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There are very few direct experimental tests of the inverse square law of gravity at distances comparable
to the scale of the Solar System and beyond. Here we describe a possible space mission optimized to test
the inverse square law at a scale of up to 100 AU. For example, sensitivity to a Yukawa correction with a
strength of 10−7 times gravity and length scale of 100 AU is within reach, improving the current state of the
art by over two orders of magnitude. This experiment would extend our understanding of gravity to the
largest scale that can be reached with a direct probe using known technology. This would provide a
powerful test of long-distance modifications of gravity including many theories motivated by dark matter or
dark energy.
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I. INTRODUCTION

In recent times a great deal of attention has been devoted
to searching for modifications of Newtonian gravity at or
below mm distances [1]. This possibility is motivated for
example by theories with large extra dimensions or super-
symmetric theories with light moduli [2–5]. At the opposite
extreme of the distance spectrum, deviations from
Newtonian gravity at very long-distance scales may be
related to astrophysical and cosmological problems in
modern physics [6]. The cosmological constant problem
is one of the deepest and most enduring mysteries in
modern physics. There have been many theories which
attempt to modify gravity on long-distance scales, for
example Dvali-Gabadadze-Porrati (DGP) gravity or theo-
ries of massive gravity [7–15]. In these theories large
effects are predicted to arise only on cosmological length
scales. However, smaller effects may be seen at shorter,
experimentally accessible length scales [16,17]. Further,
theories that replace dark matter with modifications of
Newtonian gravity, such as modified Newtonian dynamics
(MOND) [18,19] may also lead to observable effects on
long, yet still accessible scales [20]. The enduring negative
results [21–23] in the search of dark matter in the form of
weakly interacting massive particles may indeed suggest
a broader approach to this important problem. Although
theories with long-distance modifications of gravity have
historically been troubled by ghosts, discontinuities, and
other theoretical difficulties, recent progress has been made
in alleviating these concerns; for a review, see Ref. [24].
For these reasons, we focus on the directly observable

consequences of long-distance modifications of gravity
and estimate the potential of a dedicated space mission to
measure modifications of the gravitational force of the Sun
out to 100 AU. This is the largest distance accessible for
direct measurements in a practical amount of time using
known technology and would provide a powerful test of
long-distance modifications of gravity.
One way to parametrize possible deviations from the

1=R2 behavior of gravity is by introducing a new Yukawa
force with charge proportional to mass, so that the effective
gravitational potential can be written as

ΨðRÞ ¼ −
GM
R

½1þ αe−R=λ�; ð1Þ

where G is Newton’s constant,M is the source mass, and R
is the distance from the source. The new Yukawa inter-
action then has a strength α relative to gravity and a
characteristic length scale λ. In this framework, experi-
ments measure (or constrain) the dimensionless parameter
α as a function of the distance scale λ. A summary of
current limits on the magnitude of α is shown in Fig. 1.
Qualitatively, the sensitivity of experimental measure-

ments to new Yukawa forces of strength α improves as λ
becomes substantially larger than Earth-scale inhomoge-
neities and reaches a level< 10−10 for λ ∼ RMoon (the radius
of the lunar orbit) owing to laser lunar ranging measure-
ments [6]. Beyond such distance scales, the orbital mechan-
ics of the planets in the Solar System forms the most
stringent test of new Yukawa contributions to gravity [25].
The Pioneer 10 and 11 spacecraft provided an alternative
way to measure α at very long scales λ ∼ 10–100 AU as
they receded from the Sun over a period of over 30 years.*tdwiser@stanford.edu
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Indeed for some time the analysis of the Pioneer data
appeared to indicate an anomalous acceleration towards the
Sun of 10−10 m=s2 [26,27], resulting in jαj ∼ 1.7 × 10−4 at
λ ∼ 1013 m. A subsequent, more careful analysis, however,
attributed this effect to instrumental systematics [28]. The
many uncertainties resulting from spacecraft designed for
other purposes make the upper limit on jαj not competitive
with that computed from planetary dynamics.
As will be discussed (and as shown in Fig. 1), a specially

