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Shear viscosity of the classical Φ4 theory is measured using classical microcanonical simulation.
To calculate the Kubo formula, we measure the energy-momentum tensor correlation function and apply
the Green-Kubo relation. Given that this is a classical theory, the results depend on the cutoff, which should
be chosen in the range of the temperature. Comparison with experimentally accessible systems is also
performed.
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I. INTRODUCTION

Transport coefficients, in particular shear viscosity, are
not easily accessible quantities in perturbative quantum
field theory calculations. Transport is a characteristic of
systems in which information is spread by diffusion. The
time evolution is ∼

ffiffiffiffiffiffi
Dt

p
, the diffusion constant being the

corresponding transport coefficient. The diffusion constant
itself is proportional to the quasiparticle lifetime D ∼ τ.
This is infinite in a free gas, and inversely proportional to
some powers of the coupling constant for weak couplings.
Therefore the perturbative evaluation of the Kubo for-
mula [1] requires resummation of an infinite set of dia-
grams [2]. To circumvent this difficulty one can use
effective methods to calculate the transport coefficients.
One of these methods is the use of Boltzmann equations,
which is equivalent to the resummation of the singular
part of the full perturbation series [3,4]. The Boltzmann
equation method is used to obtain general results in gauge
theories [5,6], proving that to the leading order one has a
shear viscosity η ∼ 1

g4 ln g−1. Boltzmann equation methods

are used also in other models to compute shear viscosity,
like in meson models [7–9] or in full QCD [10,11]. Other
perturbation theory motivated methods to calculate the
shear viscosity are 2-particle-irreducible resummation tech-
niques [12] or the generalized quasiparticle approach [13].
Apart from the technical difficulties, the applicability of

perturbation theory also makes these results less relevant
for strongly interacting QCD-like systems. The small value
of the shear viscosity of the QCD plasma, reported by
analyses of experimental data [14], suggests that the QCD
matter is close to a perfect liquid [15]. This implies that the
interaction is rather strong, the quasiparticle lifetime is very
short, and so perturbation theory is hardly applicable.
Where perturbation theory is not well applicable, one

seeks nonperturbative methods. Computer Monte Carlo
(MC) simulation of QCD was used to extract shear

viscosity data roughly in agreement with measurements
[16]. The temporal range of the Euclidean formalism of the
MC setup, however, makes the correlations less sensitive to
long range physics, which are relevant for transport [17].
Another popular method is to use the dual theory approach,
based on AdS/CFT correspondence. Then weakly coupled
five-dimensional gravity can be used to compute transport
coefficients in strongly coupled (conformal) field theories
[18,19]. There are several model studies in this field which
calculate shear viscosity by this method.
Another nonperturbative method to approach the dynam-

ics of quantum field theory is the use of classical theories to
study both equilibrium [20–27] and nonequilibrium phe-
nomena [28–36]. Here one applies classical equations of
motion starting from some initial conditions, and solve
them by numerical methods on a finite mesh. The system
thermalizes,1 which in a classical system means equiparti-
tion of the energy. From the classical trajectories we can
evaluate expectation values of different observables as time
averages.
From the point of view of perturbation theory, classical

and quantum systems are similar [22]. In particular one
can study expectation values of composite operators like
hΦ2ðxÞΦ2ðyÞi. Comparing the classical and quantum
computations, one finds that with an appropriate choice
of the cutoff of the classical theory Λcl ∼ T, the quantum
results can be nicely reproduced [37].
Encouraged by these results, we tried to use classical

