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A meaningful probability distribution for measurements of a quantum stress tensor operator can only be
obtained if the operator is averaged in time or in spacetime. This averaging can be regarded as a description
of the measurement process. Realistic measurements can be expected to begin and end at finite times,
which means that they are described by functions with compact support, which we will also take to be
smooth. Here we study the probability distributions for stress tensor operators averaged with such functions
of time, in the vacuum state of a massless free field. Our primary aim is to understand the asymptotic form
of the distribution which describes the probability of large vacuum fluctuations. Our approach involves
asymptotic estimates for the high moments of the distribution. These estimates in turn may be used to
obtain estimates for the asymptotic form of the probability distribution. Our results show that averaging
over a finite interval results in a probability distribution which falls more slowly than for the case of
Lorentzian averaging, and both fall more slowly than exponentially. This indicates that vacuum fluctuations
effects can dominate over thermal fluctuations in some circumstances.
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I. INTRODUCTION

It is well known that the vacuum fluctuations of a linear
quantum field operator are associated with a Gaussian
probability distribution. More precisely, it is an averaged
field operator that has a well-defined probability distribu-
tion. Let φðt;xÞ be a field operator or a derivative of a field
operator. The averaging can be conducted along a timelike
curve (or other timelike submanifold), over a spatial
volume, or over a spacetime volume (see, e.g. Ref. [1]
for a discussion and references). Here we illustrate the case
of temporal averaging with a real-valued sampling function
fτðtÞ, with characteristic width τ which satisfies

Z
∞

−∞
fτðtÞdt ¼ 1: ð1Þ

Define the averaged field operator by

φ̄ ¼
Z

∞

−∞
φðt;xÞfτðtÞdt: ð2Þ

This operator has finite moments in the vacuum state,
μn ¼ hφ̄ni, which are those of a Gaussian distribution; this
may be summarized in the formula

X∞
n¼0

ðiλÞn
n!

μn ¼ heiλφ̄i ¼ e−
1
2
λ2hφ̄2i: ð3Þ

Thus, the odd moments vanish, and the even moments
grow as n!. By the Hamburger moment theorem (see, for
example, Ref. [2]), these moments uniquely define the
probability distribution to be a Gaussian,

Pðφ̄Þ ¼ 1ffiffiffiffiffiffiffiffi
2πσ

p exp

�
−
φ̄2

2σ

�
: ð4Þ

Here the variance σ ¼ hφ̄2i is determined by both the
functional form and width of fτðtÞ: crucially, σ is finite
provided the Fourier transform f̂ðωÞ decays sufficiently
quickly as ω → ∞.1 Some physical effects of time averaged
quantum electric field fluctuations have been discussed in
Refs. [3,4], in examples where the physical situation can
define the sampling function.
The probability distributions for quadratic operators,

such as the energy density or other components of the
stress tensor, were discussed in Refs. [5,6]. Here it is an
average of a normal ordered operator which has finite
moments. In the case of the stress tensor for conformal field
theory in two spacetime dimensions with a Gaussian
sampling function in either space or time, the probability
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1The same is true for averaging over spatial and spacetime
volumes but is not true for averaging over spacelike curves.
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distribution is a shifted gamma distribution [5] with the
lower bound of its support given by the quantum inequality
bound [7]. This includes the case of the energy density of a
massless scalar field, for which the quantum inequality
bound was found by Flanagan [8].
The corresponding problem for quadratic operators in

four spacetime dimensions is more complicated. Here the
sampling must be in time or spacetime, not space alone.2

The case of Lorentzian sampling in time of the stress tensor
was treated in Ref. [6], where several features of the
probability distribution were inferred from the calculation
of a finite set of moments. (See also Ref. [13], in which
some combinatorial results used in Ref. [6] were proved.)
In this case, the moments grow as ð3nÞ!, and neither the
Hamburger moment condition nor the related Stieltjes
condition is satisfied, so the moments are not guaranteed
to define a unique probability distribution (and the available
evidence suggests that they do not). However, the asymp-
totic behavior of the probability distribution for large
arguments can be inferred from the moments. This allows
us to estimate the probability of especially large fluctua-
tions. For example, let u be the Lorentzian average on a
time scale τ of the electromagnetic energy density. In units
where ℏ ¼ c ¼ 1, which will be used throughout this
paper, the dimensionless measure of the averaged energy
density can be taken to be x ¼ uτ4. (Note that in Ref. [6]
the quantity x was defined with an additional factor of
16π2, which we now omit.) The asymptotic form of the
probability distribution for large x is of the form

PðxÞ ∼ x−2 expð−ax1=3Þ; ð5Þ
where a is a numerical constant of order 1. The x1=3

dependence in the exponential indicates that large energy
density fluctuations are more likely than one might have

expected. Large thermal fluctuations are suppressed by an
exponential in energy and hence can be dominated at larger
energies by vacuum fluctuations.
The probability distribution is not symmetrical in x, and

its support has a negative lower bound at x ¼ −x0, so thatZ
∞

−x0
PðxÞdx ¼ 1: ð6Þ

The lower bound for the Lorentzian average of the
electromagnetic energy density can be estimated [6] to
be of order x0 ≈ 3.0 × 10−4, using the convention of the
present paper. Thus, negative fluctuations are possible but
are tightly constrained. The lower bound on the probability
distribution for vacuum fluctuations is also the sharpest
possible quantum inequality bound on an expectation value
in an arbitrary state, because both are the lowest eigenvalue
of the time averaged operator.
Quantum stress tensor fluctuations can have a variety of

physical effects and have been discussed by several authors
[14–26]. These effects include radiation pressure fluctua-
tions [14] and passive quantum fluctuations of gravity,
where the gravitational field fluctuates in response to matter
stress tensor fluctuations. Much of the previous work on
this topic has involved calculating mean squared effects
using integrals of a stress tensor correlation function. An
exception is a study of black hole and Boltzmann brain
nucleation based on Eq. (5) in Ref. [6]. A deeper under-
standing of the probability distribution will allow further
investigation of the effects of large fluctuations.
The purpose of the present paper is to explore the

probability distributions associated with sampling func-
tions with compact support in time. These are functions
which are strictly zero outside of a finite interval but can
nonetheless be infinitely differentiable. Such functions
seem to be the most appropriate descriptions of measure-
ments which begin and end at finite times and avoid the
long temporal tails of functions like the Lorentzian. Some
examples of such functions will be treated in Sec. II, and in
particular it will be shown constructively that, for any
0 < α < 1, there are real-valued and non-negative smooth
compactly supported functions of which the Fourier trans-
forms are of the form expð−βjωjαÞ up to a fractional error
of order jωjα−1, where β > 0. The parameter α controls the
behavior of the test function near the switch-on and switch-
off regions; we also give a physical motivation for the use
of such functions. The asymptotic behavior of the moments
of quadratic operators sampled with these functions will be
treated in Sec. III and shown to have a dominant con-
tribution that grows like Γððnpþ 2Þ=αÞ, where p depends
on the operator in question (p ¼ 3 for the energy density).
The resulting asymptotic form for high moments will be
used in Sec. IV to infer the tail of the probability
distribution for large arguments and hence to estimate
the probability for large fluctuations. The tail takes the form

2See again Ref. [1]; more recent developments using micro-
local analysis [9] provide a more geometric framework that can
be used to understand the reason spatial averaging is excluded.
The basic issue is the ability to restrict distributions to submani-
folds; such restrictions certainly exist if the wavefront set of the
distribution contains no covector that can annihilate all the
tangent vectors to the submanifold (see, e.g., the discussion of
timelike curves in Ref. [10]). In the case of a (derivative of) a free
field, the relevant wavefront set contains only null covectors,
which cannot annihilate the tangent vectors to a timelike curve or
a spacelike hypersurface of codimension 1. However, in the case
of quadratic operators, the relevant wavefront set contains not
only null but also timelike covectors, which can annihilate all the
tangent vectors to a spacelike submanifold, so the restriction
cannot be achieved by these means. There is a more heuristic
argument for the inadequacy of spatial averaging alone. A plane
wave expansion of a quadratic operator will contain terms
proportional to eiðkþk0Þ·x. Modes for which k ¼ −k0 will yield
a divergent contribution to the moments which is not suppressed
by spatial averaging. This effect is the reason why there are no
quantum inequalities for spatially averaged stress tensors in four
spacetime dimensions [11]. Similar problems affect averages
along null curves [12].
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PðxÞ ∼ c0xb expð−axα=pÞ for certain parameters c0, a, and
b, and it will be shown that the probability of large
fluctuations can be much greater than that for the case
of Lorentzian averaged operators. Our results and their
possible applications will be discussed in Sec. V. Three
appendices contain technical details on various estimates
used in the text.

II. COMPACTLY SUPPORTED
SAMPLING FUNCTIONS

A. General results and constructions

The sampling functions studied in this paper will be
smooth and compactly supported non-negative functions,
which model a sampling period of finite duration. At the
outset it is worth recalling some facts concerning the
Fourier transforms of such functions. Let f be smooth
and compactly supported. Then its transform

f̂ðωÞ ¼
Z

∞

−∞
dte−iωtfðtÞ ð7Þ

is clearly bounded, jf̂ðωÞj ≤ R∞−∞ dtjfðtÞj, and as this
conclusion applies equally to the derivatives of f, we
deduce that, for any n ∈ N,

jf̂ðωÞj ¼ jf̂ðωÞ þ ð−1Þndfð2nÞðωÞj
1þ ω2n ≤

C
1þ ω2n ð8Þ

for some constant C depending on f and n. This is the well-
known statement that the transform decays faster than any
inverse power. On the other hand, the transform cannot
decay too rapidly: if there are positive constants A and α
such that jf̂ðωÞj ≤ Ae−αjωj for all ω, then the inversion
formula

fðtÞ ¼
Z

∞

−∞

dω
2π

eiωtf̂ðωÞ ð9Þ

provides an analytic extension of f to the strip jℑzj < α of
the complex plane. As f vanishes with all its derivatives
outside its support, it must therefore vanish identically by
the uniqueness of analytic continuation. However, Ingham
[27] has shown that there are functions of compact support
with transforms obeying f̂ðωÞ ¼ Oðexpð−jωjηðjωjÞÞÞ as
jωj → ∞ for any positive function η decreasing monoton-
ically to zero as ω → ∞ and such thatZ

∞

1

dω
ηðωÞ
ω

< ∞: ð10Þ

In particular, Ingham’s result applies to any function
ηðωÞ ¼ βωα−1 for 0 < α < 1 and β > 0 establishing the
existence of smooth compactly supported functions f with
f̂ðωÞ ¼ Oðe−βjωjαÞ. At this stage, we remark that our usage

of the “big-O” notation will coincide with that in Ref. [28]:
to write that gðsÞ ¼ OðhðsÞÞ on some set Smeans that there
exists a constant A > 0 such that jgðsÞj ≤ AjhðsÞj for all
s ∈ S. In fact, we will only ever use this notation in
situations where hðsÞ is non-negative, so one has
jgðsÞj ≤ AhðsÞ. To write that “gðsÞ ¼ OðhðsÞÞ as
s → ∞” indicates that there exists s0 > 0 such that gðsÞ ¼
OðhðsÞÞ on ½s0;∞Þ.
Ingham’s construction defines the desired test function f

in terms of its Fourier transform, which is a carefully
arranged infinite product of sinc functions. The precise
behavior of fðtÞ (which can be regarded as an infinite
convolution of top hat functions) is not investigated.
Instead, we give a different construction that is slightly
more explicit. To start, let φ ∈ C∞ðRÞ be a smooth non-
negative and integrable function so that φðtÞ ¼ 0 for t ≤ 0
and φðtÞ > 0 for t > 0, with φðtÞ → 0 as t → þ∞.
Choosing δ > 0, we may construct a smooth function with
support ½−δ; δ� by setting

