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By applying Darboux-Crum transformations to a Lax pair formulation of the Korteweg–de Vries (KdV)
equation, we construct new sets of multisoliton solutions to it as well as to the modified Korteweg–de Vries
(mKdV) equation. The obtained solutions exhibit a chiral asymmetry in the propagation of different types
of defects in crystalline backgrounds. We show that the KdV solitons of pulse and compression modulation
types—which support bound states in, respectively, semi-infinite and finite forbidden bands in the spectrum
of the perturbed quantum one-gap Lamé system—propagate in opposite directions with respect to the
asymptotically periodic background. A similar but more complicated picture also appears for multi-kink-
antikink mKdV solitons that propagate with a privileged direction over the topologically trivial or
topologically nontrivial crystalline background depending on the position of the energy levels of the
trapped bound states in the spectral gaps of the associated Dirac system. An exotic N ¼ 4 nonlinear
supersymmetric structure incorporating Lax-Novikov integrals of a pair of perturbed Lamé systems is
shown to underlie the Miura-Darboux-Crum construction. It unifies the KdVand mKdV solutions, detects
the defects and distinguishes their types, and identifies the types of crystalline backgrounds.
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I. INTRODUCTION

Nonlinear integrable systems play an important role in a
variety of areas of physics and its applications [1–8]. A Lax
pair formulation in particular cases of the Korteweg–de
Vries (KdV) and modified Korteweg–de Vries (mKdV)
equations relates their soliton, kink, kink-antikink, and
crystalline type solutions with reflectionless and finite-gap
systems of quantum mechanics [9–11]. This formulation
for the KdV and mKdV systems includes, respectively, the
stationary Schrödinger and Dirac equations (the latter with
a scalar potential) as the eigenstate equation.
The inverse scattering method allows one to construct

soliton solutions for the KdV equation in an analytical
form for the asymptotically free, homogeneous boundary
conditions. On the other hand, such analytic solutions can
also be constructed by exploiting the covariance of the
Lax pair under Darboux transformations and their gener-
alization in the form of Darboux-Crum transformations.
From the spectral point of view, these transformations
correspond to adding soliton defects by means of intro-
ducing bound states into the spectrum of the initial
potential [10].
Recently in Ref. [12], by employing Darboux-Crum

transformations, we constructed a generalization of reflec-
tionless potentials by introducing soliton defects into the
periodic (crystalline) background of the one-gap Lamé
system,

ULaméðxÞ ¼ 2k2sn2ðxjkÞ þ const: ð1:1Þ

As a result, we obtained one-gap potentials for the
Schrödinger system with an arbitrary number of bound
states in the lower and intermediate forbidden bands, which
are trapped by the soliton defects.
Using a relation between Darboux transformations

and supersymmetric quantum mechanics, it was also pos-
sible to construct finite-gap Dirac (Bogoliubov–de Gennes)
Hamiltonian operators, in which scalar potentials carry
perturbations of the kink and kink-antikink types introduced
into the different crystalline backgrounds.
One such periodic background corresponds to the super-

potential of the form [13–16]

VKCðxÞ ¼ d
dx

log dnðxjkÞ ¼ −k2
cnðxjkÞsnðxjkÞ

dnðxjkÞ : ð1:2Þ

This finite-gap Dirac scalar potential appeared as a solution
in the Gross-Neveu model with a discrete chiral symmetry
[17,18], and was identified there as the kink crystal. In the
QCD framework, the kink crystal can be considered as the
phase corresponding to the crystalline color superconductor
[19], that is, the QCD analog of the Larkin-Ovchinnikov-
Fulde-Ferrell phase in the context of electron supercon-
ductivity [20,21]. The kink crystal type solution (1.2) also
found some applications in the physics of conducting
polymers [22,23]. In the construction from Ref. [12], the
Dirac Hamiltonian operator with the perturbed scalar
potential of the form (1.2) possesses a spectrum having
a central allowed band between the conduction band and
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the Dirac sea, and the bound states appear there symmet-
rically in both forbidden bands (gaps).
There is yet another possibility for asymptotic behavior

in the form of the kink-antikink, VKA, (or, antikink-kink,
VAK) crystal [16],

VKAðxÞ ¼ Zðxþ βjkÞ − ZðxjkÞ − zðβjkÞ;
VAKðxÞ ¼ −VKAðxÞ; ð1:3Þ

which was found as a solution in the Gross-Neveu model
with a bare mass term [24]. It allowed one to obtain scalar
potentials with two permitted bands between the Dirac sea
and conduction band, with an arbitrary number of bound
states in the central and/or other two forbidden bands. Here
zðβjkÞ is a constant given in terms of the Jacobi zeta and
elliptic functions, zðβjkÞ ¼ Zðβþ iK0jkÞþ i π

2K¼ ZðβjkÞ þ
cnðβjkÞdnðβjkÞ=snðβjkÞ. An additional change of the
global topology of the Dirac scalar potential provided us
with reflectionless kink-antikink perturbations over the
kink type crystalline background.
A natural question we address in this paper is the

following: how can the dependence on time be “recon-
structed” for the finite-gap Schrödinger and Dirac crystal-
line potentials with defects, found in Ref. [12], so that they
will be solutions for the KdV and mKdV equations? We
refer here to the evolution parameter in the corresponding
nonlinear integrable systems; from the perspective of the
eigenvalue problems, it is associated with the isospectral
deformation of the potentials. Answering this question,
we reveal a phenomenon of a chiral asymmetry in the
propagation of different types of soliton defects in crys-
talline backgrounds, which (as we believe) could be
interesting, particularly from the point of view of
applications.
The paper is organized as follows. In Sec. II (which is a

very brief review), we consider the Lax pair formulation for
the KdV equation, discuss its Darboux covariance, and
apply the Darboux and Darboux-Crum transformations to
obtain multisoliton solutions for the KdV equation.
Section III is devoted to the construction of solutions to
the auxiliary problem corresponding to the Lax pair with
the one-gap Lamé potential taken as the stationary, periodic
cnoidal solution to the KdV equation. On the basis of the
solutions to the auxiliary problem, in Sec. IV we construct
solutions to the KdV equation by employing Darboux-
Crum transformations. In this way we obtain the KdV
solutions that describe the propagation of solitons of the
potential well (pulse) and compression modulation types in
the background of an asymptotically periodic cnoidal wave.
We also discuss there the issue of the velocities of the
defects. In Sec. V, we first show how the Miura and
Darboux-Crum transformations together with the Galilean
symmetry of the KdV equation can be employed for the
construction of solutions to the mKdVequation on the basis
of the KdV solutions. Then we discuss the exotic N ¼ 4

nonlinear supersymmetric structure incorporating Lax-
Novikov integrals of a pair of perturbed Lamé systems.
This supersymmetry underlies the Miura-Darboux-Crum
construction and unifies the KdV and mKdV solutions. In
Sec. VI we first discuss briefly the asymptotically free
mKdV solutions corresponding to the multi-kink-antikink
solitons propagating over the kink or kink-antikink back-
ground. Then we construct a much more rich set of multi-
kink-antikink soliton solutions for the mKdV equation
which propagate over the topologically trivial or topologi-
cally nontrivial crystalline backgrounds. Finally, Sec. VII is
devoted to the discussion and outlook.

II. LAX PAIR FOR THE KdV EQUATION,
DARBOUX TRANSFORMATIONS, AND

MULTISOLITON SOLUTIONS

A. Auxiliary spectral problem for the KdV equation

Consider a linear system

Lϕ ¼ λϕ;
∂ϕ
∂t ¼ Pϕ ð2:1Þ

for a function ϕ ¼ ϕðx; t; λÞ. It is assumed that L and P are
some (in general, matrix) differential operators in the
spatial coordinate x ∈ R with coefficients that can also
depend on the evolution parameter t. If the evolution in t
generated by P is isospectral, dλ=dt ¼ 0, then the condition
of consistency for the system (2.1) reduces to the Lax
equation

∂L
∂t ¼ ½P;L�: ð2:2Þ

For the choice of the Lax pair in the form of differential
operators

L ¼ −∂2
x þ u; ð2:3Þ

P ¼ −4∂3
x þ 6u∂x þ 3ux; ð2:4Þ

Eq. (2.2) reduces to the Korteweg–de Vries equation for the
scalar field u ¼ uðx; tÞ,

ut ¼ 6uux − uxxx: ð2:5Þ

B. Darboux covariance of the KdV equation

The system of equations corresponding to the Lax pair
(2.3) and (2.4),

ð−∂2
x þ uÞΨðx; t; λÞ ¼ λΨðx; t; λÞ; ð2:6Þ

∂
∂tΨðx; t; λÞ ¼ ð−4∂3

x þ 6u∂x þ 3uxÞΨðx; t; λÞ; ð2:7Þ

is covariant under Darboux transformations [10],
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uðx; tÞ → u1ðx; tÞ ¼ uðx; tÞ − 2ðlogΨðx; t; λ1ÞÞxx; ð2:8Þ

Ψðx; t;λÞ→Ψ1ðx; t;λÞ ¼
WðΨðx; t;λ1Þ;Ψðx; t;λÞÞ

Ψðx; t;λ1Þ
; ð2:9Þ

where W is the Wronskian, Wðf; gÞ ¼ fgx − fxg. This
follows from the observation that if Eqs. (2.6) and (2.7) are
fulfilled for Ψðx; t; λÞ, and Ψðx; t; λ1Þ satisfies the same
equations with λ substituted for λ1, then Ψ1ðx; t; λÞ obeys
the equations (2.6) and (2.7) with uðx; tÞ substituted for
u1ðx; tÞ. As a consequence, if uðx; tÞ is a solution of the
KdVequation (2.5), then u1ðx; tÞ obeys the same equation.
This result can be extended for a finite sequence of

consecutive Darboux transformations,

uðx; tÞ → umðx; tÞ
¼ uðx; tÞ − 2ðlogWðΨðx; t; λ1Þ;…;Ψðx; t; λmÞÞÞxx;

ð2:10Þ

Ψðx; t; λÞ → Ψmðx; t; λÞ

¼ WðΨðx; t; λ1Þ;…;Ψðx; t; λmÞ;Ψðx; t; λÞÞ
WðΨðx; t; λ1Þ;…;Ψðx; t; λmÞÞ

;

ð2:11Þ

which is known as the Darboux-Crum transformation of
order m [10]. For the sake of simplicity of notation, the
dependence of umðx; tÞ as well as of Ψmðx; t; λÞ on the
spectral parameters λ1;…; λm is not shown explicitly.
One can define a first-order differential operator A1 in

terms of the function Ψðx; t; λ1Þ that underlies the Darboux
transformation construction (2.8)–(2.9),

A1 ¼ Ψðx; t; λ1Þ∂x
1

Ψðx; t; λ1Þ
¼ ∂x − V1ðx; tÞ;

V1ðx; tÞ ¼ ðlogΨðx; t; λ1ÞÞx: ð2:12Þ

The operator A1 and its Hermitian conjugate, A†
1, intertwine

the Schrödinger operators L ¼ −∂2
x þ uðx; tÞ and L1 ¼

−∂2
x þ u1ðx; tÞ,

A1L ¼ L1A1; A†
1L1 ¼ LA†

1; ð2:13Þ

and factorize them,

A†
1A1 ¼ L − λ1; A1A

†
1 ¼ L1 − λ1: ð2:14Þ

The two relations in Eq. (2.14) are equivalent to Riccati
equations for the function V1,

V2
1 þ V1x ¼ u − λ1; V2

1 − V1x ¼ u1 − λ1: ð2:15Þ

For the successive Crum-Darboux transformations of
orders m − 1 and m, the corresponding Schrödinger

operators Lm−1 and Lm are related by means of the first-
order differential operator

Am ¼ ðAm−1Ψðx; t; λmÞÞ∂x
1

ðAm−1Ψðx; t; λmÞÞ
¼ ∂x − Vmðx; tÞ;

m ¼ 1;…; ð2:16Þ

and its conjugate, where An ¼ AnAn−1…A1, A0 ≡ 1. Then,
as a generalization of Eqs. (2.13) and (2.14), we have
AmLm−1 ¼ LmAm, A†

mLm ¼ Lm−1A
†
m, and A†

mAm ¼
Lm−1 − λm; AmA

†
m ¼ Lm − λm, where L0 ≡ L.

