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We present the explicit de Sitter supergravity action describing the interaction of supergravity with an
arbitrary number of chiral and vector multiplets as well as one nilpotent chiral multiplet. The action has a
non-Gaussian dependence on the auxiliary field of the nilpotent multiplet; however, it can be integrated out
for an arbitrary matter-coupled supergravity. The general supergravity action with a given Kähler potential
K, superpotential W and vector matrix fAB interacting with a nilpotent chiral multiplet consists of the
standard supergravity action defined by K, W and fAB where the scalar in the nilpotent multiplet has to be
replaced by a bilinear combination of the fermion in the nilpotent multiplet divided by the Gaussian value
of the auxiliary field. All additional contributions to the action start with terms quartic and higher order in
the fermion of the nilpotent multiplet. These are given by a simple universal closed form expression.
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I. INTRODUCTION

A supergravity action, including fermion interactions,
with nonlinearly realized spontaneously broken local
supersymmetry was derived in [1,2]. In the case of pure
supergravity without scalars it was shown in [1] that de
Sitter (dS) vacua form a simple set of classical solutions of
this theory. For a long time only anti–de Sitter supergravity
without scalars was known [3]. De Sitter vacua are also
natural for the theory with a single chiral multiplet,
constructed in [2]. The presence of a Volkov-Akulov
(VA) type nonlinearly realized supersymmetry [4] in
supergravity models [1,2] leads to a natural uplifting of
the vacuum energy in all these models. This is in full
agreement with the string theory realization of the KKLT de
Sitter vacua that use an anti-D3 brane [5]. The construction
in [5] was recently described as a supersymmetric realiza-
tion of the KKLT uplifting with account of the fermions
on the world-volume of the anti-D3 brane [6]. Furthermore,
it was shown in [7] how this setup can be realized in
explicit warped string compactifications.
The purpose of this paper is to derive general and explicit

supergravity models with chiral and vector multiplets inter-
acting with a nilpotent chiral multiplet based on the super-
conformal formulation of this theory given in [8]. This
strategy was already used successfully in [1,2] where full
actions with fermions in models with a nilpotent multiplet
andwithoutmattermultiplets orwith a single chiralmultiplet
werederived.Meanwhile in [9] itwas proposed how toderive
supergravitieswith a nilpotentmultiplet for general classes of
models with any number of chiral and vector multiplets and
with genericK,W and fAB. It was shown that one can use the
same method as in [1], namely to perform a non-Gaussian

integration of the auxiliary field resulting in a closed form
action. A complete action in the unitary gaugewas presented
in [9] for general matter coupling. Here we will derive the
complete actionwith fermions andwith local supersymmetry
for general matter coupling.
The general action without a nilpotent multiplet is well

known and we will use here the framework presented in
[10]. Originally the corresponding general supergravity-
Yang-Mills action was derived from the superconformal
theory in [11–13].
The interest in a nilpotent chiral multiplet satisfying the

nilpotency condition in supergravity in applications to
cosmology was initiated in [14] for the VA-Starobinsky
model. For a general supergravity, interacting with the VA
model, the superconformal construction was presented in
[8]. It has been shown in [15] that the approach of using the
constrained curvature superfield is dual to the VA model
coupled to supergravity. It was also shown recently that one
can use a complex linear goldstino superfield and build
de Sitter supergravity [16].
This interest in these new supergravity models was

increased by the fact that they facilitate the construction
of early universe inflationary models compatible with the
data and the construction of de Sitter vacua for explaining
dark energy and supersymmetry breaking, see for example
[17] and references therein. Such supergravity models in
application to cosmology require mostly the knowledge of
the bosonic action of the theory, where the rules are very
simple: for the complete models one has to construct the
standard supergravity action defined by K, W and fAB.
Once the action is known, one has to take only the bosonic
part of it and, moreover, set the scalar field in the nilpotent
multiplet to zero since the scalar in the nilpotent multiplet,
representing the VA theory, is a fermion bilinear. If the
scalar in the nilpotent multiplet is z1, then the rule for
obtaining the bosonic action is
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e−1Lbosonic

¼ e−1Lbook½Kðzα; z̄ᾱÞ;WðzαÞ; fABðzαÞ�jz1¼χα¼χᾱ¼λA¼ψμ¼0;

α¼ 1;…;n; ð1:1Þ

for a given choice of Kähler potential, superpotential and
vector metric. Here Lbook is the standard supergravity
action for a given choice of K, W and fAB; see also the
next section for details.
However, the knowledge of the bosonic action may

not be sufficient for studies of reheating of the universe in
these models, as well as for studies of particle physics,
where the role of the fermions is important. A com-
plete action including fermions, with the bosonic part
given in (1.1), will be derived here, following the proposal
in [9].

