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In three dimensions, every known N ¼ 4 supermultiplet has an off-shell completion. However, there is
no off-shell N ¼ 4 formulation for the known extended superconformal Chern-Simons (CS) theories with
eight and more supercharges. To achieve a better understanding of this issue, we provideN ¼ 4 superfield
realizations for the equations of motion which correspond to various N ¼ 4 and N ¼ 6 superconformal
CS theories, including the Gaiotto-Witten theory and the Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory. These superfield realizations demonstrate that the superconformal CS theories with N ≥ 4 (except
for the Gaiotto-Witten theory) require a reducible long N ¼ 4 vector multiplet, from which the standard
left and right N ¼ 4 vector multiplets are obtained by constraining the field strength to be either self-dual
or antiself-dual. Such a long multiplet naturally originates upon reduction of any off-shell N > 4 vector
multiplet toN ¼ 4 superspace. For the longN ¼ 4 vector multiplet we develop a prepotential formulation.
It makes use of two prepotentials being subject to the constraint which defines the so-called hybrid
projective multiplets introduced in the framework of N ¼ 4 supergravity-matter systems in
arXiv:1101.4013. We also couple N ¼ 4 superconformal CS theories to N ¼ 4 conformal supergravity.
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I. INTRODUCTION

Since the 2004 work by Schwarz [1], much progress has
been achieved in the construction of extended supercon-
formal Chern-Simons-matter (CS) theories in three dimen-
sions (3D). The famous CS theories with N ¼ 8 [2–4],
N ¼ 6 [5–7] and N ¼ 4 [8,9] supersymmetry have been
proposed.
All superconformal CS theories with N > 3 can be

realized as special off-shell N̂ -extended Chern-Simons-
matter systems, where N̂ ≤ 3. In such realizations in terms
of N̂ -extended superfields, N − N̂ supersymmetries are
hidden. Of course, the N̂ ¼ 3 realization [10] is the most
powerful, since it allows one to keep manifest the maximal
amount of supersymmetry. The special feature of the three
cases N ¼ 1, N ¼ 2 and N ¼ 3 is that the off-shell
supersymmetric pure CS action exists for any gauge group.
However, no N ≥ 4 supersymmetric CS action can be
constructed (for a recent proof, see [11]), although Abelian
N ¼ 4 BF-type couplings are abundant [12]. In this regard,
especially paradoxical is the situation with N ¼ 4 super-
symmetry. Every 3D N ¼ 4 supermultiplet admits an off-
shell realization. There exist off-shell formulations for
various 3D N ¼ 4 supersymmetric theories, including
the Yang-Mills theories with Poincaré [13,14] and anti-
de Sitter supersymmetry [15], the most general σ-models
with Poincaré [16] and anti-de Sitter supersymmetry [17],
and general supergravity-matter systems [18]. However, it
is impossible to construct a N ¼ 4 supersymmetric CS

action, at least in terms of the standard vector multiplets and
hypermultiplets.
Since there is no way to realize the known N ≥ 4

superconformal CS theories in terms of N ¼ 4 superfields
off the mass shell, in this paper we would like to analyze a
simpler problem. We will only formulate the equations of
motion for N ≥ 4 superconformal CS theories in N ¼ 4
superspace. Similar on-shell realizations in N ¼ 6 and
N ¼ 8 superspaces have been given in [19–21].
This paper is organized as follows. In Sec. II we consider

general N ¼ 4 superconformal CS theories and show that
the hypermultiplet equations of motion require consistency
conditions which impose nontrivial constraints on the
gauge group and its representation to which the hyper-
multiplet belongs. In Secs. III and IV we present theN ¼ 4
superfield equations of motion for the Gaiotto-Witten and
ABJM theories, respectively. For these models we also
construct their supercurrents and other conserved current
multiplets. Section V is devoted to the prepotential formu-
lation for the large N ¼ 4 vector multiplet. In conclusion,
we discuss the structure of the longN ¼ 4 vector multiplet
from N ¼ 3 superspace perspective. In Appendix A we
give a proof that the constraints on the gauge group derived
in Sec. II are equivalent to the fundamental identity of
Gaiotto and Witten [8]. In Appendix B we review the
structure of the N -extended vector multiplet coupled to
conformal supergravity.

II. N ¼ 4 SUPERCONFORMAL CS THEORIES

The N ¼ 4 Minkowski superspace can be parametrized
by coordinates zA ¼ ðxαβ; θα

i~i
Þ. Here xαβ ¼ xðαβÞ are the
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bosonic coordinates, where α, β ¼ 1, 2 are spinor
indices.1 The Grassmann coordinates θα

i~i
carry two iso-

spinor indices, i ¼ 1, 2 and ~i ¼ 1, 2, which correspond
to the subgroups SUð2ÞL and SUð2ÞR of the N ¼ 4
R-symmetry group SUð2ÞL × SUð2ÞR. The spinor covar-
iant derivatives Di~i

α satisfy the anticommutation relations

fDi~i
α ; D

j~j
β g ¼ 2iεijε~i ~j∂αβ.

To describe a non-Abelian N ¼ 4 vector multiplet, we
introduce gauge covariant derivatives DA ¼ ðDαβ;Di~i

α Þ ¼
DA þ iVA, where DA ¼ ð∂αβ; Di~i

α Þ denotes the covariant
derivatives of N ¼ 4 superspace. The gauge connection
VA takes its values in the Lie algebra of the gauge groupG.
Given a matter multiplet Φ belonging to some representa-
tion of the gauge group, the gauge transformation laws of
VA and Φ are as follows:

D0
A ¼ eiτDAe−iτ; ð2:1aÞ

Φ0 ¼ eiτΦ: ð2:1bÞ

Here the Lie-algebra-valued gauge parameter τðzÞ is
Hermitian, τ† ¼ τ, but otherwise unconstrained.
In 3D N -extended supersymmetry, one can impose a

universally looking constraint to describe a vector multi-
plet, see Appendix B. In the N ¼ 4 case the constraint
amounts to

fDi~i
α ;D

j~j
β g ¼ 2iεijε~i ~jDαβ þ εαβε

ijW~i ~j þ εαβε
~i ~jWij: ð2:2Þ

The field strengths Wij ¼ WðijÞ and W~i ~j ¼ Wð~i ~jÞ are
Hermitian in the sense that ðWijÞ† ¼ Wij ¼ εikεjlWkl,

and similarly for W~i ~j. They are subject to the Bianchi
identities

D
~iði
α WjkÞ ¼ 0; ð2:3aÞ

Dið~i
α W ~j ~kÞ ¼ 0: ð2:3bÞ

The vector multiplet described by the constraint (2.2) is
reducible and, therefore, will be called “long.” There exist
two irreducible off-shell N ¼ 4 vector multiplets [12–14],
which are obtained from (2.2) by imposing additional
constraints. Following the terminology of [18], the left
vector multiplet is subject to the additional constraint

