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We consider Yang-Mills theories in a recently proposed family of nonlinear covariant gauges
that consistently deals with the issue of Gribov ambiguities. Such gauges provide a generalization
of the Curci-Ferrari-Delbourgo-Jarvis gauges which can be formulated as an extremization procedure and
might be implemented in numerical calculations. This would allow for nonperturbative studies
of Yang-Mills correlators in a broad class of covariant gauges continuously connected to the well-studied
Landau gauge. We compute the ghost and gluon propagators in the continuum formulation
at one-loop order in perturbation theory and we study their momentum dependence down to the
deep infrared regime, with and without renormalization-group improvement. In particular, we show that the
theory admits infrared-safe renormalization-group trajectories with no Landau pole. Both the gluon and the
ghost behave as massive fields at low energy, and the gluon propagator is transverse even away from the
Landau gauge limit. We compare our results to those obtained in the usual Curci-Ferrari model, which
allows us to pinpoint the specific effects arising from our treatment of Gribov copies.
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I. INTRODUCTION

Describing the long-distance dynamics of non-Abelian
gauge fields is a problem of notorious difficulty, mainly due
to the breakdown of standard perturbative tools at low
energies. Various complementary approaches have been
developed to tackle the problem, either through direct
Monte Carlo simulations, or by means of approximate
continuum methods. The former, which use a Euclidean
lattice discretization, can directly access physical observ-
ables but are essentially limited to static quantities. In
contrast, continuum approaches, such as truncations of
Dyson-Schwinger equations [1,2], or the nonperturbative
renormalization group [3], can access real-time quantities
[4,5]. However, they essentially rely on computing the basic
correlation functions of Yang-Mills fields and require a
gauge-fixing procedure. It is thus important to have a
quantitative understanding of such correlators in order to
assess the (necessary) approximations underlying such
approaches. This can be achieved through gauge-fixed
lattice calculations.
An important issue concerns the algorithmic complexity

of fixing a gauge numerically, in particular, in the case of
covariant gauges, the most convenient ones for continuum
calculations. Generically, this requires one to find the roots
of a large set of coupled nonlinear equations, which is
numerically demanding. However in some cases, the gauge
condition can be formulated as an extremization problem
and efficient minimization algorithms can be employed.
This strategy was successfully applied for the Landau
gauge [6–12]. Attempts to formulate general linear

covariant gauges on the lattice have been made in
Refs. [13–16]. However, the extremization functional pro-
posed in Refs. [13,14] has spurious solutions, while the
procedure of Ref. [15] is limited to infinitesimal deviations
from the Landau gauge. The numerical procedure put
forward in Ref. [16] and further developed in Refs. [17–20]
seems to correctly produce linear gauge-fixed configura-
tions although its practical implementation does not really
correspond to solving an extremization problem.
Incidentally, it is problematic in what concerns the ghost
sector. Linear gauges have been recently investigated in the
context of Dyson-Schwinger equations in Refs. [21–23].
In a recent work [24,25], we have proposed a simple

generalization of the Landau gauge extremization
functional, which generates a one-parameter family of
nonlinear covariant gauges with a well-defined continuum
formulation. Neglecting the issue of Gribov copies and
applying the standard Faddeev-Popov (FP) procedure, this
reduces to the Curci-Ferrari-Delbourgo-Jarvis (CFDJ)
Lagrangian [26,27]. The latter is unitary and renormaliz-
able in four dimensions. The proposed extremization
functional satisfies the required properties for powerful
numerical minimization algorithms, such as, e.g., the Los
Alamos algorithm [28]. A numerical implementation
of this proposal would open the way for nonperturbative
calculations of Yang-Mills correlators in a broad class of
covariant gauges continuously connected to the Landau
gauge.
The purpose of the present work is to study the ghost and

gluon propagators in the continuum Euclidean formulation
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of this class of gauges. Continuum approaches have to deal
with the issue of Gribov copies [29]. In the present context,
this originates from the fact that the extremization func-
tional possesses many extrema. Numerical minimization
algorithms allow one to isolate a single extremum
(minimum), but such a procedure is difficult to formulate
in terms of a local action, the necessary starting point for
continuum techniques. The standard FP procedure com-
pletely ignores the Gribov issue and is valid, at best, in the
high-energy regime, where one expects Gribov copies to be
irrelevant. It is thus of key importance to devise gauge-
fixing procedures which deal with the issue of Gribov
ambiguities. A famous example is the (refined) Gribov-
Zwanziger proposal [29–32], where one restricts the path
integral to the first Gribov region, in which the FP operator
is positive definite. This has been mostly worked out in the
case of the Landau gauge but some studies exist for linear
covariant gauges [33–37]. This procedure is, however, not
completely satisfactory since the first Gribov region itself is
not free of Gribov ambiguities [38,39].
An alternative strategy, put forward in Ref. [40] in the

case of the Landau gauge, is to average over the Gribov
copies in such a way as to lift their degeneracy. For an
appropriate choice of the averaging procedure, this can be
formulated in terms of a local renormalizable field theory in
four dimensions, which turns out to be perturbatively
equivalent to the Landau limit of the Curci-Ferrari (CF)
model [26]—a simple massive extension of the FP
Lagrangian—for the calculation of ghost and gluon corre-
lators. Here, the bare gluon mass is related to the gauge-
fixing parameter which lifts the degeneracy between
Gribov copies. Remarkably, this theory admits infrared-
safe renormalization-group (RG) trajectories, allowing the
use of perturbation theory down to arbitrarily low momenta
[41]. One-loop calculations of ghost and gluon correlators
in the vacuum and at finite temperature are in good
agreement with lattice results [41–43]. This has been
extended to QCD in Ref. [44] and to background field
methods in Ref. [45–47], allowing for a simple perturbative
description of the confinement-deconfinement transition in
pure SUðNÞ theories.
We have generalized such an averaging procedure over

Gribov copies to the family of nonlinear covariant gauges
mentioned above in Ref. [24]; see also Ref. [25] for a short
overview. Again, for a suitable choice of the averaging
procedure, this can be formulated as a local field theory,
which is perturbatively renormalizable in four dimensions
and, thus, well suited for continuum approaches. As in the
case of the Landau gauge, the resulting gauge-fixed action
consists of a massive extension of the CFDJ action—the
general CF action [26]—coupled to a set of replicated
supersymmetric nonlinear sigma models. The superfield
sector is directly related to the treatment of Gribov
ambiguities. However, unlike in the special case of the
Landau gauge, this superfield sector does not decouple in

the calculation of ghost and gluon correlators and the
resulting effective gauge-fixed theory is very different from
the general CF model. In this article, we present a complete
calculation of the ghost and gluon propagators at one-loop
order using this gauge-fixed action, with and without RG
improvement, and we investigate possible infrared-safe RG
trajectories. We compare our results to those in the CF
model, which gives direct information on the role of Gribov
ambiguities.
One aim of the present work is to motivate lattice

calculations of ghost and gluon correlators in the proposed
family of gauges. Such calculations would typically be
performed by selecting one minimum (maximum) of the
extremization functional. It is by no means clear how this
would be related with the averaging over Gribov copies
studied here. However, we may hope that the situation is
similar to the case of the Landau gauge, or at least close to
the latter. As mentioned above, in this case, the weighted
average procedure put forward in Ref. [40] produces
perturbative results which agree well with lattice calcu-
lations in the minimal Landau gauge—where one selects a
unique (random) Gribov copy in the first Gribov region,
that is, among the ensemble of minima (maxima) of the
extremization functional. A possible interpretation of this
observation is that, for some range of the averaging
parameter, all Gribov copies in the first region are essen-
tially equiprobable while other Gribov regions are sup-
pressed, such that averaging over copies is equivalent to
randomly choosing a particular one in the first region [40].
Understanding this issue further would require a detailed
investigation of the landscape of the extremization func-
tional. This can be done on small lattices [48] but it is a
formidable task in general both because the number of
copies typically grows exponentially with increasing vol-
ume and because it is virtually impossible to numerically
find copies that are not in the first Gribov region (i.e.,
saddle points of the extremization functional).
The paper is organized as follows. In Sec. II, we recall

the main steps of the gauge-fixing procedure proposed in
Ref. [24]. We fix the notations and we introduce a crucial
technical aspect of the whole procedure, namely the replica
trick. In Sec. III, we review the Feynman rules relevant for
one-loop computations and calculate the self-energies of
the theory. We show in an explicit example how the
calculation of loop diagrams involving the superfield sector
are performed in practice. In Sec. IV we present two
renormalization schemes and we discuss, in particular,
the role of the replica. In Sec. V, we present our results
for the ghost and gluon propagators for different choices of
the gauge-fixing parameter. Finally, we investigate RG
improvement in Sec. VI and we find infrared-safe RG
trajectories where the coupling constant remains under
control all along the flow. This justifies the use of
perturbation theory down to deep infrared momenta. In
this regime, we find that gluons and ghosts are massive, and
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that the gluon propagator is always strictly transverse.
The superfield sector is crucial in that it ensures that the
present approach is indeed a bona fide gauge fixing, in
contrast, e.g., to the CF model. In order to emphasize the
role of the superfield sector, we systematically compare our
results to those of the CF model at the same order of
approximation. Finally, we give some technical details in
Appendices A–D.