II. SUPERGRAVITY ACTION WITH A
NILPOTENT MULTIPLET

The general supergravity Lagrangian for an arbitrary
number of chiral and vector multiplets coupled to
supergravity is given for example in the book [10] in
Eqs. (18.6)–(18.19) and takes the form

e−1Lbook ¼ Lkin − V þ Lm þ Lmix þ L4f ; ð2:1Þ

where Lkin contains all the terms with spacetime derivatives
of the fields. All terms on the right-hand side of Eq. (2.1)
are defined in [10]. The Lagrangian is a function of all the
physical fields Lbook ¼ Lbookðeaμ;ψμ; zα; z̄ᾱ; χα; χᾱ; AA

μ ; λAÞ.
We are interested in the case in which one of the chiral

superfields in the supergravity action is nilpotent. Without
loss of generality we choose the first one which leads to the

constraint [1]: z1 ¼ ðχ1Þ2
2F1 (and likewise z̄1̄ ¼ ðχ 1̄Þ2

2F̄1̄ ).
1 What is

the corresponding Lagrangian in this case? Clearly we

cannot just plug z1 ¼ ðχ1Þ2
2F1 into the on-shell Lagrangian

(2.1) since we do not know what F1 is in the general
supergravity model. What we actually need to do is to
start with an off-shell supergravity Lagrangian and then
integrate out all the Fα to get the correct on-shell
Lagrangian.

The corresponding off-shell supergravity action for an
arbitrary number of chiral and vector multiplets coupled to
gravity is given by

e−1Loff-shell ¼ ðFα − Fα
GÞgαᾱðF̄ᾱ − F̄ᾱ

GÞ þ e−1Lbook;

ð2:2Þ
where

Fα
G ¼ −eK2gαβ̄∇̄β̄W̄ þ ðFα

GÞf; ð2:3Þ
with

ðFα
GÞf ¼

1

2
Γα
βγχ̄

βχγ þ 1

4
f̄ABβ̄g

β̄αλ̄APRλ
B: ð2:4Þ

Alternatively, we could have started with the off-shell
supergravity action in [12], eqs. (25)–(33), which is given
in the form with all auxiliary fields not integrated out. This
set up was used in [2]. When the auxiliary fields Aμ and F0

are integrated out, the remaining action still has all auxiliary
fields Fα as shown in our Eq. (2.2).
Now since the Lagrangian Lbook does depend on z1 ¼

ðχ1Þ2
2F1 it will also depend on F1 and therefore it seems
prohibitively difficult to explicitly integrate it out.
However, using a proposal made in [9] which includes a
simplifying assumption about the form of Kähler potential
we will derive the explicit on-shell Lagrangian in the next
section. In particular, we assume that the Kähler potential
depends only on the product z1z̄1̄ so that we have2

Kðzi; z̄{̄; z1z̄1̄Þ ¼ K0ðzi; z̄{̄Þ þ z1z̄1̄g11̄ðzi; z̄{̄Þ: ð2:5Þ
We also expand the holomorphic superpotential W and the
holomorphic gauge kinetic function fAB as follows,

Wðz1; ziÞ ¼ W0ðziÞ þ z1W1ðziÞ≡ gðziÞ þ z1fðziÞ;
fABðz1; ziÞ ¼ fAB0ðziÞ þ z1fAB1ðziÞ: ð2:6Þ

With this assumption we will integrate out F1 in Sec. III.
This involves taking into account a non-Gaussian depend-
ence of the action on the auxiliary field F1. This gives us
the generic supergravity Lagrangian for a nilpotent chiral
superfield coupled to an arbitrary number of chiral and
vector multiplets:

e−1Lfinal ¼ ½e−1Lbook�
z1¼ðχ1Þ2

2f1

− ðχ1Þ2ðχ1̄Þ2
4g11̄ðf1f̄1̄Þ2

����g11̄ □ðχ1Þ2
2f1

þ B1

����
2

ð2:7Þ

1We are using the conventions of [10] but we will set κ ¼ 1 and we define the short-hand notations ðχ1Þ2 ¼ χ̄1PLχ
1 and

ðχ 1̄Þ2 ¼ χ̄ 1̄PRχ
1̄.

2Since ðz1Þ2 ¼ ðz̄1̄Þ2 ¼ 0 the only other term that could arise in the fully general Kähler potential is z1fðzi; z̄{̄Þ þ z̄1̄f̄ðzi; z̄{̄Þ. Note that
linear terms in z1 (z̄1̄) that are multiplied by a holomorphic (anti-holomorphic) function can be removed by a Kähler transformation.
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with

f1 ≡ 1

g11̄

�
−eK02 W̄ 1̄ þ

1

4
f̄AB1̄λ̄

APRλ
B

�
;

B1 ≡ e−1 δL
book

δz̄1̄

����
z1¼z̄1̄¼0

: ð2:8Þ

Note that the last term in Eq. (2.7) has already the maximal
power of the (undifferentiated) spinor χ1 so that we can
drop all terms in B1 that contain χ1 or χ 1̄. We explicitly give
the relevant part of B1 for two examples in Sec. IV.
One can see that the complete Lagrangian (2.7) has the

original form with z1 replaced by its ‘Gaussian value’ and
there are some additional terms that are at least quadratic in
χ1χ1̄. On the basis of this expression we may conclude that
the action with K, W and fAB generic (but with K
dependence on z1z̄1̄) is given by the standard action with
the following modifications:
After the standard action for K, W and fAB is presented

as a function of z1 and z̄1̄

(1) Replace z1 by z1 ¼ ðχ1Þ2
2f1 and likewise for the con-

jugate z̄1̄ ¼ ðχ1̄Þ2
2f̄1̄

.