HðtÞ ¼ φðtþ δÞφðδ − tÞ: ð11Þ

The choice of δ can be used to tune the shape of H. For
instance, if φ has its first local maximum at δ, then
elementary differentiation shows easily that H has a local
maximum at t ¼ 0. On the other hand, we can achieve a
broader peak by taking δ slightly beyond the maximum of
φ, at the expense of making t ¼ 0 into a local minimum of
H; this is what we will do in the specific examples below.
As φ is smooth and integrable, it has a Fourier transform,

which decays rapidly. Hence, the convolution theorem
applies, giving

ĤðωÞ ¼ eiδω
Z

∞

−∞

dω0

2π
φ̂ðω − ω0Þφ̂ð−ω0Þe−2iδω0

; ð12Þ

where we have used elementary results on Fourier trans-
forms of shifts and reflections, i.e., F ½φðtþ δÞ�ðωÞ ¼
eiωδφ̂ðωÞ and F ½φðδ − tÞ�ðωÞ ¼ e−iωδφ̂ð−ωÞ. For ω > 0,
it is convenient to rewrite this expression as

ĤðωÞ ¼ 2ℜðeiδωIðωÞÞ;

IðωÞ ¼
Z

∞

−ω=2

dω0

2π
φ̂ðωþ ω0Þφ̂ðω0Þe2iδω0

; ð13Þ

which may be proved by splitting the integration region
in Eq. (12) into ð−∞;ω=2Þ and ðω=2;∞Þ and making
the changes of variable ω0 → −ω0 and ω0 → ω0 − ω in the
resulting integrals, thus yielding

eiδω
Z

∞

−ω=2

dω0

2π
φ̂ðωþ ω0Þφ̂ðω0Þe2iδω0

and

e−iδω
Z

∞

−ω=2

dω0

2π
φ̂ð−ω0Þφ̂ð−ω − ω0Þe−2iδω0

;

ð14Þ
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which are seen to be mutually complex conjugate on
recalling that φ̂ð−ωÞ ¼ φ̂�ðωÞ because φ is real valued.
As H is real and even, the same is true of Ĥ, and therefore
Eq. (13) can be modified to hold for all ω by replacing all
occurrences of ω on the right-hand side by jωj.
Our interest is in the asymptotic behavior of Ĥ as

jωj → ∞. The specific examples chosen for φ below have
the property that the derivative φ̂0 decays more rapidly than
φ̂, which itself decays rapidly. Under these circumstances,
the factors of φ̂ðωþ ω0Þ in the definition of IðωÞ may be
taken as approximately constant over the effective region of
integration, leading to the approximation

ĤðωÞ≃ 2ℜ

�
eiδωφ̂ðωÞ

Z
∞

−ω=2

dω0

2π
φ̂ðω0Þe2iδω0

�
: ð15Þ

(We use ≃ for an uncontrolled or heuristic approximation,
reserving the symbol ∼ for a rigorously established
asymptotic equivalence [28].) Furthermore, the rapid decay
of φ̂ allows us to extend the integration range to the full real
line, so that the integral becomes φð2δÞ. Overall, we have
the approximation

ĤðωÞ≃ 2φð2δÞℜðφ̂ðωÞeiδωÞ ð16Þ

provided the errors incurred can be suitably controlled.
This is achieved in Appendix A, with the following result
(a particular application of Lemma A.1).
Theorem II.1 Let β > 0 and 0 < α < 1. Suppose the

function φ has a transform obeying φ̂ðωÞ ¼ Oðe−βjωjαÞ and
φ̂0ðωÞ ¼ Oðjωjα−1e−βjωjαÞ for all ω ∈ R, and φ̂00ðωÞ ¼
Oðjωjα−2e−βjωjαÞ for jωj > ω0, for some ω0 ≥ 0. Then
the integral IðωÞ defined in Eq. (13) obeys

IðωÞ ¼ φð2δÞφ̂ðωÞ þOðjωjα−1e−βjωjαÞ ð17Þ

for all ω and

I0ðωÞ ¼ φð2δÞφ̂0ðωÞ þOðjωjα−2e−βjωjαÞ ð18Þ

for jωj > ω0.
Consequently, under the hypotheses of the theorem, we

have

ĤðωÞ ¼ 2φð2δÞℜðφ̂ðωÞeiδωÞ þOðjωjα−1e−βjωjαÞ ð19Þ

for all ω, which shows in particular that ĤðωÞ ¼
Oðe−βjωjαÞ. The derivative of Ĥ will be studied later, and
we will also give specific examples of functions φ that meet
the hypotheses of Theorem II.1, after giving two further
refinements of our construction.
First, it will be convenient to work with a function that

has a non-negative transform. This is achieved by the
expedient of taking the convolution of H with itself,
defining a smooth function

KðtÞ ¼
Z

∞

−∞
dt0Hðt − t0ÞHðt0Þ ð20Þ

which has support ½−2δ; 2δ� and transform K̂ðωÞ ¼ ĤðωÞ2
obeying

K̂ðωÞ ¼ 2φð2δÞ2ðjφ̂ðωÞj2 þℜðφ̂ðωÞ2e2iδωÞÞ
þOðjωjα−1e−2βjωjαÞ: ð21Þ

The behavior of KðtÞ near the end points t ¼ �2δ of the
support is worth studying. Owing to the support of H, the
integration range in Eq. (20) may be replaced by ½−δ; δ�,
and, changing variables to s ¼ t0 þ δ, we may calculate

Kð−2δþ ϵÞ ¼
Z

2δ

0

dsφðϵ − sÞφðsÞφð2δ − sÞφð2δþ s − ϵÞ

≃ φð2δÞ2
Z

ϵ

0

dsφðϵ − sÞφðsÞ ð22Þ

if ϵ ≪ δ, using the support of the φðϵ − sÞ factor to restrict
the integration range. The last integral may be recognized
as a half-line convolution and is therefore the inverse
Laplace transform of ~φðpÞ2.
The second refinement arises because K̂ has oscillations

of magnitude comparable to its local mean value. It will be
useful to damp these by a further trick: exploiting again the
fact that the derivative of φ̂ falls off more rapidly than it
does, the function

L̂ðωÞ ¼ K̂ðωÞ þ 1

2
ðK̂ðωþ π=ð2δÞÞ þ K̂ðω − π=ð2δÞÞÞ

ð23Þ

has asymptotic form

L̂ðωÞ ¼ 4φð2δÞ2jφ̂ðωÞj2 þOðjωjα−1e−2βjωjαÞ ð24Þ

valid for jωj > ω0 for any ω0 > π=ð2δÞ. This is proved by
using the estimates on φ̂ and φ̂0 in the hypotheses of
Theorem II.1, the fact that jω − π=ð2δÞjγe−2βjω−π=ð2δÞjα ¼
Oðjωjα−1e−2βjωjαÞ on jωj > ω0, and the following result.
Lemma II.2 If FðωÞ ¼ fðωÞe2iδω, where δ > 0 is fixed

and f is differentiable, then

FðωÞ þ 1

2
ðFðωþ π=ð2δÞÞ þ Fðω − π=ð2δÞÞÞ

¼ O

�
sup

jζ−ωj<π=ð2δÞ
jf0ðζÞj

�
: ð25Þ

Proof.—Elementary calculation shows that the right-
hand side is 1

2
e2iδω½fðωÞ − fðω − π=ð2δÞÞ þ fðωÞ − fðωþ

π=ð2δÞÞ�, and we then use the mean value theorem. □
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The function L̂ may be recognized as the transform of

LðtÞ ¼ ð1þ cosðπt=ð2δÞÞÞKðtÞ ¼ 2 cos2ðπt=ð4δÞÞKðtÞ;
ð26Þ

which still has support ½−2δ; 2δ�. Moreover, the cosine
factor executes a single period of oscillation on the support
of K and so does not disturb the general “bump func-
tion” shape.
We also want to control the derivative L̂0ðωÞ. Recalling

that ĤðωÞ ¼ 2ℜðeiωδIðωÞÞ, it is easily seen that

Ĥ0ðωÞ ¼ 2δℜðieiωδIðωÞÞ þOðjI0ðωÞjÞ; ð27Þ

and therefore K̂ ¼ Ĥ2 has derivative

K̂0ðωÞ¼ 2iδðeiωδIðωÞþ e−iωδI�ðωÞÞðeiωδIðωÞ−e−iωδI�ðωÞÞ
þOðjIðωÞI0ðωÞjÞ ð28Þ

¼ 4δℜðie2iωδIðωÞ2Þ þOðjIðωÞI0ðωÞjÞ: ð29Þ

Substituting this expression into the derivative of (23) and
applying Lemma II.2, we find

L̂0ðωÞ ¼ O

�
sup

jζ−ωj<π=ð2δÞ
jIðζÞI0ðζÞj

�
¼ Oðjωjα−1e−2βjωjαÞ ð30Þ

valid for jωj > ω0 > π=ð2δÞ.

B. Specific examples

A class of specific examples can be obtained as follows.
We choose φ to be the inverse Laplace transform of ~φðpÞ ¼
expð−ðpτÞαÞ where τ and α are positive constants with
0 < α < 1. The role of τ is to set a time scale. As usual, the
Laplace transform is defined by ~φðpÞ ¼ R∞0 dtφðtÞe−pt,
and the branch cut for fractional powers is taken to lie along
the negative real axis. Functions of this form have a number
of interesting properties, some of which will be discussed in
Sec. II D. Given this definition, it is easily seen that φ is
supported in the positive half-line: if t < 0 one may, in the
Laplace inversion integral, complete the contour in the
right-hand half-plane, in which ~φ is analytic, and conclude
that φðtÞ ¼ 0. Consequently, the Fourier transform φ̂ of φ
extends to an analytic function in the lower half-plane and
may be found as the boundary value

φ̂ðωÞ ¼ lim
ϵ→0þ

φ̂ðω − iϵÞ ¼ lim
ϵ→0þ

~φðϵþ iωÞ: ð31Þ

This gives

φ̂ðωÞ ¼ exp ð−eisgnðωÞπα=2jωτjαÞ; ð32Þ

from which we may read off that

jφ̂ðωÞj ¼ exp ð−βjωjαÞ; β ¼ τα cos
πα

2
: ð33Þ

The derivatives of φ̂ exist except at ω ¼ 0 and obey

jφ̂0ðωÞj ¼ αταjφ̂ðωÞj
jωj1−α ;

jφ̂00ðωÞj ≤
�

α2τ2α

jωj2ð1−αÞ þ
αð1 − αÞτα
jωj2−α

�
jφ̂ðωÞj:

ð34Þ

In particular, φ̂00ðωÞ ¼ Oðjφ̂ðωÞ∥ωjα−2Þ for ω ∈ ½ω0;∞Þ
for any ω0 > 0. The hypotheses of Theorem II.1 are
therefore satisfied, and the construction above leads to a
smooth, even, and non-negative function L∶R → ½0;∞Þ
with compact support in ½−2δ; 2δ� and with a Fourier
transform that is analytic, even, and non-negative and
obeys the estimates

L̂ðωÞ ¼ 4φð2δÞ2e−2βjωjα þO

�
e−2βjωjα

jωj1−α
�
; ð35Þ

for ω ≠ 0, and

L̂0ðωÞ ¼ O

�
e−2βjωjα

jωj1−α
�

ð36Þ

valid for ω > ω0 with ω0 > π=ð2δÞ. If, as suggested above,
δ is chosen to be the first local maximum of φ, then δ ∝ τ.
Because τ is arbitrary, we can arrange that the width of the
support of LðtÞ take any desired value.
Meanwhile, the overall integral of L is L̂ð0Þ ¼ K̂ð0Þþ

K̂ðπ=ð2δÞÞ ¼ Ĥð0Þ2 þ Ĥðπ=ð2δÞÞ2, and we may divide
by this quantity to obtain a function with unit integral
and having all of the other previously stated properties.
Note that the coefficient of e−2βjωjα in the
normalized version of Eq. (35) is then 4φð2δÞ2=ðĤð0Þ2þ
Ĥðπ=ð2δÞÞ2Þ.
The approximation (22) gives the behavior in t-space

near the end points, noting that ~φðpÞ2 ¼ ~φð21=αpÞ has the
inverse transform 2−1=αφðt=21=αÞ,

Kð−2δþ ϵÞ≃ φð2δÞ2
21=α

φðϵ=21=αÞ;

Lð−2δþ ϵÞ≃ π2

8δ2
ϵ2Kð−2δþ ϵÞ;

ð37Þ

for ϵ ≪ δ (here L has not been normalized to have a unit
integral).
The construction described in this section can be

illustrated by taking the case τ ¼ 1, α ¼ 1=2, δ ¼ 1=2 as
a concrete example. In this case, the Laplace transform
~φðpÞ ¼ e−

ffiffiffi
p

p
may be inverted in closed form to give
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φðtÞ ¼
�
t−3=2e−1=ð4tÞ=

ffiffiffiffiffiffi
4π

p
t > 0

0 t ≤ 0:
ð38Þ

See, e.g., formula 17.13.31 in Ref. [29]. As δ has been
taken slightly larger than the first maximum of φ (which
occurs at δ ¼ 1=6), the resulting function

HðtÞ ¼ φðtþ 1=2Þφð1=2 − tÞ

¼
� 2

π ð1 − 4t2Þ−3=2e−1=ð1−4t2Þ jtj < 1
2

0 jtj ≥ 1
2

ð39Þ

has a broad peak with local minimum at t ¼ 0 (Fig. 1). The
Fourier transform of H and its leading-order asymptotic
approximation

ĤðωÞ∼ e−1=4π−1=2e−
ffiffiffiffiffiffiffiffi
jωj=2

p
cos

�jωj
2

−

ffiffiffiffiffiffi
jωj
2

r �
ðjωj→∞Þ

ð40Þ

are plotted in Fig. 2; as the graphs become indistinguish-
able even at parameters of jωj ∼ 20, they have been plotted
again in Fig. 3, over a larger parameter range but with the
leading exponential decay factor divided out. The function
L defined by (23) has integral 0.0658,3 and when one
normalizes L so that it has a unit integral [and hence
L̂ð0Þ ¼ 1], we obtain the function plotted in Fig. 4, which
has Lð0Þ ¼ 1.4990. Near the switch-on and switch-off
regions, i.e., jtj ∼ 1, we have

LðtÞ ∼ const · θð1 − jtjÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − jtj

p
e−1=ð4ð1−jtjÞÞ: ð41Þ

The (normalized) transform is plotted in Fig. 5 and obeys

L̂ðωÞ ¼ 2.9324e−
ffiffiffiffiffiffi
2jωj

p
þO

 
e−

ffiffiffiffiffiffi
2jωj

pffiffiffiffiffiffijωjp !
; ð42Þ

FIG. 1 (color online). A plot of HðtÞ for the case α ¼ δ ¼ 1=2.

FIG. 2 (color online). A plot of ĤðωÞ and its leading-order
approximation for the case α ¼ δ ¼ 1=2.

FIG. 3 (color online). A plot of eω=2ĤðωÞ and its leading-order
approximation for the case α ¼ δ ¼ 1=2. Here the exponential
decay has been removed to leave an envelope of approximately
constant amplitude.

3The numerical method used was to evaluate 101 samples of L
at equally spaced points between 0 and 1 inclusive, using
numerical integration. The integral of L over [0, 1] was evaluated
by interpolating a piecewise linear spline through the samples and
integrating numerically; the result was doubled to obtain the full
integral of L. These computations were performed in Maple 18.
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which is seen to become quite accurate even at moderate
values of jωj. This impression is supplemented by Fig. 6 in
which the same two functions are plotted over a different
parameter range and with the leading exponential decay
divided out—thus the leading-order asymptotic contribu-
tion in this figure is constant.
Johnson [30] has discussed a class of related functions

which can be simply defined in coordinate space and of
which the Fourier transforms obtained by a saddle point

approximation have a similar asymptotic form to (40), but
with an additional power-law decay factor.

C. Electrical model

As an example of how a leading edge of the form (41)
might arise in controlling a physical device, consider a wire
with uniform resistance per unit length ρ and capacitance
per unit length c relative to a ground potential. At time t and
position x along the wire, let Iðt; xÞ be the current flow in
the direction of increasing x, and let Vðt; xÞ be the potential
relative to the ground. Elementary application of the laws of
Ohm, Kirchhoff, and Volta gives

∂V
∂x ¼ −Iρ;

∂V
∂t ¼ −

1

c
∂I
∂x ; ð43Þ

which combine to show that V obeys the diffusion equation

∂V
∂t ¼ 1

ρc
∂2V
∂x2 : ð44Þ

This can be solved for t; x > 0 with specified boundary
condition Vðt; 0þÞ ¼ V0ðtÞ, representing the applied con-
trol voltage, and with Vð0þ; xÞ ¼ 0 for all x. Solving by
using a Laplace transform in t and discarding the solution
growing in x, one finds

Vðt; xÞ ¼
Z

t

0

Gðt − t0; xÞV0ðt0Þ; ~Gðp; xÞ ¼ e−x
ffiffiffiffiffiffi
pρc

p
:

ð45Þ
Note that ~Gðp; xÞ ¼ φðpÞ, with τ ¼ x2ρc. In a model
where the control voltage is applied sharply at t ¼ t�,
V0ðtÞ ¼ V�ϑðt − t�Þ, and one finds the exact solution

t

FIG. 4 (color online). A plot of LðtÞ for the case α ¼ δ ¼ 1=2.

FIG. 5 (color online). A plot of L̂ðωÞ and its leading-order
approximation for the case α ¼ δ ¼ 1=2. Here L̂ has been
normalized so that L has a unit integral. The asymptotic
approximation becomes good for jωj ≳ 10.

FIG. 6 (color online). A plot of e
ffiffiffiffi
2ω

p
L̂ and its leading-order

approximation for the case α ¼ δ ¼ 1=2. The exponential decay
has been removed.
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Vðt; xÞ ¼ V�erfc

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ρc

4ðt − t�Þ

s !

∼ V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðt − t�Þ
πρcx2

s
e−ρcx

2=ð4ðt−t�ÞÞ ð46Þ

for t → t�þ, where erfc is the complementary error
function. Comparison with the approximation (41) shows
that our specific function LðtÞ for α ¼ 1=2 gives a plausible
model for the rise of a control voltage at some position x
along the wire. Of course, there are limitations to this
model, because one cannot model the switch off in the same
way. However, it indicates that the sampling functions used
here are less artificial than might be thought at first sight.

D. Relation to positive stable distributions
and Fox H-Functions

We note some further special properties of the functions
φ used as the basis of our construction. Recall that φ is a
function on the positive half-line with Laplace transform
expð−ðpτÞαÞ. One may show that φ is a non-negative
function with a unit integral overRþ (see, e.g., Ref. [31])—
in other words, it is a probability density function. Fixing α,
the probability density function for the sum of two random
variables with densities defined by τ1 and τ2 is given by the
half-line convolution of their density functions, which
therefore has Laplace transform expð−ðpτ3ÞαÞ where
τ3 ¼ ðτα1 þ τα2Þ1=α. This is another distribution in the same
family, and for this reason, in conjunction with their
support on the positive half-line, they are called positive
stable distributions.
We have already given the explicit form of φðtÞ in the

case α ¼ 1=2; it is worth noting that the distributions for
other values of α can be expressed in terms of Fox H-
functions. Consider the one parameter family of functions,
gαðtÞ, of which the Laplace transforms are of the form e−p

α
,Z

∞

0

gαðtÞe−ptdt ¼ e−p
α
: ð47Þ

A series expansion for gαðtÞ was obtained by Humbert [32]
and proved rigorously by Pollard [31]:

gαðtÞ ¼ −
1

π

X∞
k¼1

ð−1Þk
k!tαkþ1

Γðαkþ 1Þ sin πkα: ð48Þ

Schneider [33] has discussed these functions and shown
that

gαðtÞ ¼
1

αt2
H10

11

�
1

t

���� −1 1

−α−1 α−1

�
; ð49Þ

where H10
11 is a Fox H-function (see, for example,

Ref. [34]). The asymptotic form as t → 0þ is

gαðtÞ ∼Dt−μe−wt
−ν
; ð50Þ

where

ν ¼ α

1 − α
; ð51Þ

μ ¼ 2 − α

2ð1 − αÞ ð52Þ

w ¼ ð1 − αÞαα=ð1−αÞ; ð53Þ

and

D ¼ α1=½2ð1−αÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − αÞp : ð54Þ

Thus, for the case α ¼ 1=2, we have ν ¼ 1, μ ¼ 3=2,
w ¼ 1=4, and D ¼ 1=

ffiffiffiffiffiffi
4π

p
so that g1=2ðtÞ has the same

switch-on behavior as that of φðtÞ given in Eq. (38); indeed,
g1=2 and φ coincide. For more general values of α, the
switch-on rate is characterized by the parameters ν and μ,
which in turn are determined by Eqs. (51) and (52).
At large values of t, it is clear from Eq. (48) that gαðtÞ

decays slowly—the distribution has a heavy or fat tail
and indeed, for 0 < α < 1, gα does not even possess a
finite mean.
Finally, we mention that the functions gα also appear in

the consideration of fractional derivative extensions of
the diffusion equation, formally ∂2αP=∂t2α ¼ K∂2P=∂x2.
Thus, the electrical model of the previous subsection could
in principle be generalized to a rather broader class of
signalling problems in time-fractional diffusion-wave equa-
tions (see, e.g., Ref. [35]), thus modelling the switch-on
process by an anomalous diffusion processes.