II. THE GAUGE-FIXING PROCEDURE

The classical action of the SUðNÞ Yang-Mills theory
reads, in d-dimensional Euclidean space,

SYM½A� ¼
1

4

Z
x
ðFa

μνÞ2; ð1Þ

where
R
x ≡

R
ddx and

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ g0fabcAb

μAc
ν; ð2Þ

where g0 is the (bare) coupling constant and a summation
over repeated spacetime and color indices is understood. In
the following, we use the convention that fields written
without an explicit color index are contracted with the
generators ta of SUðNÞ in the fundamental representation
and are thus N × N matrix fields, e.g., Aμ ¼ Aa

μta. Our
normalization for the generators is such that

tatb ¼ δab

2N
1þ ifabc þ dabc

2
tc; ð3Þ

where fabc and dabc are the usual totally antisymmetric and
totally symmetric tensors of SUðNÞ. In particular, we have

trðtatbÞ ¼ δab

2
: ð4Þ

In order to fix the gauge, we consider the functional

H½A; η; U� ¼
Z
x
tr

�
ðAU

μ Þ2 þ
U†ηþ η†U

2

�
; ð5Þ

where η is an arbitrary N × N matrix field, and

AU
μ ¼ UAμU† þ i

g0
U∂μU† ð6Þ

is the gauge transform of Aμ with U ∈ SUðNÞ. We define
our gauge condition as (one of) the extrema of H with
respect to U. This leads to the following covariant gauge
condition:

ð∂μAU
μ Þa ¼

ig0
2

tr½taðUη† − ηU†Þ�: ð7Þ

The functional H admits many extrema Ui ≡Ui½A; η�
which correspond to Gribov copies. The possible numerical

implementation of this gauge condition has been discussed
in Ref. [24]. Once the gauge condition (7) has been
implemented, we average over the random field η, with
a Gaussian weight1 (N is a normalization factor)

P½η� ¼ N exp

�
−

g20
4ξ0

Z
x
tr η†η

�
; ð8Þ

where ξ0 is a (bare) gauge-fixing parameter. The case
ξ0 ¼ 0 corresponds to η ¼ 0, that is to the Landau
gauge ∂μAU

μ ¼ 0.
Let us briefly recall the main lines of the formalism

developed in Ref. [24]. We define the vacuum expectation
values of an operator O½A� by a two-step averaging
procedure. The first step, hereafter denoted with brackets,
consists in an average over the Gribov copies of any gauge
field configuration A:

hO½A�i ¼
R
DηP½η�PiO½AUi �sðiÞe−β0H½A;η;Ui�R

DηP½η�PisðiÞe−β0H½A;η;Ui� ; ð9Þ

where the discrete sums run over all Gribov copies,
sðiÞ is the sign of the functional determinant of the
Faddeev-Popov operator—the Hessian of the functional
(5)—evaluated at U¼Ui, and β0 is a free gauge-fixing
parameter which controls the lifting of degeneracy
between Gribov copies. The case β0 ¼ 0would correspond
to a flat weight over the Gribov copies and would reduce to
the standard FP construction. The second step, denoted by
an overall bar, is a standard average over gauge field
configurations with the Yang-Mills weight. The expect-
ation value of the operator O½A� is thus obtained as

hO½A�i ¼
R
DAhO½A�ie−SYM½A�R

DAe−SYM½A�
: ð10Þ

Using standard techniques, the sum over Gribov copies
in Eq. (9) can be written in terms of a path integral over an
SUðNÞmatrix fieldU as well as ghost and antighost fields c
and c̄ and a Nakanishi-Lautrup field h which ensure the
gauge condition (7). One can then explicitly perform the
Gaussian integration over the field η. A crucial point here is
the presence of the denominator in Eq. (9), which guar-
antees that gauge-invariant observables Oinv½A� are blind to
the gauge-fixing procedure: hOinv½A�i ¼ Oinv½A�. Such a
denominator produces a nonlocal functional of the gauge
field which can, however, be treated by means of a local
action using the replica technique [49]. The latter amounts
to making n replicas of the set of fields ðU; c; c̄; hÞ and
taking the limit n → 0 at the end of (loop) calculations. One
can then explicitly factor out the volume of the gauge group

1The weight (8) is invariant under the change η → ηU, which
ensures that one can eventually factor out the volume of the gauge
group in the FP construction.
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R
DU, which effectively singles out one replica. The n − 1

remaining replicated fields ðUk; ck; c̄k; hkÞ, with 2 ≤ k ≤ n,
are conveniently grabbed together by introducing SUðNÞ
matrix superfields Vk that depend on the Euclidean coor-
dinate x and a pair of Grassmannian coordinates ðθk; θ̄kÞ≡
θk as

Vkðx; θkÞ ¼ exp fig0ðθ̄kck þ c̄kθk þ θ̄kθkĥkÞgUk; ð11Þ

where ĥk ¼ ihk þ g0
2
fc̄k; ckg. Here, the x dependence on

the right-hand side is only through the fields. Note that
there is an independent pair of Grassmannian coordinates
for each replica.
After some manipulations, one finally gets [24]

hO½A�i ¼ lim
n→0

R
DðA; c; c̄; h; fVgÞO½A�e−S½A;c;c̄;h;fVg�R
DðA; c; c̄; h; fVgÞe−S½A;c;c̄;h;fVg� ;

ð12Þ

where DðA; c; c̄; h; fVgÞ≡DðA; c; c̄; hÞ ×Q
n
k¼2DVk and

the gauge-fixed action for arbitrary n is given by

S½A; c; c̄; h; fVg� ¼ SYM½A� þ SCF½A; c; c̄; h�

þ
Xn
k¼2

SSUSY½A;Vk�; ð13Þ

where SYM½A� is the Yang-Mills action,

SCF½A;c;c̄;h�¼
Z
x

�
∂μc̄aDμcaþiha∂μAa

μ

þξ0

�ðhaÞ2
2

−
g0
2
fabcihac̄bcc−

g20
4
ðfabcc̄bccÞ2

�

þβ0

�
1

2
ðAa

μÞ2þξ0c̄aca
��

; ð14Þ

and

SSUSY½A;Vk� ¼ SCF½AUk; ck; c̄k; hk�: ð15Þ

It is remarkable that the integration over the random matrix
field η with the weight (8) produces the CFDJ action, the
first two lines on the right-hand side of Eq. (14). The third
line, which corresponds to a bare mass term for both the
gluon and the ghost fields proportional to the factor β0,
arises from the average over Gribov copies. Altogether, the
first line of Eq. (13) corresponds to the general CF action,
whereas the second line is the contribution from the
replicated superfields.
Finally, for actual calculations, it is useful to exploit the

superfield formulation (11) and to rewrite Eq. (15) as

SSUSY½A;V� ¼
1

g20

Z
x;θ

tr

�
DμV†DμV þ ξ0

2
gMN∂NV†∂MV

�
;

ð16Þ

with DμV ¼ ∂μV þ ig0VAμ and where the uppercase latin
lettersM;N stand for Grassmann variables θ; θ̄ (a sum over
repeated indices is understood). Here, we have introduced a
curved Grassmann manifold with line element ds2 ¼
gMNdNdM ¼ 2gθθ̄dθ̄dθ, where

gθ̄θ ¼ −gθθ̄ ¼ β0θ̄θ þ 1;

gθ̄θ ¼ −gθθ̄ ¼ β0θ̄θ − 1: ð17Þ

The curvature of the Grassmannian manifold is controlled
by the lifting parameter β0. As already noticed, there is such
a curved Grassmannian manifold associated to each replica
superfield Vk. The integration measure is defined accord-
ingly as [50]

Z
θ
¼

Z
dθdθ̄g1=2ðθ; θ̄Þ; ð18Þ

where

g1=2ðθ; θ̄Þ≡ g1=2ðθÞ ¼ β0θ̄θ − 1: ð19Þ

The formulation (16) makes transparent a large class of
supersymmetries which mix the original bosonic ðUk; hkÞ
and Grassmannian ðck; c̄kÞ fields. These simply correspond
to the isometries of the Grassmannian manifold [24,50].
We stress again that the limit n → 0 in Eq. (12) results

from the presence of the denominator in Eq. (9) and is thus
crucial in order for the present theory to correspond to a
gauge-fixing procedure, as discussed above. Instead, ignor-
ing the denominator in Eq. (9) is equivalent to setting n ¼ 1
which does not correspond to a gauge-fixed theory. In that
case, there is no superfield sector and the model reduces to
the CF action, given by the first line of Eq. (13). It is,
therefore, interesting to compare the results obtained in
the limit n → 0 to the corresponding ones in the CF model,
obtained by setting n ¼ 1 in order to highlight the
importance of the superfield sector and of the limit
n → 0. This allows us to study the influence of the
Gribov ambiguities. It is worth emphasizing that the action
(13) is perturbatively renormalizable and asymptotically
free in four dimensions for an arbitrary value of n despite
the presence of the replicated matrix superfield [24]. We
can thus use the same renormalization schemes in the cases
n → 0 and n ¼ 1.
To summarize, we have presented a genuine gauge-

fixing procedure of the Yang-Mills action in a certain class
of nonlinear covariant gauges, which consistently deals
with the issue of Gribov ambiguities and which can be
written as a local, renormalizable gauge-fixed action. These
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gauges are indexed by a parameter ξ0, and the lifting over
the Gribov copies is controlled by an extra gauge-fixing
parameter β0 > 0 homogeneous to a square mass. The
resulting gauge-fixed action (13) depends on the gauge
field A, the usual ghost and antighost fields c; c̄ and the
Nakanishi-Lautrup field h, and a set of n − 1 replicated
SUðNÞ matrix superfields. In the following, we compute
the two-point vertex functions of the theory in the vacuum
with the action (13) for fixed n, from which we obtain the
various propagators after inversion. We then either perform
the limit2 n → 0 as required by our gauge-fixing procedure,
or set n ¼ 1 in order to compare with the CF model.

III. PERTURBATION THEORY

We compute the ghost and gluon propagators at one-loop
order in perturbation theory. The calculations are lengthy
but straightforward. Here, we solely display the relevant
Feynman diagrams and detail one explicit example involv-
ing the superfield sector. The complete expressions of the
diagrams are given in the Supplemental Material [51].

A. Feynman rules

For the purpose of the perturbative expansion, we
introduce the replicated superfields Λa

kðx; θkÞ as

Vkðx; θkÞ ¼ exp ½ig0taΛa
kðx; θkÞ�: ð20Þ

Expanding the action (13) in powers of Λk up to order g20,
we get the free propagators and the vertices relevant for
one-loop computations. We work in momentum Euclidean
space with the Fourier convention ∂μ → −ipμ. Since the
Grassmann spaces are curved, it is not useful to introduce
associated Fourier variables.
The quadratic part of the action (13) couples the different

fields, which leads to mixed propagators. In the ðA; c; c̄; hÞ
sector, this yields the following expressions for the bare
tree-level propagators [24] (see also Appendix A):

½Aa
μð−pÞAb

νðpÞ�0 ¼ δab
�

PT
μνðpÞ

p2 þ nβ0
þ ξ0PL

μνðpÞ
p2 þ β0ξ0

�
; ð21Þ

½cað−pÞc̄bðpÞ�0 ¼
δab

p2 þ β0ξ0
; ð22Þ

½ihað−pÞihbðpÞ�0 ¼
−β0δab

p2 þ β0ξ0
; ð23Þ

and

½ihað−pÞAb
μðpÞ�0 ¼

iδabpμ

p2 þ β0ξ0
: ð24Þ

Here, PL
μνðpÞ ¼ pμpν=p2, PT

μνðpÞ ¼ δμν − pμpν=p2, and
the square brackets with subscript 0 denote an average with
the quadratic part of the action (13), with n finite. The only
reminiscence of the replica sector of the theory in the
correlators (21)–(24) is through the square mass nβ0
appearing in the transverse part of the gluon propagator.
For n ¼ 1 we recover the tree-level propagators of the
CF model.
The correlator of the superfields Λk reads

½Λa
kð−p;θÞΛb

l ðp;θ0Þ�0 ¼ δab
�
δklδðθ; θ0Þ
p2 þ β0ξ0

þ ξ0ð1þ δklÞ
p2ðp2 þ β0ξ0Þ

�
;