(2) Add the quartic and higher order in spinors terms
shown in the second entry in Eq. (2.7), where B1 is
given in (2.8) and more explicitly for two examples
in Sec. IV.

III. DERIVATION OF THE MATTER-COUPLED
SUPERGRAVITY ACTION WITH A

NILPOTENT MULTIPLET

We start with the off-shell action (2.2) and we would like
to integrate out the auxiliary fields Fα. The dependence on
F1 is non-Gaussian since the Lagrangian depends on

z1 ¼ ðχ1Þ2
2F1 . However, we can still trivially integrate out all

the other Fi, i ¼ 2;…; n and get

gi1̄ðF̄1̄ − F̄1̄
GÞ þ gi|̄ðF̄|̄ − F̄|̄

GÞ ¼ 0: ð3:1Þ

The submatrix gi|̄ is invertible in order to have a non-
degenerate kinetic term for the zi. Thus, we find

ðF̄|̄ − F̄|̄
GÞ ¼ −ðg|̄iÞ−1gi1̄ðF̄1̄ − F̄1̄

GÞ; ð3:2Þ

and the Lagrangian after integrating out the Fi becomes

e−1Loff-shell ¼ ðF1 − F1
GÞðg11̄ − g1|̄ðg|̄iÞ−1gi1̄ÞðF̄1̄ − F̄1̄

GÞ
þ e−1Lbook: ð3:3Þ

Here e−1Lbook is defined as an expansion in z1, z̄1̄:

e−1Lbook ¼ z̄1̄A1z1 þ B1z̄1̄ þ B̄1z1 þ C1: ð3:4Þ

In order to solve for F1, we follow the approach described
in [9]. Using the Kähler potential in Eq. (2.5) which
immediately implies that

gi1̄ ¼ z1∂ig11̄; g1{̄ ¼ z̄1̄∂ {̄g11̄; ð3:5Þ

we rewrite the first term in the Lagrangian (3.3) as follows,

ðF1 − F1
GÞg11̄ðF̄1̄ − F̄1̄

GÞ
− ðF1 − F1

GÞz1z̄1̄ð∂ |̄g11̄ÞðK0;|̄iÞ−1ð∂ig11̄ÞðF̄1̄ − F̄1̄
GÞ;
ð3:6Þ

where we used that ðg|̄iÞ−1¼ðK0;|̄iÞ−1−z1z̄1̄ðK0;|̄lÞ−1×
ðK0;im̄Þ−1ð∂l∂m̄g11̄Þ and the fact that ðz1Þ2 ¼ 0.
When solving for F1, following [1], one finds that F1 ¼

F1
G up to powers of χ1 (see Eq. (A.24) in [1]). Since the

second term in Eq. (3.6) has already the maximal power of
χ1 because z1z̄1̄ ∝ ðχ1Þ2ðχ1̄Þ2, we find that the second term
does not contribute to the action at all. We show this
explicitly in Appendix A. Thus, we find that we are left
with

e−1Loff-shell ¼ ðF1 − F1
GÞg11̄ðF̄1̄ − F̄1̄

GÞ þ e−1Lbook:

ð3:7Þ

Now following [9] we want to separate all the explicit z1, z̄1̄

dependence in the first term of (3.7) from the dependence
on F1 and F̄1̄. This will then bring the Lagrangian into a
form in which we can easily integrate out F1 following the
procedure developed in [1]. To do that we define the
following expansion coefficients that are independent of z1

and z̄1̄,

F1
G ¼ F1

G0 þ F1
G1z

1 þ F1
G1̄z̄

1̄ þ F1
G11̄z

1z̄1̄; ð3:8Þ

and likewise for F̄1̄
G. We present some details on the moduli

space geometry for our models in Appendix B. Using it,
a straightforward calculation given in Appendix C,
shows that F1

G1̄ ¼ F̄1̄
G1 ¼ 0 for the Kähler potential given

in Eq. (2.5).
Now let us look at the term ðF1 − F1

GÞg11̄ðF̄1̄ − F̄1̄
GÞ. We

can absorb the z1 and z1z̄1̄ dependent terms of F1
G into F1

by defining

F01 ¼ F1 − F1
G1z

1 − z1z̄1̄F1
G11̄: ð3:9Þ

This does not affect the nilpotency condition that fixes

z1 ¼ ðχ1Þ2
2F1 since
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z1 ¼ ðχ1Þ2
2F1

