maximum θs.
As a comparison, the magenta dot-dashed line indicates how the
apparent spin orientation angle θa changes with the momentum
direction. The gray circle is marked for the intersecting point
between the line of jPj ¼ 1 GeV (blue solid line) and the thick
gray dashed line. The blue circle corresponds to the case when the
spinor does not have any momentum in the z direction but moves
perpendicular to the z direction, e.g. the x direction.
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throughout this line. As expected, this line approaches to
θ ¼ π=2 when jPj gets close to zero. We also plot the
apparent spin orientation angle θa defined in Appendix G
as the magenta dot-dashed line, overlaying with the thick
gray dashed line of ðθsÞmax.
As an example of the ðθsÞmax state lying on the thick gray

dashed line, a gray circle is marked for the intersecting
point between the line of jPj ¼ 1 GeV (blue solid line) and
the thick gray dashed line in Fig. 5. Since jPj ¼ 1 GeV for
this state, the value of θ0 is given by arccos ð− 1

1þ ffiffi
2

p Þ ≈
1.99787 and the corresponding value of ðθsÞmax is given by
2 arctanð 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ ffiffi
2

p Þ
p Þ ≈ 0.854157. As a comparison, we dis-

played the state with the final momentum entirely given by
Px without any Pz component, e.g. Px ¼ jPj ¼ 1 GeV, or
θ ¼ π=2, marked by the blue circle in Fig. 5. To get this
final momentum, the initial momentum prior to the E1

operation should have had the positive Pz momentum to

compensate the negative Pz component, i.e. Pz ¼ − ~P2
⊥

2M,
gained by the E1 operation. The initial positive Pz

momentum should have been attained by the K3 operation
prior to the E1 operation and consequently the amount of
E1 operation required to achieve the state with jPj ¼
1 GeV gets reduced. Thus, the corresponding θs for the
blue circle is smaller than ðθsÞmax marked by the gray circle.
Numerically, the corresponding θs value 2 arctanð 1ffiffi

2
p þ1

Þ ≈
0.785398 for θ ¼ π=2 (blue circle) may be compared
with ðθsÞmax ¼ 2 arctanð 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ ffiffi
2

p Þ
p Þ ≈ 0.854157 for θ0 ¼

arccos ð− 1

1þ ffiffi
2

p Þ ≈ 1.99787 (gray circle) on the line of

jPj ¼ 1 GeV. When E → ∞, both θ0 → π and ðθsÞmax →
π as shown in Fig. 5.

2. Longitudinal boost K3 operation

As we have completed our discussion on the E⊥
operation, we now take a look at how the spin direction
changes under the longitudinal boost K3 when the particle
is not moving in the �z direction. The change in jPj will
result in a change in the θs vs θ profile as we have already
discussed and the changed momentum direction θ
pinpoints the resulting spin direction θs on the correspond-
ing profile. For an illustration, we start with the case
when the 3-momentum is perpendicular to the z direction,
e.g. jPj ¼ Px ¼ 1 GeV, which we again denote by the
blue circle now in Fig. 6. As discussed earlier, the
corresponding spin direction is given by Eq. (46), i.e.
θs ¼ 2 arctanð 1ffiffi

2
p þ1

Þ ≈ 0.785398. As the particle is boosted

in the þz direction while Px is fixed as 1 GeV, the
momentum angle θ is decreased but the profile is lifted
higher as the magnitude of momentum jPj is increased. The
corresponding change of (θ, θs) values follows the red solid
dots in the region where θ < π=2 as shown in Fig. 6. It is
interesting to note that the angle θ decreases fast enough to
get θs decreased despite the fact that the profiles are lifted.

When boosted in the−z direction, the momentum angle θ is
increased and in fact it quickly goes over to the θ > θ0 side,

where cos θ0 ¼ −
ffiffiffiffiffiffiffiffi
E−M
EþM

q
as previously discussed. As the

whole profile moves upward, the resulting θs is increased
following the red solid dots in the region where θ > π=2.
As can be seen from the trend of the red dots as θ → π in
Fig. 6, the θs approaches a value that is not π. In other
words, even under the maximum boost in the −z direction,
the spin does not align in parallel with the momentum
direction. While Px is fixed, the maximum θs value that can
be achieved in Eq. (46) is π − 2 arctanðM=PxÞ as
Pz → −∞. For Px ¼ 1 GeV, π − 2 arctanðM=PxÞ≈
1.5708. As Px is fixed in this case, Pþ can approach zero.
This is in contrast to the maximum on the θs vs θ profile
[i.e. ðθsÞmax] discussed before, for which Pþ is fixed as
M=

ffiffiffi
2

p
and Px ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MðE −MÞp
, so that ðθsÞmax → π −

2 arctanð2M=PxÞ ≈ π as the jPj or E goes to∞. Effectively,
in the fixed Px ¼ 1 GeV case, the red solid dots follow a
monotonic relation between the θs and θ under the boost in
the z direction going through the blue circle in Fig. 6.
This may also be understood from Eq. (46) by noting that

the rotated angle of the spin after the boost in the �z
direction satisfies the following equation:

−
Δθs
2

¼ arctan

� ffiffiffi
2

p
P0þ þM
P0x

�
− arctan

� ffiffiffi
2

p
Pþ þM
Px

�
;

ð47Þ
where 0 denotes the boosted quantities. For boosting the
particle in the þz (−z) direction without changing its
momentum in the perpendicular direction, i.e. x direction,
the right-hand side is positive (negative), because

FIG. 6 (color online). The light-front profiles of θs vs θ for a
particle with mass M ¼ 1 GeV and the magnitude of the
momentum jPj ¼ 1, 1.2, 2, 4, 100 GeV. The red solid dots
indicate how the momentum direction θ and the spin direction θs
change as the spinor is boosted in the �z direction. The blue
circle corresponds to the case when the spinor does not have any
momentum in the z direction but moves perpendicular to the z
direction, e.g. the x direction.
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P0þ > Pþ (P0þ < Pþ) and P0x ¼ Px. The negative sign in
front of Δθs indicates that θs is decreased (increased) as the
particle is boosted in the þz (−z) direction. This illustrates
that the rotation of the spin occurs around the P × ð�ẑÞ
axis as the particle is boosted in the �z direction,
respectively. This is of course the well-known Wigner
rotation and Δθs is exactly the corresponding Wigner
rotation angle given by Eq. (A10) in Ref. [20] when it
is written using our coordinate system and notations. The
fact that the Wigner rotation is not needed when boosting
the light-front helicity spinors has been known for a long
time, but our discussion using the spin orientation angle
provides a clear understanding on this interesting feature of
the light-front helicity. This is also related with the reason
why the amplitudes computed with the light-front helicity,
i.e. the light-front helicity amplitudes, are independent of
the reference frame as we shall demonstrate in the scatter-
ing processes discussed in the next section, Sec. IV. Since
both E⊥ and K3 in T ¼ e−iβ⊥·E⊥e−iβ3K

3

are the kinematic
operators in LFD, the light-front helicity formulation takes
care of the Wigner rotation which is a rather complicated
dynamic effect, and offers an effective computation of spin
observables in hadron physics.