ð25Þ

where δðθ; θ0Þ ¼ g−1=2ðθÞðθ̄ − θ̄0Þðθ − θ0Þ is the covariant
Dirac delta function on the curved Grassmann space:R
θ δðθ; θ0ÞfðθÞ ¼ fðθ0Þ. Notice that, for ξ0 ≠ 0, there is a

nontrivial correlation between different replica. Finally,
there are nontrivial mixed correlators

½ihað−pÞΛb
kðp; θÞ�0 ¼

δab

p2 þ β0ξ0
ð26Þ

and

½Λa
kð−p; θÞAb

μðpÞ�0 ¼
iξ0δabpμ

p2ðp2 þ β0ξ0Þ
: ð27Þ

The interaction vertices are obtained from terms higher
than quadratic in the fields. From Eq. (13), it appears
clearly that the vertices of the sector ðA; c; c̄; hÞ are
identical to those of the CF model or, equivalently, to
those of the CFDJ action. These include the Yang-Mills
vertices with three and four gluons as well as the
standard gluon-ghost-antighost vertex. In addition, there
is a four-ghost vertex as well as a hcc̄ vertex, both
proportional to ξ0. These vertices are well known [52]
and we do not recall their expressions here. The vertices
of the replicated nonlinear sigma model sector are
obtained by expanding the exponential (20) in powers
of Λk. We refer the reader to Ref. [24] for details. For
illustration, we simply recall the expression of one cubic
vertex involving two superfields Λa

kðp1; θÞ, Λb
l ðp2; θ0Þ

and one gauge field Ac
μðp3Þ:

i
g0
4
fabcδklð2πÞdδðdÞðp1 þ p2 þ p3Þδðθ; θ0Þðp1 − p2Þμ:

ð28Þ

2This has to be done after inversion of the matrix of two-point
vertex functions because the latter involves summations over the
replica.

INFLUENCE OF GRIBOV AMBIGUITIES IN A CLASS OF … PHYSICAL REVIEW D 92, 105003 (2015)

105003-5



B. Two-point vertex functions at one-loop order

We are primarily interested in the ghost and gluon
propagators. The latter are obtained from the two-point
vertex functions, defined as the second derivatives of the
effective action Γ at fixed n:

ΓXYðp; θ; θ0Þ ¼
δð2Þθ Γ

δXðp; θÞδYð−p; θ0Þ
����
0

; ð29Þ

where X and Y denote any of the (super)fields, the
subscript 0 means that the derivative is evaluated at
vanishing fields, and δθ=δX is a covariant functional
derivative [24,40] which takes into account the curvature
of the superspaces associated with each superfield. It is
defined as δθ=δXðpÞ ¼ δ=δXðpÞ for normal fields and
δθ=δXðp; θÞ ¼ g−1=2ðθÞδ=δXðp; θÞ for superfields. In par-
ticular, one has δθXðθÞ=δXðθ0Þ ¼ δðθ; θ0Þ for a given
superfield X.
All two-point vertex and correlation functions are

diagonal in color space and we extract a trivial unit matrix
from their expressions below. Spacetime symmetries imply
the following general decompositions:

ΓAμAν
ðpÞ ¼ PT

μνðpÞΓTðpÞ þ PL
μνðpÞΓLðpÞ ð30Þ

and

ΓihAμ
ðpÞ ¼ −ΓAμihðpÞ ¼ ipμΓihAðpÞ; ð31Þ

where the scalar functions ΓTðpÞ, ΓLðpÞ, and ΓihAðpÞ only
depend on p2. For the superfield sector, the replica
permutation symmetry and the isometries of the
Grassmann subspaces associated to each replica imply
the following general decompositions:

ΓΛkΛl
ðp; θ; θ0Þ ¼ δkl½Γ1ðpÞδðθ; θ0Þ þ Γ2ðpÞ□θδðθ; θ0Þ�

þ ðδkl − 1ÞΓ3ðpÞ ð32Þ
and

ΓΛkAμ
ðp; θÞ ¼ −ipμΓ4ðpÞ; ð33Þ

where the scalar functions Γ1;…;4ðpÞ only depend on p2

and where □θ is the Laplace operator on the curved
Grassmann space; see Appendix A. One has the identity
□θδðθ; θ0Þ ¼ −2þ 2β0δðθ; θ0Þ. The various components of
the two-point vertex functions at tree level are given in
Appendix B.
The calculation of propagators from the two-point vertex

functions is complicated by the fact that the fields Aμ, ih
and Λk are mixed at the quadratic level in the effective
action. It is, in particular, the reason why we must take the
limit n → 0 only after having inverted the matrix of vertex
functions in field space. This is discussed in Appendix A.
Because this mixing only involves the longitudinal com-
ponent (with respect to momentum) of the gluon field, the
ghost and transverse gluon propagator are given by the
simple relations

GghðpÞ ¼ lim
n→0

Γ−1
cc̄ ðpÞ ð34Þ

and

GTðpÞ ¼ lim
n→0

Γ−1
T ðpÞ; ð35Þ

where we have decomposed the gluon propagator GμνðpÞ
as in Eq. (30). In contrast, the longitudinal component of
the gluon propagator involves various vertex functions in
the sector ðAμ; ih;ΛkÞ (see Appendix A):

GLðpÞ ¼ lim
n→0

ΓihihðΓ1 þ β0ðn − 2ÞΓ3Þ
ðΓLΓihih − ðΓihAÞ2p2ÞðΓ1 þ β0ðn − 2ÞΓ3Þ − Γihihp2β0ðΓ4Þ2ðn − 1Þ : ð36Þ

Note that in the case n ¼ 1, one recovers the standard
expression of the longitudinal propagator in the CF model

GCF
L ðpÞ ¼ ΓihihðpÞ

ΓLðpÞΓihihðpÞ − p2½ΓihAðpÞ�2
����
n¼1

: ð37Þ

Using Slavnov-Taylor identities for the (non-nilpotent)
Becchi-Rouet-Stora-Tyutin (BRST) symmetry of the CF
model (see Appendix C), this can be rewritten as

GCF
L ðpÞ ¼ −

β0ΓihihðpÞ
ΓLðpÞΓcc̄ðpÞ

����
n¼1

: ð38Þ

We display in Figs. 1–5 the relevant Feynman
diagrams for the one-loop calculations. We use the standard
graphical conventions for the gluon (wiggly) and ghost
(dashed) lines. The plain line represents the superfield

FIG. 1. One-loop diagrams for the vertex ΓAA. The diagrams of
the first line are present in the Landau gauge and a fortiori in the
CF model. The diagrams of the second line involve the superfield
sector and are thus specific of the present gauge fixing (they are
proportional to n − 1 and thus vanish in the CF model). The first
one is proportional to β0ξ0 and the second one to β0ξ

2
0.
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correlator (25). The second diagram on the second line
involves the mixed A-Λ correlator (27). Double lines stand
for the field ih.
The calculation is lengthy but straightforward. In order

to illustrate a typical example involving the Grassmann
subspaces, we treat explicitly the first diagram on the
second line of Fig. 1, which involves the vertex (28) and a
loop of superfields. According to the Feynman rules, its
contribution to the gluon self energy is given by

ΓΛ-loop
Aa
μAb

ν
ðpÞ ¼ g20

8

Xn
i;j¼2

Z
k

Z
θi;θj

facdfbdcðkμ þ lμÞðkν þ lνÞ

×

�
δijδðθi; θjÞ
k2 þ β0ξ0

þ ð1þ δijÞξ0
k2ðk2 þ β0ξ0Þ

�

×

�
δijδðθi; θjÞ
l2 þ β0ξ0

þ ð1þ δijÞξ0
l2ðl2 þ β0ξ0Þ

�
; ð39Þ

where a; b and μ; ν are respectively the color and Lorentz
indices of the external gluon legs carrying momentum p
and lμ ¼ kμ − pμ. We use the notation

R
k ¼ μϵ

R
ddk
ð2πÞd, with

d ¼ 4 − ϵ, where the arbitrary scale μ is introduced for
dimensional reasons. The replica indices i; j are associated
with the internal superfield lines.
The Grassmannian integrals are trivially performed using

the identitiesZ
θ
δðθ;θ0ÞfðθÞ¼fðθ0Þ; δðθ;θÞ¼0 and

Z
θ
1¼β0: ð40Þ

After summing over the replica indices, we obtain the
following momentum integral:

ΓΛ-loop
Aa
μAd

ν
ðpÞ¼−δadðn−1Þg

2
0Nβ0ξ0
8

Z
k

ðkμþlμÞðkνþlνÞ
ðk2þβ0ξ0Þðl2þβ0ξ0Þ

×

�
2

k2
þ 2

l2
þðnþ2Þβ0ξ0

k2l2

�
; ð41Þ

which is logarithmically divergent in the ultraviolet
(UV). A similar calculation yields, for the second diagram
on the second line of Fig. 1, also involving the replica
sector,

Γmixed
Aa
μAd

ν
ðpÞ ¼ −δadðn − 1Þ g

2
0Nβ0ξ

2
0

d − 1
PT
μνðpÞ

×
Z
k

k2p2 − ðk · pÞ2
k2l2ðk2 þ β0ξ0Þðl2 þ β0ξ0Þ

: ð42Þ

It is transverse and UV finite. As expected, both replica
contributions are ∝ n − 1 and vanish identically in the CF
model (n ¼ 1).
The calculation of the other diagrams of Figs. 1–5

goes along the same lines and we are left with one-
loop momentum integrals, whose explicit expressions are
given in the Supplemental Material [51]. These integrals
are UV divergent and can be regularized by standard
techniques. We use dimensional regularization with
d ¼ 4 − ϵ. It was shown in Ref. [24] that these divergences
can be eliminated at all orders of perturbation theory by
means of six independent renormalization factors, as we
now recall.

IV. RENORMALIZATION

We define renormalized fields in the standard way

Aaμ¼
ffiffiffiffiffiffi
ZA

p
Aaμ
R ; ca¼

ffiffiffiffiffi
Zc

p
caR; c̄a¼

ffiffiffiffiffi
Zc

p
c̄aR; ð43Þ

and

ha ¼
ffiffiffiffiffiffi
Zh

p
haR; Λa ¼

ffiffiffiffiffiffi
ZΛ

p
Λa
R: ð44Þ

FIG. 2. One-loop diagrams for the vertex Γcc̄. Only the first
diagram on the first line is present in the Landau gauge. All the
others are present in the CF model. Note that the diagrams on the
second line involve the mixed ih–A correlator (24). There is no
diagram involving the superfields.

FIG. 3. One-loop diagrams for the vertices Γihih (left) and ΓihA
(right). Both diagrams are present in the CF model. There is no
diagram involving the superfields.

FIG. 4. One-loop diagrams for the vertex ΓΛΛ.