III. HIGH MOMENTS

In this section, we will give some general formulas for
moments of quadratic operators, with special attention to
the asymptotic forms for high moments. Let T be a normal
ordered quadratic operator which has been averaged in time
with a sampling function. In general, we can expand T as a
mode sum,

T ¼
X
ij

ðAija
†
i aj þ Bijaiaj þ B�

ija
†
i a

†
jÞ; ð55Þ

where Aij and Bij are symmetric matrices and a†i and ai are
the usual creation and annihilation operators for mode i of a
bosonic field. (The expression as a discrete sum is for
the convenience of presentation.) We define the moments
of T by

μn ¼ hTni; ð56Þ
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where the expectation value is in the vacuum state. Thus,
μ0 ¼ 1, μ1 ¼ 0, and formulas may be derived for higher
moments, such as

μ2 ¼ 2
X
ij

BijB�
ji; ð57Þ

μ3 ¼ 4
X
ijk

BjiAikB�
kj; ð58Þ

and

μ4 ¼ 3μ22 þ
X
ijkl

ð16BjiBklB�
ikB

�
jl þ 4BjiAikAjlB�

kl

þ 4BjiAikAklB�
jlÞ: ð59Þ

Consider the example of a massless scalar field, φ. The
mode expansion for its time derivative at a fixed spatial
point can be taken to be

_φ ¼
X
k

ffiffiffiffiffiffi
ω

2V

r
ðake−iωt þ a†ke

iωtÞ; ð60Þ

where ω ¼ jkj and V is a quantization volume with
periodic boundary conditions. Let T be the time average
with sampling function fðtÞ of ∶ _φ2∶, so

T ¼
Z

∞

−∞
dtfðtÞ∶ _φ2∶: ð61Þ

In this case, we find

Ajl ¼
ffiffiffiffiffiffiffiffiffiffiffi
ωjωl

p
V

f̂ðωj − ωlÞ ð62Þ

and

Bjl ¼
ffiffiffiffiffiffiffiffiffiffiffi
ωjωl

p
2V

f̂ðωj þ ωlÞ: ð63Þ

Here, we have defined the Fourier transform as in Eq. (7)
and assumed that the sampling function is real and even,
fðtÞ ¼ fð−tÞ ¼ f�ðtÞ, so its Fourier transform is also real
and even,

f̂ðωÞ ¼ f̂ð−ωÞ ¼ f̂�ðωÞ: ð64Þ
We will also assume that f is normalized to have a unit
integral, so

f̂ð0Þ ¼
Z

∞

−∞
dtfðtÞ ¼ 1: ð65Þ

Because the summands in the expressions for μn depend
only upon the frequencies of the modes, in the limit of large
V, we have

X
k

→
V
2π2

Z
∞

0

dωω2: ð66Þ

In this limit, the factors of V cancel, and the moments
become integrals of products of f̂ factors.
In the case of a Lorentzian sampling function of width τ,

fðtÞ ¼ fLðtÞ ¼
τ

πðt2 þ τ2Þ ; ð67Þ

we have

f̂ðωÞ ¼ f̂LðωÞ ¼ e−τjωj: ð68Þ

If we use this form, the expressions for the μn given above
reproduce the values given in Table I in Ref. [6].

A. Dominant contribution to high moments

As n increases, the number of terms in expressions for
μn, such as Eq. (59), grows rapidly. Fortunately, there
seems to be one term which gives the dominant contribu-
tion. For n ≥ 3, this term is

Mn ¼ 4
X
j1���jn

Bj1j2Aj2j3Aj3j4 � � �Ajn−1jnB
�
jnj1

; ð69Þ

while for n ¼ 2 the leading factor is 2. For the case n ¼ 4,
this term is the last one in Eq. (59). We can numerically test
the hypothesis that μn ∼Mn for large n using the case of the
Lorentzian sampling of ∶ _φ2∶, and the data in Table I in
Ref. [6]. In this case of n ¼ 4, we find M4=μ4 ≈ 0.843.
However, this ratio steadily rises toward unity as n
increases, becoming 0.966 at n ¼ 10 and 0.993 at n ¼ 20.
We can understand the origin of the above expression as

follows: In every term of Tn contributing to μn, there must
always be a factor of Bj1j2 on the left and one of B

�
jnj1

on the
right. This arises because Bijaiaj is the only term in
Eq. (55) which does not annihilate the vacuum from the
right and B�

ija
†
i a

†
j is the only term which does not annihilate

it from the left. The overall factor of 4 in Eq. (69) is a
combinatorial factor coming from the two ways to order the
j1j2 indices on the left and the two ways to order jnj1 on
the right. After the two B factors, there are n − 2 remaining
factors, which can be combinations of A and B factors.
However, the relative minus sign between the terms in the
argument of f̂ in Eq. (62) tells us that A tends to fall more
slowly with increasing ωi than does B. Thus, the largest
contribution arises when all of these n − 2 factors are those
of A, as in Eq. (69). In addition to the contribution Mn,
which can also be written as a trace Mn ¼ 4TrBAn−2B�,
there are a number of other terms in which the factors in
the trace are reordered; these are also suppressed relative
to Mn. In any case, all of the remaining terms in μn are
non-negative, so Eq. (69) gives a lower bound on the
moments, Mn ≤ μn.
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We may use Eqs. (62) and (63) to write an expression for
Mn in terms of Fourier transforms of the sampling function.
In the limit V → ∞, the result will be of the form

Mn ¼Cn

Z
∞

0

dω1 � � �dωnðω1 � � �ωnÞp

× f̂ðω1þω2Þf̂ðω2−ω3Þ � � � f̂ðωn−1−ωnÞf̂ðωnþω1Þ:
ð70Þ

Here

Cn ¼
1

ð2π2Þn ð71Þ

and p ¼ 3 for the case of _φ2 given in Eq. (61), which will
be our primary example. Equation (70) can also be obtained

as one of the terms appearing in the evaluation of μn by
Wick’s theorem, as in Sec. III.A and Appendix B of
Ref. [6], where it was identified as the dominant contri-
bution in the case of Lorentzian smearing.

B. Asymptotic form of the moments

In this subsection, we develop a procedure for finding
asymptotic limits of Mn for large n. Consider the case
where n is even, so we may write n ¼ 2m and rewrite the
integral in Eq. (70) as

M2m ¼ C2m

Z
∞

0

dω1dωmþ1ðω1ωmþ1Þp½Gm−1ðω1;ωmþ1Þ�2;
ð72Þ

where Gm−1 is defined by an m − 1-dimensional integral,

Gm−1ðω1;ωmþ1Þ ¼
Z

∞

0

dω2 � � � dωmðω2 � � �ωmÞpf̂ðω1 þ ω2Þf̂ðω2 − ω3Þ � � � f̂ðωm − ωmþ1Þ: ð73Þ

Note that in general Gm−1 will not be symmetric in its two
arguments. We can also write an expression for a general
value of n as
Mmþm0 ¼Cmþm0

Z
∞

0

dωdΩðωΩÞpGm−1ðω;ΩÞGm0−1ðω;ΩÞ:
ð74Þ

The definition, Eq. (73), leads to a recurrence relation,

Glðω;ΩÞ ¼
Z

∞

0

dξξpf̂ðΩ − ξÞGl−1ðω; ξÞ; l ≥ 1;

ð75Þ
with G0ðω;ΩÞ ¼ f̂ðωþ ξÞ.
Thus, knowledge of G1 allows us to compute all of the

Gl and hence the dominant contribution to the moments,
Mn, for all n.
We are especially interested in the case of compactly

supported sampling functions, such as those discussed in
Sec. II. If we adopt units in which τ ¼ 1, the Fourier
transform, f̂ðωÞ, will fall faster than any power of ω when
ω ≫ 1. We will assume that it falls as an exponential of ωα,
where 0 < α < 1, specifically that

f̂ðωÞ ¼ γe−βjωjα þO

�
e−βjωjα

jωj1−α
�

ð76Þ

for ω ≠ 0. We are interested in the asymptotic forms of G1,
Gm, and finally ofMn. To start, let us proceed heuristically.
As f̂ becomes more flat at large values of its argument, a
reasonable conjecture is that

G1ðω;ΩÞ≃ 2πfð0ÞΩpf̂ðωþ ΩÞ: ð77Þ

Here fð0Þ, the sampling function evaluated at t ¼ 0, is
expected to be of order unity. In making this approxima-
tion, it is important that our the assumption (76) entails that
f̂ does not oscillate at leading order [cf. the behavior of the
function Ĥ in Eq. (19)]; if it did, one might expect a similar
approximation but modified by a factor which would feed
through to later estimates. Proceeding with the conjecture
(77), we may now use the recurrence relation, Eq. (75), to
find a corresponding conjecture for the asymptotic form for
Gm. We make the ansatz that

GðpÞ
m ðω;ΩÞ≃ ½2πfð0Þ�mΩmpf̂ðωþ ΩÞ; ð78Þ

where we have added a superscript to denote the value of p.
Insertion of this ansatz in Eq. (75) leads to

GðpÞ
mþ1ðω;ΩÞ≃ ½2πfð0Þ�m

Z
∞

0

dξξðmþ1Þpf̂ðΩ − ξÞf̂ðωþ ξÞ

¼ ½2πfð0Þ�mGððmþ1ÞpÞ
1 ðω;ΩÞ: ð79Þ

Now the asymptotic form, Eq. (77), leads to

GðpÞ
mþ1ðω;ΩÞ≃ ½2πfð0Þ�mþ1Ωðmþ1Þpf̂ðωþΩÞ; ð80Þ

which proves our ansatz by induction at this (currently
heuristic) level.
In Appendix B, these conjectures will be established

rigorously. To be precise, it will be shown that for each

p ≥ 1 and m ≥ 1 there exist polynomials PðpÞ
m and QðpÞ

m of
degrees mp − 1 and mp, respectively, with non-negative
coefficients independent of ω and Ω, such that
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jGðpÞ
m ðω;ΩÞ − ½2πfð0Þ�mΩmpf̂ðωþΩÞj

≤
�
PðpÞ
m ðΩÞ þ QðpÞ

m ðΩÞ
ðωþ ΩÞ1−α

�
e−βðωþΩÞα ð81Þ

for all ω;Ω > 0. This shows that the error terms in the
approximation (78) are suppressed relative to the dominant
term. For instance, if Ω → ∞, with ω=Ω fixed, the error
term is suppressed by a factorΩα−1 relative to themain term.
The statement (81) also holds ifm ¼ 0, under the convention
that a polynomial of degree −1 vanishes identically; in this
case we simply reproduce the assumption (76) on f̂.

Although we do not control the polynomials PðpÞ
m and

QðpÞ
m explicitly (for example, to show that the coefficients

are independent of m), we do show that there are positive
constants A, B, c, and D such that

ABmΩmpe−ðωþΩÞα ≤GðpÞ
m ðω;ΩÞ

≤ ðcDmΩmp þRðpÞ
m ðΩÞÞe−ðωþΩÞα ð82Þ

for all ω;Ω > 0, where RðpÞ
m is a polynomial of degree

mp − 1. These rough bounds provide further evidence
that (78) is robust.
Now we seek the asymptotic form for Mn when n ≫ 1.