¼ ðχ1Þ2
2F01 ¼ ðχ1Þ2

2F1

�
1þ z1

2F1
ðF1

G1 þ z̄1̄F1
G11̄Þ

�
:

ð3:10Þ

Here we used that ðχ1Þ2z1 ∝ ðχ1Þ2ðχ1Þ2 ¼ 0. Likewise, we
can define

F̄01̄ ¼ F̄1̄ − F̄1̄
G1̄z̄

1̄ − z1z̄1̄F̄1̄
G11̄: ð3:11Þ

This leads to

ðF1 − F1
GÞg11̄ðF̄1̄ − F̄1̄

GÞ ¼ ðF01 − F1
G0Þg11̄ðF̄01̄ − F̄1̄

G0Þ:
ð3:12Þ

Putting everything together, we can now rewrite the
Lagrangian (3.7) as

e−1L ¼ ðF01 − F1
G0Þg11̄ðF̄01̄ − F̄1̄

G0Þ þ z̄1̄Az1

þ Bz̄1̄ þ B̄z1 þ C1: ð3:13Þ

We now introduce F ¼ F01 ffiffiffiffiffiffi
g11̄

p
, FG0 ¼ F1

G0
ffiffiffiffiffiffi
g11̄

p
, z ¼

z1=
ffiffiffiffiffiffi
g11̄

p ¼ ðχ1Þ2
2F and similarly for the conjugated quantities.

We also define A ¼ g11̄A
1, B ¼ ffiffiffiffiffiffi

g11̄
p

B1, C ¼ C1 to bring
the Lagrangian into the form3

e−1Loff-shell ¼ ðF − FG0ÞðF̄ − F̄G0Þ þ z̄Az

þ Bz̄þ B̄zþ C: ð3:14Þ

Now we can solve the equation for F that is given by

δLðz; z̄; F; F̄Þ
δF

þ ∂z
∂F

δLðz; z̄; F; F̄Þ
δz

¼ δLðz; z̄; F; F̄Þ
δF

− z
F
δLðz; z̄; F; F̄Þ

δz
¼ 0: ð3:15Þ

This was done for the Lagrangian (3.14) in the paper [1]
(see, in particular, Appendix A.5). The resulting on-shell
Lagrangian is given by

e−1Lon-shell ¼
�
z̄Azþ zB̄þ Bz̄þ C

− 1

FG0F̄G0
ðz̄Azþ z̄BÞðzĀ z̄þzB̄Þ

�
z¼ðχ1Þ2

2FG0

:

ð3:16Þ

Expressing this in our original variables, we have

e−1Lon-shell ¼
�
z̄1̄A1z1 þ z1B̄1 þ B1z̄1̄ þ C1

− 1

g11̄F
1
G0F̄

1̄
G0

jz̄1̄A1z1 þ z̄1̄B1j2
�
z1¼ðχ1Þ2

2F1
G0

¼
�
e−1Lbook − 1

g11̄F
1
G0F̄

1̄
G0

× jz̄1̄A1z1 þ z̄1̄B1j2
�
z1¼ðχ1Þ2

2F1
G0

: ð3:17Þ

To make it fully explicit that the “new” terms in the
Lagrangian contain the maximal power ðχ1Þ2ðχ 1̄Þ2 of the
undifferentiated spinor χ1, we can rewrite the Lagrangian as

e−1Lfinal ¼ ½e−1Lbook�
z1¼ðχ1Þ2

2F1
G0

− ðχ1Þ2ðχ 1̄Þ2
4g11̄ðF1

G0F̄
1̄
G0Þ2

����A1
ðχ1Þ2
2F1

G0
þ B1

����
2

; ð3:18Þ

where the explicit expression for F1
G0 is derived in

Appendix C and given by

F1
G0 ¼

1

g11̄

�
−eK02 W̄1̄ þ

1

2
ð∂ig11̄Þχ̄1χi þ

1

4
f̄AB1̄λ̄

APRλ
B

�
:

ð3:19Þ

Note that A1 in the above expression has to act with two
derivatives on ðχ1Þ2 in order to give a nonzero expression.
In the Lagrangian Lbook in (3.4) the relevant part of the
z̄1̄A1z1 term which appears in the second term in (3.18) is

z̄1̄g11̄g
μν∂μ∂νz1 ≡ z̄1̄g11̄□z1: ð3:20Þ

Likewise, from B1 and F1
G0 the only parts that contribute

are those independent of the undifferentiated χ1 and χ 1̄

since they appear in the above action with the highest
power of the spinor χ1. We denote these parts by b1 and f1,
respectively. We explicitly spell out b1 for two examples in
Sec. IVand f1 in Appendix C. Taking all this into account,
the Lagrangian (3.18) simplifies to our final result given in
Eq. (2.7) above.

IV. EXAMPLES

In this section we discuss two examples of our general
result. First we discuss the simplest case of pure super-
gravity without chiral and vector multiplets. The action in
this case was first derived in [1] and [2]. Then we discuss a
pretty general case in which we allow for an arbitrary
number of chiral and vector multiplets and only make the
assumption that the gauge kinetic function fAB and the
moment maps PA are independent of z1.