FIG. 5. One-loop diagrams for the vertex ΓAΛ.
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In the following, we only refer to renormalized fields and
correlators and we suppress the index R for simplicity. A
nontrivial issue concerns the interplay between renormal-
ization and the limit n → 0. As pointed out in Refs. [24,40],
part of the explicit n dependence of the bare theory can be
absorbed in the definition of renormalized parameters. For
instance, one observes from Eq. (21) that the tree-level
square mass of the transverse gluons is nβ0. Hence,
defining renormalized gauge-fixing parameters β and ξ
as β0 ¼ Zββ and ξ0 ¼ Zξξ makes the (transverse) gluon
massless in the limit n → 0. In the case of the Landau gauge
(ξ0 ¼ 0), the theory thus reduces to the standard Faddeev-
Popov Lagrangian [40]. Instead, one may define a renor-
malized squared mass parameter m2 as nβ0 ¼ Zm2m2, such
that the transverse gluon propagator remains massive in the
limit n → 0. For ξ0 ¼ 0, it was shown in Ref. [40] that the
resulting theory is perturbatively equivalent to the Landau
limit of the CF model. As already mentioned, the latter
admits infrared-safe renormalization-group trajectories [41]
and provides a perturbative description of Yang-Mills
correlation functions in good agreement with lattice results,
both in the vacuum [41,42,44] and at finite temperature
[43]. This motivates us to consider similar renormalization
schemes in the case ξ0 ≠ 0.
In that case, however, the parameter β0 does not only

appear in the transverse gluon mass, but also in the
combination β0ξ0 in the tree-level square masses of the
longitudinal gluon and of the fields ðih; c; c̄;ΛkÞ; see
Eqs. (21)–(27). In order to keep this mass finite in the
limit n → 0, we choose the following definitions of the
renormalized mass and gauge-fixing parameters3:

nβ0 ¼ Zm2m2 and
ξ0
n
¼ Zξξ; ð45Þ

such that β0ξ0 ¼ ZξZm2ξm2. Important consequences of
this choice are that the ghost propagator acquires a non-
vanishing mass and that various correlators, e.g., which are
proportional to ξ0, vanish in the limit n → 0 at fixed ξ. For
instance, it is easy to show diagrammatically that
ΓihihðpÞ ∝ ξ0 up to a function of the parameters nβ0 and
β0ξ0. One thus has ΓihihðpÞ → 0 in the limit n → 0 at nβ0
and β0ξ0 fixed. The function ΓihAðpÞ being finite in this
limit, we conclude that the longitudinal gluon propagator
(36) vanishes identically

GLðpÞ ¼ 0: ð46Þ

We stress that this is a consequence of the definitions (45)
and that it is independent of the set of renormalization
prescriptions discussed below. This is a remarkable prop-
erty of the present gauge fixing since an exactly transverse
gluon propagator is usually expected to be a peculiar
feature of the Landau gauge. In particular, the fact that
the gluon propagator remains transverse at ξ ≠ 0 is a
nontrivial effect of the average over Gribov copies. This
is one of the main differences with the CF model, where the
longitudinal gluon propagator is nonzero and is given
by Eq. (37).
Finally, we define the renormalized coupling g as

g0 ¼ Zgg: ð47Þ

It was shown in Ref. [24] that the combination Zm2Zc=Zh is
UV finite so that only six renormalization factors, out of the
seven introduced so far, are needed to absorb all the UV
divergences. The finite parts are to be determined by means
of specific renormalization conditions. In the following
subsections, we discuss two sets of prescriptions for the
two-point functions and we use a generalization of the
Taylor scheme for the coupling. We emphasize that all our
prescriptions are set before taking the limit n → 0, which is
done only at the end of the computations.
As an illustration, let us consider the superfield con-

tributions to the transverse gluon two-point vertex in the
limit n → 0. We have, from Eq. (41),

lim
n→0

ΓΛ-loop
T ðpÞ ¼ g2Nξm2

ðd − 1Þ P
T
μνðpÞ

Z
k

kμkν
ðk2 þ ξm2Þðl2 þ ξm2Þ

×

�
1

k2
þ 1

l2
þ ξm2

k2l2

�
; ð48Þ

whereas the other superfield contribution (42) is propor-
tional to β0ξ20 ∝ nm2ξ2 and vanishes in the limit n → 0. We
stress again that the contribution (48) is absent in the CF
model and is a direct effect of the average over Gribov
copies. For instance, the contribution of the superfield
sector to the transverse gluon two-point vertex at zero
momentum is

lim
n→0

ΓΛ-loop
T ðp¼0Þ¼g2Nξm2

d

Z
k

2k2þξm2

k2ðk2þξm2Þ2

¼g2Nξm2

32π2

�
2

ϵ
þ1þ ln

�
μ̄2

ξm2

��
; ð49Þ

where we neglected terms OðϵÞ in the last equality and
μ̄2 ¼ 4πe−γμ2, where γ is the Euler constant.
Another remarkable consequence of the prescriptions

(45) is that despite the presence of a nonzero gauge-fixing
parameter ξ, the theory possesses some of the properties of
the Landau gauge. The fact, already discussed, that the
gluon propagator is exactly transverse is one example. But

3This choice is arbitrary. One could also choose to have a
diverging mass for these fields, in which case they would
decouple and lead to a different phenomenology. Lattice data
would be needed to determine the most relevant scenario. We
stress that such definitions of the renormalization constants are
consistent with the renormalizability of the theory, since the proof
of renormalizability given in Ref. [24] holds for generic n.
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there are other similar features in the loop contributions. In
particular, various one-loop diagrams which are ∝ ξ0
vanish in the limit n → 0, just like the superfield contri-
bution (42) to the gluon two-point vertex discussed above.
For instance, it is easy to check that all but the first
contributions to the ghost two-point vertex depicted in
Fig. 2 are proportional to β0ξ

2
0 ∝ nm2ξ2 and thus vanish

in this limit. The first diagram of Fig. 2 is already present
in the Landau gauge—with the difference that, here, the
internal ghost and gluon propagators are massive—and is
easily shown to be proportional to p2. We conclude that, in
the limit n → 0, the ghost two-point vertex function at
vanishing momentum does not receive correction at one
loop, that is,

lim
n→0

Γcc̄ðp ¼ 0Þ ¼ ðlim
n→0

ZcZξZm2Þξm2: ð50Þ

A similar argument shows that the one-loop diagrams of
Fig. 3 also vanish in the limit n → 0. More precisely, they
are respectively proportional to ξ20 and to ξ0. It follows that
the h sector of the theory is not renormalized,4 i.e.,

lim
n→0

ΓihAðpÞ ¼ lim
n→0

ffiffiffiffiffiffiffiffiffiffiffi
ZAZh

p
ð51Þ

and

lim
n→0

ΓihihðpÞ
nξ

¼ −lim
n→0

ZhZξ: ð52Þ

The above relations imply that the products ZcZξZm2 , ZAZh

and ZhZξ are UV finite in the limit n → 0.
Finally, we employ the same renormalization prescrip-

tions as described above for the CF model. In that case,
n ¼ 1 and there is no issue with the n dependence of the
renormalized parameters. Note also that the nonrenormal-
ization relations (50)–(52) do not hold in that case. Instead
a relation which is known to hold at all orders in
perturbation theory in the CF model is that the combination
ðZ2

ξZcZm2=ZAÞn¼1 is finite [50,53,54].

A. Zero-momentum scheme

In this first renormalization scheme, we define the two
renormalized masses from the transverse gluon and the
ghost two-point vertex functions at zero momentum, that is,

ΓTð0Þ ¼ m2 and Γcc̄ð0Þ ¼ ξm2: ð53Þ

In order to fix the remaining renormalization factors, we
further require that the following vertex functions assume
their renormalized tree-level expressions at a scale μ2:

ΓTðμÞ ¼ m2 þ μ2; ð54Þ

Γcc̄ðμÞ ¼ ξm2 þ μ2; ð55Þ

Γ1ðμÞ ¼ μ2; ð56Þ

ΓihihðμÞ ¼ −nξ: ð57Þ

This leads to the following expressions, defining
δZα ¼ Zα − 1:

δZA ¼ −
ΠTðμÞ − ΠTð0Þ

μ2
; ð58Þ

δZm2 ¼ −
ΠTðμÞ
m2

− δZA

�
1þ μ2

m2

�
; ð59Þ

δZc ¼ −
Πcc̄ðμÞ − Πcc̄ð0Þ

μ2
; ð60Þ

δZξ ¼ −
Πcc̄ð0Þ
ξm2

− δZc − δZm2 ; ð61Þ

δZΛ ¼ −
Π1ðμÞ
μ2

; ð62Þ

δZh ¼
ΠihihðμÞ

nξ
− δZξ; ð63Þ

where the various functions ΠTðpÞ, Πcc̄ðpÞ, etc. denote
the loop diagram contributions to the corresponding
(renormalized) two-point vertices with the same index.5

Extracting the divergent parts Zdiv
α ∝ 1=ϵ and denoting

κ ¼ g2N=8π2ϵ, we get [24]

δZdiv
A ¼

�
13

6
−
nξ
2

�
κ →

13

6
κ; ð64Þ

δZdiv
c ¼

�
3

4
−
nξ
4

�
κ →

3

4
κ; ð65Þ

δZdiv
m2 ¼

�
−
35

12
þ nξ

4

�
κ→ −

35

12
κ; ð66Þ

δZdiv
ξ ¼

�
13

6
−
nξ
4

�
κ →

13

6
κ; ð67Þ

δZdiv
Λ ¼

�
3

4
−
nξ
12

�
κ →

3

4
κ; ð68Þ

δZdiv
h ¼ −

13

6
κ; ð69Þ

4We have checked this explicitly at one-loop order but we
expect the general argument developed here to be valid at any
loop order. 5For instance we have ΓTðpÞ ¼ ZAðp2 þ Zm2m2Þ þ ΠTðpÞ.
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where we indicated the various n → 0 limits. We check
that the nonrenormalization relations mentioned below
Eqs. (50)–(52) are satisfied. We also recover the Landau
gauge results of Ref. [40] in this limit. In particular, we
have δZdiv

Λ → δZdiv
c . For n ¼ 1, we check that the above

divergent parts coincide with the known ones of the CF
model [24,52,55], except of course for ZΛ.
As for the finite parts of the renormalization factors, note

that, in the case n → 0, the relation (50) combined with the
second prescription in Eq. (53) implies that

lim
n→0

ZcZξZm2 ¼ 1: ð70Þ

Similarly, the relation (52) and the prescription (57) yield

lim
n→0

ZhZξ ¼ 1: ð71Þ

For later use, we also note that the relation (50) is
equivalent to limn→0Πcc̄ð0Þ ¼ 0 and thus implies that

lim
n→0

Zc ¼ 1 −
Πcc̄ðμÞ
μ2

����
n¼0

: ð72Þ

We also check from Eq. (61) that Eq. (70) is indeed satisfied
at one-loop order. Similarly, the relation (52) is equivalent
to limn→0ΠihihðpÞ=ðnξÞ ¼ 0 and we check, from the
prescription (63), that Eq. (71) is indeed satisfied.