W~i ~j ¼ 0: ð2:4aÞ

The right vector multiplet is obtained by setting

Wij ¼ 0: ð2:4bÞ

In what follows, we will work with the long vector multiplet
(2.2) due to the following two reasons: (i) as will be shown
below, it naturally corresponds to the N ≥ 4 superconfor-
mal CS theories; and (ii) it is obtained by reducing the off-
shell N > 4 vector multiplets to N ¼ 4 superspace.
Similar to the left and right vector multiplets, there are

two inequivalent N ¼ 4 hypermultiplets, left and right
ones. In this paper, we will be interested in on-shell
hypermultiplets. The left hypermultiplet is described by
a left isospinor qi ¼ ðqiaÞ (which is viewed in this section as
a column vector) and its conjugate q̄i ¼ ðqiÞ†. The right
hypermultiplet is described by a right isospinor q~i ¼ ðq~i~aÞ
and its conjugate q̄~i ¼ ðq~iÞ†. Both the left and right
hypermultiplets are assumed to interact with the long
vector multiplet. In general they belong to different
representations of the gauge group G, with the generators

ðTAÞab and ð ~TAÞ ~a ~b, respectively. The hypermultiplet equa-
tions of motion have the form

D
~iði
α qjÞ ¼ 0; D

~iði
α q̄jÞ ¼ 0; ð2:5aÞ

Dið~i
α q~jÞ ¼ 0; Dið~i

α q̄~jÞ ¼ 0; ð2:5bÞ

and are similar to the constraints introduced by Sohnius
[22] to describe the N ¼ 2 hypermultiplet in four dimen-
sions. The crucial difference of these equations from their
N ¼ 3 counterparts is that they require the following
consistency conditions

WðijqkÞ ¼ 0; Wð~i ~jq~kÞ ¼ 0: ð2:6Þ

In the case of N ¼ 3 superconformal CS theories with
matter, no restriction on the gauge group and its repre-
sentation occur, see [10] for more details.
Up to now, our consideration was completely general. In

what follows we restrict ourselves to superconformal
theories. In this case the gauge multiplet cannot have
independent degrees of freedom as the Yang-Mills coupling
in not permitted. On the equations of motion the field
strengths should be expressed in terms of hypermultiplets.
A large family of superconformal theories is described by
the equations of motion for the field strengths which are
bilinear in hypermultiplets

Wij
A ¼ iκgABq̄ðiTBqjÞ; ð2:7aÞ

W
~i ~j
A ¼ i~κgABq̄ð

~i ~TBq~jÞ; ð2:7bÞ

1The variables xαβ are related to the coordinates xm of
Minkowski space M3 by the rule xαβ ¼ xmðγmÞαβ, with ðγÞαβ
the gamma-matrices with upper spinor indices The partial
derivatives ∂αβ are defined similarly, ∂αβ ¼ ðγmÞαβ∂m, such that
∂αβxγδ ¼ −2δαðγδβδÞ. Our two-component spinor notation and
conventions, including the definition of the gamma-matrices,
follow [16,18].
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where κ and ~κ are some dimensionless coefficients and gAB
is an invariant quadratic form on the Lie algebra of the
gauge groupG. The consistency conditions (2.6) lead to the
following equations

q̄aðiqjbq
kÞ
c gABðTAÞabðTBÞdc ¼ 0; ð2:8aÞ

q̄ ~að~iq
~j
~b
q
~kÞ
~c gABð ~TAÞ ~a ~bð ~TBÞ ~d ~c ¼ 0: ð2:8bÞ

These equations require the generators to obey the relations

gABðTAÞaðbðTBÞdcÞ ¼ 0; ð2:9aÞ

gABð ~TAÞ ~að ~bð ~TBÞ ~d ~cÞ ¼ 0; ð2:9bÞ

which are strong constraints on the possible gauge group G
and its representations. These relations are, in fact, equiv-
alent to the fundamental identity for the generators of the
gauge group derived in [8] (see Appendix A for the proof).
The dynamical system under consideration is charac-

terized by the supercurrent (compare with [23])

J ¼ q̄iqi − q̄~iq
~i; ð2:10Þ

which obeys the conservation equation [11,23,24]

Dαð~iðiDjÞ~jÞ
α J ¼ 0; ð2:11Þ

as a consequence of the equations of motion (2.5) and (2.7).

III. THE EQUATIONS OF MOTION FOR
THE GAIOTTO-WITTEN THEORY

In the previous section we have provided the N ¼ 4
superfield description for the general N ¼ 4 superconfor-
mal CS theories studied in [9]. The Gaiotto-Witten theory
[8] is a special member of this family. This theory has only
one type of hypermultiplets, qi, and no right hypermultip-
lets, q~i ¼ 0. Then we should also have W~i ~j ¼ 0, as a
consequence of (2.7b), and the vector multiplet becomes
short, the left one. The remaining superfields qi and Wij

obey the equations of motion (2.5a) and (2.7a). Now we
will show that the constraint (2.9a) is satisfied for the
Gaiotto-Witten theory [8].
This theory has two field strengths Wij

L and Wij
R

associated with a gauge group of the form G ¼ GL ×
GR that possesses a representation compatible with
Eq. (2.9a) (see also the discussion in Appendix A). One
admissible choice is G ¼ UðMÞ × UðNÞ, and the hyper-
multiplet transforms in the bi-fundamental representation
of G. Only this case is considered in the present section.
The gauge transformation laws of these superfields are

q0i ¼ eiτLqie−iτR ; q̄0i ¼ eiτR q̄ie−iτL ; ð3:1aÞ

W 0ij
L ¼ eiτLWij

Le
−iτL ; W 0ij

R ¼ eiτRWij
Re

−iτR ; ð3:1bÞ

where the gauge parameters τLðzÞ and τRðzÞ are Hermitian
matrices taking their values in the Lie algebras of the gauge
groups GL and GR, respectively.
The equations of motion for the hypermultiplets (2.5a)

and the vector multiplet (2.7a) become

D
~iði
α qjÞ ¼ 0; D

~iði
α q̄jÞ ¼ 0; ð3:2aÞ

Wij
L ¼ iκqðiq̄jÞ; Wij

R ¼ iκq̄ðiqjÞ: ð3:2bÞ

Here the covariant derivatives act on the hypermultiplet
superfields by the rule

D~ii
αqj ¼ D~ii

αqj þ iV~ii
Lαq

j − iqjV~ii
Rα;