The superpotential Vm can be presented in terms of the
Wronskians [25],

Vmðx; tÞ ¼ Ωm−1ðx; tÞ − Ωmðx; tÞ;
Ωm ¼ −ðlogWðΨðx; t; λ1Þ;…;Ψðx; t; λmÞÞÞx; ð2:17Þ

where we assumeΩ0 ¼ 0 andWðΨðx; t; λ1ÞÞ ¼ Ψðx; t; λ1Þ.
It satisfies the Riccati equations

V2
mðx; tÞ þ ðVmðx; tÞÞx ¼ um−1ðx; tÞ − λm;

V2
mðx; tÞ − ðVmðx; tÞÞx ¼ umðx; tÞ − λm: ð2:18Þ

C. Multisoliton solutions of the KdV equation

The described picture with Darboux-Crum transforma-
tions can be illustrated by the construction of multisoliton
solutions for the KdV equation.
The trivial solution of the KdV equation is u0 ¼ 0. In

this case L0 ¼ − ∂2
∂x2 corresponds to the Schrödinger

operator for a free-particle system, and the evolution
operator (2.4) reduces to P0 ¼ −4 ∂3

∂x3. The system (2.1)
then takes the form

−
∂2Ψ
∂x2 ¼ λΨ;

∂Ψ
∂t ¼ −4

∂3Ψ
∂x3 : ð2:19Þ

Acting on both sides of the first equation by 4∂x and
summing up the result with the second equation, we obtain
∂tΨ ¼ 4λ∂xΨ. Therefore, Ψðx; t; λÞ ¼ Ψðxþ 4λt; λÞ. For
λ ¼ 0, λ ¼ −κ2 < 0, and λ ¼ κ2 > 0, the pairs of linearly
independent solutions of the system (2.19) can be chosen in
the form

Ψðx; t; λ ¼ 0Þ ¼ f1; xg; ð2:20Þ

Ψðx; t; λ ¼ −κ2Þ ¼ fcoshX−; sinhX−g;
Ψðx; t; λ ¼ κ2Þ ¼ fcosXþ; sinXþg; ð2:21Þ

where X∓ ¼ κðx − x0 ∓ 4κ2tÞ. To apply the Darboux-
Crum transformation to a trivial solution u0 ¼ 0, we have
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different possibilities for choosing wave functions from the
sets (2.20) and (2.21). The choice Ψðx; t; 0Þ ¼ x gives rise
by means of the first-order Darboux transformation (2.8) to
the simplest but singular, time-independent solution of the
KdV equation, u1ðxÞ ¼ 2=x2. The nonsingular solutions
for the KdV equation are generated by choosing appropri-
ately the eigenstates with eigenvalues λ < 0,

unðx; tÞ ¼ −2
∂2

∂x2 logWðcoshX−
1 ; sinhX

−
2…; fðX−

n ÞÞ;
X−
j ¼ κjðx − x0j − 4κ2j tÞ; ð2:22Þ

where the last argument in the Wronskian is fðX−
n Þ ¼

sinhX−
n if n is even, n ¼ 2l, and fðX−

n Þ ¼ coshX−
n for odd

n ¼ 2lþ 1; x0j are the translation (phase) parameters, and
the scale parameters κj have to obey the inequalities
0 < κ1 < κ2 < κ3 < … < κn. The functions (2.22) corre-
spond to n-soliton solutions of the KdVequation. The case
n ¼ 2 is illustrated in Fig. 1. When solitons in the solution
(2.22) are well separated, the propagation to the right of the
jth soliton can be characterized by the speed Vj ¼ 4κ2j and
amplitude 2κ2j .

III. SPECTRAL PROBLEM WITH THE CNOIDAL
BACKGROUND

The simplest stationary periodic solution to the KdV
equation (2.5) can be presented in the form

uðxÞ ¼ u0;0ðxÞ ¼ 2k2μ2sn2ðμxjkÞ− 2

3
ð1þ k2Þμ2; ð3:1Þ

where snðujkÞ is the Jacobi elliptic function, whose real and
imaginary periods depend on the modular parameter
0 < k < 1, μ > 0 is a free (scale) parameter, and the sense
of the indices in u0;0 will be clarified below. Due to the t
independence of the solution (3.1), the Lax equation (2.2)
reduces to the condition of commutativity of the corre-
sponding operators (2.3) and (2.4) constructed on the basis
of Eq. (3.1),

½L;P� ¼ 0: ð3:2Þ

Equation (3.2) guarantees the existence of the common
basis for the operators L and P. We then look for the
solutions of the system of equations (2.6)–(2.7) in the form

Ψðx; t; λÞ ¼ Φðx; αÞ expðπðαÞtÞ; ð3:3Þ

where Φðx; αÞ is a common eigenstate of L and P,
LΦðx; αÞ ¼ λðαÞΦðx; αÞ, PΦðx; αÞ ¼ πðαÞΦðx; αÞ. The
sought-for state Φðx; αÞ is [12,16,26]

Φðx; αÞ ¼ Hðμxþ αjkÞ
ΘðμxjkÞ e−μxZðαjkÞ; ð3:4Þ

where H,Θ, and Z are Jacobi’s eta, theta and zeta functions,
while the corresponding eigenvalues are

λðαjkÞ ¼ μ2
�
dn2ðαjkÞ − 1

3
ð1þ k02Þ

�
; ð3:5Þ

πðαjkÞ ¼ −4k2μ3snðαjkÞcnðαjkÞdnðαjkÞ: ð3:6Þ

Notice that λð−αÞ¼λðαÞ, πð−αÞ ¼ −πðαÞ, πðαÞ ¼ 2μ dλðαÞ
dα ,

and

π2ðαÞ¼−16ðλðαÞ−E0ÞðλðαÞ−E1ÞðλðαÞ−E2Þ; ð3:7Þ

where

E0 ¼ −
1

3
ð1þ k02Þμ2;

E1 ¼
1

3
ð1 − 2k2Þμ2;

E2 ¼
1

3
ð1þ k2Þμ2; ð3:8Þ

and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
is the complementary modular

parameter. Equations (3.2) and (3.7) correspond to the

FIG. 1 (color online). The KdV two-soliton solution with
κ1 ¼ 1, κ2 ¼ 1.4, and x0i ¼ 0, i ¼ 1, 2 is shown by a continuous
line. The propagation of a one-soliton solution with κ1 ¼ 1 and
x01 ¼ 0 is depicted by a dashed line. The initial phases are chosen
so that the two-soliton and one-soliton solutions at t ¼ 0 are
symmetric with respect to the point x ¼ 0. On the right, the
spectrum of the associated two-soliton Schrödinger operator L2 is
shown. The continuous green line corresponds to a doubly
degenerate semi-infinite continuous part of the spectrum with
eigenstates ψ�κðx; tÞ ¼ A2e�iXþðx;t;κ;x0Þ, while the filled circle
indicates a nondegenerate edge state described by the eigenfunc-
tion ψ0ðx; tÞ ¼ A21. The dashed red line corresponds to the
nonphysical semi-infinite part of the spectrum, inside which blue
squares indicate energies of the two bound states trapped by
solitons and described by the eigenfunctions ψ1ðx; tÞ ¼
A2 sinhX−

1 and ψ2ðx; tÞ ¼ A2 coshX−
2 .
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Burchnall-Chaundy theorem [27], and reflect the one-gap
nature of the potential (3.1) [2,11] (see below).
Taking into account the double periodicity of the Jacobi sn,

cn, and dn functions, without loss of generality one can
suppose that a dimensionless parameter α takes values in the
rectangle in the complex plane with vertices at1 0, K,
Kþ iK0, and iK0. On the border of this fundamental α
rectangle, eigenvalues λðαÞ of the Schrödinger operator L
take real values, while the eigenvalue πðαÞ of the Lax
operator P takes nonzero real values on the horizontal
borders of this rectangle where α ¼ βþ, 0 < βþ < K, and
α ¼ β− þ iK0, 0 < β− < K. On the other hand, on both
vertical borders of the rectangle, α ¼ iγþ, 0 ≤ γþ < K0, and
α ¼ Kþ iγ−, 0 ≤ γ− ≤ K0, πðαÞ takes pure imaginary
values, turning into zero at the vertices 0, K, and
Kþ iK0. The vertex iK0 is the third-order pole of πðαÞ
and the second-order pole of the function λðαÞ.Moreover, the
corresponding eigenfunctions (3.4) are unbounded functions
on the horizontal edges, but they are bounded on the vertical
borders of the rectangle. Summarizing, in correspondence
with the specified properties, the solutions (3.3) of the
auxiliary spectral problem for the KdVequation are bounded
on the vertical borders of the rectangle, except for the vertex
point α ¼ iK0, and they are unbounded on the horizontal
borders except for the vertices α ¼ 0, K, Kþ iK0.
The Schrödinger operator L with the potential (3.1)

describes a quantum-mechanical periodic one-gap Lamé
system, for which the upper horizontal line α ¼ β− þ iK0
corresponds to the semi-infinite forbidden band with
energy values −∞ < EðαÞ ¼ λðαÞ < E0, and the lower
horizontal line α ¼ βþ corresponds to a spectral gap with
E1 < EðαÞ < E2. The corresponding bounds E0, E1, and
E2 defined in Eq. (3.8) satisfy the relations E0 < 0, E2 > 0,
while E1 can take positive or negative values depending
on the value of the modular parameter k. The vertical
borders of the rectangle correspond to the allowed valence
[α ¼ Kþ iγ−, E0 ≤ EðαÞ ≤ E1] and conduction [α ¼ iγþ,
E2 ≤ EðαÞ < ∞] bands. By taking into account the rela-
tions λð−αÞ ¼ λðαÞ, πð−αÞ ¼ −πðαÞ, the common eigen-
states of L and Pwith opposite values for πðαÞ are obtained
from the described solutions with α restricted to the borders
of the indicated rectangle by changing α → −α.
Let us stress that the solutions (3.3) to the system of

equations (2.6) and (2.7) have a factorizable dependence on
the evolution variable t due to the t independence of the
corresponding KdV solution (3.1) and the associated Lax
pair (2.3)–(2.4).

IV. MULTISOLITON DEFECTS IN THE
CRYSTALLINE BACKGROUND

One can construct three types of Darboux-Crum trans-
formations based on the solutions (3.3) to the auxiliary

problem for the KdV equation. They will provide us with
new soliton solutions of the KdV equation that propagate
over the stationary crystalline background (3.1) by
deforming it. These are

(i) soliton defects of the potential-well (pulse) type,
(ii) soliton defects of the compression modulation

type, and
(iii) the mixed case in which both types of solitons are

present.
Soliton defects of type i) are generated by Darboux-

Crum transformations based on unbounded (nonphysical)
states from the lower semi-infinite forbidden band in the
spectrum of the one-gap Lamé system. The construction of
soliton defects of type ii) requires the use of states from the
gap of the quantum Lamé system. The employment of both
types of nonphysical states from the spectrum of the Lamé
system generates solutions corresponding to the mixed case
iii). Below we describe these three types of solutions.