Use the asymptotic form for Gm, Eq. (78), in Eq. (74) to
write

Mn ≃ Cn½2πfð0Þ�n−2
Z

∞

0

dωdΩωpΩðn−1Þpf̂2ðωþ ΩÞ;
ð83Þ

where n ¼ mþm0. Next let u ¼ ωþΩ, and write

Mn≃Cn½2πfð0Þ�n−2
Z

∞

0

duf̂2ðuÞ
Z

u

0

dΩðu−ΩÞpΩðn−1Þp;

ð84Þ

and then let x ¼ Ω=u to obtain

Mn ≃ Cn½2πfð0Þ�n−2
Z

∞

0

duf̂2ðuÞunpþ1

×
Z

1

0

dxð1 − xÞpxðn−1Þp: ð85Þ

The integration on x may be performed to yield

Mn ≃ Cn½2πfð0Þ�n−2
p!½ðn − 1Þp�!
ðnpþ 1Þ!

Z
∞

0

duf̂2ðuÞunpþ1:

ð86Þ

If n ≫ 1, the factor of unpþ1 will cause the dominant
contribution to the u-integration to come from the region

where u ≫ 1, so we may use the asymptotic form, Eq. (76),
to find

Mn ≃ Cn½2πfð0Þ�n−2
p!½ðn − 1Þp�!
ðnpþ 1Þ!

×
γ2

αð2βÞðnpþ2Þ=α Γ
�ðnpþ 2Þ

α

�
: ð87Þ

The most important part of this expression is the final
gamma function factor, which leads a rapid rate of growth
of the high moments, Mn ∝ ðpn=αÞ!. This result will be
used in Sec. IV to infer the tail of the probability
distribution. Although we have not performed rigorous
error estimates here, they could be done; however, the
rough bounds (82) show that the gamma function factor
will be a robust feature of the result.
The argument given here and in Appendix B does not

apply to the case of a Lorentzian sampling function, where
α ¼ 1, as the error term in Eq. (78) will now be as large as
the dominant contribution. A different argument specifi-
cally for the Lorentzian case is given in Appendix C. This
argument reproduces the asymptotic form of the moments
found in Ref. [6].

C. Numerical tests

Here we discuss some numerical tests of the asymptotic
forms derived in the previous subsection, focussing in
particular on the form of G1ðω;ΩÞ for large Ω with fixed
ω=Ω, given in Eq. (77). Here we wish to test this result
in the case that f̂ðωÞ is exactly given by Eq. (76), with
β ¼ γ ¼ 1, so

f̂ðωÞ ¼ e−jωjα : ð88Þ

Now the exact form for G1ðω;ΩÞ may be expressed as

G1ðω;ΩÞ ¼ Ωpþ1

Z
∞

0

dννp

× exp

�
−Ωα

��
ω

Ω
þ ν

�
α

þ j1 − νjα
�	

; ð89Þ

where ν ¼ ξ=Ω. If we use fð0Þ ¼ ð2πÞ−1 R∞−∞ dωf̂ðωÞ ¼
Γð1=αÞ=ðπαÞ, then the asymptotic form in Eq. (77) may be
written as

G1Aðω;ΩÞ ¼
Ωp

α
Γð1=αÞe−ðωþΩÞα : ð90Þ

Let R be the ratio of the result of numerical integration of
Eq. (89) to the asymptotic form, Eq. (90), for p ¼ 3. In
Fig. 7, this ratio is plotted for the case α ¼ 1=2 as a function
of Ω for various values of ω=Ω. We see that R → 1 for
Ω≳ 102, as expected. (For the case ω=Ω ¼ 0.1, this has not
quite occurred on the scale plotted but does occur for larger
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values of Ω.) This plot is repeated in Fig. 8 for the case
α ¼ 1=4, where the asymptotic limit is reached
for Ω≳ 105. The case α ¼ 1=8 is illustrated in Fig. 9,
where the asymptotic form holds for Ω≳ 1010. Note that
before the asymptotic limit is reached, G1ðω;ΩÞ tends to
exceed the asymptotic form, in some cases by large factors.
This emphasizes that the asymptotic estimates are lower
bounds on the exact results. Note that R → 1 for large Ω in
all of the cases plotted, including when α < 1=4. The only
case plotted where R < 1 in part of the range is in Fig. 7,
when ω≲ Ω. However, this effect seems to be small and
does not alter the conclusion that the asymptotic form,
Eq. (90), holds for large Ω.
A separate numerical test can be obtained by numerical

evaluation of Mn from Eq. (70) using the form of f̂ in
Eq. (88). Unfortunately, this is only feasible for relatively
small values of n. For the case of p ¼ 3 and α ¼ 1=2,
this evaluation for _φ2 leads to M4 ≈ 3.0 × 1012 and
M6 ≈ 1.5 × 1025. By comparison, the asymptotic form,
Eq. (87), leads to M4 ≈ 3.0 × 1012 and M6 ≈ 1.0 × 1025.
These results are in fair agreement, despite the fact that
n ¼ 6 may be too small to expect detailed agreement.

IV. TAIL OF THE PROBABILITY DISTRIBUTION

In this section, we will use the asymptotic form of the
moments, Eq. (87), to obtain information about the prob-
ability for large fluctuations. Let the probability distribu-
tion, PðxÞ, be a function of the dimensionless variable
x ¼ Tτpþ1. Our main example is p ¼ 3, so x ¼ Tτ4. Recall
that in Sec. III B we computed the asymptotic form for the
moments using units in which τ ¼ 1. We can now restore
an arbitrary value for τ by using the variable x. We follow
the discussion in Sec. V of Ref. [6] and postulate that the
asymptotic form for PðxÞ for x ≫ 1 can be written as

PðxÞ ∼ c0xbe−ax
c
; ð91Þ

for some constants c0, a, b, and c. The n-moment for n ≫ 1
is given by

μn ¼
Z

∞

−x0
xnPðxÞdx ≈ c0

Z
∞

0

xnþbe−ax
c
dx

¼ c0
c
a−ðnþbþ1Þ=cΓ½ðnþ bþ 1Þ=c�: ð92Þ

Recall that −x0 is the lower bound of the support of PðxÞ.
We expect the interval −x0 ≤ x ≤ 0 to make a negligible
contribution when n ≫ 1. We assume that the asymptotic
form of the dominant contribution to μn, given by Eq. (87),
will match Eq. (92), allowing us to infer values for the
constants in Eq. (91). Note that the asymptotic form of
the moments is growing too rapidly with increasing n for
the moments to define a unique probability distribution (at
least according to the Hamburger or Stieltjes criteria [2]).
However, the difference between two probability distribu-
tions with the same moments must be an oscillatory
function, all of the moments of which vanish. We are less
interested in the detailed functional form of PðxÞ than in the
its average rate of decay for large x, and we expect this
average rate to be of the form of Eq. (91). This reasoning
can be supported by rigorous arguments—see Sec. VI
of Ref. [6].
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FIG. 7 (color online). Here R, the ratio of the numerical
integration for G1, from Eq. (89), to the asymptotic form,
Eq. (90), for p ¼ 3, is plotted for the case α ¼ 1=2 as a function
of Ω for various values of ω=Ω.
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FIG. 8 (color online). A plot of R for the case α ¼ 1=4.
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FIG. 9 (color online). A plot of R for the case α ¼ 1=8.
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First, note that

Γ
�
npþ 2

α

�
¼ ðnp=αþ 2=α − 1Þ! ð93Þ

and that

½ðn − 1Þp�!
ðnpþ 1Þ! ¼ α−ðpþ1Þ

ðnp=αþ 1=αÞðnp=αÞ � � � ðnp=α − p−1
α Þ

∼
α−ðpþ1Þ

ðnp=αþ 2=α − 1Þ � � � ðnp=αþ 2=α − p − 1Þ

×

�
1þO

�
1

n

��
: ð94Þ

In the last step, we use the fact that n is large, but p is
fixed, so

1

npþ A
∼

1

np

�
1þO

�
1

n

��
; ð95Þ

for any constant A. We assume that Cn is of the form

Cn ¼ B0Bn ð96Þ

for constants B0 and B. This form holds for the case of _φ2,
given in Eq. (71).
Next we drop the Oð1=nÞ terms in Eq. (94) and rewrite

Mn in Eq. (87) as

Mn ∼ B0p!γ2α−ðpþ2ÞBn½2πfð0Þ�n−2ð2βÞ−ðnpþ2Þ=α

× Γðnp=αþ 2=α − p − 1Þ: ð97Þ

Now we can compare Eqs. (92) and (97) to obtain
expressions for b and c in terms of p and α alone:

c ¼ α

p
ð98Þ

and

b ¼ c

�
2

α
− p − 1

�
− 1 ¼ 2 − α

p
− ðαþ 1Þ: ð99Þ

We also obtain expressions for a and c0 as

a ¼ 2β½2πfð0ÞB�−α=p ð100Þ

and

c0 ¼ caðbþ1Þ=cB0p!γ2α−ðpþ2Þð2βÞ−ð2=αÞ½2πfð0Þ�−2: ð101Þ

We are especially interested in operators, such as stress
tensors, for which p ¼ 3, so c ¼ α=3 and b ¼
−ð4αþ 1Þ=3. Although Eq. (87) does not strictly hold

for the Lorentizian sampling function, α ¼ 1, we do
reproduce the c ¼ 1=3 result of Ref. [6]. Compactly
supported sampling functions with α < 1 lead to an even
slower rate of decrease of the tail, such as c ¼ 1=6 for
α ¼ 1=2. Recall that the asymptotic form for the high
moments which we have used, Eq. (87), is expected to be a
lower bound on the exact moments. This means that the
form of the asymptotic probability distribution, Eq. (91), is
a lower bound on the exact PðxÞ, which could potentially
fall even more slowly for large x.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the probability distribu-
tions for quantum stress tensor operators averaged in time
with functions of compact support, which describe mea-
surements in a finite time interval. Our main interest is in
the asymptotic form of the distribution, which gives the
probability for large fluctuations in the vacuum state. This
asymptotic form is determined by the rate of growth of the
high moments of the distribution. This rate of growth was
inferred by first identifying a dominant contribution to the
high moments, Eq. (69), which is determined by the Fourier
transform of the sampling function. We next used asymp-
totic analysis to find the rate of growth of the dominant
contribution, which is given in Eq. (97). This rate is
typically too fast for the moments to uniquely determine
the probability distribution according to the Hamburger or
Stieltjes criteria. However, the asymptotic form for the
moments is adequate to give estimates for the probability
for large fluctuations, which was done in Sec. IV. Note that
the dominant contribution, Mn, is a lower bound on the
exact moments, μn, so our estimate of the asymptotic
probability distribution is a lower bound on the exact result
and hence on the probability of large fluctuations.
Compactly supported sampling functions have Fourier

transforms which fall more slowly than an exponential,
resulting in more rapid growth of the moments compared to
the case of Lorentzian averaging, and a more slowly falling
tail of the probability distribution. For example, the
sampling functions with α ¼ 1=2, such as those discussed
in Sec. II B, result in moments growing as ð6nÞ! and an
asymptotic probability distribution for large x of the form
of x−1e−x