D~ii
α q̄j ¼ D~ii

α q̄j þ iV~ii
Rαq̄

j − iq̄jV~ii
Lα; ð3:3Þ

in accordance with the transformation laws (3.1a). For the
equations of motion (3.2a), the consistency conditions (2.6)
take the form

Wðij
L qkÞ−qðkWijÞ

R ¼ 0; Wðij
R q̄kÞ− q̄ðkWijÞ

L ¼ 0 ð3:4Þ

and are identically satisfied for the superfield
strengths (3.2b).
In concluding this section we construct the N ¼ 4

supercurrent J and Uð1Þ flavor current multiplet Lij in
the Gaiotto-Witten theory

J ¼ trðqiq̄iÞ; Lij ¼ i trðqðiq̄jÞÞ; ð3:5Þ

which obey the conservation equations (see [23] for more
details)

Dαð~iðiDjÞ~jÞ
α J ¼ 0; D~iðiLjkÞ ¼ 0; ð3:6Þ

as a consequence of the equations of motion (3.2). Of
course, the flavor current multiplet is nontrivial only for the
gauge group which possesses the Uð1Þ factor. The two- and
three-point correlation functions of the supercurrent and
flavor current multiplets in general N ¼ 4 superconformal
field theories were studied in [23].

IV. THE EQUATIONS OF MOTION FOR
THE ABJM THEORY

Before presenting our N ¼ 4 superfield realization for
the N ¼ 6 superconformal CS theory proposed in [5] and
known as the ABJM theory, we would like to make some
preliminary comments. In three dimensions, the N -
extended vector multiplet can be formulated inN -extended
superspace and is off-shell [21] (see also [25]). A brief
review of the N -extended vector multiplet coupled to
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conformal supergravity is given in Appendix B. In the flat
case, every N > 4 vector multiplet can be reduced to N ¼
4 Minkowski superspace, resulting in the long N ¼ 4
vector multiplet coupled to several additional constrained
superfields. In particular, it can be shown that the N ¼
6 → N ¼ 4 reduction for the field strength WIJ ¼ −WJI

of the N ¼ 6 vector multiplet2 [with I; J being SOð6Þ
indices, see Appendix B] leads to the following N ¼ 4
superfields

Wij; W~i ~j; Yi~i; Zi~i; S: ð4:1Þ

It may be shown that the N ¼ 6 Bianchi identity (B6) is
equivalent to the following constraints on the aboveN ¼ 4
superfields:

D
~iði
α WjkÞ ¼ 0; Dið~i

α W ~j ~kÞ ¼ 0; ð4:2aÞ

Dð~iði
α YjÞ~jÞ ¼ 0; Dð~iði

α ZjÞ~jÞ ¼ 0; ð4:2bÞ

Dαð~iðiDjÞ~jÞ
α S ¼ ½Yð~iði;ZjÞ~jÞ�: ð4:2cÞ

The constraints (4.2b) tell us that Yi~i and Zi~i are examples
of the so-called hybrid supermultiplets introduced for the
first time in [18] in the framework of general N ¼ 4
supergravity-matter systems. Equation (4.2c) may be inter-
preted as the condition that S is a hybrid linear superfield.
Unlike the theory studied in Sec. III, now we consider

the case when both hypermultiplets qi and q~i have non-
trivial dynamics. Here we assume that the hypermultiplets
transform in the bifundamental representation of the gauge
group G ¼ GL ×GR ¼ UðMÞ × UðNÞ,

q0i ¼ eiτLqie−iτR ; q̄0i ¼ eiτR q̄ie−iτL ; ð4:3aÞ

q0~i ¼ eiτLq~ie−iτR ; q̄0~i ¼ eiτR q̄~ie−iτL ; ð4:3bÞ

where the gauge superfield parameters τLðzÞ and τRðzÞ are
Hermitian and otherwise unconstrained.
Due to the structure of the gauge group, G ¼ GL ×GR,

there are two long N ¼ 4 vector multiplets and the
corresponding field strengths. We have the field strengths

Wij
L and W

~i ~j
L which take values in the Lie algebra of the

gauge group GL and similar ones, Wij
R and W

~i ~j
R , which

correspond to the gauge group GR. They transform in the
adjoint representations of these groups

W 0ij
L ¼ eiτLWij

Le
−iτL ; W 0~i ~j

L ¼ eiτLW
~i ~j
L e

−iτL ; ð4:4aÞ

W 0ij
R ¼ eiτRWij

Re
−iτR ; W 0~i ~j

R ¼ eiτRW
~i ~j
Re

−iτR : ð4:4bÞ

The natural generalization of the equations of motion (3.2)
reads

D
~iði
α qjÞ ¼ 0; Dið~i

α q~jÞ ¼ 0; ð4:5aÞ

Wij
L ¼ iκqðiq̄jÞ; Wij

R ¼ iκq̄ðiqjÞ;

W
~i ~j
L ¼ iκqð~iq̄~jÞ; W

~i ~j
R ¼ iκq̄ð~iq~jÞ: ð4:5bÞ

The consistency conditions (2.9) are automatically satisfied
for these equations,

Wðij
L qkÞ−qðkWijÞ

R ¼ 0; Wð~i ~j
L q~kÞ−qð~kW

~i ~jÞ
R ¼ 0: ð4:6Þ

The ABJM theory is N ¼ 6 superconformal. Therefore,
there should exist hypermultiplet composites that realize
the superfields Yi~i, Zi~i and S in (4.1) on the mass shell.
Since we have two gauge groups, GL and GR, the number
of superfields (4.1) is doubled. We will distinguish them by
attaching the subscripts L and R to them. It is clear that
they should be expressed in terms of the hypermultiplet
superfields. Indeed, the expressions for Wij and W~i ~j are
given by (4.5b). For the remaining superfields we find