simulations to compute the shear viscosity in a simple
bosonic classical system, theΦ4model. Our strategy follows
the general setup of the earlier studies (cf. for example [28]):
we start from an initial condition and let the system evolve
in time. We eventually use stochastic terms to speed up the
thermalization, but only for technical reasons, and just for a
short period of time (for details, cf. Sec. III.) After we reach
thermal equilibrium (which is monitored carefully), we start
measurements. The Kubo formula for the shear viscosity [1]
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1Note that we work with finite systems with finite energy
density where thermalization is possible.
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contains the commutator of spatial components of the
energy-momentum tensor. We computed it with the help
of theGreen-Kubo relationwhich is the classical counterpart
of the quantum Kubo-Martin-Schwinger relation (fluc-
tuation dissipation theorem) [38]. This system has the
potential to show a phase transition, similarly to the QCD
case (although it is a second order here, as opposed to the
crossover nature in QCD). This makes it possible to study
the η=s ratio near the phase transition.
The paper is organized as follows. First we give an

overview of the details of the discretization and classical
simulation method for theΦ4 model in Sec. II. In Sec. III we
discuss the thermalization process and the measured char-
acteristics of the thermal equilibrium, in particular thermal
mass. In Sec. IV we report on our results of the energy-
momentum tensor correlation functions and the classical
values of the shear viscosity. In Sec. V we apply our method
to quantum systems and present the η=s ratio, also in
comparison with the experimentally measured values in
different systems. The paper is closed with a Summary.

II. THE SYSTEM: DISCRETIZATION AND
SIMULATION ALGORITHM

The system we study is the quartic scalar model, which
has the Hamiltonian density

Hx ¼ 1

2
Π2ðxÞ þ 1

2
ð∇ΦðxÞÞ2 þm2

2
Φ2ðxÞ þ λ

24
Φ4ðxÞ:

ð1Þ
HereΦ denotes the field andΠ its canonical conjugate. The
corresponding equations of motion (EoM) are

_Φ ¼ Π; _Π ¼ ΔΦ −m2Φ − λ

6
Φ3: ð2Þ

We remark that by rescaling the fields Φ → Φ=
ffiffiffi
λ

p
and Π → Π=

ffiffiffi
λ

p
, the equations of motion become

λ-independent. We could work therefore with λ ¼ 1, but
for better readability we keep the notation of λ.
We discretize the model on a symmetric finite spacelike

mesh,

U ¼
�
x ¼

X3
i¼1

niaeijni ¼ 0…N − 1

�
;

where ei are orthogonal unit vectors and a is the lattice
spacing; we express all dimensional quantities in lattice
units and so we choose a ¼ 1. For the lattice size we have
in our simulations N ¼ 36, 40, and 50, and we use periodic
boundary conditions. The discretized Laplacian is

ΔΦðxÞ ¼
X3
i¼1

½Φðxþ eiÞ − 2ΦðxÞ þΦðx − eiÞ�:

The discretized Hamiltonian can be written as H ¼P
x∈UHx, where the Hamiltonian density is formally equiv-

alent to (1), with ð∇ΦðxÞÞ2 ¼ P
3
i¼1 ½Φðxþ eiÞ −ΦðxÞ�2.

This is, however, not a local expression anymore, as it
connects nearest-neighbor field values.
For the evaluation of expectation values we also need

Fourier transformation. It is defined on the reciprocal lattice
Ū with the following definition (which corresponds to the
fftw++ conventions [39]):

fk∈Ū ¼
X
x∈U

exp−2πiðkxÞ=Nfx;

fx∈U ¼ 1

N3

X
k∈Ū

exp2πiðkxÞ=Nfk: ð3Þ

The reciprocal lattice is equivalent with the original lattice
in the case of the cubic lattices we used. The Fourier-
transformed Hamiltonian reads

H ¼ 1

N3

X
k∈Ū

�
1

2
jΠkj2 þ

1

2
ω2
kjΦkj2

�

þ λ

24N6

X
ki∈Ū

Φk1
Φk2

Φk3
Φk4

; ð4Þ

where ω2
k ¼ m2 þP

3
i¼1 4sin

2ðπkeiN Þ, and P
iki ¼ 0 in the

last term.
The time evolution in the computer is realized using

the leap-frog algorithm. Here one chooses a time step dt,
so at the nth step one arrives at time t ¼ ndt. In the time
step from n − 1 to n, the two equations of (2) are treated
subsequently: first one evolves the field configuration