1=6
, where x is the dimensionless measure of the

sampled stress tensor. This slow rate of decrease leads to
the possibility of significant physical effects from large
fluctuations. Furthermore, the rate of decrease is very
sensitive to the value of α, with smaller α leading to an
even greater probability of large fluctuations. The value of
α is linked to the rate of switch on and switch off of the
sampling functions, as described by Eqs. (50), (51),
and (52).
There are several possible physical applications of these

results, including the effects of quantum radiation pressure
fluctuations on barrier penetration by charged particles or
upon light cone fluctuation effects in a nonlinear material.
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These are quadratic operator fluctuation effects, analogous
to the linear electric field fluctuations studied in Refs. [3,4].
In both cases, the physical system may define a choice of
the sampling function fτðtÞ. For example, the effects of the
fluctuations of the squared electric field in a nonlinear
material are determined by an integral along the path of a
probe pulse, as described in Ref. [3]. This integral in turn
depends upon the density profile of the slab. This illustrates
the general principle that physical processes which begin
and end at finite times should be described by sampling
functions with compact support, and the specific form of
these functions is ultimately determined by the details of
the physical process in question. Because all of the
probability distributions treated here fall more slowly than
exponentially, even at finite temperature sufficiently large
fluctuations of, for example, energy density are more likely
to be vacuum fluctuations than thermal fluctuations. This
and other physical consequences of the results described in
this paper need to be more carefully explored.
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APPENDIX A: INTEGRAL ESTIMATES

The aim of this appendix is to prove Theorem II.1. This
is accomplished as a special case of the following result.
Lemma A.1 Suppose that positive functions Ψ;Ψ1, and

ϒ are defined on ð0;∞Þ, withΨ1 monotone decreasing and
obeying Z

∞

0

dωð1þ ωÞϒðωÞ < ∞ ðA1Þ

and

ΨðωÞ
Z

∞

λω
dω0ϒðω0Þ ¼ OðΨ1ðωÞÞ;Z

λω

0

dω0ω0Ψ1ðω − ω0Þϒðω0Þ ¼ OðΨ1ðωÞÞ ðA2Þ

for ω > 0 and fixed λ ∈ ½0; 1�. Let ψ∶ ð0;∞Þ → C be
differentiable and υ∶R → C be continuous, with υðωÞ ¼
OðϒðjωjÞÞ for all ω ∈ R, and suppose there is ω0 ≥ 0 so
that ψðωÞ ¼ OðΨðωÞÞ, ψ 0ðωÞ ¼ OðΨ1ðωÞÞ for ω > ω0.
Then

Z
∞

−λω
dω0ψðωþω0Þυðω0Þ¼ψðωÞ

Z
∞

−∞
dω0υðω0ÞþOðΨ1ðωÞÞ

ðA3Þ

for ω > ω0=ð1 − λÞ if λ < 1 or ω > 0 if ω0 ¼ 0. If,
additionally, ψ 0 is differentiable with ψ 00ðωÞ ¼ OðΨ2ðωÞÞ
where Ψ2 is a positive, monotone decreasing function on
ð0;∞Þ so that properties (A2) also hold with Ψ and Ψ1

replaced by Ψ1 and Ψ2, respectively, then

d
dω

Z
∞

−λω
dω0ψðωþ ω0Þυðω0Þ ¼ ψ 0ðωÞ

Z
∞

−∞
dω0υðω0Þ

− λψðð1 − λÞωÞυð−λωÞ
þOðΨ2ðωÞÞ ðA4Þ

holds for ω > ω0=ð1 − λÞ if λ < 1 or ω > 0 if ω0 ¼ 0.
Proof:—The integrals in Eq. (A3) are finite because υ

is necessarily absolutely integrable and ψ is bounded. A
straightforward rearrangement of terms gives

Z
∞

−λω
dω0ψðωþ ω0Þυðω0Þ − ψðωÞ

Z
∞

−∞
dω0υðω0Þ

¼ −ψðωÞ
Z

−λω

−∞
dω0υðω0Þ

þ
Z

∞

−λω
dω0ðψðωþ ω0Þ − ψðωÞÞυðω0Þ; ðA5Þ

and the first term on the right-hand side is OðΨ1ðjωjÞÞ
by the hypotheses. Next, the mean value theorem gives
ψðωþ ω0Þ − ψðωÞ ¼ ω0ψ 0ðζÞ for some ζ lying between ω
and ωþ ω0, giving

jψðωþ ω0Þ − ψðωÞj ≤ jω0jΨ1ðminfω;ωþ ω0gÞ ðA6Þ

on recalling thatΨ1 bounds ψ 0 and is monotone decreasing.
Splitting the integration range at ω ¼ 0, this gives

���� Z ∞

−λω
dω0ðψðωþ ω0Þ − ψðωÞÞυðω0Þ

����
≤ Ψ1ðωÞ

Z
∞

0

dω0ω0ϒðω0Þ

þ
Z

λω

0

dω0ω0Ψ1ðω − ω0Þϒðω0Þ; ðA7Þ

where we have also changed ω0 → −ω0 in the last integral.
As both terms on the right-hand side are OðΨ1ðjωjÞÞ, the
first part of the result is proved. For the second part, we first
note that

CHRISTOPHER J. FEWSTER AND L. H. FORD PHYSICAL REVIEW D 92, 105008 (2015)

105008-14



d
dω

Z
∞

−λω
dω0ψðωþω0Þυðω0Þ ¼ −λψðð1− λÞωÞυð−λωÞ

þ
Z

∞

−λω
dω0ψ 0ðωþω0Þυðω0Þ

ðA8Þ

and apply the first part of the lemma to the second term. □
The proof of Theorem II.1 now amounts to verifying that

the hypotheses of Lemma A.1 are satisfied for the functions

ΨðωÞ ¼ ϒðωÞ ¼ expð−βωαÞ; Ψ1ðωÞ ¼
expð−βωαÞ

ω1−α ;

Ψ2ðωÞ ¼
expð−βωαÞ

ω2−α ; ðA9Þ

where β > 0, 0 < α < 1, in the case λ ¼ 1=2. Condition
(A1) is obvious, while we may also computeZ

∞

Ω
dω0e−βðω0Þα ¼ Ω

Z
∞

0

due−βΩ
αð1þuÞα ∼

Ω1−αe−βΩ
α

αβ

ðΩ → ∞Þ ðA10Þ

using Laplace’s method (see Lemma A.2 below). As the
right-hand side is bounded for allΩ > 0 and decays rapidly
as Ω → ∞, it follows that, for each γ > 0, the function
ωγ
R
∞
ω=2 dω

0 expð−βðω0ÞαÞ is bounded for all ω > 0 (with a
bound depending on γ). Hence, the first condition in (A2)
holds for Ψ and Ψ1 and also for Ψ1 and Ψ2. The second
condition in (A2) is verified by noting that

Z
ω=2

0

dω0ω0 e
−β½ðω−ω0Þαþω0α�

ðω − ω0Þη

¼ ω2−η

α

Z
2−α

0

dv
v2=α−1

ð1 − v1=αÞη e
−βωαðvþð1−v1=αÞαÞ; ðA11Þ

where we have made the change of variables v ¼ ðω0=ωÞα.
The integral may be estimated by Laplace’s method in the
form of Lemma A.2 below; in particular, the integral is
Oðω−ηe−βω

αÞ for ω > 0. This calculation shows that the
second condition in (A2) is verified for both Ψ1 and Ψ2 for
0 < α < 1. Note, however, that this condition would fail
in the case α ¼ 1. Equation (17) in Theorem II.1 is now
immediate, while Eq. (18) follows on noting that

Ψðω=2Þ2 ¼ e−2βðω=2Þα ¼ Oðωα−1e−βω
αÞ ðA12Þ

as 0 < α < 1.
It remains to state Laplace’s method in the form in which

we use it.
Lemma A.2 Let V; γ > 0 be constant, and suppose

g∶ ½0; V� → R is continuous with gð0Þ ≠ 0 and h∶ ½0; V� →
R is continuous, attains its maximum only at v ¼ 0, and has

a strictly negative one-sided derivative h0ð0Þ. Then the
integral

IðtÞ ¼
Z

V

0

dvvγ−1gðvÞethðvÞ ðA13Þ

obeys

IðtÞ ∼ ΓðγÞgð0Þethð0Þ
ðtjh0ð0ÞjÞγ ðt → ∞Þ ðA14Þ

and IðtÞ ¼ Oðt−γethð0ÞÞ on ð0;∞Þ. The asymptotic equiv-
alence (A14) also holds if ½0; V� is replaced by ½0;∞Þ, under
the additional assumptions that hðvÞ → −∞ as v → ∞ and
that IðtÞ converges for t ¼ t0; in this case we have IðtÞ ¼
Oðt−γethð0ÞÞ on ðt0;∞Þ.
Proof.—The asymptotic equivalence holds by a straight-

forward adaptation of the argument in Sec. 4.3 of Ref. [28]
(which deals with the γ ¼ 1 case). As IðtÞ is evidently
bounded on any compact set, we may deduce that IðtÞ ¼
Oðt−γethð0ÞÞ on ð0;∞Þ or ðt0;∞Þ as appropriate. □

APPENDIX B: ASYMPTOTIC BEHAVIOR OF Gm

The aim of this Appendix is to prove statement (81) on
the behavior of Gmðω;ΩÞ. Throughout, we will assume
(76) that f̂ðωÞ ¼ γe−βjωjα þOðe−βjωjα=jωj1−αÞ, where 0 <
α < 1 and β; γ > 0. It will also be useful to note that the
magnitude of f̂ðξÞ satisfies

jf̂ðωÞj ≤ ce−βjωjα ðB1Þ

for some constant c. This follows because f̂ is bounded and
obeys Eq. (76), although in general c ≠ γ.