3Note that our definition of C is different from the one
used in [1].
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A. Pure dS supergravity

For the case of a single nilpotent chiral superfield
coupled to supergravity, the most general Kähler and
superpotential are given by

K ¼ z1z̄1̄; W ¼ gþ fz1; ð4:1Þ

with g and f complex constants. The corresponding action
was derived in [1] and [2] in two different superconformal
gauges. The one we are using here is based on the
framework in [10].
Here we show how the action follows from our general

answer given in (2.7). For the simple Kähler and super-
potential given in (4.1), we find that F1

G0 ¼ −f̄. This leads
to the action

e−1Lpure dS ¼ ½e−1Lbook�
z1¼−ðχ1Þ2

2f̄

− ðχ1Þ2ðχ1̄Þ2
4jfj4

���� −□ðχ1Þ2
2f̄

þ b1
����
2

; ð4:2Þ

where the explicit expression for b1 can be read off from the
general Lagrangian in Eqs. (18.6)–(18.19) in [10]. In

particular, α, β only take the value 1 and we want to
extract all terms that are linear in z̄1̄ and independent of z1

as described in Eq. (2.8). Furthermore, we can drop all
terms that contain the undifferentiated spinor χ1 or χ 1̄ (after
potentially integrating by parts). This leaves us with only
three terms, one coming from the scalar potential V, one
coming from the mass term of the gravitino and, finally,
one term which comes from the termþ 1ffiffi

2
p ψ̄μ∂z̄1̄γμχ1 in the

action after partial integration. The resulting answer is

b1 ¼ 2gf̄ þ 1

2
f̄ψ̄μPLγ

μνψν − 1ffiffiffi
2

p ψ̄μγ
νγμ∂νχ

1: ð4:3Þ

B. De Sitter supergravity coupled to chiral
and vector superfields

In this subsection we spell out the action in the case of an
arbitrary number of chiral and vector multiplets but we
make the simplifying assumption that the gauge kinetic
function fAB and the moment maps PA are independent of
z1 (and z̄1̄). The action is given by

e−1Lfinal ¼ ½e−1Lbook�
z1¼ðχ1Þ2

2f1

− ðχ1Þ2ðχ 1̄Þ2
4g11̄ðf1f̄1̄Þ2

����g11̄□ðχ1Þ2
2f1

þ b1
����
2

; ð4:4Þ

with

f1 ¼ − e
K0
2 W̄ 1̄

g11̄
;

b1 ¼ eK0

�
2W0W̄1̄ þ ðK0;i|̄Þ−1ðD0;iW0Þ

�∂ |̄g11̄
g11̄

W̄ 1̄ − D̄0;|̄W̄ 1̄

��
−
1

2
ðχ̄ |̄∂χ1Þ½3∂ |̄g11̄ þ ðz̄k̄∂ k̄ − zk∂kÞ∂ |̄g11̄�

þ 1

2
e
K0
2 W̄ 1̄ψ̄μPLγ

μνψν − 1ffiffiffi
2

p ψ̄μγ
νγμ∂νχ

1ðg11̄ þ ð∂ |̄g11̄Þz̄|̄Þ þ
1

4
e
K0
2 fABjλ̄APLλ

BðK0;jk̄Þ−1
�
ð∂ k̄ þ K0;k̄Þ − ∂ k̄g11̄

g11̄

�
W̄1̄

−
1

2
e
K0
2 χ̄ {̄χ |̄ðD̄0;{̄D̄0;|̄ − ∂ {̄∂ |̄g11̄

g11̄
þ
�
K0;kl̄Þ−1ðK0;k{̄ |̄Þ

�ð∂ l̄g11̄Þ
g11̄

− D̄0;l̄

��
W̄ 1̄ þ

1ffiffiffi
2

p e
K0
2 D̄0;{̄W̄ 1̄χ̄

{̄γ · ψ ; ð4:5Þ

where we defined D0;i ¼ ∂i þ K0;i and likewise
D̄0;{̄ ¼ ∂ {̄ þ K0;{̄. This explicit expression for b1 can again
be read off from the action given in Ref. [10]. In particular,
the first line arises from the scalar potential V, the second
line comes from the kinetic terms for the fermions and the
third line contains the generalization of the terms that we
already found above in Eq. (4.3). The fourth line comes
from the gaugino mass term and the fifth from the mass
term for the χi. The last line contains a term coming from
Lmix in Eq. (18.18) in [10].
Note that this fairly general case includes the dS super-

gravity action coupled to a single chiral multiplet that was
derived in [2].