Yi~i
L¼ 2iκðqiq̄~iþq~iq̄iÞ; Yi~i

R ¼ 2iκðq̄iq~iþ q̄~iqiÞ; ð4:7aÞ

Zi~i
L ¼ 2κðqiq̄~i−q~iq̄iÞ; Zi~i

R ¼ 2κðq̄iq~i− q̄~iqiÞ; ð4:7bÞ

SL ¼ κðqiq̄i − q~iq̄~iÞ; SR ¼ κðq̄iqi − q̄~iq
~iÞ: ð4:7cÞ

These superfields do satisfy the N ¼ 6 Bianchi identities
(4.2b) and (4.2c) on the hypermultiplet equations of
motion (4.5a).
Since the ABJM theory is N ¼ 6 superconformal, it

should possess a number of conserved currents which form
the N ¼ 6 supercurrent multiplet JIJ ¼ −JJI [24–26].
Upon reduction to N ¼ 4 superspace, the N ¼ 6 super-
current may be shown to lead to the following constrained
N ¼ 4 multiplets: (i) the N ¼ 4 supercurrent J; (ii) two
Uð1Þ flavor current multiplets Lij and L~i ~j; (iii) two SOð4Þ
vectors Ai~i and Bi~i. In the ABJM theory, these multiplets
should be given as hypermultiplet composites. Their
explicit form is as follows:

(i) the N ¼ 4 supercurrent

J ¼ trðqiq̄iÞ − trðq~iq̄~iÞ ð4:8Þ

obeying the conservation equation (2.11);
2Using the isomorphism SUð4Þ ≅ SOð6Þ=Z2, the N ¼ 6

vector multiplet can be described in the SUð4Þ notation [20].
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(ii) the Uð1Þ flavor current multiplets

Lij ¼ i trðqðiq̄jÞÞ; L~i ~j ¼ i trðqð~iq̄~jÞÞ ð4:9Þ

obeying the conservation laws

D
~iði
α LjkÞ ¼ 0; Dið~i

α L~j ~kÞ ¼ 0; ð4:10Þ

(iii) the SOð4Þ vectors

Ai~i ¼ i trðqiq̄~iÞ þ i trðq̄iq~iÞ;
Bi~i ¼ trðqiq̄~iÞ − trðq̄iq~iÞ; ð4:11Þ

which obey the same conservation equations

Dð~iði
α AjÞ~jÞ ¼ 0; Dð~iði

α BjÞ~jÞ ¼ 0: ð4:12Þ

The hypermultiplet composites (4.8), (4.9) and (4.11) are
the components of the N ¼ 6 supercurrent. They are
conserved as a consequence of the equations of motion
(4.5). It is interesting to note that these objects are obtained
from the composites in (4.5b) and (4.7) by taking the
matrix trace.

V. PREPOTENTIALS FOR THE LONG
N ¼ 4 VECTOR MULTIPLET

For the left and rightN ¼ 4 Yang-Mills supermultiplets,
there exist prepotential formulations. The harmonic super-
space formulation was given by Zupnik [13,14] in the case
of N ¼ 4 Poincaré supersymmetry. The projective super-
space formulation was given in [15] for the left and right
Yang-Mills supermultiplets coupled to N ¼ 4 conformal
supergravity (the case of Abelian vector multiplets was
described in [18]. In this section we present a prepotential
formulation for the long vector multiplet as a natural
generalization of Zupnik’s construction [13,14]. A prepo-
tential formulation for the long vector multiplet coupled to
N ¼ 4 conformal supergravity may be obtained as a
natural generalization of the formulation developed in
[15], but we will not elaborate on this here.
Let u�i and v�~i be standard harmonic variables for the

SUð2ÞL and SUð2ÞR,

uþiu−j − u−iuþj ¼ δij; uþi ¼ u−i ; ð5:1aÞ

vþ~iv−~j − v−~ivþ~j ¼ δ~i~j; vþ~i ¼ v−~i : ð5:1bÞ

The harmonics carry the labels � which correspond to
charges with respect to certain Uð1Þ subgroups of SUð2ÞL
and SUð2ÞR, respectively. We will use these harmonics
to parametrize smooth superfields on the harmonic
superspace

M3j8 × ½SUð2Þ=Uð1Þ�L × ½SUð2Þ=Uð1Þ�R: ð5:2Þ

Any superfield Φðp;qÞðz; u�; v�Þ defined on this superspace
is labeled by two integer Uð1Þ charges p and q defined by
Φðp;qÞðz; e�iαu�; e�iβv�Þ ¼ eiðpαþqβÞΦðp;qÞðz; u�; v�Þ, for
real parameters α and β. It is useful to introduce left
invariant vector fields for the groups SUð2ÞL and SUð2ÞR

Dð2;0Þ ¼ uþi
∂

∂u−i ; Dð−2;0Þ ¼ u−i
∂

∂uþi ;

Dð0;0Þ ¼ uþi
∂

∂uþi − u−i
∂

∂u−i ; ð5:3aÞ

Dð0;2Þ ¼ vþ~i
∂

∂v−~i
; Dð0;−2Þ ¼ v−~i

∂
∂vþ~i

;

~Dð0;0Þ ¼ vþ~i
∂

∂vþ~i
− v−~i

∂
∂v−~i

: ð5:3bÞ

The operators within each of these sets obey the standard
SUð2Þ commutation relations

½Dð0;0Þ;Dð�2;0Þ� ¼ �2Dð�2;0Þ; ½Dð2;0Þ;Dð−2;0Þ� ¼ Dð0;0Þ;

ð5:4aÞ

½ ~Dð0;0Þ;Dð0;�2Þ� ¼ �2Dð0;�2Þ; ½Dð0;2Þ;Dð0;−2Þ� ¼ ~Dð0;0Þ:

ð5:4bÞ

Any two operators from the different sets commute with
each other.
We will work with matter multiplets Φðp;qÞðz; u�; v�Þ

that transform under the gauge group as in Eq. (2.1). Since
the gauge parameters τðzÞ in (2.1) are harmonic indepen-
dent, we now have a larger set of covariant derivatives

DA ¼ ðDA;Dð�2;0Þ;Dð0;0Þ;Dð0;�2Þ; ~Dð0;0ÞÞ
≔ ðDA; Dð�2;0Þ; Dð0;0Þ; Dð0;�2Þ; ~Dð0;0ÞÞ ð5:5Þ

possessing the gauge transformation

D0
A ¼ eiτDAe−iτ: ð5:6Þ

We introduce a new basis for the spinor gauge covariant
derivatives3 Di~i

α and the gauge covariant field strengthsWij

and W~i ~j as follows:

Di~i
α → Dð�1;�1Þ

α ¼ u�i v
�
~i
Di~i

α ; ð5:7aÞ

3Switching off the gauge multiplet in (5.7a) defines the new
basis for the ordinary spinor covariant derivatives Di~i

α .