optimized space mission offers the opportunity of improv-
ing sensitivity to a new Solar System-scale Yukawa force
by at least two orders of magnitude with respect to the
present state of the art. We show that such a mission can be
relatively simple and would use only well-understood and
tested technology. In addition, measurements directly done
along a trajectory actually reaching 100 AU constitute a test
that is fully model independent and would detect anomalies
that are not well described by a Yukawa term. This is in
contrast with measurements using planetary motion that
rely on the specific Yukawa parametrization to extract
deviations at scales λ different from the orbital radius.
While the Yukawa potential is quite generic, there are
interesting modifications of gravity that produce truly long-
distance effects that are not accurately described by a
Yukawa potential. Reliance on the Yukawa functional form
is a limitation of the previous searches in Ref. [25]. In a
strict sense, no data exist beyond the distance of Jupiter
except for the limits set by the Pioneer spacecraft. The
mission proposed here would improve these direct limits by
over four orders of magnitude by carefully controlling
systematic effects and performing direct measurements
along the journey to 100 AU.

II. EXPERIMENTAL CONCEPT

Two guiding principles are key in the design of a space
mission optimized for a sensitive search for deviations from
the 1=R2 law at large distances: the mission should have a
reasonable duration and the spacecraft should be designed
in such a way as to minimize the nongravitational inter-
actions on the body whose acceleration is being measured.
Both issues were far from ideal in the Pioneer missions that
were designed for the exploration of the outer Solar
System. Pioneer 10 took 37 years to reach 100 AU and
substantial systematic uncertainties on the measurement
of the acceleration vector aðRÞ occurred due to thruster
leakages, drag produced by interplanetary dust and solar
wind, and recoils against various forms of radiation emitted
by the spacecraft.
The concept discussed here is based on a low mass

(M ¼ 200 kg) spacecraft propelled by a heavy rocket.
After a series of planetary flybys designed to gain speed,
the spacecraft would then coast, while performing the
measurements. For concreteness, we assume that the coast
phase takes the spacecraft from ∼1–100 AU, consistent
with a series of flybys via Jupiter, Mars, and, finally, Earth.
The simple model here conservatively assumes that the
position and velocity of the spacecraft is measured once
every ∼3 weeks. Likely, Deep Space Network (DSN)
ranging will be available for measurement more often than
this assumption. A preliminary and generic flight time
calculation is consistent with a total coast time to 100 AU of
seven years [29]. The sensitivity of the experiment depends
somewhat on the details of the coasting trajectory; for most
of this paper we consider a polar trajectory, perpendicular
to the ecliptic plane of the Solar System. This trajectory
reduces the impact of the Kuiper belt’s (KB) highly
uncertain gravitational pull. Other trajectories are possible,
but have different systematics to consider; we discuss the
choice of spacecraft trajectories in Sec. II B.

A. Spacecraft

Central to the spacecraft design is the use of the drag-free
(DF) technique [30], whereby a feedback system “flies” the
spacecraft around a proof mass (PM) that, to within a very
high degree of accuracy, is subject only to gravity. The PM is
stowed and inactive during the initial maneuvering and flyby
phases and is only released and tracked during the coast.
The DF technique was developed in the 60s and initially
tested on the U.S. Navy TRIAD spacecraft [31]. More
recently, Gravity Probe B [32] used the DF technique in a
challenging configuration, where each of the quartz rotors of
the gyroscopes at the heart of the experiment were also used
as PMs. In 2009, ESA launched the Gravity Field and
Steady-State Ocean Circulation Explorer [33] that utilized
the DF design to map Earth’s gravitational field. The Laser
Interferometer Space Antenna (LISA) [34] also plans to use
the DF technique to establish a highly accurate geodesic