B. Generalized Melosh transformation for any
interpolation angle

On the light front, people usually use the Melosh
transformation [13] to connect the Dirac spinors and the
light-front spinors. Now that we have our generalized
helicity spinors, we can derive a generalized Melosh
transformation that connects the Dirac spinors and our
generalized helicity spinors.
Dirac spinors u�½

D ðPÞ can be obtained by applying the
boost operator e−iη·K directly on the rest frame spinors
u�½ð0Þ (see Appendix D for explicit expressions). Using
Eq. (38), thismeans that theDirac spinors represent particles
moving with momentum P while their spins are parallel or
antiparallel to the z axis in their rest frame. Pictorially, when
the red solid arrow in Fig. 2 is horizontal while the dashed
black arrow remains in its original position, it becomes a
Dirac spinor defined for that momentum. Therefore, it is
clear that the helicity spinors are related to the Dirac spinors
by a pure rotation of the spin.
One can also prove this mathematically. Suppose that

the Dirac spinors and the helicity spinors are related by
the generalized Melosh transformation in the following
way [17,21]:

uðλÞD ¼ Ω½uDuH �
λρ uðρÞH þΩ½uDvH �

λρ vðρÞH ; ð48Þ

vðλÞD ¼ Ω½vDuH �
λρ uðρÞH þΩ½vDvH �

λρ vðρÞH ; ð49Þ

where H and D subscripts denote the generalized
helicity spinors and the Dirac spinors respectively, and

ρ; λ ¼ ½;−½ denote positive or negative helicity in the
case of our generalized helicity spinors and spin-up or spin-
down in the case of Dirac spinors. Using our orthonormal

convention ūðρÞH uðλÞH ¼ v̄ðρÞH vðλÞH ¼ 2Mδρλ, we then have

Ω½uDuH �
λρ ¼ 1

2M
ūðρÞH ðPÞuðλÞD ðPÞ

¼ 1

2M
uðρÞ†ð0Þeim̂·Jθse−iη·Kγ0e−iη·KuðλÞð0Þ

¼ 1

2M
uðρÞ†ð0Þeim̂·Jθsγ0uðλÞð0Þ

¼ ξðρÞ†eim̂·JθsξðλÞ

¼ Dðm̂;−θsÞρλ; ð50Þ

where ðe−iη·KÞ† ¼ e−iη·K because the boost operator K is
anti-Hermitian, and we have rewritten Eq. (28) as

uðiÞ ¼
ffiffiffiffiffi
M

p �
ξðiÞ

ξðiÞ

�
with ξð½Þ ¼

�
1

0

�
; ξð−½Þ ¼

�
0

1

�
:

ð51Þ

Similarly, we have

Ω½vDvH �
λρ ¼ Dðm̂;−θsÞ�ρλ: ð52Þ

Using the same method and the orthogonal condition
ūðρÞvðλÞ ¼ v̄ðρÞuðλÞ ¼ 0, one can easily check that

Ω½uDvH �
λρ ¼ Ω½vDuH �

λρ ¼ 0: ð53Þ

From Eqs. (50) and (52), we see that the generalized
Melosh transformation is nothing but the transpose of the
Wigner rotation matrix Dðm̂;−θsÞ. Plugging m̂ ¼
ð− sinϕs; cosϕs; 0Þ and −θs into Eq. (40a), we find the
generalized Melosh transformation for spin 1=2 as

Ω
�
1

2

�
¼
�
ωð1

2
Þ 0

0 ωð1
2
Þ�
�
; ð54Þ

where

ω

�
1

2

�
¼
�

cos θs
2

−eiϕs sin θs
2

e−iϕs sin θs
2

cos θs
2

�
; ð55Þ

with θs, ϕs given by Eq. (41) in terms of the particle’s
momentum and “1=2” denotes the fact that this is for
spin J ¼ 1=2.
In the light-front limit (δ → π=4), we have Eqs. (41b)

and (44), so Ωð1=2Þ reduces to the well-known Melosh
transformation that relates the light-front spinors in Eq. (36)
to the Dirac spinors in Eq. (D1), i.e.
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ω

�
1

2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
2

p
PþðEþMÞ

q � ffiffiffi
2

p
Pþ þM −PR

PL
ffiffiffi
2

p
Pþ þM

�
:

ð56Þ

The
ffiffiffi
2

p
in front of Pþ is due to our convention. This

expression agrees with Eq. (A8) in Ref. [17] and Eqs. (C1),
(C2) in Ref. [21].
As Eqs. (50), (52) and (53) are independent of the spin J,

our derivation is also applicable to higher spins. We can
therefore quickly write down the generalized Melosh
transformations for any spin J, as the transpose of the
corresponding Wigner rotation matrix Dðm̂;−θsÞ. The
generalized Melosh transformation matrices for spin-ups
to J ¼ 2 are listed in Appendix F for reference.

IV. INTERPOLATING HELICITY SCATTERING
PROBABILITIES

Using the generalized helicity spinors we can calculate
the helicity-dependent amplitudes, for example, for a
scattering process depicted in Fig. 7. At the lowest order,
the helicity amplitude Mðλ1; λ2; λ3; λ4Þ is given by

ūðλ3Þðp3Þγμuðλ1Þðp1Þūðλ4Þðp4Þγμuðλ2Þðp2Þ; ð57Þ

where λ denotes the helicity of the particle. We dropped the
coupling constant factor ð−ieÞ2 and the Lorentz invariant
part of the propagator −1=q2, since they are irrelevant to
our discussion. In this section, we investigate the scattering
probabilities which are the square of Eq. (57).
It needs to be emphasized that the “helicity” we discuss

here is the “generalized helicity” for an arbitrary interpo-
lation angle, as defined in Sec. II. For a certain helicity, the
spin orientation depends on both the interpolation angle δ
and the momentum of the particle, as given by Eq. (41a).
Because a boost in the z direction changes the
4-momentum, it will also change the spin orientation in
general. As a result, for a certain helicity configuration, the
scattering probability will have both the interpolation angle
dependence and the frame dependence. To demonstrate
both dependences, we plot the helicity probabilities in
terms of both the interpolation angle δ and the total

momentum of the system Pz, which reflects the boost
effect in the z direction.
As illustrated in Fig. 7, we set our coordinate system in

such a way that the initial particles are lying on the z axis,
and θ is the scattering angle between the momentum p1 and
momentum p3. In the center of mass frame, the 4-momenta
of these four particles are given by

p1 ¼ ðϵ1; 0; 0; pinitialÞ; ð58aÞ

p2 ¼ ðϵ2; 0; 0;−pinitialÞ; ð58bÞ

p3 ¼ ðϵ3; pfinal sin θ; 0; pfinal cos θÞ; ð58cÞ

p4 ¼ ðϵ4;−pfinal sin θ; 0;−pfinal cos θÞ; ð58dÞ

where pinitial ¼ pfinal ≡ p, ϵ1 ¼ ϵ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
p

and
ϵ2 ¼ ϵ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
p

, from the conservation of energy
and momentum. To incorporate the frame dependence for
the probabilities, we boost the whole system to the total
momentum Pz, and get

p00
i ¼ γp0

i þ γβpz
i ¼

E
M

p0
i þ

Pz

M
pz
i ; ð59aÞ

p0z
i ¼ γpz

i þ γβp0
i ¼

E
M

pz
i þ

Pz

M
p0
i ; ð59bÞ

p0⊥
i ¼ p⊥

i ; ði ¼ 1; 2; 3; 4Þ ð59cÞ

where M ¼ ϵ1 þ ϵ2 is the center of mass energy and E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPzÞ2 þM2

p
is the total energy in the boosted frame. We

use these frame-dependent 4-momenta in Eq. (30) to get
frame-dependent helicity spinors for an arbitrary interpo-
lation angle δ. The probabilities as the square of Eq. (57)
are then calculated using these generalized helicity spinors.
In our calculation, we choose θ ¼ π=3 in the center of

mass frame, and the center of mass momentum for each
particle as p ¼ 2 GeV. The masses of the colliding
particles are chosen to be m1 ¼ m3 ¼ 1 GeV and m2 ¼
m4 ¼ 1.5 GeV as an illustrative example. The scattering
probabilities for all 16 different helicity configurations are
plotted in terms of both the interpolation angle δ and the
total momentum Pz in the first four rows of Fig. 8, where
we denote the positive and negative helicities with “þ” and
“−.” For example, “þ− → þ−” represents a process where
particle 1 with positive helicity and particle 2 with negative
helicity scatter to particle 3 with positive helicity and
particle 4 with negative helicity.
The first striking feature that these plots exhibit is the

two boundaries indicated by the blue dashed lines in Fig. 8,
across which the probabilities suddenly change their
values. The appearance of these boundaries is due to the
bifurcation of the branches that are distinguished by the
critical interpolation angle δc as we have discussed in