SUPERCONFORMAL CHERN-SIMONS-MATTER THEORIES … PHYSICAL REVIEW D 92, 105007 (2015)

105007-5



Wij → ðWð2;0Þ;Wð−2;0Þ;Wð0;0ÞÞ ¼ ðuþi uþj ;u−i u−j ;uþi u−j ÞWij;

ð5:7bÞ

W~i ~j → ðWð0;2Þ;Wð0;−2Þ; ~Wð0;0ÞÞ ¼ ðvþ~i vþ~j ;v−~i v−~j ;vþ~i v−~j ÞW
~i ~j:

ð5:7cÞ

Then the anticommutation relation (2.2) leads to

fDð1;1Þ
α ;Dð1;1Þ

β g ¼ 0; ð5:8aÞ

fDð1;1Þ
α ;Dð−1;−1Þ

β g ¼ 2iDαβ − εαβWð0;0Þ − εαβ ~Wð0;0Þ;

ð5:8bÞ

fDð1;−1Þ
α ;Dð−1;1Þ

β g ¼ −2iDαβ þ εαβWð0;0Þ − εαβ ~Wð0;0Þ;

ð5:8cÞ

as well as to several additional relations which can be
obtained from (5.8) by making use of the identities

½Dð2;0Þ;Dð1;�1Þ
α � ¼ 0; ½Dð0;2Þ;Dð�1;1Þ

α � ¼ 0; ð5:9aÞ

½Dð−2;0Þ;Dð1;�1Þ
α � ¼Dð−1;�1Þ

α ; ½Dð0;−2Þ;Dð�1;1Þ
α � ¼Dð�1;−1Þ

α

ð5:9bÞ

in conjunction with the relations

Dð2;0ÞWð0;0Þ ¼ Wð2;0Þ; Dð2;0ÞWð2;0Þ ¼ 0; ð5:10aÞ

Dð0;2Þ ~Wð0;0Þ ¼ Wð2;0Þ; Dð0;2ÞWð0;2Þ ¼ 0: ð5:10bÞ

In particular, one obtains

fDð1;1Þ
α ;Dð1;−1Þ

β g ¼ −εαβWð2;0Þ;

fDð1;1Þ
α ;Dð−1;1Þ

β g ¼ −εαβWð0;2Þ; ð5:11aÞ

fDð1;−1Þ
α ;Dð−1;−1Þ

β g ¼ −εαβWð0;−2Þ;

fDð−1;1Þ
α ;Dð−1;−1Þ

β g ¼ −εαβWð−2;0Þ: ð5:11bÞ

The Bianchi identities (2.3) imply the analyticity
constraints

Dð1;�1Þ
α Wð2;0Þ ¼ 0; Dð�1;1Þ

α Wð0;2Þ ¼ 0: ð5:12Þ

Remarkably, all information about the field strengths is
encoded in the following equations:

Dð1;1Þ
α Wð2;0Þ ¼ 0; Dð2;0ÞWð2;0Þ ¼ 0; Dð0;2ÞWð2;0Þ ¼ 0;

ð5:13aÞ

Dð1;1Þ
α Wð0;2Þ ¼ 0; Dð2;0ÞWð0;2Þ ¼ 0; Dð0;2ÞWð0;2Þ ¼ 0:

ð5:13bÞ

Indeed, the third equation in (5.13a) tells us that Wð2;0Þ is
independent of v�, that is Wð2;0Þ ¼ Wð2;0Þðz; u�Þ. The
second equation in (5.13a) tells us that Wð2;0Þ is indepen-
dent of the harmonics u−i and has the form (5.7b). Finally,
the first equation in (5.13a) tells us that Wij obeys the
Bianchi identity (2.3).
Equation (5.8a) has two nontrivial implications. First, it

allows one to introduce covariantly semianalytic super-
fields Φðp;qÞðz; u�; v�Þ constrained by

Dð1;1Þ
α Φðp;qÞ ¼ 0: ð5:14Þ

Such multiplets are rigid-superspace analogues of the
covariant hybrid multiplets introduced in [18] in the
framework of N ¼ 4 supergravity. Second, the constraint
(5.8a) has the following general solution

Dð1;1Þ
α ¼ e−iΩDð1;1Þ

α eiΩ; Ω≡Ωð0;0Þ; ð5:15Þ

for some bridge superfield Ωðz; u�; v�Þ which takes its
values in the Lie algebra of the gauge group.
Switching off the vector multiplet in (5.14) defines

semianalytic superfields,

Dð1;1Þ
α ϕðp;qÞ ¼ 0: ð5:16Þ

In complete analogy with the harmonic superspace
approach [27,28], for such multiplets one can define a
modified conjugation that maps every semianalytic
superfield ϕðp;qÞðz; u�; v�Þ into a semianalytic one,
ϕ̆ðp;qÞðz; u�; v�Þ, of the same Uð1Þ charge. We will refer
to it as “smile-conjugation.” The smile-conjugation has the
property

˘̆ϕ
ðp;qÞðz; u�; v�Þ ¼ ð−1Þpþqϕðp;qÞðz; u�; v�Þ: ð5:17Þ

Thus in the case that (pþ q) is even, real semianalytic
superfields may be introduced.
The introduction of Ω leads to a new gauge freedom, in

addition to the τ gauge symmetry (2.1). The gauge trans-
formation of Ω is

eiΩ
0 ¼ eiλeiΩe−iτ; λ≡ λð0;0Þ; ð5:18aÞ

where the new gauge parameter λðz; u�; v�Þ is constrained
to be semianalytic,

Dð1;1Þ
α λ ¼ 0; ð5:18bÞ
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and is real with respect to the smile-conjugation. The bridge
Ω in (5.15) may be chosen Hermitian with respect to the
operations of transposition and smile-conjugation.
Making use of the bridge allows us to introduce a new

representation for the covariant derivatives DA and matter
multiplets Φðp;qÞ with the property that no τ-gauge freedom
is left. It is obtained by applying the transformation:

DA → ∇A ¼ eiΩDAe−iΩ; ð5:19aÞ

Φðp;qÞ → ϕðp;qÞ ¼ eiΩΦðp;qÞ; ð5:19bÞ

in particular

Wðp;qÞ → Wðp;qÞ ¼ eiΩWðp;qÞe−iΩ; ð5:19cÞ

for the field strengths (5.7b) and (5.7c). The resulting
λ-representation is characterized by two important proper-

ties. First, the covariant derivative ∇ð1;1Þ
α has no gauge

connection,

∇ð1;1Þ
α ¼ Dð1;1Þ

α : ð5:20Þ

Second, the harmonic covariant derivatives acquire gauge
connections,

∇ð�2;0Þ ¼Dð�2;0Þ þ iVð�2;0Þ; ∇ð0;�2Þ ¼Dð0;�2Þ þ iVð0;�2Þ:

ð5:21Þ

Under the λ-gauge transformation, the gauge connections in
(5.21) change as

iV 0ð�2;0Þ ¼ eiλð∇ð�2;0Þe−iλÞ; iV 0ð0;�2Þ ¼ eiλð∇ð0;�2Þe−iλÞ:
ð5:22Þ

In the λ-representation, the equations (5.9a) mean that the
gauge prepotentials Vð2;0Þ and Vð0;2Þ are semianalytic,

Dð1;1Þ
α Vð2;0Þ ¼ 0; Dð1;1Þ

α Vð0;2Þ ¼ 0: ð5:23Þ

The above consideration in this section concerns the
long vector multiplet. As discussed in Sec. II, the left
and the right vector multiplets are obtained from the long
one by imposing the additional constraints (2.4a) and
(2.4b), respectively. This leads to important specific
features, which we now analyze. It suffices to consider
only the left multiplet for which W~i ~j ¼ 0, and hence
Wð0;2Þ ¼ Wð0;−2Þ ¼ ~Wð0;0Þ ¼ 0; the case of the right vector
multiplet is analogous. Since the right-hand sides of
Eqs. (5.8) and (5.11) are independent of the v� harmonics,
the bridge Ω in (5.15) can also be chosen to be independent
of these harmonics, Ω ¼ Ωðz; u�Þ. The gauge parameter λ
in (5.18b) also becomes independent of the v� harmonics,

λ ¼ λðz; u�Þ, and the semianalyticity constraint (5.18b)

turns into the analyticity conditions Dð1;�1Þ
α λ ¼ 0. These

results have two important corollaries: (i) the harmonic
connections Vð0;�2Þ in (5.21) vanish, Vð0;�2Þ ¼ 0; (ii) the
connections Vð�2;0Þ are independent of the v� harmonics,
Vð�2;0Þ ¼ Vð�2;0Þðz; u�Þ. As a result, the first equation in
(5.23) obeys the stronger analyticity conditions

Dð1;�1Þ
α Vð2;0Þ ¼ 0, which agrees with Zupnik’s approach

[13,14].
The zero-curvature conditions (5.4a) and (5.4b) in the

λ-frame are

Dð2;0ÞVð−2;0Þ−Dð−2;0ÞVð2;0Þ þ i½Vð2;0Þ;Vð−2;0Þ� ¼ 0; ð5:24aÞ

Dð0;2ÞVð0;−2Þ−Dð0;−2ÞVð0;2Þ þ i½Vð0;2Þ;Vð0;−2Þ� ¼ 0: ð5:24bÞ

They allow one to express the superfields Vð−2;0Þ and
Vð0;−2Þ in terms of Vð2;0Þ and Vð0;2Þ, respectively,

Vð−2;0Þ ¼Vð−2;0Þ½Vð2;0Þ�; Vð0;−2Þ ¼Vð0;−2Þ½Vð0;2Þ�: ð5:25Þ

Explicitly, these solutions are given as series over harmonic
distributions presented in [29]. We point out that the
superfields Vð−2;0Þ and Vð0;−2Þ live in the full superspace
in contrast to the prepotentials Vð2;0Þ and Vð0;2Þ subject to
the constraints (5.23).
In the case of the left vector multiplet, for which W~i ~j ¼

0 and Vð0;�2Þ ¼ 0, the prepotential Vð2;0Þ is real analytic but
otherwise unconstrained. For the long vector multiplet, we
have two semianalytic prepotentials Vð2;0Þ and Vð0;2Þ. The
constraints (5.23) are not the only conditions they obey.
They are also related to each other by the zero-curvature
condition

Dð2;0ÞVð0;2Þ −Dð0;2ÞVð2;0Þ þ i½Vð2;0Þ; Vð0;2Þ� ¼ 0: ð5:26Þ

Using the algebra of spinor covariant derivatives in the λ-
frame it is possible to express the field strengthsWð2;0Þ and
Wð0;2Þ in terms of the gauge prepotentials Vð0;−2Þ and
Vð−2;0Þ. The resulting expressions are

Wð2;0Þ ¼ i
2
Dð1;1ÞαDð1;1Þ

α Vð0;−2Þ;

Wð0;2Þ ¼ i
2
Dð1;1ÞαDð1;1Þ

α Vð−2;0Þ: ð5:27Þ

These superfields transform covariantly under the λ-gauge
group,

W0ð2;0Þ ¼ eiλWð2;0Þe−iλ; W0ð0;2Þ ¼ eiλWð0;2Þe−iλ: ð5:28Þ

These results show that the long vector multiplet is
completely described in terms of the two real semianalytic
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prepotentials Vð2;0Þ and Vð0;2Þ subject to the zero-curvature
condition (5.26).
As discussed above, all information about the off-shell

long vector multiplet is encoded in the equations (5.13). It
is interesting that the on-shell hypermultiplets are described
by analogous equations:

Dð1;1Þ
α qð1;0Þ ¼ 0; Dð2;0Þqð1;0Þ ¼ 0; Dð0;2Þqð1;0Þ ¼ 0;

ð5:29aÞ

Dð1;1Þ
α qð0;1Þ ¼ 0; Dð2;0Þqð0;1Þ ¼ 0; Dð0;2Þqð0;1Þ ¼ 0:

ð5:29bÞ

For example, consider the left hypermultiplet. The third
equation in (5.29a) tells us that qð1;0Þ is independent of v�,
that is qð1;0Þ ¼ qð1;0Þðz; u�Þ. The second equation in (5.29a)
tells us that qð1;0Þ is independent of the harmonics u−i and
has the functional form qð1;0Þ ¼ uþi q

i. Finally, the first
equation in (5.29a) tells us that qi obeys the constraint
(2.5a). In summary, the on-shell hypermultiplets in
harmonic superspace are described by the superfields

qð1;0Þ ¼ uþi q
i; qð0;1Þ ¼ vþ~i q

~i: ð5:30Þ

In conclusion of this section let us briefly discuss the
equations of motion for the ABJM theory in N ¼ 4
harmonic superspace. This theory is described by the
hypermultiplet superfields qð0;1Þ and qð1;0Þ in the bifunda-
mental representation of the gauge group GL ×GR. There

are also superfield strengthsWð2;0Þ
L ,Wð2;0Þ

R ,Wð0;2Þ
L andWð0;2Þ

R
which take values in the Lie algebras of the gauge groups
GL and GR. These superfields obey the equations (5.13)
and (5.29). The field strengths are expressed in terms of the
hypermultiplets as

Wð2;0Þ
L ¼ iκqð1;0Þq̄ð1;0Þ; Wð2;0Þ

R ¼ iκq̄ð1;0Þqð1;0Þ;

Wð0;2Þ
L ¼ iκqð0;1Þq̄ð0;1Þ; Wð0;2Þ

R ¼ iκq̄ð0;1Þqð0;1Þ: ð5:31Þ

It would be interesting to find a superfield Lagrangian
reproducing this set of equations.

VI. CONCLUSION

We have shown that the N ¼ 4 superfield realizations
for superconformal CS theories with N ≥ 4 require the
long N ¼ 4 vector multiplet. The structure of the long
N ¼ 4 vector multiplet turns out to be the main reason for
problems with constructing off-shell actions in N ¼ 4
superspace for supersymmetric CS theories with eight
and more supercharges. The simplest way to see this is
to look at N ¼ 4 → N ¼ 3 superspace reduction of
large N ¼ 4 vector multiplet. In N ¼ 3 superspace, this

multiplet is described by gauge covariant symmetric iso-
spinors Wij and ~Wij in the adjoint representation of the
gauge group. One of them, Wij, is the field strength of
the N ¼ 3 vector multiplet [13,30]. In terms of the gauge
covariant derivativesDij

α inN ¼ 3 superspace, it originates
as follows

fDij
α ;Dkl

β g ¼ −2iεiðkεlÞjDαβ þ
1

2
εαβðεiðkWlÞj þ εjðkWlÞiÞ

ð6:1Þ

and obeys the Bianchi identity

Dðij
α WklÞ ¼ 0: ð6:2Þ

The other object, ~Wij, is a Lie-algebra-valued matter
multiplet subject to the same constraint as Wij,

Dðij
α ~WklÞ ¼ 0: ð6:3Þ

Each of Wij and ~Wij is a linear combination of the N ¼ 4

field strengths Wij and W~i ~j in (2.2) projected to N ¼ 3

superspace. On the mass shell, Wij and ~Wij become
composites constructed from N ¼ 3 hypermultiplets qi

and their conjugates q̄i. Symbolically, we have Wij
A ¼

q̄ðiTAqjÞ and ~Wij
A ¼ q̄ði ~TAqjÞ. The former equation can

always be realized as the equation of motion for the vector
multiplet in some N ¼ 3 superconformal Chern-Simons-
matter theory formulated in harmonic superspace [10].
However, there is no systematic way to realize the latter
constraint as a Euler-Lagrange equation, except for the
Abelian case.
The results of this paper can naturally be generalized to

supergravity. The equations of motion for a general N ¼ 4

superconformal CS theory coupled to N ¼ 4 conformal
supergravity are

∇~iði
α qjÞ ¼ 0; ∇ið~i

α q~jÞ ¼ 0; ð6:4aÞ

1

κ
Wij

A ¼ igABq̄ðiTBqjÞ;
1

~κ
W

~i ~j
A ¼ igABq̄ð

~i ~TBq~jÞ; ð6:4bÞ

1

κSG
W ¼ q̄iqi − q̄~iq

~i; ð6:4cÞ

where W is the N ¼ 4 super-Cotton scalar (see [25] for
more details). The torsion and curvature tensors in N ¼ 4
conformal superspace are completely determined in terms
of W and its covariant derivatives. The super-Cotton scalar
obeys the Bianchi identity [25]

∇αð~iði∇jÞ~jÞ
α W ¼ 0; ð6:5Þ
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and the same equation is obeyed by each term on the right
of (VI.4c). The gauge-covariant derivative∇ in Eq. (6.4a) is
defined in Appendix B, Eq. (B1). In this paragraph as well
as in Appendix B, we use the notation ∇A for the covariant
derivatives in conformal superspace. These should not be
confused with the gauge covariant derivative in the
λ-frame (5.19).
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APPENDIX A: CONSISTENCY CONDITION
IN N ¼ 4 CS THEORIES

As shown in Sec. II, the N ¼ 4 supersymmetric gauge
theories are subject to the consistency conditions (2.6). In
the case of superconformal CS theories, these conditions
imply the equations (2.9) for the generators of the gauge
group. Here we demonstrate that these equations are
equivalent to the fundamental identity for the generators
of the gauge group found in [8]. For simplicity, here we
consider only the left hypermultiplet qi and field strength
Wij; the analysis for the right multiplets q~i and W~i ~j is
absolutely identical.
We can view the hypermultiplet qi ¼ ðqiaÞ, a ¼ 1;…; n,

as a n-vector in some representation of the gauge group G
so that q̄i ¼ ðq̄iaÞ form the conjugated representation. It is
convenient to combine them into one 2n-dimensional
vector Qi ¼ ðQi

âÞ ¼ ðqia;−q̄iaÞT, where â ¼ 1;…; 2n, cor-
responds to the Spð2nÞ group such that

Q̄â
i ≔ Q̄i

â ¼ εijΩâ b̂Qj
b̂
; Q̄i¼ðQ̄â

i Þ¼ ðq̄ai ;qiaÞ; ðA1Þ

where Ωâ b̂ ¼ −Ωb̂ â is the invariant tensor of Spð2nÞ,

Ωâ b̂ ¼
�

0 1n
−1n 0

�
: ðA2Þ

The gauge group G acts on Qi by symplectic transforma-
tions. Denoting by ðTAÞâb̂ the generators of G in which Qi