ΦðnÞðxÞ ¼ Φðn−1Þ þ dtΠðn−1ÞðxÞ; ð5Þ

and then the canonically conjugated field configuration,
using the new values of the field:

ΠðnÞðxÞ ¼ Πðn−1ÞðxÞ

þ dt

�
ΔΦðnÞðxÞ −m2ΦðnÞðxÞ − λ

6
ðΦðnÞðxÞÞ3

�
;

ð6Þ
with the discretized Laplacian.
We can use the notion of the energy in the discretized

model, too, as E ¼ H ¼ P
x∈UH. This quantity is con-

served only for continuous time evolution; since we evolve
the time in discrete steps, the total energy is not necessarily
conserved. An important consistency check for the reli-
ability of the algorithm is that in the long run the energy
remains conserved, as it can be seen in Fig. 1. The leap-frog
algorithm satisfies this requirement.
The classical ground state of the system, i.e., the

minimum of the energy, is at a spatially homogeneous
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field. If m2 and λ are positive, then the minimum is reached
at Φ ¼ Π ¼ 0. The coupling λ must be positive; otherwise,
the Hamiltonian of the system is not bounded from below.
If m2 < 0, the minimal energy is reached at a finite
jΦj ¼ Φ0 value: this is the spontaneous symmetry breaking
(SSB) phase. The minimum condition yields Φ2

0 ¼ −6m2

λ .

III. DESCRIPTION OF THE
THERMAL EQUILIBRIUM

Since we are primarily interested in the equilibrium
properties of the system, we may start from an arbitrary
initial condition. Practically we started with ΦðxÞ≡ 0 and
from random values of ΠðxÞ. After a certain time evolution
(practically around t=a ∼ 10000), we arrive at a steady
equilibrium state. While the complete system forms a
microcanonical ensemble, for local observables we can
use a canonical ensemble. To determine its properties,
we have taken the histogram of Πx, and found that it can
be described by a Gaussian. This corresponds to the
Boltzmann distribution ∼e−βΠ2

x , with β as a parameter
interpreted as the “inverse temperature.” Therefore one
can compute the expectation value of a local operator
AðΦ;ΠÞ, which depends on the fields as

hAðΦ;ΠÞi ¼ 1

Z

Z Y
x∈U

dΦxdΠxAðΦ;ΠÞe−βHðΦ;ΠÞ; ð7Þ

where Z ¼ R Q
x∈UdΦxdΠxe−βHðΦ;ΠÞ. In Fourier space we

should handle the problem that there is a relation between
the integration variables Φk ¼ Φ�−k, and similarly for Πk,
because Φ and Π are real in coordinate space. To over-
come this problem we must cut the Fourier space into two
parts and apply the path integral over configurations
living only on just half of it. For the real part we use the
k3 ≥ 0 part and for the imaginary part the k3 < 0 part (the
k3 ¼ 0 plane is a null-measure set). Therefore we can use
a purely real field:

~Φk ¼
�
ReΦk if k3 ≥ 0

ImΦk if k3 < 0.
ð8Þ

This allows us to write

hAðΦ;ΠÞi ¼ 1

Z

Z Y
k∈Ū

d ~Πkd ~ΦkAðΦ;ΠÞe−βHðΦ;ΠÞ: ð9Þ

To measure the temperature we use the relation

hjΠkj2i ¼
1

~Zk

Z∞

−∞
d ~Πkð ~Π2

k þ ~Π2−kÞe−β
1

2N3ð ~Π2
kþ ~Π2−kÞ ¼ 2N3T;