FIG. 7. Scattering process at angle θ, and its corresponding
Feynman diagram at the lowest tree level.
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FIG. 8 (color online). Scattering probabilities (with the factor e4=q4 dropped) for 16 different helicity configurations, where the
masses of the two colliding particles arem1 ¼ 1 GeV andm2 ¼ 1.5 GeV, the center of mass momentum for each particle is p ¼ 2 GeV
and the scattering angle θ ¼ π=3. The four plots in the last row are each a summation of the four plots above, representing the probability
of a certain helicity configuration going into all possible final helicity states.
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Sec. III A. Since δc is obtained from the condition P−̂ ¼ 0,
the initial two particles that move only in the �z direction
yield the corresponding two boundaries upon the boost of
the reference frame in the �z direction. The sudden change
of the helicity amplitude-square values is thus caused by the
spin flip of the incoming scattering particles 1 and 2 for the
given helicity assignment in the amplitude. When this spin
flip happens, the probabilities for the same helicity con-
figuration represent different spin configurations. In other
words, we are not calculating the same physical process any
more but three different initial spin configurations for the
corresponding three different branches divided by the two
boundaries although the given helicity configuration is
identical regardless of the boundaries. Thus, the helicity
probability suddenly shifts to a different value crossing a
boundary. The only helicity amplitude immune from such
bizarre behaviors is the light-front helicity amplitude
without any border at δ ¼ π=4.
To see why the spin flips for δ ≠ π=4, we can approach it

in two different ways. First, we can fix a certain value for
the total Pz, i.e. we fix the inertial frame, and look at what
happens when we change the interpolation angle δ. From
the θ ¼ π edge of Fig. 3, it is clear that for a particle moving
in the −z direction, as we increase the δ, at some critical
angle δc, the spin of “positive helicity” will flip from θs ¼
π to θs ¼ 0. And because the spin direction of “negative
helicity” is always exactly the opposite of that of the
positive helicity, the spin of the negative helicity will flip at
this δc from θs ¼ 0 to θs ¼ π. Alternatively, and perhaps
more conveniently, this spin flip can be understood by
fixing a certain value for the interpolation angle δ, and
seeing what happens when we boost the system in the z
direction. As we discussed in Sec. II, using Eq. (20), the
helicity for particles moving in the �z direction is defined
as whether the spin has the same sign as P−̂. So for the
same helicity configuration, as we boost the system in the
�z direction, the spin of particle 1 or 2 will flip if the sign
of its P−̂ changes. Therefore, we can find these boundary
lines by setting P−̂ ¼ 0 for particles 1 and 2, with their
momenta given by Eqs. (59a)–(59c) and the form of P−̂
given by Eq. (A4d). The equations that describe these two
boundaries are respectively given by

tan δ ¼ −
ϵ1Pz þ pE
ϵ1Eþ pPz ; ð60aÞ

tan δ ¼ −
ϵ2Pz − pE
ϵ2E − pPz : ð60bÞ

Each of the four plots in the last row of Fig. 8 is the
summation of the four corresponding plots above it. They
are the probabilities of a certain helicity configuration
going into all possible final helicity configurations. By
summing over all final states, we see clearly that the
varying landscapes due to the helicity configurations of the

scattered particles 3 and 4 disappear and the two boundaries
due to the spin flips of the incoming particles 1 and 2
remain. They divide the whole landscape into three regions.
To show the positions of these boundaries more clearly, we
plot them in the δ vs Pz plane as the two blue dashed lines
in Fig. 9.
Another interesting feature exhibited by all 16 helicity

probability plots is the J-curve indicated by the red solid
line in both Figs. 8 and 9. This is the same curve that
appeared in the time-ordered amplitudes in the ϕ3 theory
[4] and in the sQED theory [5] we studied previously. It
starts out in the center of mass frame in the δ ¼ 0 limit and
maintains the same probability value throughout the whole
range of interpolation angle. It follows exactly the same
formula as before [4,5]:

Pz ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1 − CÞ

2C

r
; ð61Þ

whereM2 is the same as the invariant Mandelstam variable
s used in [4]. As one can see, this curve is independent of
the specific kinematics of the scattering process, e.g. the θ
angle, the masses of these four particles and so on. It is only
scaled by the center of mass energy M, and has a universal
shape. In our example, we chose θ ¼ π=3 in the center of
mass frame. As the θ angle changes, the landscape will
continuously change, but the main features remain the
same, and this J-curve is always present. Incidentally, this
J-curve as given by Eq. (61) is exactly P−̂ ¼ 0 for the
system, which can be verified by setting P0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðPzÞ2

p
and P3 ¼ Pz in Eq. (A4d). As δ → π=4,

Pz → −∞, and therefore if we take the limit to the light
front along this J-curve, we will have the same probability
value as in the center of mass frame in the IFD, which does
not agree with the invariant light-front result in general, as
can be seen from Fig. 8. This raises the issue of

15 10 5 0 5 10 15
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FIG. 9 (color online). The two dashed blue lines are the
boundaries defined by Eq. (60), across which the spin of the
electron or positron will flip. The red solid line is the J-curve
described by Eq. (61).
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noncommuting orders in taking the two independent limits,
δ → π=4 and Pz → −∞. Thus, it requires a great caution in
taking the limit to δ ¼ π=4. This is reminiscent of the zero-
mode issue in LFD as we have previously discussed in great
detail [4,5].
In LFD (δ ¼ π=4), all 16 helicity probabilities are frame

independent as we have discussed. We may relate this LFD
invariance with our previous examination on the spin
orientations of the light-front spinors. First of all, as we
discussed in Sec. III A, for light-front spinors moving in the
�z directions, positive (negative) helicity always means the
spin is orientated in the þz (−z) direction. Thus, for a
certain helicity configuration, the spin orientations of
particles 1 and 2 are fixed and there are no boundaries
generated by spin flips. If θ ¼ 0 or π, then particles 3 and 4
are also moving in�z directions, and their spin orientations
will also be fixed. In this case, the probabilities are clearly
frame independent, since the helicity configuration in
different inertial frames represents the same physical spin
configuration. What about the case where 0 < θ < π (the
case plotted in Fig. 8)? As we discussed in Sec. III A using
Eq. (47), the light-front spinors naturally generate the
required Wigner rotations when boosted in �z directions.
This means that even for the scattered particles 3 and 4 not
moving in the �z direction, the light-front spinors in
different inertial frames still represent the same physical
spin states. Since we are calculating the same physical
process in different frames, we are guaranteed to get the
same probability.
Finally, the helicity probability plots in Fig. 8 show a clear

asymmetry between theþPz direction and the −Pz direction
unless δ ¼ π=4. The corresponding helicity amplitudes that
provide the probabilities shown in Fig. 8 are plotted in
Appendix H. The LFD result is smoothly connected only to

the Pz ¼ þ∞ result but not to the Pz ¼ −∞ result. This
disparity is a good example of showing the difference
between the IMF in IFD and the LFD. Our plots obviously
clear up the prevailing confusion between the two.
Regardless of all the discussion on individual helicity
probabilities, however, the sum of all 16 helicity probabilities
plotted in Fig. 10 is both frame independent and interpo-
lation angle independent as it must be.
For completeness, the helicity amplitudes and probabil-

ities for annihilation to the lowest order are calculated and
plotted in Appendix I.