A. Potential-well (pulse) type solitons

If we choose the common eigenstates (3.3) of L and P in
the form of real-valued functions, then the new solutions
generated by the Darboux-Crum transformations (2.10)
will also be real. The eigenfunctions Φðx; α ¼ β− þ iK0Þ,
β− ∈ ð0;KÞ of L in Eq. (3.4) correspond to nonphysical
(unbounded) states with negative energies from the lower
forbidden band of the one-gap Lamé system. They are real-
valued functions modulo a global phase factor [12,16].
Omitting a phase factor, we obtain common real-valued
eigenstates of L and P,

Fðx; t; β−Þ ¼ Θðμxþ β−jkÞ
ΘðμxjkÞ expð−μxzðβ−jkÞ

þπðβ− þ iK0jkÞtÞ; ð4:1Þ

where

zðβ−jkÞ ¼ Zðβ− þ iK0jkÞ þ i
π

2K

¼ Zðβ−jkÞ þ cnðβ−jkÞdnðβ−jkÞ
snðβ−jkÞ > 0; ð4:2Þ

πðβ− þ iK0jkÞ ¼ 4μ3
cnðβ−jkÞdnðβ−jkÞ

sn3ðβ−jkÞ > 0: ð4:3Þ

The superpotential (1.3) is given in terms of Eq. (4.1) by
VKAðxÞ ¼ ðlogFðx; t; βÞÞx with β ¼ β− and μ ¼ 1, which
reduces to Eq. (1.2) in the limit case β− ¼ K. On the basis
of the functions (4.1), we construct a Darboux-Crum
transformation of the form

1Here,K ¼ KðkÞ is a complete elliptic integral of the first kind
and K0 ¼ Kðk0Þ.

CHIRAL ASYMMETRY IN PROPAGATION OF SOLITON … PHYSICAL REVIEW D 92, 105009 (2015)

105009-5



u0;lðx; tÞ ¼ u0;0ðxÞ
− 2ðlogWðFþð1Þ;F−ð2Þ;…;F ð−1Þlþ1ðlÞÞÞxx;

ð4:4Þ

where

F�ðjÞ ¼ C−
j Fðx; t; β−j Þ �

1

C−
j
Fðx; t;−β−j Þ;

j ¼ 1;…; l ð4:5Þ

are combinations of the two linear independent solutions
(4.1). The minus index in the parameter coefficients C−

j

indicates that Eq. (4.1) are real eigenstates from the lower
forbidden band of the one-gap Lamé system. The choice

K> β−1 > β−2 > � � �> β−l > 0; 0< C−
j <∞ ð4:6Þ

guarantees the nonsingular nature of the solution u0;lðx; tÞ
for the KdVequation [12]. This solution describes l solitons
of the potential-well type that propagate to the right in the
stationary periodic background by deforming it. For large
negative and positive values of t, pulses are well separated,
and each corresponding potential well supports a bound
state with negative energy given by Eq. (3.5) with
α ¼ αj ¼ β−j þ iK0. A deeper potential-well soliton defect
in an asymptotically periodic background propagates faster,
and supports the bound state with lower energy; see

Sec. IV D. Figures 2 and 3 show such travelling soliton
defects for the simplest cases of l ¼ 1 and l ¼ 2. In
described solutions, an arbitrary number of solitons
can be eliminated by taking limits of the type C−

j → 0

or C−
j → ∞ which correspond to sending the jth soliton to

minus or plus infinity. This provokes a global phase shift
x → x − μ

β−j
for C−

j → 0, or x → xþ μ
β−j

when C−
j → ∞, in

the crystalline background as well as in the remaining
solitons, and an additional change in the parameters C−

j0 ,
j0 ≠ j, which depend on β−j0 and β−j ; see Refs. [12,28].
The indicated phase shifts of the crystalline background

can be understood in the following simple way. Consider
the first-order Darboux transformation based on the func-
tion Fðx; β−Þ from Eq. (4.1) and applied to the stationary
periodic KdV solution (3.1). Since log Fðx; β−Þ ¼
log Θðμx þ β−jkÞ − log ΘðμxjkÞ − ðμxzðβ−jkÞ − πðβ−þ
iK0jkÞtÞ, and −2ðlogΘðμxjkÞÞxx ¼ u0;0ðxÞ, we see that the
Darboux transformation generated by Fðx; β−Þ transforms
u0;0ðxÞ into u0;0ðxþ β−=μÞ, while the transformation based
on Fðx;−β−Þ produces the displacement x → x − β−=μ.
When we take the limit C−

j → 0 in the Darboux-Crum
transformation (4.4), in the function (4.5) the term with
Fðx;−β−j Þ survives. Due to the relation zð−β−j jkÞ < 0, this
function exponentially increases in the region x → þ∞,
and this provokes the displacement x → x − β−=μ of the
asymptotically periodic background of the solution in that
region. Analogously, for the limit C−

j → ∞, the first term
with Fðx; β−j Þ survives in the function (4.5), and the
asymptotically periodic background in the solution will
be displaced by the shift x → xþ β−=μ in the region to the
left (x → −∞) of the rest of the surviving solitons.

FIG. 3 (color online). A pair of pulse solitons in the asymp-
totically periodic background of the KdV solution. Here μ ¼ 1,
k ¼ 0.9, β−1 ¼ 0.8, β−2 ¼ 0.6, C−

1 ¼ C−
2 ¼ 1. As in the case of the

asymptotically free background shown in Fig. 1, a deeper defect
propagates with a higher speed. Each of the two defects here
supports a bound state in the lower forbidden semi-infinite band
of the perturbed one-gap Lamé system.

FIG. 2 (color online). The KdV solution with a pulse soliton
propagating over the stationary crystalline background (3.1)
shown by dashed line. Here μ ¼ 1, k ¼ 0.6, β−1 ¼ 1.2,
C−
1 ¼ 1. The vertical line on the right illustrates the spectrum

of the perturbed Lamé system with lower and upper forbidden
bands shown in dashed red. The filled semicircles indicate
nondegenerate energy values at the edges of the valence and
conduction bands. In the semi-infinite lower forbidden band,
there is a bound state trapped by the soliton defect, which is
shown by a blue square. The parameters in Eq. (4.5) are chosen so
that the solution at t ¼ 0 is symmetric under the space
reflection x → −x.
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B. Solitons of the compression modulation type

The states (3.3) with α ¼ �βþ, 0 < βþ < K, which we
denote here as Φðx; t;�βþÞ,

Φðx; t; βþÞ ¼ Hðμxþ βþjkÞ
ΘðμxjkÞ expð−μxZðβþjkÞ

þ πðβþjkÞtÞ; ð4:7Þ

where ZðβþjkÞ > 0 and

πðβþjkÞ ¼ −4μ3k2snðβþjkÞcnðβþjkÞdnðβþjkÞ < 0; ð4:8Þ

correspond to the energy gap (finite, upper forbidden
band) E1 < EðαÞ < E2 [see Eq. (3.8)] in the spectrum of the
Lamésystem.Theyarerepresentedbyreal functions,andcanbe
used in the Darboux transformation (2.8). These functions,
however, have an infinite number of zeros on the real line, and
their use would produce a singular transformation. To resolve
this problem, in the simplest case we can realize a second-
order ðn ¼ 2Þ Darboux-Crum transformation (2.10),
u2;0ðx;tÞ¼u0;0ðxÞ−2ðlogWðΦþð1Þ;Φ−ð2ÞÞÞxx, by taking
Φþð1Þ¼Cþ

1 Φðx;t;βþ1 Þþ 1
Cþ
1

Φðx;t;−βþ1 Þ and Φ−ð2Þ ¼ Cþ
2 Φ

ðx; t; βþl Þ − 1
Cþ
2

Φðx; t;−βþ2 Þ, with 0 < βþ1 < βþ2 < K and

Cþ
1;2 > 0. The nonsingular potential u2;0ðx; tÞ supports two

bound states in the spectrum of the Schrödinger operator
L with energy values given by Eq. (3.5), which are in the
gap, between the two continuous bands of the Lamé system.
The solution u2;0ðx; tÞ of the KdV equation, depicted in
Fig. 4, describes the propagation of the two solitons of the
compression modulation type in the asymptotically periodic
background. They are similar to the so-called grey solitons;

see Refs. [5,29,30]. The described Darboux-Crum procedure
can be generalized to obtain the potential supporting the 2l
bound states in the gap,

u2l;0ðx; tÞ ¼ u0;0ðxÞ − 2ðlogWðΦþð1Þ;
Φ−ð2Þ;…;Φþð2l − 1Þ;Φ−ð2lÞÞÞxx; ð4:9Þ

Φð−1Þjþ1ðjÞ ¼ Cþ
j Φðx; t; βþj Þ þ ð−1Þjþ1

1

Cþ
j
Φðx; t;−βþj Þ;

j ¼ 1;…; 2l; ð4:10Þ

0 < βþ1 < βþ2 < � � � < βþl < K; 0 < Cþ
j < ∞:

ð4:11Þ

The solution u2l;0ðx; tÞ has 2l compression modulation type
solitons which move to the left in the stationary crystalline
background.
In the definition of the wave functions (4.5) and (4.10),

which are linear combinations of the eigenstates of the Lax
operator P with opposite eigenvalues πðαÞ and −πðαÞ, the
dependence on the evolution parameter t can be transferred
from the common eigenstates of L and P into correspond-
ing coefficients C−

j and Cþ
j . In this way, the function (4.10)

can be presented equivalently in the form Φð−1Þjþ1ðjÞ ¼
Cþ
j ðtÞΦðx; t ¼ 0; βþj Þ þ ð−1Þjþ1 1

Cþ
j ðtÞ

Φðx; t ¼ 0; −βþj Þ,
where Cþ

j ðtÞ ¼ Cþ
j expðπðβþj ÞtÞ, and πðβþj Þ is given by

Eq. (4.8) with βþ substituted for βþj . For Eq. (4.5) we have
an analogous equivalent representation with πðβ− þ iK0Þ
given by Eq. (4.3).
To obtain the solution with an odd number of solitons of

the compression modulation type, there are the following
possibilities. We can choose one of the arbitrary constants
Cþ
j and apply to the solution (4.9) the limit Cþ

j → 0 (or
Cþ
j → ∞). Such a limit results in sending the jth soliton to

x ¼ −∞ (or x ¼ þ∞) without affecting the rest of the
solitons except for inducing a global phase shift in them

and in the background (equal to x → x −
βþj
μ forCþ

j → 0 and

x → xþ βþj
μ forCþ

j → ∞) due to the nonlinear interaction in
the KdVequation, and an additional change in the constants
Cþ
j0 , j

0 ≠ j, depending on βþj0 and β
þ
j ; see Ref. [28]. Another

option to generate the solution with an odd number of
solitons of the compression modulation type is to take
βþ1 ¼ 0 [in this case, Φþð1Þ ∝ snðμxjkÞ] or βþ2l ¼ K [then,
Φ−ð2lÞ ∝ cnðμxjkÞ]. One of the indicated states
corresponds to the edge of the conduction band of the
one-gap Lamé system (βþ1 ¼ 0), while another one corre-
sponds to the upper edge of the valence band (βþ2l ¼ K).
The same effect can be obtained just by applying the limit
βþ1 → 0, or βþ2l → K in Eq. (4.9), which results in elimi-
nating the corresponding bound state from the spectrum of

FIG. 4 (color online). A pair of solitons of the compression
modulation type propagating to the left in a stationary crystalline
background. Here μ ¼ 1, k ¼ 0.9, βþ1 ¼ 1, βþ2 ¼ 1.3,
Cþ
1 ¼ Cþ

2 ¼ 1. Due to the presence of the valence band in the
spectrum of the Lamé system L0;0, defects of this type have no
direct analogs in the asymptotically free, homogeneous back-
ground case.
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the Schrödinger system L ¼ − d2

dx2 þ u2l;0ðx; tÞ; see
Ref. [12]. The issue of the velocities for the described
solutions will be discussed below, in Sec. IV D.

C. Mixed case

In the mixed case, the Darboux-Crum transformation
takes the form

u2l;mðx; tÞ ¼ u0;0ðxÞ − 2ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;
Fþð1Þ;F−ð2Þ;…;F ð−1ÞmðjÞÞÞxx: ð4:12Þ

This solution has 2l solitons of the compression modulation
type, which move to the left, and m solitons of the
potential-well type, which propagate to the right. In the
associated Schrödinger system L2l;m ¼ − d2

dx2 þ u2l;mðx; tÞ,
the potential-well and compression modulation type sol-
itons support the bound states in the lower forbidden band
and in the gap of the energy spectrum, respectively. In
Fig. 5, one can see how solitons of different types propagate
in opposite directions over the stationary background.
Here, the case with an odd number of the solitons of the

compression modulation type can be obtained from
Eq. (4.12) in the way described in Sec. IV B.