B. Infrared-safe scheme

Our second set of renormalization prescriptions is
inspired from the infrared-safe scheme put forward in
Ref. [41], that we adapt to the case ξ ≠ 0. As we shall
see below, this also leads to infrared-safe RG trajectories in
the present case. In this scheme, all renormalization
prescriptions are defined at the scale μ. We keep the set
of prescriptions (54)–(57) of the previous scheme, and
replace the prescriptions (53) at zero momentum by

ΓihAðμÞ ¼ 1 and Z2
ξZcZm2 ¼ ZA: ð73Þ

This leads to similar expressions as Eqs. (58)–(63), which
we do not write explicitly. The divergent parts of the
counterterms at one-loop order are the same as before [see
Eqs. (64)–(69)], as required for renormalizability. As
already mentioned, in the CF model (n ¼ 1), the second
relation in Eq. (73) is true for the divergent parts at all
orders of perturbation theory [50,53,54]. For arbitrary n,
this relation is satisfied by the divergent parts at one-loop
order, as can be checked from Eqs. (64)–(69). Here, we use
this relation to define the finite parts of the renormalization
factors. We stress that although we do not know whether
this relation is compatible with renormalizability—that is,
whether it is satisfied by the divergent parts—at higher
orders (except for n ¼ 1), it is always possible to use it to

define the finite parts.6 Obviously, in this renormalization
scheme, the inverse gluon and ghost propagators at zero
momentum are not directly given by the parametersm2 and
ξm2 anymore.
Finally, we note that, in the limit n → 0, the relation (71),

which follows from Eqs. (52) and (57), remains valid. In the
present scheme, the relation (51) combined with the first
prescription in Eq. (73) implies that

lim
n→0

ZhZA ¼ 1: ð74Þ

Combining this with Eq. (71) and with the second
prescription in Eq. (73), we obtain that limn→0ZA=Zξ ¼
1 and, hence, that the relation (70) is also valid in the
infrared-safe scheme.7

The relations (51) and (52) also imply that the renorm-
alization factor Zc is identical in both schemes. Indeed, in
the present scheme we have

δZc ¼ −
Πcc̄ðμÞ
μ2

þ ξm2

μ2

�
ΠihihðμÞ

ξn
þ 2ΠihAðμÞ

�
: ð75Þ

The relations (51) and (52) imply limn→0ΠihAðpÞ ¼
limn→0ΠihihðpÞ ¼ 0 and Eq. (72) holds here too.
The (combination of) renormalization factors Zc and
ZcZξZm2—the only ones which enter the calculation of
the ghost propagator at one-loop order—are thus identical
(in the limit n → 0) in the two renormalization schemes
considered here. We conclude that the latter, as obtained
from strict perturbation theory at one-loop order, is iden-
tically the same in the two schemes provided one uses the
same value for the parameters m2, ξ, and g. Strictly
speaking, this remark does not hold when RG improvement
is taken into account since the running of the various
parameters are different in the two schemes.

C. Renormalization of the coupling constant in the
Taylor scheme

We follow the general strategy of Ref. [56] to renorm-
alize the coupling constant. We fix the value of Zg
[Eq. (47)] from the ghost-antighost-gluon vertex at vanish-
ing ghost momentum, ΓAcc̄ðp; 0;−pÞ. The Feynman dia-
grams contributing to ΓAcc̄ at one-loop order are shown in
Fig. 6. The two usual Yang-Mills diagrams (first line of
Fig. 6) involve, at the vertex where the external ghost leg is
attached, a Lorentz contraction between a gluon propagator
and the (internal) antighost momentum. For vanishing

6In general, one can always replace the second relation in
Eq. (73) by Z2

ξZcZm2 ¼ ZAẐ, with Ẑ ¼ 1þOðg4Þ chosen such
that Zm2 , ZA, Zc, and Zξ have the correct divergent parts.

7We mention that the combination of the relations derived here
yield limn→0ZAZcZm2 ¼ 1, which corresponds to the infrared-
safe renormalization prescription proposed in the case of the
Landau gauge in Refs. [40,41].
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external ghost momentum, both the antighost and the gluon
propagators in the loop carry the same momentum (up to a
sign). It follows that only the longitudinal gluon propagator
contributes to these diagrams which are, thus, proportional
to ξ0 ∝ nξ—up to a function of β0ξ0 ¼ ZξZm2ξm2 [see
Eq. (21)]—and vanish in the limit n → 0. It is easy to check
that all the other diagrams are also proportional to ξ0 ∝ nξ
up to a function of β0ξ0 and also vanish in this limit. We
conclude that the vertex ΓAcc̄ðp; 0;−pÞ does not receive
any radiative correction at one-loop order in the limit
n → 0. The divergent parts of the renormalization factors
thus satisfy the relation

lim
n→0

ZgZc

ffiffiffiffiffiffi
ZA

p
¼ 1: ð76Þ

Defining the renormalized coupling constant from the
vertex ΓAcc̄ðp; 0 − pÞ, this relation holds to the finite parts
as well, which completely fix the factor Zg. Unlike in the
Landau gauge, where the relation (76) holds to all orders
[56], in the present case we have only checked that this is so
at one-loop order. In particular, we do not know whether
Eq. (76) is compatible with the renormalizability of the
theory in general. But, as in the case of the second relation
(73), we can always impose the prescription (76) for the
finite parts only. As discussed in Ref. [24], the explicit
calculation of the divergent part of Zg at one-loop order

shows that the latter is both n and ξ independent and thus
coincides with the standard result

δZdiv
g ¼ −

11

6
κ; ð77Þ

yielding the usual universal one-loop beta function, as it
should. More generally, we show in Appendix D that the
present model reproduces the known one-loop UV behav-
ior of Yang-Mills theories in the Landau gauge.
The identity (76) is valid only in the limit n → 0 with the

definitions (45). It does not hold in the CF case (n ¼ 1),
where the contributions to the ghost-antighost-gluon vertex
proportional to ξ0 do not vanish. For the purpose of
comparing the n → 0 and n ¼ 1 results, we employ a
renormalization scheme for n ¼ 1 as close as possible to
that used for n → 0. It is based on a nonrenormalization
relations [50]8

ZgZcZ2
ξ ¼ Z3=2

A ; ð78Þ

which is valid for the divergent parts. As discussed above,
we extend this equality to the finite parts, which gives us a
definition of the renormalization coefficient Zg. It can be
checked that this definition coincides with Eq. (76) in the
limit ξ → 0.

V. ONE-LOOP RESULTS

We present our results for the gluon and the ghost
propagators at one-loop order in the SU(3) theory9 within
the two renormalization schemes discussed above. In
the following, we set the scale μ ¼ 1 GeV and we use
the values of the parameters m and g which provide the
best fits to the lattice results in the Landau gauge in
Ref. [41], that is, m ¼ 0.54 GeV and g ¼ 4.9 in the zero-
momentum scheme and m¼0.39GeV and g ¼ 3.7 in the
infrared-safe scheme. Notice that the relevant expansion
parameter is 3g2=ð16π2Þ ≲ 1. We have no reason, a priori,
to exclude a dependence of the parameters m and g at a
certain scale with the value of ξ at the same scale. Such
dependences would have to be inferred from fits to lattice
data. In the absence of such data, we assume fixed values
of m and g adjusted from lattice data at ξ ¼ 0.

A. Zero-momentum scheme

Figure 7 shows the ghost and transverse gluon propagators
renormalized within the zero-momentum prescriptions
(53)–(57) for different values of the gauge-fixing parameter
ξ. At small ξ, we recover the Landau gauge results of

FIG. 6. One-loop contributions to the ghost-antighost-gluon
vertex function ΓAcc̄. The diagrams on the first line are present in
the standard Landau gauge—here with massive gluon and ghost
propagators—and are proportional to the antighost external
momentum. The topologies on the second and third lines are
present in the standard CFDJ gauge and give contributions
proportional to ξ0. The replicated superfield sector only contrib-
utes in the last diagram, which is proportional to ξ0 and to the
antighost external momentum.

8The definition of the renormalization factor Zξ used here
differs from that of Ref. [50].

9Results for SU(2) are qualitatively similar.
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Ref. [41], where, in particular, the ghost propagator diverges
at low momenta but the ghost dressing function p2GghðpÞ
remains finite. The renormalization condition (53) imposes
that for ξ ≠ 0 the ghost propagator itself remains finite in the
infrared, where we see that it essentially behaves as a
massive propagator. The strong ξ dependence at low
momentum is governed by the second condition (53). As
for the transverse gluon propagator, its values at p ¼ 0 and
p ¼ μ are constrained by our choice of renormalization
conditions (53) and (54), which do not involve ξ, thus
leaving little room for a possible ξ dependence. Indeed, in
this scheme, the latter only appears through loop effects
and is thus small. Still, we observe that when ξ grows, the
gluon propagator flattens near its p ¼ 0 value. In fact, the
lattice results in the Landau gauge show that the transverse
gluon propagator is nonmonotonous at small p. For ξ¼0,
we reproduce the one-loop behavior of Ref. [41]:
G−1

T ðpÞ ¼ m2 þ g2N=ð192π2Þp2 lnðp2=μ2Þ þOðp2Þ. We
observe in Fig. 7 that this nonmonotonous behavior is
more pronounced for increasing ξ.
The above results show that the (renormalized) propa-

gators are essentially governed by their tree-level expres-
sions, respectively

Gtree
gh ðpÞ ¼ 1

p2 þ ξm2
and Gtree

T ðpÞ ¼ 1

p2 þm2
: ð79Þ

In order to emphasize the size and the shape of loop
corrections, we plot in Fig. 8 the loop contribution to the
inverse propagators as a function of p2. We see that loop
corrections are at the percent level for the ghost and at the
ten percent level for the transverse gluon.