V. SUMMARY AND CONCLUSIONS

As a continuation of our effort to interpolate between the
IFD and the LFD, we generalized the helicity operator to
any interpolation angle δ in this work and derived the
generalized helicity spinor that links the instant form
helicity spinor to the light-front helicity spinor.
For a given generalized helicity spinor, the spin direction

does not coincide with the momentum direction in general.
Thus, we studied how the spin orientation angle changes in
terms of both δ and the angle θ that defines the momentum
direction of the particle. Applying the transformation
matrix T given by Eq. (14) to an initial spin state at rest,
we obtained a generalized helicity spinor as we discussed in
Sec. II. We then used the operator relation given by Eq. (38)
to analyze the spin orientation angles (θs;ϕs), where ϕs can
be taken to be zero without loss of any generality because
the spin S, momentum P and z axis are all in the same
plane. As shown in Figs. 3 and 4, the angle between the
momentum and the spin directions, i.e. θ − θs, increases
with the interpolation angle δ and becomes the largest at the
light front. In particular, the increment of the angle differ-
ence θ − θs with the increment of the interpolation angle δ
bifurcates at a critical interpolation angle δc as shown in
Fig. 4. We found δc as given by Eq. (43) and noted that the
IFD and the LFD separately belong to the two different
branches bifurcated and divided out at the critical inter-
polation angle δc. This bifurcation indicates the necessity of
the distinction in the spin orientation between the IFD and
the LFD and clarifies any conceivable confusion in the
prevailing notion of the equivalence between the IMF
formulated in IFD and the LFD.
As the light-front helicity is obtained in general by the

two kinds of boost operations, i.e. the light-front transverse
boost E⊥ and the longitudinal boost K3, we discussed the
salient features of the spin orientations due to each of these
two kinds of light-front kinematic operations separately in
Sec. III A. It is interesting to note that theE⊥ operation on a
rest particle of mass M provides the nonrelativistic form of

energy gain E ¼ M þ ~P2
⊥

2M, yet satisfies the relativistic
energy-momentum dispersion relation given by Eq. (45).
We have analyzed the change of spin orientation under the
E⊥ operation and obtained the apparent spin orientation

FIG. 10 (color online). The total scattering probability [with the
factor ðe2=q2Þ2 dropped] as a sum of all 16 spin contributions for
the lowest tree diagram shown in Fig. 8.
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angle θa given by Eq. (G4). In Fig. 5, we plotted θa in
comparison with the corresponding initial spin orientation
ðθsÞmax discussed in Sec. III A along with various θs
profiles depending on the particle momentum jPj or the
energy E. The change of the spin direction under the K3

operation was also very interesting and our result given by
Eq. (47) agrees with the well-known result of the Wigner
rotation angle given by Eq. (A10) in Ref. [20]. Thus, the
light-front helicity formulation takes care of the Wigner
rotation which is a rather complicated dynamic effect and
offers an effective computation of spin observables in
hadron physics. With the spin orientation analysis pre-
sented in Sec. III A, we have also derived the generalized
Melosh transformation that connects between the Dirac
spinors and our generalized helicity spinors as shown in
Sec. III B.
Using the generalized helicity spinors, we computed all

16 helicity amplitudes and their squares (or probabilities)
for the scattering process analogous to the QED process
eμ → eμ in Sec. IV.1 This computation provided an explicit
demonstration of the whole landscape picture for the
helicity amplitudes and amplitude squares that depend
on the reference frame as well as the interpolation angle.
From this picture, one can see clearly that the helicity
probabilities in LFD are independent of the reference
frames while all other interpolating helicity probabilities
for 0 ≤ δ < π=4 do depend on the reference frames. The
striking feature of the interpolating helicity probabilities as
well as amplitudes is the appearance of the two boundaries
due to the bifurcation of the branches that are distinguished
by the critical interpolation angle δc. As δc is obtained from
the condition P−̂ ¼ 0, the initial two particles that move
only in the �z direction yield the corresponding two
boundaries upon the boost of the reference frame in the
�z direction. For the given initial helicity states, the two
boundaries indicate the spin flip of each of the two
incoming scattering particles as we have shown explicitly
in Fig. 8 by the blue dashed lines.
Another interesting feature exhibited by all 16 helicity

probability plots in Fig. 8 is the J-shaped curve indicated by
the red solid line which is the same curve that appeared in
our previous works for the ϕ3 theory [4] and the sQED
theory [5]. In Fig. 9, we showed that the J-curve lies
between the two boundaries discussed above. The J-curve
has a universal shape independent of the kinematics in the
scattering process no matter what the underlying theory is.
The scattering amplitudes maintain the same value along
the J-curve in the whole range of interpolation angle
0 ≤ δ ≤ π=4. However, in taking the limit to δ ¼ π=4, it
requires a great caution due to the noncommutativity in the

order of taking the two independent limits, δ → π=4 and
Pz → −∞. This noncommutativity brings up the zero-
mode issue in LFD as we have discussed previously in
great detail [4,5]. The disparity between Pz → ∞ and Pz →
−∞ also further clears up the confusion between the IMF in
the IFD and LFD.
As we discussed in this work as well as in our previous

works [4,5], the interpolation analysis between IFD and
LFD appears to be beneficial in understanding the distin-
guished features of LFD advantageous ultimately for the
study of hadron physics in QCD. The extension of the
present on-mass-shell fermion analysis into the off-mass-
shell fermion analysis involving the intermediate fermion
propagator is under way.

APPENDIX A: USEFUL FORMULAS FROM
INTERPOLATION ANGLE METHOD

The interpolation angle 0 ≤ δ ≤ π=4 is defined in
Eq. (1). In the limit δ → 0, we recover the space-time
coordinates in the instant form. In the other limit δ → π=4,

x�̂ ¼ ðx0 � x3Þ= ffiffiffi
2

p
, we get the light-front coordinates.

Notice that the speed of light is taken to be 1. In this
new coordinate system, the metric becomes

gμ̂ ν̂ ¼ gμ̂ ν̂ ¼

0
BBB@

C 0 0 S

0 −1 0 0

0 0 −1 0

S 0 0 −C

1
CCCA; ðA1Þ

where S ¼ sin 2δ and C ¼ cos 2δ. The covariant and
contravariant components are related by

aþ̂ ¼ Caþ̂ þ Sa−̂; aþ̂ ¼ Caþ̂ þ Sa−̂

a−̂ ¼ Saþ̂ − Ca−̂; a−̂ ¼ Saþ̂ − Ca−̂

aĵ ¼ aj ¼ −aj ¼ −aĵ; ðj ¼ 1; 2Þ: ðA2Þ

Since the perpendicular components remain the same
(aĵ ¼ aj, aĵ ¼ aj, j ¼ 1; 2), we will omit the ^ notation
unless necessary for the perpendicular indices j ¼ 1; 2 in a
four-vector. And the inner product can be written as

aμ̂bμ̂ ¼ ðaþ̂bþ̂ − a−̂b−̂ÞC
þ ðaþ̂b−̂ þ a−̂bþ̂ÞS − a1b1 − a2b2

¼ aμbμ: ðA3Þ

The same transformations also apply to momentum:

Pþ̂ ¼ P0 cos δþ P3 sin δ; ðA4aÞ

P−̂ ¼ P0 sin δ − P3 cos δ; ðA4bÞ

1For completeness of our discussion, we have also plotted the
helicity amplitudes and probabilities for the fermion and anti-
fermion pair annihilation and creation process analogous to the
QED process eþe− → μþμ− in Appendix I.
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Pþ̂ ¼ P0 cos δ − P3 sin δ; ðA4cÞ

P−̂ ¼ P0 sin δþ P3 cos δ: ðA4dÞ

In this new basis, the Poincaré matrix becomes

Mμ̂ ν̂ ¼

0
BBB@

0 E1̂ E2̂ −K3

−E1̂ 0 J3 −F1̂

−E2̂ −J3 0 −F2̂

K3 F1̂ F2̂ 0

1
CCCA ðA5Þ

and

Mμ̂ ν̂ ¼

0
BBB@

0 D1̂ D2̂ K3

−D1̂ 0 J3 −K1̂

−D2̂ −J3 0 −K2̂

−K3 K1̂ K2̂ 0

1
CCCA; ðA6Þ

where

E1̂ ¼ J2 sin δþ K1 cos δ; K1̂ ¼ −K1 sin δ − J2 cos δ;

E2̂ ¼ K2 cos δ − J1 sin δ; K2̂ ¼ J1 cos δ − K2 sin δ;

F1̂ ¼ K1 sin δ − J2 cos δ; D1̂ ¼ −K1 cos δþ J2 sin δ;

F2̂ ¼ K2 sin δþ J1 cos δ; D2̂ ¼ −J1 sin δ − K2 cos δ:

ðA7Þ

The commutation relations between these operators con-
stitute the generalized Poincarè algebra, which is listed in
Table I.
Using Eq. (A3), a useful relation for Pþ̂, P⊥, P−̂ can be

found:

ðPþ̂Þ2 −M2C ¼ P2
−̂ þ P2⊥C; ðA8Þ

Since this quantity in Eq. (A8) appears so often in our
calculations, we now give it a special symbol to simplify
our notation:

P≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂Þ2 −M2C

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
−̂ þ P2⊥C

q
: ðA9Þ

Solving Eq. (15), one gets the following useful relations
between parameters β1, β2, β3, α and the momentum
components:

cos α ¼ P−̂

P
; ðA10aÞ

sin α ¼
ffiffiffiffiffiffiffiffiffiffi
P2⊥C

p
P

; ðA10bÞ

eβ3 ¼ Pþ̂ þ P
Mðsin δþ cos δÞ ; ðA10cÞ

e−β3 ¼ Pþ̂ − P
Mðcos δ − sin δÞ ; ðA10dÞ

βj
α
¼ Pjffiffiffiffiffiffiffiffiffiffi

P2⊥C
p ; ðj ¼ 1; 2Þ: ðA10eÞ

APPENDIX B: ð0; 12Þ ⊕ ð12 ;0Þ CHIRAL
REPRESENTATION OF T AND BðηÞDðm̂;θsÞ

Written in the ð0; 1
2
Þ ⊕ ð1

2
; 0Þ chiral representation, T and

BðηÞDðm̂; θsÞ are

T ¼
�
TR 0

0 TL

�
;

BðηÞDðm̂;θsÞ ¼
� ðBðηÞDðm̂;θsÞÞR 0

0 ðBðηÞDðm̂;θsÞÞL

�
;

ðB1Þ

where

TR ¼

0
B@ cos α

2
e
β3
2 − βLðcos δ−sin δÞ

α sin α
2
e−

β3
2

βRðsin δþcos δÞ
α sin α

2
e
β3
2 cos α

2
e−

β3
2

1
CA;

ðB2aÞ

TL ¼

0
B@ cos α

2
e−

β3
2 − βLðsin δþcos δÞ

α sin α
2
e
β3
2

βRðcos δ−sin δÞ
α sin α

2
e−

β3
2 cos α

2
e
β3
2

1
CA;

ðB2bÞ

and

TABLE I. Poincaré Algebra for any interpolation angle. The
commutation relation reads [element in the first column, element
in the first row]¼ element at the intersection of the corresponding
row and column.

Pþ̂ D1 D2 K3 K1 K2 J3 P1 P2 P−̂

Pþ̂ 0 iCP1 iCP2 −iP−̂ iSP1 iSP2 0 0 0 0

D1 −iCP1 0 −iJ3C iF1 iK3 −iJ3S −iD2 −iPþ̂ 0 −iSP1

D2 −iCP2 iJ3C 0 iF2 iJ3S iK3 iD1 0 −iPþ̂ −iSP2

K3 iP−̂ −iF1 −iF2 0 iE1 iE2 0 0 0 −iPþ̂

K1 −iSP1 −iK3 −iJ3S −iE1 0 iJ3C −iK2 −iP−̂ 0 iCP1

K2 −iSP2 iJ3S −iK3 −iE2 −iJ3C 0 iK1 0 −iP−̂ iCP2

J3 0 iD2 −iD1 0 iK2 −iK1 0 iP2 −iP1 0

P1 0 iPþ̂ 0 0 iP−̂ 0 −iP2 0 0 0

P2 0 0 iPþ̂ 0 0 iP−̂ iP1 0 0 0

P−̂ 0 iSP1 iSP2 iPþ̂ −iCP1 −iCP2 0 0 0 0
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ðBðηÞDðm̂; θsÞÞR ¼
 
F cos θs

2
þ eiϕsnL sinh

η
2
sin θs

2
−e−iϕsF sin θs

2
þ nL sinh

η
2
cos θs

2

nR sinh
η
2
cos θs

2
þ eiϕsG sin θs

2
−e−iϕsnR sinh

η
2
sin θs

2
þ G cos θs

2

!
; ðB3aÞ

ðBðηÞDðm̂; θsÞÞL ¼
 

G cos θs
2
− eiϕsnL sinh

η
2
sin θs

2
−e−iϕsG sin θs

2
− nL sinh

η
2
cos θs

2

−nR sinh
η
2
cos θs

2
þ eiϕsF sin θs

2
e−iϕsnR sinh

η
2
sin θs

2
þ F cos θs

2

!
; ðB3bÞ

with nL ¼ n1 − in2; nR ¼ n1 þ in2; ðn1; n2; n3Þ ¼
ðsin θ cosϕ; sin θ sinϕ; cos θÞ; and F≡ cosh η

2
þ n3 sinh

η
2
,

G≡ cosh η
2
− n3 sinh

η
2
.

APPENDIX C: ð0; 12Þ ⊕ ð12 ;0Þ HELICITY SPINORS
FOR ANTIPARTICLES

vð½ÞH ðPÞ ¼

0
BBBBBBBB@

PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos δ−sin δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ − P

p
−

ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂−P

ðcos δ−sin δÞ
q

−PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin δþcos δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

p
ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

ðsin δþcos δÞ
q

1
CCCCCCCCA
;

vð−½ÞH ðPÞ ¼

0
BBBBBBBB@

ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

ðsin δþcos δÞ
q

PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin δþcos δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ þ P

p
−

ffiffiffiffiffiffiffiffiffi
P−̂þP
2P

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂−P

ðcos δ−sin δÞ
q

−PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos δ−sin δ
2PðPþP−̂Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ̂ − P

p

1
CCCCCCCCA
; ðC1Þ

APPENDIX D: DIRAC SPINORS IN CHIRAL
REPRESENTATION

The Dirac spinors uð½Þ and uð−½Þ in chiral representation
are given by

uð½ÞD ðPÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþMÞp

0
BBB@

Eþ P3 þM

PR

E − P3 þM

−PR

1
CCCA;

uð−½ÞD ðPÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþMÞp

0
BBB@

PL

E − P3 þM

−PL

Eþ P3 þM

1
CCCA: ðD1Þ

APPENDIX E: GENERALIZED ð0;JÞ ⊕ ðJ;0Þ
HELICITY SPINORS FOR ARBITRARY
INTERPOLATION ANGLE UP TO SPIN 2

Following the notations in Ref. [3], we will use
A ¼ cos δ, B ¼ − sin δ in the spinors listed below. We also

define X≡ Pþ̂−P
C ¼ Pþ̂−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂Þ2−M2C

p
C for convenience.