ð10Þ

with T ¼ 1=β. Using this formula we can check that the
system arrived at equilibrium by verifying that hjΠkj2i is
independent of k (equipartition). An example of this
distribution in a completely thermalized state is shown
in Fig. 2.
We remark that the above canonical equilibrium descrip-

tion is in fact a 3D field theory of the initial conditions. As
compared to the original action which is four dimensional,
we have a dimensionally reduced theory. As a consequence
the mass (energy) dimension of the field is ½Φ� ¼ 1=2. This
fact will be used later when we apply dimensional analysis.
In the thermal equilibrium we can perform perturbation

theory. Although at large coupling (where we actually
performed our simulations) results of perturbation theory
are not necessarily perfect, but in several aspects these may
“guide the eye” to understand some robust features of the
results. The details of perturbation theory in the classical
theory can be found in [22]. One uses here two types of
propagators,

GretðkÞ ¼
1

ðk0 þ iεÞ2 − ω2
k

; iG3DðkÞ ¼
T
k0

ϱðkÞ;

ð11Þ

FIG. 2 (color online). Mode dependence of temperature
[k̄2 ¼ P

3
i¼1 sin

2 ð2π kei
N Þ].

FIG. 1 (color online). The total energy as a function of time. In
the leap-frog algorithm, the total energy remains stable.

SHEAR VISCOSITY OF THE Φ4 THEORY FROM … PHYSICAL REVIEW D 92, 105011 (2015)

105011-3



where the free spectral function is

ϱðkÞ ¼ 2πsgnðk0Þδðk20 − ω2
kÞ; ð12Þ

and

ω2
k ¼

X3
i¼1

4sin2
�
πki
N

�
þm2; ki ∈ 0…N − 1: ð13Þ

As a final, technical issue, we remark that solving the
field equation corresponds to the pure microcanonical,
energy conserving approach to the thermodynamics.
However, knowing that the system reaches equilibrium
with Boltzmann distribution, we can also use a canonical
approach with a heat bath: in the language of the equations
of motion it can be realized as a Langevin equation. There
we introduce a γ damping parameter and a noise repre-
sented by ξðxÞ independent stochastic variables with uni-
form distribution at each time step. We then change the
update of Π to

ΠðnÞðxÞ ¼ ð1 − γdtÞΠðn−1ÞðxÞ þ dt

�
ΔΦðnÞðxÞ

−m2ΦðnÞðxÞ − λ

6
ðΦðnÞðxÞÞ3 þ ξðxÞ

�
: ð14Þ

This stochastic process drives the system towards an
equilibrium distribution with PðEÞ ∼ e−βE distribution
function. Because of the Einstein relation 2γT ¼ hξξi we
can control the temperature of the thermal distribution.
This algorithm can largely speed up the thermalization.
After the system arrives at equilibrium, we switch off the
noise and damping terms so that they do not influence the
measurements.

IV. EQUILIBRIUM OBSERVABLES

After we reach the equilibrium state, we can measure
expectation values using the time average:

hAðΦ;ΠÞi ¼ 1

t

Z
t0þt

t0

dt0AðΦðtÞ;ΠðtÞÞ: ð15Þ

The equilibrium system can be characterized by a single
value, for example, the temperature.

A. Energy

We measured the relation between the temperature
and the energy density; the results are shown in Fig. 3.
We found that the relation is linear, with slightly different
slope in the symmetric and SSB regimes. One can clearly
identify the phase transition region. Since our goal was not
to study the phase transition point very accurately, we did

not try to focus on this regime close enough to be able to
tell details about it.
This figure tells us that the heat capacity is proportional

to the number of modes, as it is expected from a classical
theory. Rewriting the lattice spacing a, this also means that
the specific heat is proportional to a3. This is the well-
known Rayleigh instability (ultraviolet catastrophe) of the
classical plasma. To have a physically meaningful result,
the lattice spacing must have a finite value.