B. Infrared-safe scheme

The ghost and the transverse gluon propagators in the
infrared-safe scheme are shown in Fig. 9. Again, we check
that we recover the results of Ref. [41] (in the appropriate
renormalization scheme) for small values of ξ. In the
present case, the value of the gluon propagator at vanishing
momentum is not fixed and varies strongly with ξ. This can
be traced to the fact that ξ influences the propagator at tree
level through the second equation in Eq. (73). As in the
previous case, we observe that the approach to the p ¼ 0
value flattens as ξ is increased. We plot the loop contri-
bution to the inverse propagators in Fig. 10. These are again
at the percent level for the ghost and at the ten percent level
for the gluon.
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FIG. 7 (color online). The ghost (top) and the transverse gluon
(bottom) propagators as functions of momentum for various
values of ξ in the zero-momentum renormalization scheme with
m ¼ 0.54 GeV and g ¼ 4.9.
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FIG. 8 (color online). The loop contributions G−1
gh ðpÞ−

ðp2 þ ξm2Þ (top) and G−1
T ðpÞ − ðp2 þm2Þ (bottom) to the ghost

and the transverse gluon inverse propagators as functions of
p2 in the zero-momentum scheme withm¼0.54GeV and g¼4.9.
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C. Comparison with the CF model

We compare the results of the previous section to those
of the CF model, obtained by setting the number of
replica n ¼ 1. As already mentioned, this allows us to
pinpoint the peculiar effects of our treatment of the
Gribov ambiguities. In particular, taking the limit n → 0
is a crucial step for our approach to correspond to a bona
fide gauge-fixing procedure. We have already discussed
the fact that an important difference with the case
n ¼ 1—already present at tree level—is the fact that
the gluon propagator is exactly transverse in the case
n → 0, in contrast to the case n ¼ 1. In the present
section, we discuss the differences between the two cases
arising from the one-loop contributions to the ghost and
the gluon propagators.
The case of the zero-momentum scheme is illustrated in

Fig. 11. We observe that the ghost propagators for n → 0
and n ¼ 1 are essentially the same while the transverse
gluon propagators are qualitatively different. Contrarily to
the former, the latter receives a direct contribution from a
loop of superfield, proportional to n − 1, as discussed
previously; see Eq. (41). We see that the flattening near
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FIG. 9 (color online). The ghost (top) and the transverse gluon
(bottom) propagator as a function of momentum for various
values of ξ in the infrared-safe renormalization scheme with
m ¼ 0.39 GeV and g ¼ 3.7.
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FIG. 10 (color online). The loop contributions G−1
gh ðpÞ−

ðp2 þ ξm2Þ (top) and G−1
T ðpÞ − ðp2 þm2Þ (bottom) to the ghost

and the transverse gluon inverse propagators as functions of
p2 in the infrared-safe scheme with m ¼ 0.39 GeV and g ¼ 3.7.
We observe that the loop contributions to the ghost inverse
propagator vanish at p ¼ 0, as a consequence of the nonrenorm-
alization theorem discussed in the text below Eq. (75);
see also Eq. (50).
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FIG. 11 (color online). The ghost (top) and transverse gluon
(bottom) propagators computed in either the present gauge
fixing (n → 0) or the CF model (n ¼ 1) in the zero-momentum
scheme with m ¼ 0.54 GeV and g ¼ 4.9, for ξ ¼ 1 (left) and
ξ ¼ 4 (right).
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p ¼ 0 described above in the case n → 0 is absent in the CF
model. For completeness, we show the momentum depend-
ence of the longitudinal gluon propagator in the CF model
in Fig. 12.
A similar comparison is made in Figs. 13 and 14 for the

infrared-safe scheme. The previous observations hold here
too where the differences between n → 0 and n ¼ 1 are
even more pronounced. For this reason, we show more
values of ξ than in the previous case. Again we observe that
the flattening of the gluon propagator near p ¼ 0 observed
previously is absent in the CF model. Also we have
checked that the nonrenormalization property (50) of the
ghost vertex at zero momentum indeed holds in the case
n → 0 but not for n ¼ 1. Finally, the one-loop longitudinal
gluon propagator of the CF model in the infrared-safe
scheme is shown in Fig. 15.

VI. RENORMALIZATION-GROUP
IMPROVEMENT

We now take into account the RG running of the
parameters m2, g, and ξ and we investigate the RG
trajectories in the two renormalization schemes discussed
above. As usual, we define the beta functions βα for the
parameters α ¼ m2; g; ξ as

βα ¼
dα

d ln μ

����
0

¼ −α
d lnZα

d ln μ

����
0

; ð80Þ

and the gluon anomalous dimension as

γA ¼ d lnZA

d ln μ

����
0

; ð81Þ

where the subscript 0 means that the right-hand side is
evaluated at fixed bare quantities. Note that the prescription
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FIG. 12 (color online). The longitudinal gluon propagator in the
CF model (n ¼ 1) as a function of momentum for various values
of ξ in the zero-momentum scheme with m ¼ 0.54 GeV and
g ¼ 4.9.
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FIG. 13 (color online). The ghost propagator computed in
either the present gauge fixing (n → 0) or the CF model (n ¼ 1)
in the infrared-safe scheme with m ¼ 0.39 GeV and g ¼ 3.7 for
various values of ξ.
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FIG. 14 (color online). The transverse gluon propagator com-
puted in either the present gauge fixing (n → 0) or the CF model
(n ¼ 1) in the infrared-safe scheme with m ¼ 0.39 GeV and
g ¼ 3.7 for various values of ξ.
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FIG. 15 (color online). The longitudinal gluon propagator in the
CF model (n ¼ 1) as a function of momentum for various values
of ξ in the infrared-safe scheme.
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(76) at one-loop order implies that the ghost anomalous
dimension is given by

γc ¼
d lnZc

d ln μ

����
0

¼ −
1

2
γA þ βg

g
: ð82Þ

Similarly, the relation (70) which, as discussed above, is
valid in the two renormalization schemes studied here,
implies

γc ¼
βξ
ξ
þ βm2

m2
: ð83Þ

These RG functions are obtained from the expressions of
the renormalization factors Zα in each of the renormaliza-
tion schemes described previously, that is from Eqs. (58)–
(63) in the case of the zero-momentum scheme or from the
corresponding ones in the infrared-safe scheme. We inte-
grate numerically the flow equations (80)–(82) with initial
conditions at the scale μ0 ¼ 1 GeV. We use as initial
conditions the values of the mass and coupling parameters
of the previous section, namely mðμ0Þ ¼ 0.54 GeV and
gðμ0Þ ¼ 4.9 for the zero-momentum scheme and mðμ0Þ ¼
0.39 GeV and gðμ0Þ ¼ 3.7 for the infrared-safe scheme,
and we vary the gauge-fixing parameter ξðμ0Þ.

A. Zero-momentum scheme

In this scheme, the first condition (53) implies the further
relation

γA ¼ βm2

m2
; ð84Þ

which, when combined with Eqs. (82) and (83), yields

ξðμÞ
ξðμ0Þ

¼ gðμÞ
gðμ0Þ

�
mðμ0Þ
mðμÞ

�
3

: ð85Þ

The running of the parameters g, m, and ξ, obtained from
the direct integration of the flow equations in the zero-
momentum scheme, is shown in Fig. 16. We find a Landau
pole at a finite scale, where the parameters g andm diverge,
for all values of ξðμ0Þ. In the case ξ ¼ 0, it was argued in
Ref. [41] that this originates from the fact that, at small μ,
the renormalization conditions (53) and (54), which imply
that GTð0Þ > GTðμÞ conflict with the gluon propagator
computed at one-loop order, which is an increasing
function of p at small p. The Landau pole prevents one
from following the RG flow down to deep infrared scales.
The proposal of Ref. [41] to bypass this problem is to freeze
by hand the RG flow under a certain arbitrary scale M,
chosen above the Landau pole such that the latter is
avoided. In the case ξ ¼ 0, treated in Ref. [41], this could
be justified by a detailed analysis of higher loop contri-
butions in the infrared. We shall not attempt to generalize

this discussion to the case ξ ≠ 0 here. Still, we present for
the sake of illustration, a modified zero-momentum scheme
where we freeze the RG flow by hand under a certain scale,
in the spirit of Ref. [41]. In practice, we use an RG scale
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, where p is the actual momentum scale at

which we evaluate correlation functions. In what follows,
we use M ¼ 0.5 GeV, which is of the order of the typical
value of the mass parameter m. The corresponding flow of
the coupling constant as a function of p is shown in Fig. 17.
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FIG. 16 (color online). The running of the parameters gðμÞ,
mðμÞ, and ξðμÞ in the zero-momentum scheme, for various values
of ξðμ0Þ≡ ξ. We observe a Landau pole at a finite scale, where g
and m diverge, and the RG flow stops.
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We implement this modified RG scheme to compute the
flow of all parameters from which we evaluate the RG-
improved ghost and gluon propagators, shown in Fig. 18.
We see that, despite the relatively important flow of the
parameters, the propagators are almost unaffected as
compared to those of strict perturbation theory in this
scheme; see Fig. 7.
Although the above procedure allows one to avoid the

Landau pole, the need to introduce the arbitrary scale M is

somewhat uncomfortable. Moreover, despite the fact that
most excitations in the present theory are massive, there
remain massless degrees of freedom in the replicated
superfield sector (which is only absent for the CF model,
n ¼ 1) and it is not clear that the freezing of the RG flow,
implemented by hand in the above procedure, is justified. It
is the purpose of the infrared-safe scheme to provide a more
systematic procedure which avoids the Landau pole [41], as
we now discuss.

B. Infrared-safe scheme

The relaxation of the first condition (53)—replaced by
the second condition (73) in the infrared-safe scheme—
avoids the conflicting prescriptions at small μ discussed
above. As a consequence, we find that the infrared-safe RG
flow can be integrated down to arbitrarily small scales μ,
depending on the choice of initial conditions,10 as was first
pointed out in Refs. [40,41] in the case ξ ¼ 0.
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FIG. 17 (color online). The parameters gðμÞ, mðμÞ, and ξðμÞ as
functions of the momentum p, with μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and M ¼

0.5 GeV in the zero-momentum scheme, for various values of
ξðμ0Þ≡ ξ. The RG flow is effectively frozen for p≲M, which
avoids the Landau pole.
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FIG. 18 (color online). RG-improved ghost (top) and transverse
gluon (bottom) propagators as functions of momentum in the
zero-momentum prescription scheme with μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, for

various values of ξðμ0Þ≡ ξ.