Spin-1 helicity spinors for any interpolation angle in
chiral representation:

uðþ1Þ
H ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
MP2

p

0
BBBBBBBBBBBB@

ðP−̂þPÞðPþ̂þPÞ
ðA−BÞffiffiffi

2
p

PRðPþ̂ þ PÞ
ðA−BÞðPRÞ2ðPþ̂þPÞ

ðP−̂þPÞ
ðA − BÞðP−̂ þ PÞXffiffiffi

2
p

PRðPþ̂ − PÞ
ðAþBÞðPRÞ2ðPþ̂−PÞ

ðP−̂þPÞ

1
CCCCCCCCCCCCA
;

uð−1ÞH ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
MP2

p

0
BBBBBBBBBBBB@

ðAþBÞðPLÞ2ðPþ̂−PÞ
ðP−̂þPÞ

−
ffiffiffi
2

p
PLðPþ̂ − PÞ

ðA − BÞðP−̂ þ PÞX
ðA−BÞðPLÞ2ðPþ̂þPÞ

ðP−̂þPÞ

−
ffiffiffi
2

p
PLðPþ̂ þ PÞ

ðP−̂þPÞðPþ̂þPÞ
ðA−BÞ

1
CCCCCCCCCCCCA
;

uð0ÞH ¼
ffiffiffiffiffiffiffiffi
M
2P2

r
0
BBBBBBBBBB@

−ðAþ BÞPLffiffiffi
2

p
P−̂

ðA − BÞPR

ð−Aþ BÞPLffiffiffi
2

p
P−̂

ðAþ BÞPR

1
CCCCCCCCCCA
: ðE1Þ

Spin-3
2
helicity spinors for any interpolation angle in

chiral representation:
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uð3=2ÞH ¼ N
M

0
BBBBBBBBBBBBBBBBBBBBBBBB@

�
ðP−̂þPÞðPþ̂þPÞ

A−B

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðP−̂þPÞ

p
PRðPþ̂þPÞ3=2ffiffiffiffiffiffiffi
A−B

pffiffiffiffiffiffiffiffiffiffiffi
3ðA−BÞ

p
ðPRÞ2ðPþ̂þPÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞ

p
ðA−BÞ3=2ðPRÞ3ðPþ̂þPÞ3=2

ðP−̂þPÞ3=2

ððA − BÞðP−̂ þ PÞXÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðA − BÞp

PRðPþ̂ − PÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP−̂ þ PÞXp
ffiffiffiffiffiffiffiffiffiffiffiffi
3ðAþBÞ

p
ðPRÞ2ðPþ̂−PÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞ

p
ðAþBÞ3=2ðPRÞ3ðPþ̂−PÞ3=2

ðP−̂þPÞ3=2

1
CCCCCCCCCCCCCCCCCCCCCCCCA

; uð−3=2ÞH ¼ N
M

0
BBBBBBBBBBBBBBBBBBBBBBBB@

− ðAþBÞ3=2ðPLÞ3ðPþ̂−PÞ3=2
ðP−̂þPÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffi

3ðAþBÞ
p

ðPLÞ2ðPþ̂−PÞ3=2ffiffiffiffiffiffiffiffiffi
P−̂þP

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðA − BÞp

PLðPþ̂ − PÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP−̂ þ PÞXp
ððA − BÞðP−̂ þ PÞXÞ3=2

− ðA−BÞ3=2ðPLÞ3ðPþ̂þPÞ3=2
ðP−̂þPÞ3=2ffiffiffiffiffiffiffiffiffiffiffi

3ðA−BÞ
p

ðPLÞ2ðPþ̂þPÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞ

p

−
ffiffi
3

p
PLðPþ̂þPÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞ

pffiffiffiffiffiffiffi
A−B

p�
ðP−̂þPÞðPþ̂þPÞ

A−B

�
3=2

1
CCCCCCCCCCCCCCCCCCCCCCCCA

;

uð½ÞH ¼ N

0
BBBBBBBBBBBBBBBBBBBBBBBB@

−
ffiffi
3

p ðAþBÞPL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞðPþ̂þP

p
Þffiffiffiffiffiffiffi

A−B
p

ð3P−̂−PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞðPþ̂þPÞ

p ffiffiffiffiffiffiffi
A−B

p

ð3P−̂þPÞPR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA−BÞðPþ̂þPÞ

pffiffiffiffiffiffiffiffiffi
P−̂þP

pffiffi
3

p ðA−BÞ3=2ðPRÞ2
ffiffiffiffiffiffiffiffiffiffi
Pþ̂þP

pffiffiffiffiffiffiffiffiffi
P−̂þP

p

−
ffiffiffi
3

p ðA − BÞ3=2PL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂ þ PÞX

q
ð3P−̂ − PÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA − BÞðP−̂ þ PÞXp

ð3P−̂þPÞPR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþBÞðPþ̂−PÞ

pffiffiffiffiffiffiffiffiffi
P−̂þP

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðPþ̂−PÞ

p
ðAþBÞ3=2ðPRÞ2ffiffiffiffiffiffiffiffiffi
P−̂þP

p

1
CCCCCCCCCCCCCCCCCCCCCCCCA

; uð−½ÞH ¼ N

0
BBBBBBBBBBBBBBBBBBBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðPþ̂−PÞ

p
ðAþBÞ3=2ðPLÞ2ffiffiffiffiffiffiffiffiffi
P−̂þP

p

− ð3P−̂þPÞPL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþBÞðPþ̂−PÞ

pffiffiffiffiffiffiffiffiffi
P−̂þP

p

ð3P−̂ − PÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA − BÞðP−̂ þ PÞXp
ffiffiffi
3

p ðA − BÞ3=2PR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP−̂ þ PÞXp

ffiffi
3

p ðA−BÞ3=2ðPLÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ̂þPÞ

pffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞ

p

− ð3P−̂þPÞPL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA−BÞðPþ̂þPÞ

pffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞ

p

ð3P−̂−PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞðPþ̂þPÞ

p ffiffiffiffiffiffiffi
A−B

pffiffi
3

p ðAþBÞPR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP−̂þPÞðPþ̂þPÞ

pffiffiffiffiffiffiffi
A−B

p

1
CCCCCCCCCCCCCCCCCCCCCCCCA

; ðE2Þ

where N ¼ 1

2
ffiffiffiffiffiffi
2P3

p .