B. Mass and symmetry breaking

It is important to note that the mass parameter of the
Lagrangian (the bare mass) is not the same as the mass
appearing in the observables (the effective mass).
Physically it happens because of the nontrivial effect of
the fluctuations.
To estimate this effect (cf. Refs. [28,29]) we used the

background field method. We shifted the classical field
with its expectation value: Φ → Φ0 þ φ, where hφi ¼ 0.
The shifted Lagrangian reads

L¼−
m2

2
Φ̄2− λ

24
Φ̄4−φ

�
m2Φ̄þ λ

6
Φ̄3

�

þ1

2
φð−d2−m2Þφ− λ

4
Φ̄2φ2−

λ

6
Φ̄φ3− λ

24
φ4: ð16Þ

To lowest order (Hartree approximation) we substitute the
fluctuations by their expectation values. Using the fact that
hφi ¼ 0 we find up to a constant

L ¼ − 1

2

�
m2 þ λ

2
hφ2i

�
Φ̄2 − λ

24
Φ̄4: ð17Þ

This means that the effective mass is modified by the effect
of the fluctuations. Since the mass dimension of the field is
½φ� ¼ 1=2, by dimensional reasons hφ2i ∼ T. On the other
hand this is a correction to the mass squared, and so the
coefficient is also dimensionful, and with finite lattice

FIG. 3 (color online). Temperature dependence of total energy
(N3 ¼ V ¼ 503), λ ¼ 5, m2 ¼ −0.5.
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spacing it is proportional to a−1. The coefficient in leading
order in perturbation theory reads

hφ2i ¼ T
N3

X
k∈Ū

1P
3
i¼1 4 sin

2ðπkiN Þ þm2

!N→∞
0.2527T −mT

4π
þOðm2Þ; ð18Þ

but this number is unreliable for large couplings.
One consequence of this formula is that at fixed negative

bare mass the effective mass term will be positive at high
enough temperature. This means that the minimum of the
effective action for the constant field (the constrained free
energy) will become zero at this temperature: the symmetry
is restored. To see it we measured the expectation value of
the field for various tree level masses at different temper-
atures. The result can be seen in Fig. 4.
A more delicate question is that in the 3D classical field

theory, unlike in the four-dimensional theory, the temper-
ature influences the renormalization. This means that the
meaning of mass and temperature cannot be separated from
each other in that clear way as it can be done in the 4D case.
We therefore also performed simulations with fixed effec-
tive mass at different temperatures: this requires us to tune
the bare mass parameter. In practice we fix the desired
effective mass and the bare mass, and tune the temperature
accordingly with the application of Langevin equations
described earlier.
For the definition of the mass we measured the corre-

lation function

Gðt;xÞ ≔ hΦðt;xÞΦð0Þi: ð19Þ

In the leading order of perturbation theory, we expect that
this correlator is the free one, where we should also take
into account the mass modification:

Gðt;kÞ ¼ hjΦkj2i cosωkt; ð20Þ

where ω2
k ¼ k2 þm2 þ λ

2
hφ2i. If one goes beyond the first

order of perturbation theory, then one obtains self-energy
corrections, and the pure harmonic behavior of the corre-
lator will be spoiled. If a one-particle mass shell is
dominant, then we can speak about quasiparticle excita-
tions. In that case in real time evolution one can observe a
damped oscillation:

Gðt;kÞ ∼ expð−t=τkÞ cosðωktÞ: ð21Þ
However, the closer we are to the phase transition point, the
worse behavior could be observed for the staticΦ field, as it
is demonstrated in Fig. 5. We can see that far from the phase
transition point, where the effective mass is large, the
quasiparticle assumption is valid. With decreasing effective
mass, the fit works worse and worse. In this case the
definition of the notion of “mass” is not unique anymore.
For a more sophisticated description we should use the
complete spectral function, but we just need a characteri-
zation of the mass and temperature. For that purpose we use
the best quasiparticle fit to the real time data for the zero
mode. This is some mean value of the spectral peak; in the
vicinity of the phase transition point it remains finite, as
opposed to the inverse spatial correlation length.
The temperature dependence of the mass defined by