D. On velocities and amplitudes of solitons in
crystalline background

For the asymptotically free solutions discussed in Sec. II
C, the multisoliton solution can be presented in the form
(2.22), which is similar to the form of the second term on
the right in Eqs. (4.4), (4.9), or (4.12). The hyperbolic cosh
and sinh functions in Eq. (2.22) are just the linear
combinations of the exponents expðκjðx − 4κ2j tÞÞ and
expð−κjðx − 4κ2j tÞÞ with constant coefficients. As a result,
when solitons are well separated (this happens for
sufficiently large values of jtj), the solution (2.22) reduces
to the sum of one-soliton solutions, unðx; tÞ≈P

n
j¼1 −2κ2jsech2ðκjðx − ~x0j − 4κ2j tÞÞ, with obviously iden-

tified velocities and amplitudes. Since the exponents in
Eqs. (4.1) and (4.7) are odd functions of the parameters β−

and βþ, respectively, Eqs. (4.5) and (4.10) (similarly to the
hyperbolic functions) are linear combinations of the expo-
nents with arguments of the form φðx − VtÞ and
−φðx − VtÞ, but now with coefficients that are certain
periodic functions of x. As a consequence (unlike the case
of the KdV solutions over the asymptotically free back-
ground), how to define the amplitudes and velocities of
solitons propagating in the crystalline background is not so
obvious. Even when defects are well separated, their
velocities and amplitudes are varied at each instant of time
due to their nonlinear, position-dependent interaction with
the oscillating background. Nevertheless, by analogy with
the asymptotically free case, one can observe that the
quantities μ2z2ðβ−jkÞ and μ2Z2ðβþjkÞ give us relevant
information on the amplitudes of the well-separated pulse
and modulation type defects, respectively, provided that for
a well-separated soliton defect the corresponding preexpo-
nential periodic factor in Eq. (4.1) or Eq. (4.7) associated
with the crystalline background will be less significant than
the exponential factors there. This observation implies a
monotonic increase of the amplitude of the pulse type
soliton with an increase of the energy modulus of the bound
state trapped by it in the spectrum of the associated
perturbed one-gap Lamé system. Such a monotonic
increase will be valid, however, starting from some suffi-
ciently low energy value inside the lower forbidden band of
the spectrum. For soliton defects of the compression
modulation type the picture is more complicated, since
in the interval 0 < βþ < K the function Z2ðβþjkÞ takes a
zero value when βþ tends to zero, then monotonically
increases until some maximum value at some βþ� inside the
indicated interval, and finally monotonically decreases,
taking a zero value at the edge βþ ¼ K. So, we can only
conclude that the amplitude of the compression modulation
type defect will tend to zero when the energy of the bound
state trapped by it approximates the edges of the gap in the
spectrum of the perturbed one-gap Lamé system, and will
take some maximal value at some energy of the corre-
sponding trapped bound state inside the gap. With the same

FIG. 5 (color online). The KdV solution with one pulse soliton
(given by β−1 and shown in red) propagating to the right, and two
solitons of the compression modulation type (characterized by βþ1
and βþ2 and depicted in orange and green, respectively) moving to
the left in a stationary crystalline background. The more rapid
compression soliton (βþ1 ) supports a bound state of higher energy
in the spectrum of the associated Schrödinger system
L2;1 ¼ − d2

dx2 þ u2;1ðx; tÞ. At the moment t ¼ 0, solitons are in
the zone of a strong interaction, shown in violet, and are not well
separated. The color highlighting used here is rather conditional
since the defects are transformed into a background asymptoti-
cally. The parameters are chosen so that the solution at t ¼ 0 is
symmetric with respect to the point x ¼ 0. Here, μ ¼ 1, k ¼ 0.9,
β−1 ¼ 0.9, βþ1 ¼ 1, βþ2 ¼ 1.3, C−

1 ¼ Cþ
1;2 ¼ 1.
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reservations one can say that the width of the defects is
proportional to 1=μzðβ−Þ and 1=μZðβþÞ for the pulse and
modulation type solitons, respectively.
To define the velocities of the solitons, we consider the

case of a well-separated defect of the pulse type, while for
the compression modulation type defect the reasoning will
be similar.
The well-separated pulse soliton with index j will have

the form described by the one-soliton solution u0;1 given by
Eq. (4.4) with some parameter C−

1 and β−1 ¼ β−j , i.e., this
soliton will depend only on the eigenstate FþðjÞ with a
certain parameter C−

j . Then we can identify the velocity
of this soliton from the condition that u0;1ðx; tÞ ¼
u0;1ðxþ Δx; tþ ΔtÞ is valid for all x and t for which the
soliton remains well separated from other defects, whereΔx
and Δt are some constants. This condition has a solution
with Δx ¼ nT, where T ¼ 2K

μ corresponds to the period of
the asymptotically periodic crystalline background and
Δt ¼ n2Kzðβ−j jkÞ=ðμπðβ−j þ iK0jkÞÞ, while n is any inte-
ger not violating the condition of separation of the soliton.
From here we identify the velocity of the pulse soliton as
Vðβ−j Þ ¼ Δx=Δt, and obtain

Vðβ−j Þ ¼
4μ2

cnðβ−j jkÞdnðβ−j jkÞ
sn3ðβ−j jkÞ

Zðβ−j jkÞ þ
cnðβ−j jkÞdnðβ−j jkÞ

snðβ−j jkÞ
> 0: ð4:13Þ

This corresponds to the velocity with which a fixed value of
the argument of the exponent in Eq. (4.1) propagates in
space and time, φðx − VtÞ ¼ const.
In a similar way, for the compression modulation type

defect we find

Vðβþj Þ ¼ −4μ2k2
snðβþj jkÞcnðβþj jkÞdnðβþj jkÞ

Zðβþj jkÞ
< 0:

ð4:14Þ
For β−j → 0, the energy of the bound state trapped by the

pulse defect tends to minus infinity, and the amplitude and
velocity (4.13) of the soliton tend to infinity, while its width
tends to zero. For β−j → K, the amplitude of the soliton
tends to zero, its width tends to infinity, and the limit of
Eq. (4.13) is finite and equals

lim
β−j →K

Vðβ−j Þ ¼ 4μ2k02
K
E
: ð4:15Þ

Here E is the complete elliptic integral of the second kind,
and as a consequence of the inequality relations 1

k02 >
K
E > 1

[16] one finds that the limit value (4.15) is inside the
interval ð4μ2k02; 4μ2Þ.
Similarly, for the compression modulation type defect, in

the limits when its amplitude tends to zero its velocity tends
to nonzero limits,

lim
βþj →0

Vðβþj Þ ¼ −4μ2k2
K

K −E
< 0;

lim
βþj →K

Vðβþj Þ ¼ −4μ2k2k02
K

E − k02K
< 0;

ð4:16Þ

while its width tends to infinity.

E. Galilean symmetry

The described solutions can be modified by employing
the Galilean symmetry of the KdVequation. This symmetry
means that if uðx; tÞ is a solution of the KdV equation
ut ¼ 6uux − uxxx, then uGðx; tÞ ¼ uðx − 6Gt; tÞ − G is
also a solution of the KdV equation for any choice of a
real constant G. In the described solutions, the crystalline
background over which the soliton defects propagate
(deforming it due to a nonlinear interaction) was static.
The application of Galilean transformations to the solutions
will boost the defects and background and also vertically
shift the solutions by the additive constant −G. However,
this Galilean transformation will not change the relative
velocities between defects and their velocities with respect
to the boosted crystalline background. As we shall see
below, the Galilean symmetry of the KdV equation will
play a crucial role in the construction of the solutions for
the mKdVequation by means of the Miura-Darboux-Crum
transformations.

V. UNIFICATION OF THE KdV AND mKdV
EQUATIONS BY MIURA-DARBOUX-CRUM

TRANSFORMATIONS, AND EXOTIC
SUPERSYMMETRY

A. Miura-Darboux-Crum transformations

The defocusing mKdV equation and the KdV equation,

vt − 6v2vx þ vxxx ¼ 0;

ut − 6uux þ uxxx ¼ 0; ð5:1Þ
are related by the Miura transformation [31]. Namely, the
substitution of u� ¼ v2 � vx into the KdV equation gives

u�t − 6u�u�x þ u�xxx ¼ ð2v� ∂xÞðvt − 6v2vx þ vxxxÞ:
ð5:2Þ

The two relations in Eq. (5.2) mean that if v is a solution of
the mKdVequation, then both u� satisfy the KdVequation.
On the other hand, if both uþ and u− are solutions of the
KdVequation, and there exists a v such that u� ¼ v2 � vx,
then v obeys the mKdV equation [25]. Unlike the KdV
case, if vðx; tÞ is the mKdV solution, then −vðx; tÞ is also a
solution.
From the chains of the Darboux-Crum transformations

we know that the function Vmðx; tÞ in Eq. (2.17) and the
corresponding solutions of the KdV equation umðx; tÞ and
um−1ðx; tÞ are related by
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V2
mðx; tÞ þ ðVmðx; tÞÞx ¼ um−1ðx; tÞ − λm;

V2
mðx; tÞ − ðVmðx; tÞÞx ¼ umðx; tÞ − λm:

ð5:3Þ

With taking into account the Galilean symmetry of the KdV
equation, we displace x → x − 6λmt, and make a change
uðx; tÞ → uðx − 6λt; tÞ − λ≡ uλðx; tÞ. Equation (5.3) will
then transform into

v2mðx; tÞ þ ðvmðx; tÞÞx ¼ uλmm−1ðx; tÞ;
v2mðx; tÞ − ðvmðx; tÞÞx ¼ uλmm ðx; tÞ;

ð5:4Þ

where vmðx; tÞ ¼ Vmðx − 6λmt; tÞ. The vmðx; tÞ are there-
fore solutions of the mKdV equation.
Utilizing this observation and solutions of the KdV

equation obtained by means of the Darboux-Crum trans-
formations, we can construct an infinite number of sol-
utions for the mKdV equation. The KdV solutions from
Sec. II C will provide us with the mKdV solitons taking
constant asymptotic values at infinity. On the basis of the
KdV multisoliton defects from the preceding section, we
will obtain solutions for the mKdVequation in the form of
soliton defects propagating in the crystalline background.