V. SUMMARY

We constructed the locally supersymmetric supergravity
action for general models with chiral and vector multiplets,
presented in Eq. (2.7). It depends on all chiral multiplets,
zα: the nilpotent one z1 and all other zi with i ¼ 2;…; n.
Our models are defined by Kðzα; z̄ᾱÞ, WðzαÞ and fABðzαÞ
given by the following expressions

Kðzα; z̄ᾱÞ ¼ K0ðzi; z̄{̄Þ þ z1z̄1̄g11̄ðzi; z̄{̄Þ;
WðzαÞ ¼ W0ðziÞ þ z1W1ðziÞ;

fABðzαÞ ¼ fAB0ðziÞ þ z1fAB1ðziÞ: ð5:1Þ

DE SITTER SUPERGRAVITY MODEL BUILDING PHYSICAL REVIEW D 92, 105010 (2015)

105010-5



Here the choice of W and fAB is most general, since
ðz1Þ2 ¼ 0, whereas the Kähler potential is assumed to
depend on z1z̄1̄.
Interesting features of de Sitter supergravity coupled to

generic chiral and vector multiplets and a nilpotent chiral
multiplet became clear after the complete action in Eq. (2.7)
was derived:
(1) The bosonic action is the standard supergravity

action defined by Kðzα; z̄ᾱÞ, WðzαÞ and fABðzαÞ
which depend on all chiral multiplets. In this bosonic
action one has to take z1 ¼ 0.

(2) The complete fermionic action up to terms quadratic
in χ1χ1̄ is given by the standard supergravity action
defined by Kðzα; z̄ᾱÞ, WðzαÞ and fABðzαÞ, in which
z1 has to be replaced by

z1 ¼ g11̄ðzi; z̄{̄Þ
ðχ1Þ2
2

×
�
−eK02 W̄ 1̄ðz̄{̄Þ þ

1

4
f̄AB1̄ðz̄{̄Þλ̄APRλ

B

�−1
:

ð5:2Þ

(3) The complete fermionic action to all orders in
fermions is given by the standard supergravity
action defined by Kðzα; z̄ᾱÞ, WðzαÞ and fABðzαÞ, in
which z1 has to be replaced as shown in Eq. (5.2).
In addition to this, a term quartic and higher order
in fermions has to be added to the action. It is
given in closed form by the second term
in Eq. (2.7).

(4) In the unitary gauge

χ1 ¼ 0; ð5:3Þ

the action reduces to the standard supergravity
action defined by Kðzα; z̄ᾱÞ, WðzαÞ and fABðzαÞ
taken at χ1 ¼ z1 ¼ 0 but with F1 ≠ 0:

F1jz1¼χ1¼0 ¼
1

g11̄ðzi; z̄{̄Þ

×

�
−eK02 W̄1̄ðz̄{̄Þ þ

1

4
f̄AB1̄ðz̄{̄Þλ̄APRλ

B

�
:

ð5:4Þ

The nonlinearly realized local supersymmetry of
the action in the unitary gauge χ1 ¼ 0 is broken.
The extra terms due to F1 from the nilpotent
multiplet include the nonvanishing positive term
in the potential

V ¼ eK0ðzi;z̄{̄ÞjW1ðziÞj2g11̄ðzi; z̄{̄Þ > 0; ð5:5Þ

aswell as some fermionic terms in the casewhere fAB
depends4 on z1. This is the basic feature of all de Sitter
supergravity models, the leftover of the positive
energy term even in the unitary local supersymmetry
gauge in which the VA fermion is absent.

In conclusion, in this paper we have constructed a locally
supersymmetric supergravity action for the case with a
nilpotent multiplet and generic chiral and vectors multip-
lets. This creates a consistent framework for the inves-
tigation of phenomenological consequences of theories
with nilpotent fields for particle physics and cosmology.
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APPENDIX A: VANISHING OF THE
EXTRA TERM

In this section we show explicitly that the second term in
(3.6) does not contribute to the final on-shell action. We

first recall that F1z1 ¼ F1 ðχ1Þ2
2F1 ¼ ðχ1Þ2

2
is F1 independent

(and likewise for F̄1̄z̄1̄). This allows us to rewrite the second
term in the Lagrangian (3.6), which due to the factor z1z̄1̄

can only depend on F1
G0 and F̄1̄

G0 (see Eq. (3.8) for the
definition)

− ðF1−F1
G0Þz1z̄1̄ð∂ |̄g11̄ÞðK0;|̄iÞ−1ð∂ig11̄ÞðF̄1̄− F̄1̄

G0Þ

¼ ð∂ |̄g11̄ÞðK0;|̄iÞ−1ð∂ig11̄Þ
�
−z1z̄1̄F1

G0F̄
1̄
G0þ z1

ðχ1̄Þ2
2

F1
G0

þ z̄1̄
ðχ1Þ2
2

F̄1̄
G0− ðχ1Þ2ðχ 1̄Þ2

4

�
: ðA1Þ

So we see that the explicit F1, F̄1̄ dependence completely
disappears. The above terms then become a correction to
(3.4) that of course also does not have an explicit
dependence on F1 and F̄1̄. In particular, we find that the
coefficient A1, B1, B̄1 and C1 get the following extra
contributions,