10For instance, it is clear that in the case mðμ0Þ ¼ ξðμ0Þ ¼ 0
[which impliesmðμÞ ¼ ξðμÞ ¼ 0 for all μ and thus corresponds to
the standard (Faddeev-Popov) Landau gauge] one gets a Landau
pole.
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In this scheme, the relation limn→0ZA=Zξ ¼ 1 discussed
above implies that

γA ¼ −
βξ
ξ
; ð86Þ

from which we get, using Eqs. (82) and (83),

ξðμÞ
ξðμ0Þ

¼ g2ðμÞ
g2ðμ0Þ

�
mðμ0Þ
mðμÞ

�
4

: ð87Þ

Figure 19 shows the RG flows of the parameters g, m and ξ
for various values of ξðμ0Þ. We observe that both the
coupling and the mass first increase for decreasing μ and
are then attracted towards zero in the infrared. We also see
that the maximal values of both parameters decrease with
increasing ξðμ0Þ and are therefore, maximal in the Landau
gauge. In all cases we have considered, the coupling
remains small enough for perturbation theory to be (quali-
tatively) meaningful; we recall that the relevant expansion
parameter is 3g2=ð16π2Þ. Finally, we observe that the
gauge-fixing parameter is first attracted towards zero as
μ decreases but eventually diverges in the limit μ → 0. In
particular, we find that the Landau gauge fixed point
(ξ ¼ 0) is unstable in the infrared. It is interesting to check
the running of the ghost mass parameter,

mghðμÞ ¼ mðμÞ
ffiffiffiffiffiffiffiffiffi
ξðμÞ

p
; ð88Þ

shown in Fig. 20. Using Eq. (87), we have

mghðμÞ
mghðμ0Þ

¼ gðμÞ
gðμ0Þ

mðμ0Þ
mðμÞ : ð89Þ

We observe that mghðμÞ is attracted towards a nontrivial
fixed point in the infrared, which shows that gðμÞ ∼mðμÞ
and ξðμÞ ∼ 1=m2ðμÞ ∼ 1=g2ðμÞ when μ → 0.
An important remark to be made here is that the RG

flows of the independent parameters g and m never freeze
out despite the fact that most degrees of freedom of the
theory are massive. This is due to the fact that there
remains, in fact, massless excitations in the superfield
sector, as can be seen from the tree-level propagators
(25) and (27). This is a particular feature of the present
theory and, more precisely, of the way Gribov copies are
handled. As we shall see below the RG flow of the CF
model, where all degrees of freedom are indeed massive, is
qualitatively different. This shows that the freezing of the
flow introduced by hand in the previous scheme is
unrealistic. In fact, the nonfreezing flow observed in the
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FIG. 19 (color online). Running of the parameters gðμÞ, mðμÞ,
and ξðμÞ in the infrared-safe scheme, for various values of
ξðμ0Þ≡ ξ.
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FIG. 20 (color online). Running of the ghost mass parameter
mghðμÞ ¼ mðμÞ ffiffiffiffiffiffiffiffiffi

ξðμÞp
in the infrared-safe scheme, for various

values of ξðμ0Þ≡ ξ.
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present scheme leads to dramatic RG corrections on the
gluon propagator, as we now discuss.
We show in Fig. 21 the RG-improved ghost and (trans-

verse) gluon propagators, where we used, for the RG scale,
μ ¼ p. Using Eq. (83), we obtain, for the RG-improved
ghost propagator,

GghðpÞ ¼
m2

ghðpÞ
m2

ghðμ0Þ
1

p2 þm2
ghðpÞ

; ð90Þ

where mghðμÞ is defined in Eq. (88). Since the latter
saturates to a constant value in the infrared, as discussed
above, we check that the value of the ghost propagator at
zero momentum does not receive any RG correction:

Gghð0Þ ¼
1

m2
ghðμ0Þ

; ð91Þ

as expected from the nonrenormalization relation (70). This
is easily checked in Fig. 21. The fact that the ghost
propagator is fixed to its tree-level value both at p ¼ 0
and p ¼ μ0 also explains (together with the relative small-
ness of loop corrections in the ghost sector discussed

previously) that the RG-improved ghost propagator is very
similar to the one without RG improvement.
Things are different for the gluon propagator. In that

case, the relation (86) implies that the RG-improved
transverse propagator reads

GTðpÞ ¼
ξðμ0Þ
ξðpÞ

1

p2 þm2ðpÞ : ð92Þ

We see in Fig. 21 that the RG effects strongly modify the
gluon propagator as compared to its strict one-loop
expression; see Fig. 9. In particular, both its value at
p ¼ 0 and the way the latter is approached are dramatically
altered, even for small values of ξðμ0Þ. The flattening near
p ¼ 0, observed in strict perturbation theory, is turned into
a linear behavior. This can be understood as follows. We
first rewrite Eq. (92) as

GTðpÞ ¼
ξðμ0Þ
m2

ghðpÞ
~m2ðpÞ

1þ ~m2ðpÞ ; ð93Þ

where we have defined the dimensionless mass parameter
~mðμÞ ¼ mðμÞ=μ. The fact that the ghost mass parameter (88)
reaches a plateau for sufficiently small μ and not too small
ξðμ0Þ implies that thep → 0 behavior of thegluonpropagator
is governed by the function ~m2ðpÞ=½1þ ~m2ðpÞ�, a monoto-
nously increasing function of ~m2ðpÞ. The runningof the latter
is shown in Fig. 22, where we observe that it is a monoto-
nously decreasing function of μ and that, for ξðμ0Þ not too
small, it reaches an infrared fixed point, which is approached
linearly. We conclude that for ξðμ0Þ not too small,

GTðp → 0Þ ¼ ξðμ0Þ
m2

ghð0Þ
~m2ð0Þ

1þ ~m2ð0Þ ½1þOðpÞ�; ð94Þ

where the linear term in p is negative.
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FIG. 21 (color online). RG-improved ghost (top) and transverse
gluon (bottom) propagators as functions of momentum in the
infrared-safe scheme with μ ¼ p, for various values of ξðμ0Þ≡ ξ.
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FIG. 22 (color online). Running of the dimensionless mass
parameter ~mðμÞ ¼ mðμÞ=μ in the infrared-safe scheme, for
various values of ξðμ0Þ≡ ξ.
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C. Comparison with the CF model

We compare our results for the RG flow of the present
theory (n → 0) with that of the CF model (n ¼ 1).11 We
only consider the infrared-safe scheme, for which no
freezing of the flow in the infrared is put in by hand.
The infrared safety of this scheme is also verified in the CF

model, as can be seen in Fig. 23. Clearly, the RG flow of the
CF model is dramatically different from that of the case
n → 0. In particular, we observe that the RG flow freezes
below a certain scale. This is to be expected since the CF
model only contains massive degrees of freedom which
decouple in the deep infrared. The only exception is the
case ξðμ0Þ ¼ 0, where the ghost becomes massless. In this
case, the CF model is equivalent to the case n → 0, as
already discussed, and we see that the RG flow does not
freeze in the infrared. As a consequence of the RG freezing
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FIG. 23 (color online). TheRGflowoftheparametersgðμÞ,mðμÞ,
and ξðμÞ in the CF model (n ¼ 1) with the infrared-safe scheme.
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FIG. 24 (color online). The RG-improved ghost and gluon
propagators in theCFmodel (n ¼ 1)with the infrared-safe scheme.

11We recall that, in the CF model, our prescription for the
renormalized coupling constant is given by Eq. (78).
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for ξðμ0Þ ≠ 0, the coupling and mass parameters g andm do
not vanish in the infrared and the gauge-fixing parameter ξ
does not diverge. All the parameters reach constant values.
The RG-improved ghost and gluon propagators for the

CF model are shown in Fig. 24 in the infrared-safe scheme.
We see little change as compared to the results from strict
perturbation theory (Figs. 13–15), for ξ not too small,
despite the relatively important change of the running
parameters in the range of momenta considered here. RG
corrections seem more important for small ξ. However,
the RG-improved results in the CF model are dramatically
different from those of the theory considered here (n → 0),
in particular for the gluon sector. Altogether these qualitative
differences illustrate the important role played by the
replicated superfield sector of the theory and, in turn, by
the Gribov copies, in particular in the infrared.

VII. CONCLUSIONS

We have investigated Yang-Mills propagators in the class
of nonlinear covariant gauges recently proposed in
Ref. [24]. These are defined from the minimization of a
functional [see Eq. (5)] that generalizes the one used in the
case of the Landau gauge. In particular, it is expected that
minimization algorithms routinely employed in the Landau
gauge can be applied to the present proposal. This would
open the way to lattice simulations in covariant gauges
other than the Landau gauge.
The continuum formulation of these gauges relies on a

generalization of the averaging procedure over Gribov
copies proposed in Ref. [40]. The standard Faddeev-
Popov construction—which neglects the Gribov issue—
produces the CFDJ action. Instead, our treatment of Gribov
copies results in the CF action—a massive generalization of
the CFDJ action—coupled to a replicated set of n − 1
supersymmetric nonlinear sigma models. The dynamics of
the replica sector is such that the theory indeed corresponds
to a gauge-fixing procedure in the physically relevant limit
n → 0. Our gauge-fixed action is perturbatively renorma-
lizable in four dimensions, which allows for perturbative
calculations. In the Landau gauge limit, this procedure
allows one to reproduce, with a one-loop calculation, the
lattice results obtained in the minimal Landau gauge, where
one selects a unique Gribov copy in the first Gribov region
[41,42,44]. This suggests that for a certain range of values
of the averaging parameter β0, all copies in the first region
are equiprobable and averaging over them is essentially
equivalent to picking up a unique one. If this property was
to hold away from the Landau gauge limit as well—which
can only be assessed by actual lattice calculations—
we expect that the present results provide reasonable
predictions for possible lattice calculations in the gauge
proposed here.
A key point of the continuum formulation concerns the

replica technique and the interplay between the limit n → 0

and renormalization. Indeed, part of the n dependence of
the theory can be absorbed in the definition of the
renormalized parameters [24,40]. In the present work,
we have employed a minimal scheme which, first, allows
one to reproduce the results of Ref. [41] in the Landau
gauge (ξ ¼ 0) and, second, has a smooth ξ → 0 limit. We
have studied two renormalization schemes and have pre-
sented results for the ghost and gluon propagators at one-
loop order with and without RG improvement. Finally, we
have compared our results to those of the CF model,
obtained by simply setting the number of replicas n ¼ 1.
This allows one to pinpoint the peculiar effects of the
superfield sector of our theory, which is related to our
particular treatment of the Gribov ambiguities.
The first important aspect of the present treatment of