Spin-2 helicity spinors for any interpolation angle in chiral representation:

uð2ÞH ¼ 1

4M3=2P2

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

ðP−̂þPÞ2ðPþ̂þPÞ2
ðA−BÞ2

2PRðP−̂þPÞðPþ̂þPÞ2
A−Bffiffiffi

6
p ðPRÞ2ðPþ̂ þ PÞ2
2ðA−BÞðPRÞ3ðPþ̂þPÞ2

P−̂þP

ðA−BÞ2ðPRÞ4ðPþ̂þPÞ2
ðP−̂þPÞ2

ðA − BÞ2ðP−̂ þ PÞ2X2

2PRðA − BÞðPþ̂ − PÞðP−̂ þ PÞXffiffiffi
6

p ðPRÞ2ðPþ̂ − PÞ2
2ðAþBÞðPRÞ3ðPþ̂−PÞ2

P−̂þP

ðAþBÞ2ðPRÞ4ðPþ̂−PÞ2
ðP−̂þPÞ2

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

; uð−2ÞH ¼ 1

4M3=2P2

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

ðAþBÞ2ðPLÞ4ðPþ̂−PÞ2
ðP−̂þPÞ2

− 2ðAþBÞðPþ̂−PÞ2ðPLÞ3
P−̂þPffiffiffi

6
p ðPLÞ2ðPþ̂ − PÞ2

−2PLðA − BÞðP−̂ þ PÞðPþ̂ − PÞX
ðA − BÞ2ðP−̂ þ PÞ2X2

ðA−BÞ2ðPLÞ4ðPþ̂þPÞ2
ðP−̂þPÞ2

2ðA−BÞðPLÞ3ðPþ̂þPÞ2
P−̂þPffiffiffi

6
p ðPLÞ2ðP−̂ þ PÞ2

− 2PLðP−̂þPÞðPþ̂þPÞ2
A−B

ðP−̂þPÞ2ðPþ̂þPÞ2
ðA−BÞ2

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

;
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uð1ÞH ¼ 1

2P2
ffiffiffiffiffi
M

p

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

− ðAþBÞPLðPþ̂þPÞðP−̂þPÞ
A−B

ð2P−̂−PÞðPþ̂þPÞðP−̂þPÞ
A−Bffiffiffi

6
p

PRP−̂ðPþ̂ þ PÞ
ðA−BÞðPRÞ2ðPþ̂þPÞð2P−̂þPÞ

P−̂þP

ðA−BÞ2ðPRÞ3ðPþ̂þPÞ
P−̂þP

−ðA − BÞ2PLðP−̂ þ PÞX
ðA − BÞð2P−̂ − PÞðP−̂ þ PÞXffiffiffi

6
p

PRP−̂ðPþ̂ − PÞ
C2ð2P−̂þPÞðPRÞ2X

ðA−BÞðP−̂þPÞ
C3ðPRÞ3X

ðA−BÞ2ðP−̂þPÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

; uð−1ÞH ¼ 1

2P2
ffiffiffiffiffi
M

p

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

− C3ðPLÞ3X
ðA−BÞ2ðPþP−̂Þ

C2ð2P−̂þPÞðPLÞ2X
ðA−BÞðP−̂þPÞ

−
ffiffiffi
6

p
PLP−̂ðPþ̂ − PÞ

ðA − BÞð2P−̂ − PÞðP−̂ þ PÞX
ðA − BÞ2ðPþ P−̂ÞPRX

− ðA−BÞ2ðPLÞ3ðPþ̂þPÞ
P−̂þP

ðA−BÞðPLÞ2ðPþ̂þPÞð2P−̂þPÞ
P−̂þP

−
ffiffiffi
6

p
PLP−̂ðPþ̂ þ PÞ

ð2P−̂−PÞðP−̂þPÞðPþ̂þPÞ
A−B

ðAþBÞðP−̂þPÞðPþ̂þPÞPR

A−B

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

;

uð0ÞH ¼
ffiffiffiffiffi
M

p

2P2

0
BBBBBBBBBBBBBBBBBBBBBB@

ffiffiffiffiffiffiffiffi
3=2

p ðAþ BÞ2ðPLÞ2
−
ffiffiffi
6

p ðAþ BÞPLP−̂

3P−̂
2 − P2ffiffiffi

6
p ðA − BÞPRP−̂ffiffiffiffiffiffiffiffi
3=2

p ðA − BÞ2ðPRÞ2ffiffiffiffiffiffiffiffi
3=2

p ðA − BÞ2ðPLÞ2
−
ffiffiffi
6

p ðA − BÞPLP−̂

3P−̂
2 − P2ffiffiffi

6
p ðAþ BÞPRP−̂ffiffiffiffiffiffiffiffi
3=2

p ðAþ BÞ2ðPRÞ2

1
CCCCCCCCCCCCCCCCCCCCCCA

; ðE3Þ

In the light-front limit (δ → π=4), A − B →
ffiffiffi
2

p
,

Aþ B → 0, X → M2

2Pþ, and P−̂ ¼ Pþ̂ ¼ P → Pþ, and one
can verify that our spinors agree with the light-front spinors
listed in Ref. [21]. To compare our results to those in that
paper, one should note that our spinors are written in the
chiral representation while those in Ref. [21] are in the
standard representation. The standard representation (SR)
and the chiral representation (CR) used in this paper are
related by

uSR ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
uCR ¼ 1ffiffiffi

2
p
�
χR þ χL

χR − χL

�
; ðE4Þ

where χR and χL are each 3, 4 and 5 components long for
spin 1, 3=2, and 2. In Ref. [21], the notations of PR ¼ PR

and PL ¼ PL were used. One should also note that in our
paper Pþ ¼ ðP0 þ P3Þ= ffiffiffi

2
p

, and the spinors are all nor-
malized so that ūu ¼ 2M while the spinors in Ref. [21] are
normalized to ūu ¼ M2j where j ¼ 1=2; 1; 3=2; 2 is the
total spin.

APPENDIX F: GENERALIZED MELOSH
TRANSFORMATION

For convenience, we write everything in terms of the
angles θs and ϕs which are given by Eq. (41). For spin i, the
generalized Melosh transformation matrix ΩðiÞ which
connects the Dirac spinors with our generalized helicity
spinors is