â
transforms, the field strength is

Wij ¼ Wij
AT

A: ðA3Þ

In this notation, the integrability condition (2.6) can be
rewritten as

Wðij
A ðTAÞâb̂QkÞ

b̂
¼ 0: ðA4Þ

In the superconformal CS theories considered in Sec. II,
the field strength Wij

A becomes the hypermultiplet

composite operator given by (2.7a). In the notation (A1),
Eq. (2.7a) reads

Wij
A ¼ i

2
κgABQâðiðTBÞâb̂QjÞ

b̂
; ðA5Þ

where the generator ðTAÞâb̂ has the following block
diagonal form

ðTAÞâb̂ ¼
� ðTAÞab 0

0 −ðTAÞba
�
: ðA6Þ

The consistency condition (A4) now reads

gABQâðiQj
b̂
QkÞ

d̂
ðTAÞâb̂ðTBÞĉd̂ ¼ 0: ðA7Þ

This equation implies the following constraint on the
generators of the gauge group

gABTA
âðb̂T

B
ĉ d̂Þ ¼ 0; ðA8Þ

where we have assumed that the hypermultiplet indices,
â; b̂;…, are raised and lowered using the symplectic metric
Ωâ b̂ and its inverse Ωâ b̂, Ωâ b̂Ωb̂ ĉ ¼ δĉâ. For the generators
with lower indices, TA

â b̂
¼ Ωb̂ ĉðTAÞâĉ, we have

ðTAÞâ b̂ ¼
�

0 ðTAÞab
ðTAÞba 0

�
: ðA9Þ

With this block matrix representation of the generators it
becomes obvious that Eq. (A8) is equivalent to (2.9a),

gABTA
âðb̂T

B
ĉ d̂Þ ¼ 0 ⇔ gABðTAÞaðbðTBÞcdÞ ¼ 0: ðA10Þ

The equation (A8) was first derived in [8] where the
formulation in terms of N ¼ 1 superfields was developed
forN ¼ 4 superconformal CS theories. Equation (A8) was
necessary for the construction of consistent interaction
Lagrangians for N ¼ 4 superconformal CS theories. As
demonstrated in our paper, in N ¼ 4 superspace Eq. (A8)
naturally arises as the consistency condition of the hyper-
multiplet equations of motion.
In [8], the equation (A8) was called the fundamental

identity since it imposes nontrivial constraints both on the
gauge group and the matter representation. In the same
paper it was demonstrated that the fundamental identity is
satisfied for those Lie groups which allow for super-
extensions. The typical examples of such gauge groups
are UðMÞ × UðNÞ and OðMÞ × Spð2NÞ which are the
bosonic bodies of UðMjNÞ and OSpðMj2NÞ, respectively.
The matter hypermultiplets belong to the bifundamental
representations of these gauge groups.
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APPENDIX B: N -EXTENDED VECTOR
MULTIPLET

To describe a Yang-Mills multiplet in the 3D
N -extended conformal superspace M3j2N of [25], para-
metrized by coordinates zM ¼ ðxm; θμI Þ, we introduce gauge
covariant derivatives

∇A ¼ ð∇a;∇I
αÞ ≔ ∇A þ iVA; I ¼ 1;…;N ; ðB1Þ

where ∇A are the supergravity covariant derivatives [25].
The algebra of gauge covariant derivative is

½∇A;∇Bg ¼ iFAB þ…; ðB2Þ

where the ellipsis denotes the purely supergravity terms.
The field strength FAB satisfies the Bianchi identity

∇½AFBCg þ T ½AB
DF jDjCg ¼ 0; ðB3Þ

where TAB
D is the torsion tensor, see [25] for more details.

The field strength is subject to a covariant constraint
to describe a vector multiplet. For N > 1 the constraint
[30–32] is

F I J
αβ ¼ 2iεαβWIJ; ðB4Þ

Then, the Bianchi identities give the remaining components
of the field strength [25]

F a
I
α ¼ −

1

ðN − 1Þ ðγaÞα
β∇βJWIJ; ðB5aÞ

F ab ¼
i

4N ðN − 1Þ εabcðγ
cÞαβ½∇K

α ;∇L
β �WKL: ðB5bÞ

For N > 2 the field strength WIJ is constrained by the
dimension-3=2 Bianchi identity

∇I
γWJK ¼ ∇½I

γ WJK� −
2

N − 1
δI½J∇γLWK�L: ðB6Þ

This constraint may be shown to define an off-shell
supermultiplet [21], see also [25].
The component fields of vector multiplets may be

extracted from the field strength WIJ. For N > 1, we
define the matter fields as follows

wIJ ≔ WIJj; ðB7aÞ

λIα ≔
2

N − 1
∇αJWIJj; ðB7bÞ

hIJ ≔
i

N − 1
∇γ½I∇γKWJ�Kj; ðB7cÞ

χα1���αn
I1���Inþ2 ≔ IðnÞ∇½I1

ðα1 � � �∇
In
αnÞW

Inþ1Inþ2�j; ðB7dÞ

where

IðnÞ ¼
�
i; n ¼ 1; 2 ðmod 4Þ
1; n ¼ 3; 4 ðmod 4Þ: ðB8Þ

For the supersymmetry transformations of the N -extended
vector multiplet, see [11].
The component fields of the vector multiplet form

the tower [11,21] given in Fig. 1. In this diagram,
Fαβ is the symmetric spinor associated with the
Hodge dual Fa ¼ 1

2
εabcFbc of Fab ¼ F abj. Modulo fer-

mionic terms, Fab coincides with the component
field strength. In the left branch of the diagram, the
fields χα1α2

I1���I4 ;…; χα1���αN−2
I1���IN satisfy, in the linearized

approximation, the conservation equations
ðγaÞβγ∂aχβγα3���αn

I1���Inþ2 ¼ 0.
In theN ¼ 4 case, the two branches of the diagram have

identical algebraic structure, and thus every field on the left
has a twin on the right. This doubling of fields disappears if
the field strength WIJ is constrained to be self-dual,
~WIJ ¼ WIJ, or antiself-dual, ~WIJ ¼ −WIJ, where

~WIJ ≔
1

2
εIJKLWKL: ðB9Þ

These cases correspond to the left and right vector
multiplets, respectively.

FIG. 1. Component fields of the N -extended vector multiplet.
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