Eq. (21) is shown in Fig. 6 with fixed bare mass
m2 ¼ −0.5. We can clearly see the position of the phase
transition point which sits at the minimum of this curve.
One may also check whether we reached the infinite
volume (thermodynamical) limit. For that we determined
the temperature dependence of the mass at various vol-
umes; see the left panel of Fig. 7. This plot suggests that we
have already reached the thermodynamical limit. We can
also check the temperature dependence of the effective
mass; this is shown in the right panel of Fig. 7. We see that
for different bare masses, the effective mass values sit on a
unique curve.

V. VISCOSITY

The central topic of this paper is the determination of
the shear viscosity. The Kubo formula for momentum
transport [1] requires us to compute

η ¼ lim
ω→0

ϱT12T21
ðω;k ¼ 0Þ
ω

; ð22Þ

where

ϱABðxÞ ¼ h½AðxÞ; Bð0Þ�i; ð23Þ
η is the shear-viscosity, and T12 is the one-two component
of the energy momentum tensor; in the case of scalar field
theory it is T12 ¼ ∂1Φ∂2Φ. In classical theory we cannot
measure the commutator of two operators, but we can
measure the correlation function instead. For the AðxÞ and
Bð0Þ operators it is defined as

FIG. 4 (color online). Temperature dependence of the expect-
ation value of the field.
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SABðxÞ ¼ hAðxÞBð0Þicl; ð24Þ

where the “cl” subscript refers to the classical correlation
function. To connect this quantity with the viscosity we use
the Green-Kubo formula, which claims that

ϱAB;clðω;kÞ ¼ βωSAB;clðω;kÞ; ð25Þ

which is a direct consequence of the quantum Kubo-
Martin-Schwinger relation

ϱABðω;kÞ ¼ ð1 − e−βωÞSAB;clðω;kÞ; ð26Þ

in the βω → 0 limit. Using this relation the viscosity is

ηcl ¼ βST12T12
ðk ¼ 0Þ: ð27Þ

The direct result of our simulations in real time can be
seen in Fig. 8. We repeated the measurements of ST12T12

for
five different configurations, meaning that after each
measurement we allowed the system to evolve in time
until we reached an independent configuration. This makes
it possible to estimate the statistical error of the simulation.
The relevant information, the transport peak can be

extracted from the Fourier-transformed data shown in
Fig. 9. To understand what we see in this figure, we recall
that in the leading order of perturbation theory we expect a
branch cut starting at 2m, and a Dirac-delta peak at k ¼ 0,
just like in the Fourier transform of hΦ2ðxÞΦ2ð0Þi. The
higher order terms result in the smearing of the cut and the
Dirac-delta peak as well, the former yielding a broad bump

FIG. 6 (color online). Temperature dependence of the effective
mass parameter for various interaction strength (λ) where
m2 ¼ −0.5. It has a minimum at the phase transition point,
but with our definition the minimum is not at zero.

FIG. 5 (color online). The real time behavior of the field correlation function at different bare masses, λ ¼ 5. (a) M ¼ 0.88,
(b) M ¼ 0.69, (c) M ¼ 0.53, and (d) M ¼ 0.43.
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and the latter leading to the transport peak. The desired
result is the height of this peak at ω ¼ 0.
One can repeat this measurement at different temper-

atures as well; this can be seen in Fig. 10. This figure
suggests that the classical shear viscosity depends more or
less linearly on the temperature. It also follows from
dimensional analysis: since ½Φ� ¼ 1=2 is the mass dimen-
sion of the field, ½T12� ∼ 3, its correlator has 6th power of

energy dimension. After Fourier transformation there
remains 2, and after division by the temperature there
remains 1, a linear energy dependence. Since the main
source of energy dependence in the classical case is the
temperature, we expect proportionality with T. From the
very same line of thought in 4D one obtains the usual
η ∼ T3 dependence (here ½Φ�¼1, ½T12�¼4, ½hT12T12i� ¼ 8,
in Fourier-space it has the dimension 4, and after division
by the temperature there remains 3).
To numerically verify this, we also present the ηcl=T

curve in Fig. 11. We see that the ratio is approximately
constant, but with an enhanced behavior near the critical
point. This figure suggests that the classical viscosity,
just like other susceptibilities, shows a critical behavior,
exhibiting a peak at the phase transition point.