1. Preliminary estimates

Define a family of integrals

Irνðω;ΩÞ ¼
Z

∞

0

dξ
ðΩþ ξÞr

ðωþ Ωþ ξÞν e
−βðξαþðωþΩþξÞαÞ; ðB2Þ

where ω;Ω > 0, 0 ≤ ν < 1, and r ≥ 0 is an integer. Noting
that the factor ðωþΩþ ξÞ−νe−βðωþΩþξÞα is decreasing on
½0;∞Þ, we obtain the obvious estimate

Irνðω;ΩÞ ≤
e−βðωþΩÞα

ðωþ ΩÞν J
0;rðΩÞ; ðB3Þ

where we define, for q ≥ 0,

Jq;rðΩÞ ¼
Z

∞

0

dξξqðΩþ ξÞre−βξα ; ðB4Þ

which is evidently a polynomial of degree r in Ω with
non-negative coefficients (independent of ω) that can be
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evaluated in terms of Euler Γ functions; for instance, one
easily sees that

Jðq;rÞðΩÞ ¼ Γððqþ 1Þ=αÞ
αβðqþ1Þ=α Ωr þ lower-order terms: ðB5Þ

In particular, the leading coefficient is independent of r.
Next, let us make the elementary observation that the

inequality

xα þ yα ≥ ðxþ yÞα þ ð1 − αÞminfx; ygα ðB6Þ

holds for all x; y > 0, 0 < α < 1. This is seen by the
calculation (assuming without loss of generality that x ≤ y)

xα þ yα − ðxþ yÞα ¼ xα − α

Z
xþy

y
dzzα−1 ≥ xα − αxyα−1

≥ ð1 − αÞxα; ðB7Þ

where the integral was estimated by multiplying the
measure of the integration range by the maximum value
of the integrand; note that xα ≤ yα but yα−1 ≤ xα−1.
Now consider

Kq;r
ν ðω;ΩÞ ¼

Z
Ω

0

dξ
ξqðΩ − ξÞr

ðωþ Ω − ξÞν e
−βðξαþðωþΩ−ξÞαÞ;

ðB8Þ

where ω;Ω > 0, 0 ≤ ν < 1, q ≥ 0, and r ≥ ν is an integer.
Evidently

Kq;r
ν ðω;ΩÞ ≤ Ωr

ðωþ ΩÞν
Z

Ω

0

dξξqe−βðξαþðωþΩ−ξÞαÞ ðB9Þ

≤
Ωre−βðωþΩÞα

ðωþ ΩÞν
Z

Ω

0

dξξqe−βð1−αÞminfξ;ωþΩ−ξgα ; ðB10Þ

where we have used the fact that ðΩ − ξÞr=ðωþ Ω − ξÞν is
decreasing on ½0;Ω� because 0 ≤ ν ≤ r. The last integral
can be rewrittenZ

minfΩ;1
2
ðωþΩÞg

0

dξξqe−βð1−αÞξα

þ
Z

Ω

minfΩ;1
2
ðωþΩÞg

dξξqe−βð1−αÞðΩþω−ξÞα ; ðB11Þ

the first term of which can be bounded by a constant
independent of ω (replacing the upper limit by ∞). In the
second term, we may estimate the exponential from above
by e−βð1−αÞðΩ=2Þα, whereupon the integral is bounded above
by Ωqþ1e−βð1−αÞðΩ=2Þα and hence by a constant independent
of ω. Thus, the integral in (B10) is bounded by a constant,
and we have shown that

Kq;r
ν ðω;ΩÞ ¼ O

�
Ωre−βðωþΩÞα

ðωþΩÞν
�

ðB12Þ

for ω;Ω > 0. Note that the controlling constant in this
estimate [i.e., the supremum over Ω > 0 of the integral in
formula (B10)] is independent of r.
A further family that will appear below is defined by

Lr
νðω;ΩÞ ¼

Z
∞

0

dξ
ξr

ðωþ ξÞν e
−βðjΩ−ξjαþjωþξjαÞ; ðB13Þ

where, as before, ω;Ω > 0, 0 ≤ ν < 1, and r ≥ ν is an
integer. By changing variable ξ↦ξ −Ω and then splitting
the integration region into ½0;∞Þ and ½−Ω; 0�, we find
(changing variables again ξ↦ − ξ in the second of these)

Lr
νðω;ΩÞ ¼ Irνðω;ΩÞ þ K0;r

ν ðω;ΩÞ ðB14Þ

and hence deduce that

Lr
νðω;ΩÞ ≤

PðΩÞe−βðωþΩÞα

ðωþ ΩÞν ; ðB15Þ

where P is a polynomial of degree r with non-negative
coefficients independent of ω and Ω and of which the
leading-order coefficient is independent of r.

2. Rough bounds on Gm

The iterative scheme for computing the functions Gm
may be written in the form

GðpÞ
mþ1 ¼ ΞðpÞGðpÞ

m ; GðpÞ
0 ðω;ΩÞ ¼ f̂ðωþ ΩÞ; ðB16Þ

where we have inserted a superscript to track the value of
p ≥ 1 and the integral operator ΞðpÞ is defined by

ðΞðpÞGÞðω;ΩÞ ¼
Z

∞

0

dξξpf̂ðΩ − ξÞGðω; ξÞ: ðB17Þ

Note that, due to the assumption (B1), we have an estimate

jðΞðpÞGÞðω;ΩÞj ≤ c
Z

∞

0

dξξpe−βjΩ−ξjα jGðω; ξÞj: ðB18Þ

As a preparation for the main estimate, we first show that

jGðpÞ
m ðω;ΩÞj ≤ QðpÞ

m ðΩÞe−βðωþΩÞα ðB19Þ

for ω;Ω > 0, where QðpÞ
m is a polynomial of degree mp

with non-negative coefficients independent of ω and Ω.
The statement is true by definition for m ¼ 0, so suppose it
holds for some m ≥ 0. Using the inductive hypothesis and
also the estimate (B18) gives
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jGðpÞ
mþ1ðω;ΩÞj ≤ c

Z
∞

0

dξξpQðpÞ
m ðξÞe−βðjΩ−ξjαþjωþξjαÞ;

ðB20Þ

which can be expanded as a linear combination of integrals
of the form Lr

0ðω;ΩÞ with p ≤ r ≤ ðmþ 1Þp, in which the
coefficients are positive and independent of ω;Ω. Using
(B15), we deduce that jGðpÞ

mþ1ðω;ΩÞj ≤ QðpÞ
mþ1ðΩÞe−βjωj

α
,

where QðpÞ
mþ1 is a polynomial of degree ðmþ 1Þp with

non-negative coefficients independent of ω and Ω. Thus,
the bound (B19) holds for all integers m ≥ 0 by induction.
In principle, the polynomials QðpÞ

m could be computed
explicitly, but this would be a matter of some tedium. The
leading-order coefficient can be seen to grow no faster than
geometrically with m, because the leading-order contribu-
tion to the right-hand side of inequality (B20) is a constant
multiple of Lmp

0 , which is in turn estimated by an
expression in which the highest-order power of Ω has a
coefficient independent ofm and p. Accordingly, we have a
bound of the form

GðpÞ
m ðω;ΩÞ≤ ðcDmΩmpþ lower orderÞe−βðωþΩÞα : ðB21Þ

To complement the rough upper bound (B19), we now
develop a lower bound. For this purpose, we suppose that

f̂ðωÞ ≥ Ae−βjωjα ðB22Þ

for some A > 0. We will show that

GðpÞ
m ðω;ΩÞ ≥ ABmΩmpe−βðωþΩÞα ; ðB23Þ

where B ¼ AΓð1þ α−1Þ=ð2βÞ1=α. By our assumption
(B22), this statement holds for m ¼ 0, so suppose it is
also true for some m ≥ 0. Using the definition of ΞðpÞ and
the fact that all the functions appearing in the integration
are positive,

GðpÞ
mþ1ðω;ΩÞ≥A2Bm

Z
∞

0

dξξðmþ1Þpe−βðjΩ−ξjαþjωþξjαÞ ðB24Þ

≥ A2Bm

Z
∞

0

dξðΩþ ξÞðmþ1Þpe−βðξαþðωþΩþξÞαÞ

ðB25Þ

≥ A2BmΩðmþ1Þp
Z

∞

0

dξe−βðξαþðωþΩþξÞαÞ;
ðB26Þ

where we have first discarded the integration over ½0;Ω�
and made a change of variables ξ↦ξþ Ω and then
discarded all but the highest power of Ω. Now

Z
∞

0

dξe−βðξαþðσþξÞαÞ ≥
Z

∞

0

dξe−βð2ξαþσαÞ

¼ Γð1þ α−1Þ
ð2βÞ1=α e−βσ

α ¼ B
A
e−βσ

α

ðB27Þ

for all σ ≥ 0, using ðxþ yÞα ≤ xα þ yα. Thus,

GðpÞ
mþ1ðω;ΩÞ ≥ ABmþ1Ωðmþ1Þpe−βðωþΩÞα ; ðB28Þ

establishing the inductive step.

3. Refined estimate of Gm

We now wish to prove our statement (81) on the behavior

of GðpÞ
m , for which we require some further notation. For

any m ≥ 0, let RðpÞ
m be the set of functions H∶ð0;∞Þ ×

ð0;∞Þ → C obeying a bound of the form

jHðω;ΩÞj ≤
�
PðΩÞ þ QðΩÞ

ðωþ ΩÞ1−α
�
e−βðωþΩÞα ðB29Þ

for all ω;Ω > 0, where P andQ are polynomials of degrees
mp − 1 and mp, respectively, with non-negative coeffi-
cients independent of ω and Ω (but depending on the
function H). Here we apply the convention that a poly-
nomial of degree −1 is identically zero. By the triangle

inequality, RðpÞ
m is closed under taking sums of functions,

and it is also closed under constant scalar multiples, soRðpÞ
m

forms a vector space in this way. We also note, using the
results of Appendix B 1, that

Ir0; K
q;r
0 ; Lr

0 ∈ RðpÞ
m for 0 ≤ r ≤ mp − 1; q ≥ 0

ðB30Þ
and

Ir1−α; K
q;r
1−α; L

r
1−α ∈ RðpÞ

m for 1 ≤ r ≤ mp; q ≥ 0:

ðB31Þ

It is also clear that, if H1 ∈ RðpÞ
m and H2ðω;ΩÞ ≤

H1ðω;ΩÞ, then H2 ∈ RðpÞ
m .

Given these definitions, (81) can be reformulated as the
assertion

GðpÞ
m − FðpÞ

m ∈ RðpÞ
m ðB32Þ

for all m ≥ 0 and p ≥ 1, where

FðpÞ
m ðω;ΩÞ ¼ ½2πfð0Þ�mΩmpf̂ðωþΩÞ: ðB33Þ

It will be convenient to prove an equivalent version of
(B32), namely that
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GðpÞ
m − GðpÞ

md ∈ RðpÞ
m ðB34Þ

for all m ≥ 0, where

GðpÞ
mdðω;ΩÞ ¼ ½2πfð0Þ�mΩmpγe−βðωþΩÞα : ðB35Þ

The equivalence of statements (B32) and (B34) is due to the

fact that FðpÞ
m −GðpÞ

md ∈ RðpÞ
m as a result of Eq. (76) and

because RðpÞ
m is closed under taking sums of functions.