4In string theory constructions of the nilpotent multiplet via the
anti-D3 brane, one may argue that fAB does not depend on z1 [7].
In such case, the only effect of the nilpotent multiplet in the
supergravity unitary gauge χ1 ¼ 0 is the vacuum energy uplift
(5.5).
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ΔA1 ¼ −MF1
G0F̄

1̄
G0;

ΔB1 ¼ M
ðχ1Þ2
2

F̄1̄
G0;

ΔB̄1 ¼ M
ðχ1̄Þ2
2

F1
G0;

ΔC1 ¼ −M
ðχ1Þ2ðχ1̄Þ2

4
; ðA2Þ

with

M ¼ ð∂ |̄g11̄ÞðK0;|̄iÞ−1ð∂ig11̄Þ: ðA3Þ

Then we can proceed as in Sec. III and integrate out F1. The final action expressed in our original variables takes the form
[cf. Eq. (3.17)]

e−1Lon-shell¼
�
z̄1̄ðA1þΔA1Þz1þ z1ðB̄1þΔB̄1ÞþðB1þΔB1Þz̄1̄þðC1þΔC1Þ

−
1

g11̄F
1
G0F̄

1̄
G0

jz̄1̄ðA1þΔA1Þz1þ z̄1̄ðB1þΔB1Þj2
�
z1¼ðχ1Þ2

2F1
G0

¼
�
e−1Lbookþ z̄1̄ΔA1z1þ z1ΔB̄1þΔB1z̄1̄þΔC1−

1

g11̄F
1
G0F̄

1̄
G0

jz̄1̄A1z1þB1z̄1̄þ z̄1̄ΔA1z1þΔB1z̄1̄j2
�
z1¼ðχ1Þ2

2F1
G0

:

ðA4Þ

Now we note that using the explicit expressions in (A2) we
find

z̄1̄ΔAz1j
z1¼ðχ1Þ2

2F1
G0

¼ ΔC ¼ −M ðχ1Þ2ðχ1̄Þ2
4

;

z1ΔB̄j
z1¼ðχ1Þ2

2F1
G0

¼ ΔBz̄1̄j
z1¼ðχ1Þ2

2F1
G0

¼ þM
ðχ1Þ2ðχ1̄Þ2

4
: ðA5Þ

This implies that

½z̄1̄ΔA1z1 þ z1ΔB̄1 þ ΔB1z̄1̄ þ ΔC1�
z1¼ðχ1Þ2

2F1
G0

¼ 0: ðA6Þ

We also see from (A5) that

½z̄1̄ΔAz1 þ ΔBz̄1̄�
z1¼ðχ1Þ2

2F1
G0

¼ 0: ðA7Þ

Thus, we have explicitly shown that the Lagrangian (A4)
reduces to the one in Eq. (3.17).

APPENDIX B: INVERSE KÄHLER METRIC AND
CHRISTOFFEL SYMBOLS

From the Kähler metric as given in Eq. (2.5) we trivially
find the following expansion in z1 and z̄1̄

g11̄ ¼ g11̄ðzi; z̄{̄Þ;
g1{̄ ¼ z̄1̄∂ {̄g11̄;

gi1̄ ¼ z1∂ig11̄;

gi|̄ ¼ K0;i|̄ þ z1z̄1̄∂i∂ |̄g11̄: ðB1Þ

Contracting the Kähler metric gαβ with its inverse we find
the following relations

g11̄g
1̄1 þ g1|̄g|̄1 ¼ 1;

g11̄g
1̄k þ g1|̄g|̄k ¼ 0;

gi1̄g
1̄1 þ gi|̄g|̄1 ¼ 0;

gi1̄g
1̄k þ gi|̄g|̄k ¼ δi

k: ðB2Þ

Now we recall that

ðg|̄iÞ−1 ¼ ðK0;|̄iÞ−1 − z1z̄1̄ðK0;|̄lÞ−1ðK0;im̄Þ−1∂l∂m̄g11̄;

ðB3Þ

and use the above (B2) to find the expansion of the inverse
metric
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g11̄ ¼ 1

g11̄ − g1|̄ðgi|̄Þ−1gi1̄
¼ 1

g11̄
þ z1z̄1̄

ð∂ |̄g11̄ÞðK0;i|̄Þ−1ð∂ig11̄Þ
ðg11̄Þ2

;

g1|̄ ¼ −ðgi|̄Þ−1gi1̄g11̄ ¼ −z1 ðK0;i|̄Þ−1ð∂ig11̄Þ
g11̄

;

gk|̄ ¼ ðgi|̄Þ−1ðδik − gi1̄g
1̄kÞ

¼ ðK0;k|̄Þ−1 − z1z̄1̄
�
ðK0;|̄lÞ−1ðK0;km̄Þ−1∂l∂m̄g11̄

− ðK0;i|̄Þ−1ð∂ig11̄ÞðK0;km̄Þ−1ð∂m̄g11̄Þ
g11̄

�
: ðB4Þ

The Christoffel symbols for the Kähler manifold are
given by Γα

βγ ¼ gαδ̄∂βgγδ̄. For the Christoffel symbols with
upper index α ¼ 1 we explicitly find