A. Interpretation

One can compute the classical viscosity in perturbation
theory to leading order, similarly to what was done in
Ref. [37]. With point splitting we can write

FIG. 7 (color online). Left panel: Effective mass at different volumes. Right panel: Effective mass in theories with different bare mass.
(a) various volumes, (b) various Lagrangian m.

FIG. 8 (color online). T12 autocorrelation function in real time.

FIG. 9 (color online). T12 correlator in frequency space.
FIG. 10 (color online). Temperature dependence of the classical
shear viscosity.
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SðxÞ ¼ hT12ðxÞT12ð0Þi
¼ lim

x0→x
y0→y→0

∂x1∂x01∂y1∂y01hΦðxÞΦðx0ÞΦðyÞΦðy0Þi

¼ ∂2
1iG3DðxÞ∂2

2iG3DðxÞ þ ð∂1∂2iG3DðxÞÞ2: ð28Þ

After Fourier transformation we have

SðpÞ ¼
Z

d4k
ð2πÞ4 ½k

2
1ðp − kÞ22 þ k1k2ðp − kÞ1ðp − kÞ2�

× iG3DðkÞiG3Dðp − kÞ

¼ T2

Z
d4k
ð2πÞ2

k21ðp − kÞ22 þ k1k2ðp − kÞ1ðp − kÞ2
k0ðp0 − k0Þ

× ϱðkÞϱðp − kÞ: ð29Þ

This is very similar to the Φ2Φ2 correlation function
discussed in [37], and also very similar to the discontinuity
of the quantum version of it.
To proceed we use the Green-Kubo relation (27) to write

ηcl ¼ 2T
Z

d4k
ð2πÞ4

k21k
2
2

k20
ϱ2ðkÞ: ð30Þ

Evaluating this expression with the free spectral function
(12) we obtain infinity: this means that for free theories the
viscosity, like all other transport coefficient, is infinite. We
can apply a Breit-Wigner approximation for the spectral
function

ϱðkÞ ¼ 4k0γk
ðk20 − ωkÞ2 þ 4k20γ

2
k

; ð31Þ

then we can approximate for small width and for k0 > 0:

ϱ2ðkÞ ≈ 2π

γkω
2
k

δðk0 − ωkÞ: ð32Þ

This leads to

ηcl ¼ 4T
Z

d3k
ð2πÞ3

k21k
2
2

γkω
4
k

: ð33Þ

This integral is still divergent in the continuum limit. The
leading contribution comes from large momenta. The
asymptotics of γkωk has been found in [37] (see also
[24]); it is λ2T2

384π. In the remaining ω−3
k factor, one can set

m ¼ 0. Therefore to leading order we have

ηcl ¼
1536π

λ2T

Z
d3k
ð2πÞ3

k21k
2
2

ðk21 þ k22 þ k23Þ3=2
þ � � � ð34Þ

Rewriting this integral in terms of the dimensionless
momenta ka and integrating it in the Brillouin zone
−π < ka < π, one finds