ΩðiÞ ¼
�
ωðiÞ 0

0 ωðiÞ�
�
: ðF1Þ

For spin 1,

ωð1Þ ¼

0
BBB@

cos2 θs
2

− eiϕs sin θsffiffi
2

p e2iϕssin2 θs
2

e−iϕs sin θsffiffi
2

p cos θs − eiϕs sin θsffiffi
2

p

e−2iϕssin2 θs
2

e−iϕs sin θsffiffi
2

p cos2 θs
2

1
CCCA: ðF2Þ

For spin 3=2,
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ω

�
3

2

�
¼

0
BBBBBBBB@

cos3 θs
2

− 1
4

ffiffiffi
3

p
eiϕs csc θs

2
sin2θs 1

2

ffiffiffi
3

p
e2iϕs sin θs

2
sin θs −e3iϕssin3 θs

2

1
4

ffiffiffi
3

p
e−iϕs csc θs

2
sin2θs

1
4

�
cos θs

2
þ 3 cos 3θs

2

�
1
4
eiϕs

�
sin θs

2
− 3 sin 3θs

2

�
sin θs

2
1
2

ffiffiffi
3

p
e2iϕs sin θs

2
sin θs

1
2

ffiffiffi
3

p
e−2iϕs sin θs

2
sin θs − 1

4
e−iϕs

�
sin θs

2
− 3 sin 3θs

2

�
1
4

�
cos θs

2
þ 3 cos 3θs

2

�
− 1

4

ffiffiffi
3

p
eiϕs csc θs

2
sin2θs

e−3iϕssin3 θs
2

1
2

ffiffiffi
3

p
e−2iϕs sin θs

2
sin θs 1

4

ffiffiffi
3

p
e−iϕs csc θs

2
sin2θs cos3 θs

2

1
CCCCCCCCA
:

ðF3Þ

For spin 2, ωð2Þ is defined via the five columns

ωð2Þα;1 ¼

0
BBBBBBBB@

cos4 θs
2

2e−iϕs sin θs
2
cos3 θs

2

1
2

ffiffi
3
2

q
e−2iϕssin2θs

e−3iϕssin2 θs
2
sin θs

e−4iϕssin4 θs
2

1
CCCCCCCCA
;

ωð2Þα;2 ¼

0
BBBBBBBB@

−2eiϕs sin θs
2
cos3 θs

2

cos2 θs
2
ð2 cos θs − 1Þffiffi

3
2

q
e−iϕs sin θs cos θs

e−2iϕssin2 θs
2
ð2 cos θs þ 1Þ

e−3iϕssin2 θs
2
sin θs

1
CCCCCCCCA
;

ωð2Þα;3 ¼

0
BBBBBBBBBBBB@

1
2

ffiffi
3
2

q
e2iϕssin2θs

− 1
2

ffiffi
3
2

q
eiϕs sin 2θs

1
4
ð3 cos 2θs þ 1Þffiffi
3
2

q
e−iϕs sin θs cos θs

1
2

ffiffi
3
2

q
e−2iϕssin2θs

1
CCCCCCCCCCCCA
; ðF4Þ

ωð2Þα;4 ¼

0
BBBBBBBBB@

−e3iϕssin2 θs
2
sin θs

e2iϕssin2 θs
2
ð2 cos θs þ 1Þ

− 1
2

ffiffi
3
2

q
eiϕs sin 2θs

cos2 θs
2
ð2 cos θs − 1Þ

2e−iϕs sin θs
2
cos3 θs

2

1
CCCCCCCCCA
;

ωð2Þα;5 ¼

0
BBBBBBBBB@

e4iϕssin4 θs
2

−e3iϕssin2 θs
2
sin θs

1
2

ffiffi
3
2

q
e2iϕssin2θs

−2eiϕs sin θs
2
cos3 θs

2

cos4 θs
2

1
CCCCCCCCCA
: ðF5Þ

APPENDIX G: APPARENT SPIN ORIENTATION

As explained in Sec. III A, we apply the light-front boost
in the x direction to a spin 4-vector and figure out the
resulting apparent spin direction.With the boost and rotation
generators written in the following 4-vector representation,

K1 ¼

0
BBB@

0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; K2 ¼

0
BBB@

0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

1
CCCA;

K3 ¼

0
BBB@

0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

1
CCCA; J1 ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

1
CCCA;

J2 ¼

0
BBB@

0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

1
CCCA; J3 ¼

0
BBB@

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

1
CCCA;

ðG1Þ

and β3 ¼ 0, β1 ¼ 0 in Eq. (14), the T12 transformation can
be applied to the momentum 4-vector Pμ

0 ¼ ðM; 0; 0; 0Þ and
the spin 4-vector Sμ0 ¼ ð0; 0; 0; 1Þ defined in the rest frame.
The resulting momentum 4-vector is Pμ ¼ ðM þMβ21=
2;Mβ1; 0;−Mβ21=2Þ, where β1 ¼ Px=M and the relation

Pz ¼ − ðPxÞ2
2M is satisfied [4]. The resulting spin 4-vector is

Sμ ¼ ðβ21=2; β1; 0; 1 − β21=2Þ, or written in terms of the final
momentum

Sμ ¼
�ðPxÞ2
2M2

;
Px

M
; 0;

2M2 − ðPxÞ2
2M2

�
: ðG2Þ

Therefore, after this transverse light-front boost, themomen-
tum direction and the apparent spin direction are given by

θ ¼ − arctan

�
2M
Px

�
; θa ¼ arccos

�
2M2 − ðPxÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M4 þ ðPxÞ4

p �
:

ðG3Þ
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Finally, the apparent spin orientation angle θa as a function
of the momentum direction θ is

θa ¼ arccos

�
tan2θ − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4θ þ 4

p
�
; ðG4Þ

which is plotted as the magenta dot-dashed line in Fig. 5.
From Eq. (G4), we note that θa ≈ 0 as θ ≈ π=2 and θa ≈ π as
θ ≈ π. This behavior can be seen in Fig. 5.

APPENDIX H: INTERPOLATED HELICITY
SCATTERING AMPLITUDES

In this appendix, we plot the helicity amplitudes of two
particle scattering, as given by Eq. (57), in terms of both the
interpolation angle δ and the total momentum Pz. The same
parameters as in Sec. IVare used. All 16 helicity amplitudes
are shown in Fig. 11.

FIG. 11 (color online). Scattering amplitudes (with the factor −e2=q2 dropped) for 16 different helicity configurations, where the
masses of the two colliding particles arem1 ¼ 1 GeV andm2 ¼ 1.5 GeV, the center of mass momentum for each particle is p ¼ 2 GeV
and the scattering angle θ ¼ π=3.
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APPENDIX I: INTERPOLATED HELICITY
ANNIHILATION AMPLITUDES AND

PROBABILITIES

For an annihilation process depicted in Fig. 12, the
helicity-dependent amplitude Mðλ1; λ2; λ3; λ4Þ is given by

v̄ðλ2Þðp2Þγμuðλ1Þðp1Þūðλ3Þðp3Þγμvðλ4Þðp4Þ; ðI1Þ

where λ denotes the helicity of the particle. Again, we
dropped the coupling constant factor ð−ieÞ2 and the
Lorentz invariant part of the propagator −1=q2, since they
are irrelevant to our discussion.
The 4-momenta of these four particles in the center

of mass frame are given by Eq. (58), with m1 ¼ m2 ≡mini,
m3 ¼ m4 ¼ mfinal and ϵ1 ¼ ϵ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ini þ p2
ini

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

final þ p2
final

p
¼ ϵ3 ¼ ϵ4 ≡ ϵ. The boosted 4-momentum

for each particle is given by Eq. (59), with the center of
mass energy M ¼ 2ϵ and the total energy in the boosted
frame E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPzÞ2 þM2

p
. Just as in the scattering case, we

use these frame-dependent helicity spinors to calculate the
helicity amplitudes, as well as the probabilities which are
given by the square of Eq. (I1). In our calculation, we

choose mini ¼ 1 GeV and mfinal ¼ 1.5 GeV, θ ¼ π=3 in
the center of mass frame, and M ¼ 2ϵ ¼ 4 GeV.
The annihilation amplitudes and probabilities for all 16

different spin configurations are plotted in terms of both the
interpolation angle δ and the total momentum Pz in Figs. 13
and 14. In the last row of Fig. 14, we also plot the
probabilities of a certain helicity configuration going into
all possible helicity configurations.
The boundary lines and the J-curve are still described by

Eqs. (60) and (61), except here ϵ1 ¼ ϵ2 ¼ ϵ ¼ 2 GeV,
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 −m2
ini

p
, M ¼ 2ϵ, and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPzÞ2 þ 4ϵ2

p
.

FIG. 12. Two particle annihilation at angle θ, and its corre-
sponding Feynman diagram at the lowest tree level.
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FIG. 13 (color online). Fermion annihilation amplitudes (with the factor −e2=q2 dropped) for 16 different spin configurations with the
center of mass energy M ¼ 4 GeV and the annihilation angle θ ¼ π=3. The masses of the initial and final particles are mini ¼ 1 GeV
and mfinal ¼ 1.5 GeV.

ZIYUE LI, MURAT AN, AND CHUENG-RYONG JI PHYSICAL REVIEW D 92, 105014 (2015)

105014-26



FIG. 14 (color online). Fermion annihilation probabilities (with the factor e4=q4 dropped) for 16 different spin configurations with the
center of mass energy M ¼ 4 GeV and the annihilation angle θ ¼ π=3. The masses of the initial and final particles are mini ¼ 1 GeV
and mfinal ¼ 1.5 GeV. The four plots in the last row are each a summation of the four plots above, representing the probability of a
certain helicity configuration going into all possible final helicity states.
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