B. Exotic N ¼ 4 nonlinear supersymmetry

Before we proceed to the discussion of the solutions to
the mKdV equation and their peculiarities, we note that on
the basis of the relations (5.4) the corresponding solutions
of the KdV and mKdV equations can be related using the
exotic N ¼ 4 nonlinear supersymmetry. Besides an ordi-
nary N ¼ 2 supersymmetry, it incorporates two nontrivial
Lax-Novikov integrals for the two Schrödinger subsystems
associated with the KdVequation, as well as two additional
supercharges that are higher-order matrix differential
operators.
To reveal the exotic supersymmetric structure, we first

note that an ordinaryN ¼ 2 supersymmetry in the form of a
superalgebra

½Lm;Sm;a� ¼ 0; fSm;a;Sm;bg ¼ 2Lmδab;

a; b ¼ 1; 2
ð5:5Þ

(with σ3 identified as aZ2 grading operator) is generated by
the extended, matrix Schrödinger Hamiltonian Lm and the
associated Dirac Hamiltonian Dm,

Lm ¼
�
Lm−1ðmÞ 0

0 LmðmÞ

�
;

Dm ¼
�

0 A†
mðmÞ

AmðmÞ 0

�
; ð5:6Þ

where Sm;1 ¼ Dm and Sm;2 ¼ iσ3Dm. The Schrödinger
operators Lm−1ðmÞ and LmðmÞ, LnðmÞ ¼ − d2

dx2 þ uλmn ðx; tÞ,

n ¼ m − 1, m are related here by the Darboux (Miura)
transformation generated by the first-order operators
AmðmÞ and A†

mðmÞ, where AmðnÞ ¼ d
dx − Vmðx − 6λnt; tÞ,

and the solution of the mKdV equation vmðx; tÞ ¼ Vmðx −
6λmt; tÞ can be considered as a superpotential.
Let us recall that for the quantum-mechanical operators

Lm and Dm the parameter t does not correspond to the
Schrödinger or Dirac evolution; rather, it is associated here
with the coherent peculiar isospectral deformations of their
potentials governed by the KdVand mKdVequations. Any
Schrödinger system with a multisoliton or finite-gap
potential can be characterized by a nontrivial integral of
motion in the form of the Lax-Novikov higher-derivative
differential operator of odd order [2,11,27]. As a conse-
quence, for the extended matrix system Lm composed
offrom a pair of such peculiar Schrödinger subsystems
related by a Darboux transform, the quantum-mechanical
N ¼ 2 supersymmetry associated with the fermionic inte-
grals Sm;a is extended up to the exotic N ¼ 4 nonlinear
supersymmetry incorporating two additional supercharges
Qm;a. Additional supercharges are composed from higher
(even)-order differential operators which intertwine the
diagonal elements in Lm, and together with the building
blocks of the supercharges Sm;a [which are the first-order
differential operators AmðmÞ and A†

mðmÞ] effectively fac-
torize the Lax-Novikov integrals of the extended
Schrödinger system Lm. For the discussion of a general
structure of the exotic N ¼ 4 nonlinear supersymmetry
associated with finite-gap and soliton systems see
Refs. [15,16,25,28,32,33] and references therein.
Specifically, here the extension ofN ¼ 2 supersymmetry

up to the exotic N ¼ 4 nonlinear supersymmetry happens
as follows. We have started with the stationary solution
(3.1) for the KdV equation to construct solutions umðx; tÞ.
For the initial Schrödinger operator L0 ¼ − d2

dx2 þ u0ðxÞ,
u0ðxÞ ¼ u0;0ðxÞ, we can construct the first-order operator
(2.12), A1ðx; tÞ ¼ d

dx − v1ðx; tÞ, which provides us with the

intertwining relation A1L0 ¼ L1A1, where L1 ¼ − d2

dx2 þ
u1ðx; tÞ. The Lax operator P0 ¼ Pðu0Þ constructed on
the basis of the stationary solution u0ðxÞ satisfies
Eq. (3.2), ½P0; L0� ¼ 0. Being the third-order differential
operator, this is the Lax-Novikov integral for the
Schrödinger system L0. The intertwining relation A1L0 ¼
L1A1 and the conjugate relation show that for the
Schrödinger system L1, the fifth-order differential operator
P1ðx; tÞ ¼ A1P0A

†
1 is the Lax-Novikov integral of motion,

½P1; L1� ¼ 0. Then, by applying the Galilean transforma-
tion with the parameter G ¼ λ1 to the KdV solutions u0ðxÞ
and u1ðx; tÞ, we obtain the fifth-order operators P1ð1Þ¼
A1ð1ÞP0ðx−6λ1tÞA†

1ð1Þ and P0ð1Þ¼L0ð1ÞP0ðx−6λ1tÞ¼
A†
1ð1ÞA1ð1ÞP0ðx−6λ1tÞ, which are integrals for L1ð1Þ

and L0ð1Þ, respectively. Being the product of the integral
P0ðx − 6λ1tÞ with the Schrödinger Hamiltonian L0ð1Þ, in
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this case the integral P0ð1Þ is reducible. However, we
use it to construct two bosonic integrals for the extended
system L1,

P1;1 ¼
�
P0ð1Þ 0

0 P1ð1Þ

�
; P1;2 ¼ σ3P1;1; ð5:7Þ

where the matrix elements are differential operators of the
same order.
To get the analogs of the integrals (5.7) for a general

case corresponding to the extended Schrödinger system
described by Lm, we have to change the fifth-order differ-
ential operator A1P0A

†
1 for AmP0A

†
m which is a differential

operator of order 2mþ 3 commuting with the Schrödinger
operator Lm ¼ − d2

dx2 þ umðx; tÞ. Then we realize a
usual Galilean transformation with the velocity −6λm to
obtain the operator PmðmÞ ¼ AmðmÞP0ðx − 6λmtÞA†

mðmÞ,
which is the Lax-Novikov integral for the quantum system
LmðmÞ. In a similar way, as an analog of L0ð1ÞP0ðx − 6λ1tÞ
we get the operator Pm−1ðmÞ ¼ Lm−1ðmÞAm−1ðmÞP0ðx −
6λmtÞA†

m−1ðmÞ which commutes with Lm−1ðmÞ, where
AnðmÞ ¼ AnðmÞAn−1ðmÞ…A1ðmÞ. In this manner we
obtain a pair of matrix operators Pm;1 ¼ diagðPm−1ðmÞ;
PmðmÞÞ and Pm;2 ¼ σ3Pm;1, which are the integrals for
the extended Schrödinger system Lm, and in addition to
Eq. (5.5) we get the relations

½Pm;a;Lm� ¼ ½Pm;a;Pm;b� ¼ ½Pm;1;Sm;b� ¼ 0: ð5:8Þ

At the same time, the commutator ofPm;2 with Sm;a, a ¼ 1,
2 will supply us with a pair of new fermionic integrals
Qm;a, which are differential operators of even order 2m that
also commute with Pm;1, ½Pm;1;Qm;b� ¼ 0. So, the operator
Pm;1, like Lm, is the bosonic central charge of the super-
algebra. Together, two bosonic integrals Pm;a, a ¼ 1, 2
allow us to distinguish the eigenstates corresponding to the
fourfold degenerate eigenvalues inside the continuous
allowed bands of Lm. Also, they detect all the edge states
and all the bound states in the spectrum of Lm by
annihilating them. The fermionic integrals Sm;a and Qm;a
generate transformations between the “up” and “down”
eigenstates of the same eigenvalues in the spectrum of Lm,
and as usual complex linear combinations of Sm;1 and Sm;2
and of Qm;1 and Qm;2 will be creation- and annihilation
type operators for those eigenstates. The bosonic integral
Pm;2 generates a kind of rotation between the supercharges
Sa and Qa [12,25,28].
The four fermionic supercharges Sm;a and Qm;a and

two bosonic integrals Pm;a together with the matrix
Schrödinger Hamiltonian Lm generate the exotic non-
linear N ¼ 4 supersymmetry, whose superalgebraic rela-
tions will contain coefficients that are polynomials in
the central charge Lm. Such an unusual nonlinear
extension of supersymmetric structure related to inte-
grable systems was discussed in different aspects in

Refs. [12,15,16,28,32,33]. The anticommutation relations
for Sm;a in Eq. (5.5), and similar relations for Qm;a where
the right-hand side is a certain polynomial of order m in
Lm, together reflect the fact that the square of the Lax-
Novikov integrals Pm;a (in correspondence with the
Burchnall-Chaundy theorem [27]) is a certain polynomial
of odd order ð2mþ 1Þ in Lm.
Systems also exist (explicit examples of which will be

considered below) where the described structure of the
exotic supersymmetry can be reduced in the order of the
differential operators corresponding to the set of integrals
Pa and Qa. This happens when the Schrödinger potentials
uλmm ðx; tÞ and uλmm−1ðx; tÞ are completely isospectral, and the
ordinary N ¼ 2 supersymmetry generated by the first-order
supercharges Sa in accordance with Eq. (5.5) is sponta-
neously broken. Specifically, in the case when the
Schrödinger potentials uλmm ðx; tÞ and uλmm−1ðx; tÞ have a
difference in one bound state in the spectra of the systems
LmðmÞ and Lm−1ðmÞ, the spectrum of the corresponding
Dirac Hamiltonian with the scalar potential vmðx; tÞ will
contain one kink as a defect. If this is the case, there is no
reduction in the structure of the exotic supersymmetry
generators; the envelope of the corresponding oscillating
eigenfunction ΨmðxÞ of the initial one-gap Lamé system
used in the Darboux-Crum construction will exponentially
increase in both the positive and negative x directions. In
contrast, when the envelope of ΨmðxÞ increases exponen-
tially in one direction and decreases exponentially in the
other direction, the corresponding first-order intertwining
operator AmðmÞ ¼ Xm−1ðmÞ ¼ d

dx − vm−1ðx; t; λmÞ gener-
ates a nonlinear shift in the already present soliton defects
as well as in the background, without adding a bound state
to the spectrum of LmðmÞ≡ ~Lm−1ðmÞ in comparison with
that of Lm−1ðmÞ, Xm−1ðmÞLm−1ðmÞ ¼ ~Lm−1ðmÞXm−1ðmÞ.
The superpotential vm−1ðx; t; λmÞ relating such a pair of
isospectral Schrödinger systems can always be obtained
from the appropriate superpotential vðasÞm ðx; tÞ correspond-
ing to the associated irreducible extended Schrödinger
system by one of the limits of the form
limCm→0;∞v

ðasÞ
m ðx; tÞ ¼ �vm−1ðx; t; λmÞ [12,28]. The spec-

trum of the corresponding Dirac Hamiltonian Dm (super-
charge Sm;1) with the scalar potential vm−1ðx; t; λmÞ is
symmetric with a central gap between bound states or
continuous bands; it can only contain defects of the kink-
antikink type, and never kink type defects. For such
extended Schrödinger systems, the differential order of
the integrals Pa andQa will reduce by two. From the point
of view of the limit of the associated appropriate irreducible
system LðasÞ

m , we have LðasÞ
m → Lm, and then one can find

that PðasÞ
m → LmPm, and a similar relation for the super-

charges Qa. The indicated reducibility of the matrix
differential operators Pa and Qa does not affect the nature
of the supersymmetry: the corresponding extended
Schrödinger system presented by the 2 × 2 diagonal matrix
Hamiltonian operator Lm is characterized by the exotic
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nonlinear N ¼ 4 supersymmetry generated by two first-
order supercharges Sa and by two fermionic integrals Qa
that are higher (even)-order differential operators, and
by two bosonic integrals composed of the Lax-Novikov
integrals of the completely isospectral Schrödinger
subsystems.

VI. SOLITON SOLUTIONS FOR THE
mKdV EQUATION

In the next two subsections, we discuss briefly the
mKdV solutions corresponding to the multi-kink-antikink
solitons propagating over the asymptotically free kink or
kink-antikink backgrounds, and then we consider a much
more rich case corresponding to solutions in the crystalline
kink and kink-antikink backgrounds.

A. Multi-kink-antikink solutions over
a kink background

The employment of the multisoliton solutions of the
KdV equation constructed on the basis of the initial trivial
solution u ¼ 0 allows us to find topologically nontrivial
solutions vKðx; tÞ for the mKdV equation with the asymp-
totic behavior vKðþ∞; tÞ ¼ −vKð−∞; tÞ ¼ const ≠ 0. The
index K reflects the kink type nature of the solutions. To
obtain the mKdV solutions with the indicated asymptotic
behavior, we should take um with one more bound state in
the spectrum of the associated Shrödinger system in
comparison with the ðm − 1Þ bound states supported by
the potential um−1. In this case, the solution to the mKdV
equation will have a form of the multi-kink-antikink defect
propagating over the kink. The kink-antikink perturbations
will always have amplitudes smaller than the kink ampli-
tude, characterized by the parameter κm, due to the ordering
0 < κ1 < � � � < κm. The kink-antikinks (j ¼ 1;…; m − 1)
and kink (j ¼ m) propagate to the left with the velocities
Vj ¼ 4κ2j − 6κ2m. So, the kink’s speed is the lowest, being
equal to 2κ2m, while the kink-antikink solitons with lower
amplitudes have higher speeds. Such solutions generalize
the mKdV kink solution vK0 ðx; tÞ ¼ κ tanh κðxþ 2κ2tÞ, and
analytically they are given by

vKm−1ðx; tÞ ¼ VK
mðxþ 6κ2mt; tÞ; ð6:1Þ

where, in correspondence with Eq. (2.22),

VK
mðx;tÞ¼ΩK

m−1ðx;tÞ−ΩK
mðx;tÞ;

ΩK
m¼−ðlogWðcoshX−

1 ;sinhX
−
2 ;…;fðX−

mÞÞÞx: ð6:2Þ

fðX−
mÞ ¼ sinhX−

m if m is even, fðX−
mÞ ¼ coshX−

m if m is
odd, and X−

m is defined in Eq. (2.22). The functions
�vKmðx; tÞ (representing solutions for the defocusing
mKdV equation) are of the kink type with m solitons that
deform the moving kink (or antikink) background in their

propagation without overpassing its asymptotes. An exam-
ple of a such solution is represented in Fig. 6.