ηcl ¼
ηlat
a4

; ηlat ¼
321.3π
λ2T

þ � � � ð35Þ

The fact that ηcl ∼ a−4 is consistent with the results of [37]
for the Φ2 autocorrelation function. There a logarithmic
divergence was found; therefore the energy-momentum
tensor correlation function, which has two derivatives more
than Φ2, should scale as a−4.
Although this result is just a first order perturbative

estimate, the robust part of the result is that the classical
shear viscosity is proportional to a−4. After determining ηlat
by lattice simulations, this is the way one can recover the
classical value of the viscosity.
The next question is how one can relate ηcl to the shear

viscosity of quantum systems. The fact of the comparison
of the classical and quantum calculations [37,40] was that
the perturbative quantum result was rather close to the
classical one, if one chooses a cutoff Λ ∼ T. The exact
value of the coefficient is not known to be universal;
probably it depends on the quantity in question. But, up to a
constant, we can estimate the result of the full quantum
result by setting η ∼ ðaTÞ4ηcl. If we measure the shear
viscosity from the lattice, we have

η ∼ T4ηlat: ð36Þ

Below we will use unity for the proportionality constant.
Of course, this formula is based on the assumption that

the quantum result is dominated by the classical fields. This
may be true or not; it is out of the scope of the classical field
theory study. If it is true, then our result has a significance.
Also, unfortunately, we do not know the coefficient in this
formula; nevertheless, we can give a temperature profile of
the η=s ratio.

FIG. 11 (color online). Classical shear viscosity over temper-
ature as a function of the temperature. The enhanced behavior is
around the phase transition point, suggesting that the viscosity
also shows a critical behavior.
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The entropy density of the quantum system is poorly
approximated by the classical modes, so we use for the η=s
estimate the entropy density of a free one-component gas
with

s ¼
Z

d3k
ð2πÞ3

�
ωk

eβωk − 1
− lnð1 − e−βωkÞ

�
: ð37Þ

Here ω2
k ¼ k2 þm2

eff , where meff was taken from the
classical simulations. In this way we can present our
estimate for the η=s ratio in Fig. 12. We see a curve typical
for the behavior of the shear viscosity in any matter near the
phase transition point. For a qualitative comparison we
show the η=s ratio for QCD [41] in Fig. 13 versus our
results that was rescaled to fit to the high temperature part.

The characteristic form of the η=s ratio is not the
consequence of the phase transition, present in the classical
Φ4 system, since, as we have seen in Figs. 10 and 11, this
left the almost linear rise of the lattice entropy intact.
More important is the behavior of the entropy density of a
massive gas, which is exponentially suppressed at low
temperatures, exhibits a fast rise, and later depends on the
temperature as ∼T3. The fast rise of the entropy is the
reason behind the dip in the η=s curve.

VI. SUMMARY

In this work we used numerical simulations of the quartic
classical field theory to give an estimate for the shear
viscosity. To this end we solved the discretized classical
equations of motion. This leads to thermalization, where
one can determine the expectation value of different
observables by time averaging. We first determined the
field autocorrelation function, and analyzed it by assuming
quasiparticle behavior. Then we measured the correlator of
the one-two component of the energy-momentum tensor.
Using the Green-Kubo formula this quantity is proportional
to the shear viscosity. The shear viscosity ηlat was found to
depend approximately linearly on T, which was expected
by classical dimensional analysis. This behavior was
superimposed by a characteristic critical behavior near
the phase transition regime. Finally we pointed out that
the classical viscosity comes from the lattice viscosity as
ηcl ¼ ηlata−4 where a is the lattice spacing. Translating the
classical result into the shear viscosity of the quantum
system, we argued that a−1 ∼ T is the correct choice, but
the proportionality constant is not known. This allows us to
make an estimate also on the temperature profile of η=s,
which turns out to be rather similar to the result of QCD
near the critical region.
As future prospects we plan to repeat this analysis to

other models including gauge theories. Another interesting
extension could be to study the effects of the quantum
corrections to the equations of motion. This could provide a
hint about the reliability of the classical estimate.
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FIG. 12 (color online). The quantum η=s estimated by the
classical Φ4 theory, using a ¼ T−1 lattice spacing.

FIG. 13 (color online). Qualitative comparison of η=s of QCD
plasma and the classicalΦ4 theory, after rescaling. The QCD data
are taken from [41].
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