Γ1
11 ¼ g11̄∂1g11̄ þ g1{̄∂1g1{̄ ¼ 0;

Γ1
1i ¼ g11̄∂1gi1̄ þ g1|̄∂1gi|̄

¼ ∂ig11̄
g11̄

þ z1z̄1̄
�ð∂ig11̄Þð∂ |̄g11̄ÞðK0;k|̄Þ−1ð∂kg11̄Þ

ðg11̄Þ2

− ð∂i∂ |̄g11̄ÞðK0;k|̄Þ−1ð∂kg11̄Þ
g11̄

�
;

Γ1
ij ¼ g11̄∂igj1̄ þ g1k̄∂igjk̄

¼ z1
�∂i∂jg11̄

g11̄
− ðK0;lk̄Þ−1ð∂lg11̄Þ

g11̄
K0;ijk̄

�
: ðB5Þ

APPENDIX C: THE EXPANSION OF F1
G

Using the equations from the previous appendix we can
now expand F1

G to get the explicit expression for
F1
G0 ¼ F1

Gjz1¼z̄1̄¼0. We will also show that F1
G1̄ ¼ 0, i.e.

that F1
G has no terms that only depend on z̄1̄ and not on z1.

It then follows automatically that its complex conjugate
F̄1̄
G1 vanishes as well.
Let us first recall the definition of F1

G in Eqs. (2.3)
and (2.4),

F1
G ¼ −eK2g1β̄∇̄β̄W̄ þ 1

2
Γ1
βγχ̄

βχγ þ 1

4
f̄ABβ̄g

β̄1λ̄APRλ
B:

ðC1Þ

Expanding the bosonic part in powers of z1 and z̄1̄ we find
using (B4) that

e
K
2ðg11̄∇̄1̄W̄ þ g1{̄∇̄{̄W̄Þ

¼ e
K0
2

�
1þ z1z̄1̄g11̄

2

��
g11̄ðW̄1̄ þ z1g11̄W̄Þ

− z1
ðK0;j{̄Þ−1ð∂jg11̄Þ

g11̄
∇̄{̄W̄

�

¼ e
K0
2 W̄1̄

g11̄
þOðz1; z1z̄1̄Þ: ðC2Þ

Since W̄ 1̄ is independent of z̄1̄ we see that the above
expression contains no term linear in z̄1̄ (and independent
of z1).
The term 1

2
Γ1
βγχ̄

βχγ can only have a term linear in z̄1̄ if Γ1
βγ

has such a term. However, from the explicit expressions in
Eq. (B5) we see that this is not the case. In particular, we
find the expansion

1

2
Γ1
βγχ̄

βχγ ¼ ð∂ig11̄Þχ̄1χi
2g11̄

þOðz1; z1z̄1̄Þ: ðC3Þ

Finally, we see that the gaugino term can be expanded as

1

4
f̄ABβ̄g

β̄1λ̄APRλ
B ¼ 1

4
ðf̄AB1̄g1̄1 þ f̄AB{̄g{̄1Þλ̄APRλ

B

¼ f̄AB1̄λ̄
APRλ

B

4g11̄
þOðz1; z1z̄1̄Þ ðC4Þ

and does not have a linear term in z̄1̄ either. So we conclude
that F1

G has no linear terms in z̄1̄ and therefore by definition
we have F1

G1̄ ¼ 0.
Gathering the terms in (C2)–(C4) we find

F1
G0 ¼

1

g11̄

�
−eK02 W̄1̄ þ

1

2
ð∂ig11̄Þχ̄1χi þ

1

4
f̄AB1̄λ̄

APRλ
B

�
:

ðC5Þ

As discussed above, in the action F1
G0 always appears

multiplied by ðχ1Þ2 ¼ χ̄1χ1 like for example in

z1G ¼ ðχ1Þ2
2F1

G0

¼ − g11̄ðχ1Þ2
2e

K0
2 W̄1̄

X
n≥0

�1
2
ð∂ig11̄Þχ̄1χi þ 1

4
f̄AB1̄λ̄

APRλ
B

e
K0
2 W̄ 1̄

�n

:

ðC6Þ

Since ðχ1Þ2χ̄1χi ¼ 0 we can drop the term linear in χ1

and find
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z1G ¼ ðχ1Þ2
2F1

G0
¼ − g11̄ðχ1Þ2

2e
K0
2 W̄ 1̄

X
n≥0

�1
4
f̄AB1̄λ̄

APRλ
B

e
K0
2 W̄ 1̄

�n

≡ ðχ1Þ2
2f1

; ðC7Þ

where we defined f1 ≡ 1
g11̄

ð−eK02 W̄1̄ þ 1
4
f̄AB1̄λ̄

APRλ
BÞ to contain all the terms in F1

G0 that are independent of χ1.
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