B. Multi-kink-antikink solutions over the topologically
trivial background

The multi-kink-antikink solutions propagating over
the topologically trivial background with the asymptotic
behavior vð−∞;tÞ¼vðþ∞;tÞ¼const≠0 can be obtained
from the KdV solutions um and um−1 which, as the
Schrödinger potentials, support the same number [(m−1),
m ¼ 2;…] of bound states with coinciding energies. In
such a pair, the potentials um and um−1 are related by the
Darboux transformation that displaces solitons [12,28].
They generalize the simplest kink-antikink solution for
the mKdV equation,

v0ðx; tÞ ¼ −κ1; ð6:3Þ

which corresponds to the nonzero mass termm ¼ κ1 of the
free Dirac Hamiltonian operator D0; see Eq. (5.6).

FIG. 6 (color online). Solution of the mKdV equation repre-
senting the kink-antikink (characterized by the κ1 parameter)
propagation over the kink (given by κ2) background, both moving
to the left. When the soliton (which is faster) is to the right of the
kink center (see the t ¼ −3 instant), it has a form of the antikink-
kink perturbation. Overtaking the kink center, it flips and trans-
forms into the kink-antikink perturbation (t ¼ 3 and t ¼ 6). Here
κ1 ¼ 1, κ2 ¼ 1.1, x0i ¼ 0, and i ¼ 1, 2. The change v → −v
provides a solution over the antikink background with a mutual
transform of the antikink-kink and kink-antikink perturbations.
The kink has a bigger amplitude 2κ2 equal to the distance
between asymptotes, and this value also corresponds to the size of
the central gap in the spectrum of the associated Dirac Hamil-
tonian operator shown on the right. Filled circles correspond to
nondegenerate energy levels at the edges of the doubly degen-
erate continuous parts of the spectrum, while blue squares
indicate nondegenerate bound states inside the spectral gap.
The zero-energy bound state is associated with the kink; the two
other bounds states are associated with the kink-antikink pertur-
bation in the mKdV solution.
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The simplest generalization of Eq. (6.3) is given by

v1ðx; tÞ ¼ κ1 tanh ðκ1ðxþ νtÞÞ
− κ1 tanh ðκ1ðxþ νtÞ − ΔÞ − κ1 cothΔ; ð6:4Þ

where ν ¼ 6κ22 − 4κ21 > 0, Δ ¼ 1
2
logðκ2þκ1

κ2−κ1
Þ > 0, and

κ2 > κ1 > 0. The mKdV solution (6.4) is related to the
mutually displaced one-soliton KdV solutions u1ðx; tÞ and
u2ðx; tÞ via the Miura transformation, u1¼v21þv01¼κ22−
2κ21sech

2ðκ1ðxþνtÞÞ, u2¼v21−v01¼κ22−2κ21sech2ðκ1ðxþ
νtÞ−ΔÞ. The analytic form of this type of the solutions
is given by relations of the same form as Eqs. (6.1)–(6.2)
but with fðX−

mÞ changed here for fðX−
mÞ ¼ expX−

m. Such
solutions can be obtained from the topologically nontrivial
solutions (6.2) by taking there a limit x0m → þ∞ or −∞,
which corresponds to sending the soliton (kink) associated
with the nondegenerate zero energy in the spectrum ofD to
þ∞ or −∞. Thus, the velocities of the remaining kink-
antikink solitons with j ¼ 1;…; m − 1 are the same
(Vj ¼ 4κ2j − 6κ2m) as in the solutions with the kink, indexed
there by j ¼ m, and its traces are still present here by
restricting the amplitudes of the kink-antikinks and their
speeds. An example of such a type of solutions is shown
in Fig. 7.

C. Kink-antikink pulse type defects in a crystalline
kink background

On the basis of the stationary cnoidal solution for the
KdVequation from Sec. III, one can construct diverse types
of solutions for the mKdV equation, some of which are
topologically trivial, while others have a nontrivial topo-
logical nature. If we use as um−1 a solution um−1;0 of the
KdV equation that contains only the potential-well soliton
defects in the periodic background, and take um ¼ um;0 of
the same type but with one additional pulse soliton defect,
then the associated solution vm of the mKdV equation will
describe multiple kink-antikink perturbations propagating
in a moving crystal kink; see Fig. 8. The kink here is the
defect of the greatest amplitude. Together with other soliton
defects, it propagates to the left; see Sec. VI J below. In this
case the solutions can be presented in the form

vK0;m−1ðx; tÞ ¼ VK
0;mðx − 6λðβ−m þ iK0Þt; tÞ; ð6:5Þ

FIG. 7 (color online). Solution of the mKdV equation corre-
sponding to two kink-antikink perturbations propagating to the
left. Here κ1 ¼ 1, κ2 ¼ 1.2, κ3 ¼ 1.2þ 10−7, x0i ¼ 0, and i ¼ 1,
2, 3. 2κ3 corresponds to the size of the gap in the spectrum of the
Dirac Hamiltonian operator, and κ2 defines a bigger kink-antikink
soliton; the closeness of its value to κ3 causes this soliton to be
higher and wider, and defines the energies �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ23 − κ22

p
of the two

bound states supported by this defect. κ1 defines the parameters
of the smaller kink-antikink soliton and the energies �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ23 − κ21

p
of the two bound states supported by it. In contrast with the KdV
solutions with a free background, the defects with smaller
amplitudes propagate with higher speed. A nonzero asymptotic
value of this type of solution corresponds to a constant mass term
in a free massive Dirac Hamiltonian operator.

FIG. 8 (color online). Kink-antikink (given by β−1 ) and a kink
(given by β−2 ) type defects propagating over a kink-antikink
crystalline background. This mKdV solution with μ ¼ 1,
k ¼ 0.999, β−1 ¼ 1.7, β−2 ¼ 1.5, and C−

i ¼ 1, i ¼ 1, 2 is some-
what analogous to that presented in Fig. 6. The kink perturbation
and the kink-antikink in the form of a pulse (pul) soliton defect as
well as the kink-antikink crystalline background (bg) move to the
left, and the magnitudes of their velocities (speeds) are subject
here to the relation 0 < jVkinkj < jVpulj < jVbgj; see Sec. VI J
below. The pulse soliton defect flips when it passes from one side
of the crystalline kink defect to another. Notice that in contrast to
the present case, for the mKdV solution depicted in Fig. 6 the
background is given there by constant asymptotes for which a
state of motion is not defined. The size of a central gap in the
spectrum of the associated Dirac Hamiltonian operator shown on
the right is given by 2μjdnðβ−2 þ iK0jkÞj. The energies of the two
bound states trapped by the kink-antikink defect are given by
E�ðαÞ ¼ �μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðαjkÞ − dn2ðβ−2 þ iK0jkÞ

p
with α ¼ β−1 þ iK0,

while the zero-energy value, E�ðα ¼ β−2 þ iK0ÞÞ ¼ 0, corre-
sponds to a unique bound state trapped by the kink defect.
The edges of the allowed bands correspond to α ¼ 0,
K, Kþ iK0.
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where

VK
0;mðx; tÞ ¼ ΩK

0;m−1ðx; tÞ −ΩK
0;mðx; tÞ;

ΩK
0;m ¼ −ðlogWðFþð1Þ;F−ð2Þ;…;F ð−1Þmþ1ðmÞÞÞx;

ð6:6Þ

and λðαÞ ¼ μ2ðdn2ðαjkÞ − 1
3
ð1þ k02ÞÞ. The spectrum of D

is symmetric, with two finite and two semi-infinite allowed
bands. It contains a finite number of bound states in the
central gap, and one of these bound states is exactly in the
center (E ¼ 0), while two other gaps are unoccupied.

D. Multi-kink-antikink pulse type defects in a
kink-antikink crystal background

Let us take a solution um−1;0 of the KdV equation as a
solution um−1 in Eq. (5.3), and choose um in the form of the
solution of the same type, um ¼ ~um−1;0, but displaced by
means of the Darboux transformation. Then we get the
associated solution vm of the mKdVequation in the form of
multi-kink-antikink defects propagating in a crystalline
background. In this case, again, both the crystalline back-
ground as well as the pulse defects will propagate to the
left. Such a type of solutions can be presented in the
analytical form

v0;m−1 ¼ V0;mðx − 6λðβ−m þ iK0Þt; tÞ; ð6:7Þ

where

V0;mðx;tÞ¼ðlogWðFþð1Þ;F−ð2Þ;…;F ð−1Þmðm−1ÞÞÞx
−ðlogWðFþð1Þ;F−ð2Þ;…;F ð−1Þmðm−1Þ;Fðx;t;β−mÞÞÞx:

ð6:8Þ

The function Fðx; t; β−mÞ is defined here by Eq. (4.1). The
spectrum of D is symmetric, with two finite and two semi-
infinite allowed bands. It has a finite even number of bound
states in the central gap, and so (in contrast with the
previous case) there is no bound state of discrete zero
energy in the center of the gap. As in the class of solutions
discussed in the previous section, the symmetric noncentral
gaps do not contain bound states. The mKdV solutions of
this type can be obtained from those described in the
preceding section by sending the kink to plus or minus
infinity; the concrete analytic form (6.8) corresponds to
taking the limit C−

m → ∞ in the solution (6.5). This case is
illustrated in Fig. 9.

E. Multi-kink-antikink compression modulation defects
over a kink in a kink-antikink crystal background

There are no nonsingular solutions of the mKdV
equation associated with the KdV solutions which in the
Darboux-Crum construction use only the states from
the gap. To get nonsingular solutions, one can employ in
the construction of um a state from the forbidden lower
band of the Lamé system in addition to the states from the
gap employed for the construction of um−1, or to generate a
nonlinear displacement by means of the Darboux trans-
formation. In the first case we obtain a solution for the
mKdV equation which contains a kink in a background,
while in the second case there will be no such kink in the
structure of the mKdV solution. The solution of the first
indicated case takes the form

vK2l;0 ¼ VK
2l;1ðx − 6λðβ−1 þ iK0Þt; tÞ; ð6:9Þ

where

VK
2l;1ðx;tÞ
¼ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φþð2l−1Þ;Φ−ð2lÞ;Fþð1ÞÞÞx
−ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φþð2l−1Þ;Φ−ð2lÞÞÞx:

ð6:10Þ

In this solution, the defects of the compression modulation
type propagate over a kink defect, which, in turn, prop-
agates over the crystalline background by deforming it. An
example of such a solution is shown in Fig. 10. Here, the
kink, the background, and the compression modulation
type defects move to the left. The shown solution possesses

FIG. 9 (color online). A kink-antikink pulse (given by β−1 ) over
a kink-antikink crystalline background. Here μ ¼ 1, k ¼ 0.9999,
β−1 ¼ 1.5þ 10−12, β−2 ¼ 1.5, and C−

i ¼ 1, i ¼ 1, 2. When the
values of β−1 and β−2 are closer, the kink-antikink defect in the
background of the kink-antikink crystal is more notable.
Both the kink-antikink pulse and the kink-antikink crystal
background move to the left, and the speed of the latter is
higher than that of the defect. The size of a central gap in the
spectrum of the associated Dirac Hamiltonian operator shown
on the right is given by 2μjdnðβ−2 þ iK0jkÞj. The energies of
the bound states trapped by the defect are E�ðαÞ ¼
�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðαjkÞ − dn2ðβ−2 þ iK0jkÞ

p
with α ¼ β−1 þ iK0, and they

are represented by the blue rectangles. The nondegenerate energy
values of the edges of the allowed bands correspond to α ¼ 0,
K, Kþ iK0.
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an even number of compression modulation defects. The
solutions with an odd number of modulation defects can be
obtained by applying the procedures explained earlier for
the KdVequation. The spectrum ofDK

2l;0 is symmetric, with
two finite allowed bands and two semi-infinite allowed
bands. Besides, it has a finite number of bound states in the
external gaps, and one bound state of zero energy in the
central gap.