Gribov copies is the fact that the basic fields of the theory
acquire effective masses, related to the gauge-fixing
parameters β0 and ξ0. In contrast to the Landau gauge
(ξ0 ¼ 0) case, not only the transverse gluons, but also the
FP ghosts are massive. A striking difference between the
CF model (n ¼ 1) and the gauge-fixed theory (n → 0) is
the fact that, in the latter case, the gluon propagator remains
transverse in momentum space even away from the Landau
gauge. This is already visible at tree level. At one-loop
order in a strict perturbative expansion—i.e., without RG
improvement—we also observe important differences
between the n ¼ 1 and the n → 0 cases, mainly in the
transverse gluon propagator, which receives direct contri-
butions from the replica sector. It is important to note that
these contain massless degrees of freedom, which lead to
nonanalyticities at small momentum. These are absent in
the case n ¼ 1.
The role of massless excitations in the gauge-fixed

theory is further illustrated by implementing RG improve-
ment. We have devised an infrared-safe renormalization
scheme, generalizing the one put forward in Ref. [41] for
the Landau gauge. We observed that the one-loop flow has
no Landau pole and that both the coupling and the mass
parameters are attracted towards the Gaussian fixed point,
whereas the Landau gauge fixed point appears unstable,
both in the UV and in the infrared. This can be seen as a
direct effect of the presence of massless modes in the
theory. In the Landau gauge limit (ξ ¼ 0), these are the
ghost fields whereas for ξ ≠ 0, these come from the replica
sector. Still, we observe that the ξ → 0 limit is smooth. This
results in strong RG effects on the propagators, mainly the
transverse gluon, down to the deep infrared. These results
of the gauge-fixed theory are to be compared to the
corresponding ones in the CF model, where all degrees
of freedom are massive and the RG flow freezes in the
infrared, resulting in quantitative but not qualitative
changes as compared to the strict perturbative results.
The present work provides an explicit example where

one can explicitly work out the effect of the Gribov copies
in a semianalytical continuum calculation, in a class of
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gauges that may be amenable to lattice calculations. In the
case of the Landau gauge, our treatment of Gribov copies
already allowed us to capture some nontrivial infrared
physics in perturbation theory, whereas standard techniques
based on the FP quantization require the use of non-
perturbative tools. However, apart from providing an
effective bare gluon mass, the replica sector completely
decouples in the Landau gauge. This is not so in the present
case and one can thus study explicitly the role of the replica
sector—and thus, indirectly, of the Gribov copies—in the
dynamics of the theory in the infrared. We believe the
present results are of interest for the general question of
possible gauge (in)dependences of the infrared sector of the
Yang-Mills propagators. We hope that the present work
will stimulate lattice studies, e.g., along the lines of
Refs. [17–20].
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APPENDIX A: COMPLETE PROPAGATORS

We detail the inversion of the quadratic part of the
action in the sector ðA; ih;ΛkÞ. The most general form of
the various two-point vertex functions is given in Eqs. (30)–
(33). These are constrained by the spacetime symmetries,
the replica permutation symmetry and the isometries of the
Grassmann subspaces for each replica. These can be
grouped together in the matrix

Γð2Þ ¼

0
B@

ΓTPT
μν þ ΓLPL

μν −ipμΓihA ipμΓ4

ipνΓihA Γihih 0

−ipνΓ4 0 δkl½Γ1δðθk; θl0Þ þ Γ2□θk
δðθk; θl0Þ� þ ðδkl − 1ÞΓ3

1
CA; ðA1Þ

where the scalar functions ΓT , ΓL, ΓihA and Γ1;…;4 only depend on p2 and where □θ is the Laplace operator on the curved
Grassmann space, defined as [24,50]

□θ ¼
1ffiffiffiffiffiffiffiffiffi
gðθÞp ∂M

ffiffiffiffiffiffiffiffiffi
gðθÞ

p
gMN∂N ¼ 2β0ðθ∂θ þ θ̄∂ θ̄Þ þ 2ð1 − β0θ̄θÞ∂θ∂ θ̄: ðA2Þ

In particular, it satisfies the identity □θδðθ; θ0Þ ¼ −2þ 2β0δðθ; θ0Þ.
Note that, since there aren − 1 replicas, thematrix representation (A1) onlymakes sense forn > 0 and the limitn → 0must

be done after the inversion. Using the symmetries of the problem, the most general form of the inverse matrix ðΓð2ÞÞ−1 reads

ðΓð2ÞÞ−1 ¼

0
B@

ΔTPT
ρν þ ΔLPL

ρν ipρΔihA −ipρΔ4

−ipνΔihA Δihih Δ5

ipνΔ4 Δ5 δlm½Δ1δðθl; θmÞ þ Δ2□θl
δðθl; θmÞ� þ ð1 − δlmÞΔ3

1
CA; ðA3Þ

where the unknown scalar functions ΔT , ΔL, ΔihA, and Δ1;…;5 only depend on p2. The inversion is defined by

Γð2Þ × ðΓð2ÞÞ−1 ¼

0
B@

δμρ 0 0

0 1 0

0 0 δkmδðθk; θmÞ

1
CA; ðA4Þ

where the product × involves a sum over Lorentz and replica indices and an integral over the Grassmann variable θl. The
calculation is straightforward. We get, for the gluon propagator,

ΔT ¼ 1

ΓT
and ΔL ¼ ΓihihðΓ1 þ ðn − 2Þβ0Γ3Þ

ðΓLΓihih − p2Γ2
ihAÞðΓ1 þ ðn − 2Þβ0Γ3Þ − ðn − 1Þβ0p2ΓihihΓ2

4

: ðA5Þ

The other components in the ðA; ihÞ sector are obtained from these as

ΔihA ¼ ΓihA

Γihih
ΔL and Δihih ¼

1þ p2ΓihAΔihA

Γihih
: ðA6Þ

Finally, the components in the superfield sector read
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Δ4 ¼ −
1

ðn − 1Þβ0p2Γ4

�
1 −

ΔihAðΓLΓihih − p2Γ2
ihAÞ

ΓihA

�
;

ðA7Þ

Δ5 ¼ −p2
ΓihA

Γihih
Δ4; ðA8Þ

Δ3 ¼
1

Γ1 þ ðn − 2Þβ0Γ3

�
p2Γ4Δ4 −

Γ3

ðΓ1 − β0Γ3Þ
�
; ðA9Þ

Δ1 ¼
1

Γ1 − Γ3β0
þ β0Δ3; ðA10Þ

Δ2 ¼
1

2β0ðΓ1 þ 2β0Γ2Þ
−

Δ1

2β0
: ðA11Þ

The propagators are obtained by taking the limit n → 0. For
instance, the longitudinal gluon propagator is given by

GLðpÞ ¼ lim
n→0

ΔLðpÞ; ðA12Þ

which is Eq. (36).

APPENDIX B: TREE LEVEL

We give here the tree-level expressions of the bare two-
point vertex functions. In the transverse gluon and the ghost
sectors,

ΓTðpÞ ¼ p2 þ nβ0; ðB1Þ

Γcc̄ðpÞ ¼ p2 þ β0ξ0: ðB2Þ

In the longitudinal gluon and h sector,

ΓLðpÞ ¼ nβ0; ðB3Þ

ΓihAðpÞ ¼ 1; ðB4Þ

ΓihihðpÞ ¼ −ξ0: ðB5Þ

In the superfield sector

Γ1ðpÞ ¼ p2; ðB6Þ

Γ2ðpÞ ¼ ξ0=2; ðB7Þ

Γ3ðpÞ ¼ 0; ðB8Þ

Γ4ðpÞ ¼ 1: ðB9Þ

We check that the Slavnov-Taylor identities of Appendix C
are satisfied at tree level. We also check that the right-hand
side of Eq. (36) yields (for arbitrary n)

GLðpÞ ¼
ξ0

p2 þ β0ξ0
: ðB10Þ

APPENDIX C: SLAVNOV-TAYLOR IDENTITIES
IN THE CF MODEL

As already discussed, the CF model can be obtained
from the theory considered here by setting the number of
replicas n ¼ 1. Its action is given by

S½A; c; c̄; h� ¼ SYM½A� þ SCF½A; c; c̄; h� ðC1Þ

with SYM and SCF given in Eqs. (1) and (14) respectively.
This model possesses a (non-nilpotent) BRST symmetry,
whose action on the fields is

sAa
μ ¼ Dμca; sca ¼ −

g
2
fabccbcc ðC2Þ

and

sc̄a ¼ iha; siha ¼ β0ca: ðC3Þ

The Zinn-Justin equation corresponding to this symmetry is
obtained as usual, i.e., by introducing external sources for
the fields and for all the independent BRST variations,
S → S − S1 with

S1¼
Z
x
fJaμAa

μþ η̄acaþ c̄aηaþMaihaþ K̄a
μsAa

μþ L̄ascag;

ðC4Þ

and by performing a Legendre transform with respect to the
sources Jaμ, ηa, η̄a, and Ma. It reads

Z
x

�
δΓ
δK̄a

μ

δΓ
δAa

μ
þ δΓ
δL̄a

δΓ
δca

− iha
δΓ
δc̄a

− β0ca
δΓ
δiha

�
¼ 0:

ðC5Þ

Taking two derivatives of this equation with respect either
to iha and ca or to Aa

μ and ca and setting the sources to zero,
one obtains the following symmetry identities for the two-
point vertex functions in momentum space, as defined in
Eq. (29):

ΓcK̄μ
ðpÞΓAμihðpÞ − Γcc̄ðpÞ − β0ΓihihðpÞ ¼ 0 ðC6Þ

and

ΓcK̄μ
ðpÞΓAμAν

ðpÞ − β0ΓihAν
ðpÞ ¼ 0: ðC7Þ

Eliminating ΓcK̄μ
ðpÞ, we obtain, finally,
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p2½ΓihAðpÞ�2 − ΓLðpÞΓihihðpÞ ¼
ΓLðpÞΓcc̄ðpÞ

β0
; ðC8Þ

which is used in obtaining Eq. (38).

APPENDIX D: RG FLOW IN THE
ULTRAVIOLET

The flow of the present theory in the ultraviolet is easily
obtained from the divergent parts of the renormalization
factors: Eqs. (64)–(69). For instance, the β functions for the
coupling and the gluon mass parameters read, in the limit
μ ≫ m;mgh, and taking n → 0,

βUVg
g

¼ −
11

6

g2N
8π2

; and
βUV
m2

m2
¼ −

35

12

g2N
8π2

: ðD1Þ

The UV running of the coupling is the same as in the
Landau gauge, that is

1

g2ðμÞ ¼
1

g2ðμ�Þ
þ 11N
24π2

ln

�
μ

μ�

�
; ðD2Þ

where μ and μ� are UV scales. The flow of m is easily
integrated. Using Eqs. (87) and (88), we get the following
relations:

mðμÞ
mðμ�Þ

¼
�
gðμÞ
gðμ�Þ

�35
44

; ðD3Þ

mghðμÞ
mghðμ�Þ

¼
�
gðμÞ
gðμ�Þ

� 9
44

; ðD4Þ

ξðμÞ
ξðμ�Þ

¼
�
gðμÞ
gðμ�Þ

�
−13
11

: ðD5Þ

We observe that the Gaussian point g ¼ 0 and m¼mgh¼0

is an attractive UV fixed point, whereas ξ ¼ 0 is an unstable
UV fixed point.
Using Eqs. (90) and (92), we recover the standard one-

loop behaviors of the gluon and ghost propagators at large
momentum

GUV
gh ðpÞ ∝

1

p2

�
1þ 11Ng2ðμ�Þ

48π2
ln

�
p2

μ2�

��− 9
44

; ðD6Þ

GUV
T ðpÞ ∝ 1

p2

�
1þ 11Ng2ðμ�Þ

48π2
ln

�
p2

μ2�

��−13
22

; ðD7Þ

where we have used the fact that the contribution from
the mass terms are negligible at large momentum:
m2

ghðpÞ; m2ðpÞ ≪ p2.
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