We now give an inductive proof of assertion (B34). As
(B32) holds trivially for m ¼ 0, the same is true of (B34).
So now suppose that (B34) holds for some m ≥ 0.
Recalling that GðpÞ

mþ1 ¼ ΞðpÞGðpÞ
m , we may write

GðpÞ
mþ1 −GðpÞ

mþ1d ¼ ΞðpÞðGðpÞ
m − GðpÞ

mdÞ
þ ðΞðpÞGðpÞ

md −GðpÞ
mþ1dÞ: ðB36Þ

The inductive step is established if we show that both terms
on the right-hand side belong to RðpÞ

m .

a. First term

By the inductive hypothesis, GðpÞ
m − GðpÞ

md ∈ RðpÞ
m , so our

task is to prove that ΞðpÞRðpÞ
m ⊂ RðpÞ

mþ1; i.e., ΞðpÞ maps

functions in RðpÞ
m to functions in RðpÞ

mþ1. To do this, it is
enough to show that ΞðpÞ maps every function Hr

νðω;ΩÞ ¼
Ωrðωþ ΩÞ−νe−βðωþΩÞα to an element of RðpÞ

mþ1, in the cases
0 ≤ r ≤ mp − 1 and ν ¼ 0, or 0 ≤ r ≤ mp and ν ¼ 1 − α.
Using the bound (B18),

jðΞðpÞHr
νÞðω;ΩÞj ≤ c

Z
∞

0

dξ
ξpþr

ðξþ ωÞν e
−βðjΩ−ξjαþjξþωjαÞ

¼ cLpþr
ν ðω;ΩÞ; ðB37Þ

and therefore our observations (B30) and (B31) prove that

ΞðpÞHr
ν ∈ RðpÞ

mþ1 for the required ranges of r and ν.

b. Second term

We start by rewriting ΞðpÞGðpÞ
md , through a change of

variable as

ðΞðpÞGðpÞ
mdÞðω;ΩÞ ¼ ½2πfð0Þ�mγ

Z
∞

−Ω
dξðξþ ΩÞðmþ1Þp

× f̂ð−ξÞe−βðωþΩþξÞα : ðB38Þ

Next, using the fact that
R
∞
−∞ f̂ð−ξÞ ¼ 2πfð0Þ, we write the

above expression as the sum of three terms,

ðΞðpÞGðpÞ
mdÞðω;ΩÞ ¼ GðpÞ

mþ1dðω;ΩÞ þ R1ðω;ΩÞ þ R2ðω;ΩÞ;
ðB39Þ

where

R1ðω;ΩÞ ¼ −GðpÞ
mdðω;ΩÞΩp

Z
−Ω

−∞
dξf̂ð−ξÞ; ðB40Þ

and

R2ðω;ΩÞ ¼ ½2πfð0Þ�mγ
Z

∞

−Ω
dξf̂ð−ξÞ½gðΩþ ξÞ − gðΩÞ�;

ðB41Þ

where

gðξÞ ¼ ξðmþ1Þpe−βðωþξÞα : ðB42Þ

HereGðpÞ
mþ1dðω;ΩÞ is expected to be the dominant term, and

we need to show that the remainders, R1 and R2, lie in

RðpÞ
mþ1 and are therefore subdominant. The magnitude of R1

is determined from Eq. (A10), which reveals that R1 is
suppressed compared to Gmdðω;ΩÞ by a factor of order
Ωpþ1−αe−βΩ

α
as Ω → ∞ and of order Ωp for all Ω > 0.

Combining these estimates, we may bound jR1ðω;ΩÞj by a
constant multiple of GðpÞ

mdðω;ΩÞ and conclude that it is

in RðpÞ
mþ1.

To control R2, we apply the mean value theorem to g,
obtaining

jgðΩþ ξÞ − gðΩÞj ¼ jξg0ðΩþ ηÞj ≤ jξje−βðωþΩþηÞα
�
ðmþ 1ÞpðΩþ ηÞðmþ1Þp−1 þ αβðΩþ ηÞðmþ1Þp

ðωþ Ωþ ηÞ1−α
�
; ðB43Þ

where η lies between 0 and ξ. (If one differentiates g, the two terms in parentheses appear with a relative sign, but we have
changed this to an addition for the purposes of obtaining an upper bound.) If ξ < 0, we have ξ < η < 0 and therefore

jgðΩþ ξÞ − gðΩÞj ≤ jξje−βðωþΩþξÞα
�
ðmþ 1ÞpΩðmþ1Þp−1 þ αβΩðmþ1Þp

ðωþ ΩÞ1−α
�
; ðB44Þ
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using the fact that ðΩþ ηÞðmþ1Þp=ðωþ Ωþ ηÞ1−α is increasing in η on ½ξ; 0� because ðmþ 1Þp ≥ 1 − α > 0. Accordingly,
the contribution to R2 from ½−Ω; 0� may be estimated by

jR2aj ≤ ½2πfð0Þ�mγc
�
ðmþ 1ÞpΩðmþ1Þp−1 þ αβΩðmþ1Þp

ðωþ ΩÞ1−α
�
K1;0

0 ðω;ΩÞ: ðB45Þ

On the other hand, if ξ > 0, we have 0 < η < ξ and therefore

jgðΩþ ξÞ − gðΩÞj ≤ ξe−βðωþΩÞα
�
ðmþ 1ÞpðΩþ ξÞðmþ1Þp−1 þ αβðΩþ ξÞðmþ1Þp

ðωþΩÞ1−α
�
; ðB46Þ

so the contribution to R2 from ½0;∞Þ can be estimated as

jR2bj ≤ ½2πfð0Þ�mγc
�
ðmþ 1ÞpJ1;ðmþ1Þp−1ðΩÞ þ αβ

ðωþ ΩÞ1−α J
1;ðmþ1ÞpðΩÞ

�
e−βðωþΩÞα : ðB47Þ

We see immediately that both R2a and R2b belong toR
ðpÞ
mþ1,

which completes the proof of the inductive step and hence
establishes (B32) for all m ≥ 0.

APPENDIX C: ASYMPTOTICS FOR THE
MOMENTS OF A LORENTZIAN

In this Appendix, we perform an asymptotic analysis of
the growth rate of the moments for the special case of a
Lorentzian sampling function. In this case, the Fourier
transform of the sampling function, in τ ¼ 1 units, is given
by Eq. (68). Now Eq. (75) may be written in the case
l ¼ 1 as

G1ðω;ΩÞ¼Ωpþ1

Z
∞

0

dννp exp

�
−Ω
��

ω

Ω
þν

�
þj1−νj

�	
:

ðC1Þ
We define G1aðω;ΩÞ as the contribution from the interval
1 ≤ ν < ∞ and change the integration variable to
s ¼ ν − 1, leading to

G1aðω;ΩÞ ¼ Ωpþ1

Z
∞

0

dsð1þ sÞpe−Ωð2sþ1þω=ΩÞ

≈
1

2
Ωpe−ðωþΩÞ: ðC2Þ

In the last step, we used ð1þ sÞp ≈ 1, as the region where
s ≪ 1 dominates for large Ω. If we define G1bðω;ΩÞ as the
contribution to Eq. (C1) from the interval 0 ≤ ν ≤ 1, we
may use ω=Ωþ νþ j1 − νj ¼ ω=Ωþ 1 to write an exact
result:

G1bðω;ΩÞ ¼
Ωpþ1

pþ 1
e−ðωþΩÞ: ðC3Þ

Now we have the asymptotic form

G1ðω;ΩÞ ¼ G1aðω;ΩÞ þ G1bðω;ΩÞ

≈
Ωpþ1

pþ 1
e−ðωþΩÞ

�
1þ pþ 1

2Ω
þOðΩ−2Þ

�
: ðC4Þ

This result can be compared with the one obtained from
Eq. (A4) of Ref. [6], which leads to

G1ðω;ΩÞ ¼
p!
2pþ1

e−ðωþΩÞ Xr¼pþ1

r¼0

ð2ΩÞr
r!

; ðC5Þ

for which the r ¼ pþ 1 and r ¼ p terms reproduce
Eq. (C4) of the present paper.
The recurrence relation, Eq. (75), may be expressed for

the Lorentzian case as

GðpÞ
mþ1ðω;ΩÞ ¼

Z
∞

0

dννpGðpÞ
m ðω; νÞe−jν−Ωj: ðC6Þ

In this case, we replace Eq. (78) by the ansatz

GðpÞ
m ðω;ΩÞ ≈Ωmðpþ1Þe−ðωþΩÞ

�
am þ bm

2Ω
OðΩ−2Þ

�
; ðC7Þ

where

a1 ¼
1

pþ 1
and b1 ¼ 1: ðC8Þ

Next, we use Eq. (C7) in Eq. (C6) to write

GðpÞ
mþ1ðω;ΩÞ ¼ amG

ðmþ1Þðpþ1Þ−1
1 ðω;ΩÞ þ bm

2
Gðmþ1Þðpþ1Þ−2

1 ðω;ΩÞ

∼Ωðmþ1Þðpþ1Þe−ðωþΩÞ
�

am
ðmþ 1Þðpþ 1Þ þ

1

2Ω

�
am þ bm

ðmþ 1Þðpþ 1Þ − 1

��
; ðC9Þ
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which leads to the recurrence relations

amþ1 ¼
am

ðmþ 1Þðpþ 1Þ ðC10Þ

and

bmþ1 ¼ am þ bm
ðmþ 1Þðpþ 1Þ − 1

: ðC11Þ

These relations may be combined with Eq. (C8) to find

am ¼ 1

m!ðpþ 1Þm ðC12Þ

and

bm ¼ ðmþ 1Þðpþ 1Þ − 1

ðm − 1Þ!ðpþ 1Þm−1ð2pþ 1Þ : ðC13Þ

We may now combine Eqs. (74) and (C7) to write an
asymptotic form for the even moments as

M2m ¼ C2m

Z
∞

0

dωdΩðωΩÞp½Gm−1ðω;ΩÞ�2 ∼ C2m

Z
∞

0

dωdΩðωΩÞpΩ2ðm−1Þðpþ1Þe−2ðωþΩÞ
�
a2m−1 þ

ambm−1

Ω

�
¼ C2m

p!
2pþ1

½ð2m − 1Þðpþ 1Þ − 1�!
2ð2m−1Þðpþ1Þ

�
a2m−1 þ

2am−1bm−1

ð2m − 1Þðpþ 1Þ − 1

�
¼ C2m

p!½ð2m − 1Þðpþ 1Þ − 1�!
22mðpþ1Þ½ðm − 1Þ!�2ðpþ 1Þ2ðm−1Þ X;

ðC14Þ

where

X ¼ 1þ 2ðm − 1Þðpþ 1Þ½mðpþ 1Þ − 1�
ð2pþ 1Þ½ð2m − 1Þððpþ 1Þ − 1� : ðC15Þ

Note that if m ≫ 1

X ∼ 1þmðpþ 1Þ
2pþ 1

; ðC16Þ

or

X ∼
�
1þ ðpþ 1Þ

2ð2pþ 1Þ
�
2m
: ðC17Þ

Stirling’s formula,

n! ∼
ffiffiffiffiffiffi
2π

p
nnþ1=2e−n n ≫ 1; ðC18Þ

may be used to write

ðAm − BÞ!

∼
ffiffiffiffiffiffi
2π

p
ðAmÞAm−Bþ1=2

�
1 −

B
Am

�
BðAmÞ=B−Bþ1=2

e−ðAm−BÞ

∼
ffiffiffiffiffiffi
2π

p �
Am
e

�
Am−Bþ1=2

e−Bþ1=2: ðC19Þ

In the last step, we used

lim
x→∞

�
1 −

1

x

�
x
¼ 1

e
ðC20Þ

and

�
1 −

B
Am

�
−Bþ1=2

∼ 1: ðC21Þ

We may show that

½ð2m−1Þðpþ1Þþ1�!
½ðm−1Þ!�2

∼
1

4π
22mðpþ1Þ2mðpþ1Þ−p−3=2ppð1−2mÞþ1=2½2pm−ðpþ1Þ�!;

ðC22Þ

by application of Eq. (C19) to the factorials on both sides of
this relation.
This allows us to rewrite Eq. (C14) as

M2m ∼
C2m

4π
ðpþ 1Þ!

�
p

pþ 1

�
pþ1=2

�ðpþ 1Þp
2ppp

�
2m

× X½2pm − ðpþ 1Þ�!: ðC23Þ

For the case p ¼ 3, this leads to Mn ∝ ð3n − 4Þ!, which is
the rate of growth found in Ref. [6]. This rate of growth in
turn leads to the asymptotic behavior of the probability
distribution given in Eq. (5).
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