F. Multi-kink-antikink compression modulation
solutions in a kink-antikink crystal background

If the difference between um and um−1 is a nonlinear
displacement generated by a Darboux transformation, and
if these solutions of the KdV equation are the compression
modulation type defects, then the associated solution of the
mKdVequation will be a kink-antikink crystal background
propagating to the left, in which we have kink-antikink
defects of the modulation type also moving to the left.
Analytically, such solutions are given by

v2l;0 ¼ V2l;1ðx − 6λðβ−1 þ iK0Þt; tÞ; ð6:11Þ

where

V2l;1ðx;tÞ
¼ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φþð2l−1Þ;Φ−ð2lÞ;Fðx;t;β−1 ÞÞÞx

−ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φþð2l−1Þ;Φ−ð2lÞÞÞx:
ð6:12Þ

Notice a difference in the last argument of the Wronskian in
the first term on the right in Eq. (6.12) in comparison with
Eq. (6.10). It reflects the fact that the solutions of the
present type can be obtained from those discussed in the
preceding section by sending the kink to infinity, by taking
the limit C−

1 → ∞ in Eq. (6.10).
Figure 11 shows the case with an even number of

compression modulations defects. The case with an odd
number of such defects can be obtained by the procedures
explained earlier for the KdV system. The spectrum ofD2l;0
is symmetric, with a finite number of bound states
appearing in noncentral gaps, and with no bound states
in the central gap.

G. Multi kink-antikink modulation solitons
in a kink crystal

There is a special case which can be obtained as a limit
from the solutions discussed in the preceding section. It is

FIG. 10 (color online). The mKdV solution with two kink-
antikink modulations (given by βþ1 and βþ2 ) and a kink (given by
β−1 and corresponding to the KdV pulse soliton) propagating in a
kink-antikink crystal background. Here μ ¼ 1, k ¼ 0.9,
β−1 ¼ 1.8, βþ1 ¼ 1, βþ2 ¼ 1.3, and C−

1 ¼ Cþ
1 ¼ Cþ

2 ¼ 1, and the
velocity magnitudes of the solitons of the compression modu-
lations (mod) type, of the background (bg), and the kink soliton
are subject to the inequalities jVmodj > jVbgj > jVkinkj > 0; see
Sec. VI J below. The size of the central gap in the spectrum of the
associated Dirac Hamiltonian operator, shown on the right, is
equal to 2μjdnðβ−1 þ iK0jkÞj. The energies of the bound states
trapped by the kink-antikink modulations are given by E�ðαÞ ¼
�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðαjkÞ − dn2ðβ−1 þ iK0jkÞ

p
with α ¼ βþ1 ; β

þ
2 , while the

bound state of zero energy (α ¼ β−1 þ iK0) is trapped by the
kink defect. The edges of the allowed bands in the spectrum
correspond to α ¼ 0, K, Kþ iK0.

FIG. 11 (color online). The mKdV solution with two kink-
antikink modulations (given by βþ1 and βþ2 ) propagating over a
kink-antikink crystal background (described by the parameter
β−1 ). Here μ ¼ 1, k ¼ 0.9, β−1 ¼ 1.8, βþ1 ¼ 1, βþ2 ¼ 1.3, and
Cþ
1;2 ¼ 1. At t ¼ 0, the vertical axis (x ¼ 0) is shifted a little

bit to the left with respect to the symmetry axis of the figure. This
is due to the limit C−

1 → ∞ applied to the solution shown in
Fig. 10, the present solution. This limit corresponds to sending
the kink to infinity and generates the displacements (phase shifts)
in the background and in the remaining defects. The size of the
central gap in the spectrum of the associated Dirac Hamiltonian
operator is equal to 2μjdnðβ−1 þ iK0jkÞj. The energies of the
bound states trapped by the kink-antikink modulation defects are
given by E�ðαÞ ¼ �μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðαjkÞ − dn2ðβ−1 þ iK0jkÞ

p
with

α ¼ βþ1 , βþ2 . The edges of the allowed bands correspond to
α ¼ 0,K,Kþ iK0. The compression defects are more rapid than
the background.
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generated by the choice of the solution um−1 of the KdV
equation which contains only compression modulation
defects, while the additional state Ψ ∝ dnðμxjkÞ employed
for the construction of um is at the edge of the lower
forbidden band of the associated one-gap Lamé system.2 In
this case the crystalline background in the mKdV solution
is centered (vertically) at zero in contrast with the pre-
viously considered cases where it was displaced up or
down. This centered crystalline background is known as the
kink crystal solution which appears in the Gross-Neveu
model [16,17]. In comparison with the previous cases, here
in the spectrum of D the central gap (together with the
bound states there) disappears and two finite continuous
bands merge into one central allowed band centered at zero.
So in this case one can have defects only of the compres-
sion modulation type; see Fig. 12. Here, as in the previous
cases, the indicated soliton defects move to the left like the
kink crystal propagating with the velocity 6λðKþ iK0Þ; see
Sec. VI J below. The analytic form of this type of mKdV
solutions is given by

vKC2l ¼ VKC
2l ðx − 6λðKþ iK0Þt; tÞ; ð6:13Þ

where

VKC
2l ðx; tÞ ¼ ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φþð2l − 1Þ;

Φ−ð2lÞ; dnðμxjkÞÞÞx
− ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φþð2l − 1Þ;
Φ−ð2lÞÞÞx: ð6:14Þ

In the simplest case l ¼ 0 the solution is just the kink
crystal

vKC0 ðx; tÞ ¼ ðlog dnðμðx − VbgtÞjkÞÞx ð6:15Þ

propagating to the left with velocity Vbg ¼
−2μ2ð1þ k02Þ < 0.

H. Mixed multi-kink-antikink solitons over a kink
in a kink-antikink crystal background

In a more general case, one can have both types of
defects—compression modulations as well as pulse
solitons—propagating over a moving crystal background.
Depending on whether the difference between the um−1 and
um solutions of the KdVequation is a pulse type soliton or a
nonlinear displacement, a kink defect will or will not
appear in the kink-antikink crystal background. In the
case when the indicated difference is a pulse type defect,
the solutions over the kink crystalline background take
the form

vK2l;m−1 ¼ VK
2l;mðx − 6λðβ−m þ iK0Þt; tÞ; ð6:16Þ

where

VK
2l;mðx; tÞ ¼ ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;

Fþð1Þ;F−ð2Þ;…;F ð−1Þmþ1ðmÞÞÞx
− ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;
Fþð1Þ;F−ð2Þ;…;F ð−1Þmðm − 1ÞÞÞx ð6:17Þ

is a modulated kink. In this solution, the kink, the pulse,
and modulation type defects as well as the crystalline
background move to the left.
The solution shown in Fig. 13 possesses an even number

of compression modulation defects. Again, solutions with
an odd number of defects of this type can be obtained by
means of any of the procedures discussed in Sec. IV B. The
spectrum of the Dirac Hamiltonian operator D in this case
is symmetric. Besides the continuous bands shown in the
figure, it contains a finite number of bound states in the
external and central gaps. Besides, there is an additional
bound state of zero energy in the center of the central gap,
which is associated with the crystalline kink.

FIG. 12 (color online). The mKdV solution with two kink-
antikink modulations (given by βþ1 and βþ2 ) over a kink crystal.
Here, μ ¼ 1, k ¼ 0.9, βþ1 ¼ 1, βþ2 ¼ 1.3, β−1 ¼ K, and
C−
1 ¼ Cþ

1;2 ¼ 1. In this case there is no central gap in the
spectrum of the associated Dirac Hamiltonian operator. The
energies of the bound states trapped by the modulation defects
are given by E�ðαÞ ¼ �μdnðαjkÞ with α ¼ βþ1 , β

þ
2 , while the

values α ¼ 0,K correspond to the edges of the allowed bands. In
the kink crystal background, only the modulation type kink-
antikink defects can exist, and they propagate to the left more
rapidly than the kink crystal background. In this configuration,
the velocity magnitude of the background, jVbgj ¼ 2μ2ð1þ k02Þ,
is minimal in comparison with those in other types of mKdV
solutions.

2This is the ground state of the Lamé system at the lower edge
of its valence band.
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I. Mixed multi-kink-antikink defects in a kink-antikink
crystal background

If, unlike the previous case, the difference between um−1
and um is given by a nonlinear displacement, there is
no kink structure in the corresponding mKdV solution
given by

v2l;m−1 ¼ V2l;mðx − 6λðβ−m þ iK0Þt; tÞ; ð6:18Þ

where

V2l;mðx;tÞ¼ ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;
Fþð1Þ;F−ð2Þ;…;F ð−1Þmðm−1Þ;Fðx;t;β−mÞÞÞx
− ðlogWðΦþð1Þ;Φ−ð2Þ;…;Φ−ð2lÞ;
Fþð1Þ;F−ð2Þ;…;F ð−1Þmðm−1ÞÞÞx ð6:19Þ

is a kink-antikink crystal background displaced from zero
in the vertical direction and perturbed by propagating
mixed multi-kink-antikink defects within it. An example

of such a solution is depicted in Fig. 14. The symmetric
spectrum of D has a finite number of bound states in the
central and external gaps, with no state of zero energy in the
center of the central gap. The mKdV solutions of this type
can be obtained from those discussed in the preceding
section by sending the kink defect to infinity.

J. Velocities in the mKdV solutions with
crystalline backgrounds

The mKdV solutions vm−1 are obtained on the basis of
the Darboux construction of KdV solutions. The necessary
step of the procedure, as we have seen, involves the
Galilean transformation, x → x − 6λmt. The boost param-
eter G ¼ 6λm of this transformation is given by the energy
λm that corresponds to the nonphysical eigenstate of the
one-gap Lamé system L0;0 which is used to obtain the
potential um with one more bound state in comparison with
the partner potential um−1. Or, this λm corresponds to the
eigenstate with the help of which the potential um is
obtained from the completely isospectral potential um−1
by means of the nonlinear Darboux displacement. In both
cases λm ¼ λðβ−m þ iK0Þ, and β−m in the first case is
associated with the mKdV kink supporting a bound state
of a nondegenerate discrete zero-energy eigenvalue in the
spectrum of the Dirac Hamiltonian operatorD, or, if there is
no discrete zero-energy value in the spectrum of D, β−m can
be associated with the kink defect sent to infinity. This β−m
corresponds to the eigenstate of minimal energy from the
lower semi-infinite forbidden band in the spectrum of L0;0

which is used in the Darboux-Crum transformations to

FIG. 13 (color online). The mKdV solution with a kink-
antikink pulse (given by β−1 and highlighted in red) and two
kink-antikink modulations (given by βþ1 and βþ2 and shown in
orange and green, respectively) propagating over a kink defect
(β−2 ), with all of these defects propagating in a moving kink-
antikink crystal background. Here μ ¼ 1, k ¼ 0.999, β−1 ¼ 1.7,
β−2 ¼ 1.5, βþ1 ¼ 1, βþ2 ¼ 1.3, and C�

1;2 ¼ 1, and the magnitudes
of the velocities of the defects and background are subject to the
inequalities jVmodj > jVbgj > jVpulj > jVkinkj > 0. The size of the
central gap in the spectrum of the associated Dirac Hamiltonian
operator is 2μjdnðβ−2 þ iK0jkÞj. The energies of the bound states
trapped by the modulation defects are given by E�ðαÞ ¼
�μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn2ðαjkÞ − dn2ðβ−2 þ iK0jkÞ

p
with α ¼ βþ1 , β

þ
2 . The energies

in the central gap, which are marked by two blue squares
symmetric with respect to the zero level, are given by α ¼
β−1 þ iK0 and correspond to the bound states trapped by the kink-
antikink pulse; the zero-energy value, E�ðα ¼ β−2 þ iK0ÞÞ ¼ 0,
corresponds to a unique bound state trapped by the kink defect.
The edges of the allowed bands correspond to α ¼ 0,
K, Kþ iK0.

FIG. 14 (color online). The mKdV solution with a kink-
antikink pulse (given by β−1 and shown in red) and two kink-
antikink modulations (given by βþ1 and βþ2 and highlighted in
orange and green, respectively) propagating to the left in a kink-
antikink crystal background that is moving to the left. Here
μ ¼ 1, k ¼ 0.999, β−1 ¼ 1.5þ 10−10, β−2 ¼ 1.5, βþ1 ¼ 1,
βþ2 ¼ 1.3, and C�

1;2 ¼ 1, and the velocity magnitudes are subject
to the inequalities jVmodj > jVbgj > jVpulj > 0. The energies in
the spectrum of the associated Dirac Hamiltonian operator are
given by expressions similar to those in Fig. 9.
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construct um, or to the eigenvalue of the “virtual” state from
that band associated with the “kink sent to infinity.” As a
result, the crystalline background in the obtained mKdV
solution propagates to the left and its velocity is

Vbg ¼ 6λðβ−m þ iK0Þ ¼ −2μ2ð3cs2ðβ−mjk2Þ þ 1þ k02Þ < 0:

ð6:20Þ
The background propagates with a minimal speed in the
class of the mKdV solutions with the kink crystal back-
ground, which were discussed in Sec. VI G. In that case
β−1 ¼ K corresponds to the edge state dnðμxjkÞ of L0;0, and,
therefore, Vbg ¼ −2μ2ð1þ k02Þ < 0.
If the mKdV solution has pulse type defects that are

different from the kink, their velocities are given by

Vpulðβ−j Þ ¼ Vðβ−j Þ þ 6λðβ−m þ iK0Þ < 0;

K > β−j ≥ β−m; j ¼ 1;…; m − 1;
ð6:21Þ

with Vðβ−j Þ given by Eq. (4.13). Analogously, the velocities
of the modulation type defects, if they are present in the
mKdV solution, are

Vmodðβþj Þ ¼ Vðβþj Þ þ 6λðβ−m þ iK0Þ < 0;

0 < βþj < K;
ð6:22Þ

where Vðβþj Þ are given by Eq. (4.14). In the case where the
mKdV solution has a kink defect, its velocity is defined by
a relation of the form (6.21) but with j ¼ m, i.e.,

Vkink ¼ Vðβ−mÞ þ 6λðβ−m þ iK0Þ < 0: ð6:23Þ

One can see that in the mKdV solution, the speeds of the
background and defects (some of which can be absent in
the solution) are ordered according to the inequal-
ities jVmodj > jVbgj > jVpulj > jVkinkj > 0.

VII. DISCUSSION AND OUTLOOK

We have constructed solutions to the KdVequation with
an arbitrary number of solitons in a stationary asymptoti-
cally periodic background. In this case there exist two types
of solitons:

(i) potential-well defects (pulses), which propagate to
the right;

(ii) compression modulation defects, which move to
the left.

These solutions asymptotically have the form of the one-
gap Lamé potential but subjected to the phase shifts
x → x − x∓0 , x

∓
0 ¼ � 1

μ ð
P

iβ
−
i þP

jβ
þ
j Þ for x → ∓∞ with

respect to the stationary solution (3.1). The asymmetry in
the propagation of the two types of soliton defects is valid
in the case of a stationary background. If we apply Galilean
transformations to the KdV solutions, we obtain new

solutions for which, in the general case, the described
propagation asymmetry of the defects over the now moving
background will be changed. However, this does not
change the picture of the relative motion: pulse defects
will always propagate to the right with respect to the
asymptotically periodic background, while modulation
type defects will move to the left with respect to a
nonstationary crystalline background. An interesting pecu-
liarity that we have also observed in the constructed KdV
solutions is that in the limit cases when the amplitudes of
the pulse and compression modulation defects tend to zero,
the limit values of the velocities of defects with respect to
the crystalline background are nonzero.
For the mKdV equation, we have constructed the

following solutions from the obtained KdV solutions by
means of the Miura-Darboux-Crum transformations:

(i) solutions with a kink crystal background, in which
there can exist only solitons in the form of the
compression modulation type defects;

(ii) solutions with a kink-antikink crystal background, in
which there can exist kink-antikinks in the formof the
pulse and/or compression modulations type defects.

In a kink-antikink crystal background there also can appear
a topological defect in the form of a kink [or antikink, if we
use a symmetry of the mKdVequation by changing vðx; tÞ
for −vðx; tÞ] which is always related to the KdV pulse type
defect that traps the bound state with the lowest energy in
the lower forbidden band in the spectrum of the associated
perturbed one-gap Lamé system.
Unlike the KdV, the mKdV equation has no Galilean

symmetry, and the velocities of the defects and asymptoti-
cally periodic background in the solutions we constructed
have an absolute character.
In the mKdV solutions, all of the defects and crystalline

backgrounds move to the left, and the velocity magnitudes
of the kink-antikink defects of the modulation (mod) and
the pulse (pul) types, and the velocity magnitudes of the
background (bg) and the kink are subject to the inequalities
jVmodj > jVbgj > jVpulj > jVkinkj > 0. Thus, with taking
into account the sign of the velocities, we have for the
defects and backgrounds in the mKdV solutions (similarly
to those in the KdV solutions) ðVpul − VbgÞ > 0 and
ðVmod − VbgÞ < 0. At the same time, the velocity magni-
tude (speed) of the kink defect, if it is present in the mKdV
solution, always has a minimal value in comparison with
other velocity magnitudes.
The presence or absence of the kink in the mKdV

solution is detected by the N ¼ 2 supersymmetry of the
associated extended Schrödinger system. It is generated by
the first-order supercharge operators Sa, a ¼ 1, 2, which
are similar in nature to the Dirac Hamiltonian operators
with a scalar potential. When a kink is present or absent the
supercharges do or do not have a zero mode, and the N ¼ 2
supersymmetry is unbroken or broken. The supersymmetry
also detects the case of the mKdV solutions with the kink
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crystal background. For such solutions, the kernel of
supercharges is two-dimensional. Unlike the solutions with
a kink, the corresponding zero modes in this case are given
not by normalizable but rather periodic states.3 The position
of the bound states in the gaps in the spectra of the
supercharges also defines the type of defects present in
the corresponding mKdV solution.
We have showed that the N ¼ 2 supersymmetry con-

stitutes a part of a more broad, N ¼ 4 type exotic nonlinear
supersymmetry, which includes in its structure two bosonic
generators composed from the nontrivial Lax-Novikov
integrals of the pair of Schrödinger subsystems. These
bosonic generators are higher-derivative differential oper-
ators, one of which is the central element of the super-
algebra. Besides, the exotic supersymmetric structure
contains an additional pair of supercharges that are matrix
differential operators of even order. The additional integrals
appropriately reflect the peculiar nature of the extended
Schrödinger system associated with the pair of KdV
solutions by detecting all the bound states and the band-
edge states in the spectrum, as well as distinguish the
eigenstates corresponding to the fourfold degenerate
energy values inside the allowed bands.
Both the KdV and mKdV equations are invariant under

simultaneous inversion of the t and x variables, but not under
a reflection of t (or, of x) only. The stationary trivial solution
u ¼ 0, on the basis of which we constructed soliton
solutions over the asymptotically free background, is
invariant under separate inversions in t and x. The same
is true for the stationary cnoidal solution in the form of the
stationary one-gap Lamé potential. So, the “initial data” in
the construction are invariant under t inversions, and the
anisotropy of evolution as well as the chiral asymmetry of
the nonstationary solutions is rooted in the anisotropy of the
equations themselves. Namely, in our construction—though
the “seed” KdV solutions are time-inversion invariant—the
solutions of the auxiliary problem in the Lax formulation for
the KdV equation, which are generating elements for the
Darboux-Crum transformations, break this symmetry. In the
case of the asymptotically free background, in the indicated
solutions of the auxiliary problem the dependence on time
enters universally in the form of the arguments x − Vjtwith
Vj ¼ 4κ2j > 0. As a result, all of the solitons in nonsingular
KdV solutions move to the right. For the soliton solutions
over an asymptotically periodic background, the third-order
Lax operator of the initial Lamé system has eigenvalues of
different signs on the upper and lower horizontal borders of
the fundamental α rectangle which correspond to the lower
forbidden band and the gap. It is this sign asymmetry that is
ultimately responsible for chiral asymmetry in the

propagation of the KdV solutions in the form of pulse
and compression modulation defects over a crystalline
background. The asymmetry of the mKdV solutions is
inherited from that for the KdV solutions.
Since the KdV and mKdV solutions (and particularly

those associated with the Lamé quantum system) find
many diverse applications in a variety of different areas
of physics—ranging from hydrodynamics, plasma phys-
ics, and optics to hadron physics and cosmology
[1,5,17,18,24,30,34–40]—it would be very interesting to
find where the obtained new solutions could appear. They
could appear in the form of perturbations of a different
nature, which would propagate in a nonlinear media with
different velocities and reveal chiral asymmetry in their
dynamics. Another peculiarity which could be associated
with the described solutions is the existence of nonzero
bounds for the velocity of the defects with disappearing
amplitudes.
It would also be interesting to consider a generalization

of the approach employed here by using Darboux trans-
formations for the first-order Hamiltonian operator of a
(1þ 1)-dimensional Dirac system instead of the second-
order Schrödinger operator. In this way one could get finite-
gap Dirac Hamiltonian operators of the form

D ¼
0
@ V2ðxÞ − d

dx þ V1ðxÞ
d
dx þ V1ðxÞ −V2ðxÞ

1
A ð7:1Þ

with an asymmetric spectrum. The corresponding station-
ary potentials V1;2ðxÞ could then be promoted to solutions
in the form of the twisted kinks and twisted kink-antikinks
[18,34,41,42] in a periodic background for a nonlinear
Schrödinger equation belonging to the Zakharov-Shabat–
Ablowitz-Kaup-Newell-Segur hierarchy.
In the supersymmetric quantum-mechanical structure we

discussed, the N ¼ 4 refers to the number of supercharges
appearing in the extended Schrödinger system. As the
extended system is composed of a pair of the perturbed
one-gap Lamé systems, one could expect the appearance of
only two supercharges as it happens in supersymmetric
quantum-mechanical systems of a general nature [43].
The peculiarity of the considered systems consists in their
finite-gap nature, and it is this property that is behind
the extension of the usual N ¼ 2 supersymmetry up to the
exotic N ¼ 4 nonlinear supersymmetric structure that
incorporates the pair of Lax-Novikov integrals of the
subsystems in the form of the two additional bosonic
generators. It would be interesting to investigate whether
the described exotic supersymmetric structure can be
somehow related to the supersymmetric extensions of
the KdV and mKdV equations and corresponding
hierarchies that are considered within the superspace
(superfield) generalizations of the indicated classical
ð1þ 1Þ-dimensional integrable systems [44–49].

3These zero modes are constructed from Darboux-dressed
edge states dnðμxjkÞ and dnðμxþKjkÞ of the pair of mutually
shifted in the half-period Lamé systems by applying to them the
Galilean boost with velocity Vbg ¼ −2μ2ð1þ k02Þ.
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