FIG. 1 (color online). Existing 2σ experimental limits on new
Yukawa forces with strength jαj relative to gravity as a function of
the scale λ. The grey region, adapted from [1], is the current state
of the art. The dashed line is the size of the “Pioneer anomaly,”
which can be interpreted as a limit set by the trajectory of the
Pioneer spacecraft. The dotted curve corresponds to the expected
sensitivity of the experiment proposed here.
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network between PMs located on different (and widely
separated) spacecraft. As will become clear, the DF system
discussed here is conceptually simpler than those of Gravity
Probe B and LISA, although new and unique challenges are
presented by the long duration of the flight and the needs of
telemetry and ranging over very large distances.
In our model we assume that measurements of the 1=R2

law can be carried out over about two orders of magnitude
in distance, from ∼1 to 100 AU. While conventional
chemical engines would be employed for the flyby phase,
such engines would be jettisoned at the beginning of the
coast when microthrusters optimized to assist the DF
system over the long duration of the flight would take
over. Standard telemetry using NASA’s DSN [35] would
provide range and Doppler data at well known times, from
which aðRÞ can be derived.
A conceptual sketch of the spacecraft in the coasting

configuration is shown in Fig. 2. The ultimate performance
of a DF system is limited by the interactions between the
spacecraft (shell) and the PM. These include thermal
gradients on the inner surface of the shell, residual gas
from spacecraft components, and gravitational forces from
asymmetries in the shell. The thermal gradients can be
reduced with appropriate insulation, and the residual gas
can be reduced by appropriate choices of materials.
However, gravity cannot be shielded, so great care has
to be taken to build the spacecraft symmetrically around the
cavity hosting the PM. In order to minimize the residual
gravitational interaction of the spacecraft on the PM at the
maximum offset allowed by the feedback system, it is
advantageous to design the gap between the PM and the
inside of the cavity to be larger than found in existing DF
implementations. In the conceptual design discussed here,
the cavity and PM are spherical, with the cavity radius
rC ¼ 10 cm or more and PM radius rPM ¼ 5 cm. These

dimensions are not the result of a careful optimization but
are derived in analogy with previous systems [36,37] with
the constraint of a modest-size spacecraft. With such a large
gap it is likely that optical ranging would be appropriate for
measuring the position and motion of the PM in its housing.
A (probably different) optical system would also be a
candidate for initializing the DF system after the PM is
released at the beginning of the coast. Ultraviolet light-
emitting diodes (LEDs) inside the cavity would allow for
periodic discharging of the PM, which accumulates charge
over time due to interactions with cosmic rays, every few
days [38,39].
The choice of thrusters to be used for the DF system is

constrained by considerations of reliability, fuel endurance
and bandwidth. In addition, care must be taken to ensure
that fuel consumption does not change the position of the
mass center of the spacecraft, producing an anomalous
acceleration of the PM. The bandwidth f and total impulse
J requirements can be estimated by imposing a deadband of
10 μm on the centering of the PM with respect to the
spacecraft center of mass. This results in f ∼ 10−2 Hz and
J ¼ 2 × 10−4 Ns. Electromagnetic thrusters provide high
specific impulse, proportional control and, in the case of
field emission electric propulsion thrusters (FEEPs) [40],
bandwidths in excess of 1 Hz. FEEPs emit and electro-
magnetically accelerate Cs, Rb, or In ions, providing
thrusts of 10−7–10−2 N with the requisite bandwidth
[40]. Using the specifications in Ref. [40] for a cesium-
based FEEP, the calculated fuel consumption is <50 g for
the duration of the mission. However, additional fuel is
likely needed for attitude control and for adjustments to the
spacecraft rotation. While it is not clear if FEEPs with the
required reliability will be available, alternative schemes
with nominally similar performance include laser ablative
microthrusters [41] and other types of electromagnetic
microthrusters, currently under development [42].
In order to further reduce the effect of interactions with the

spacecraft on the PM, rotation of the shell around the PM can
be imposed during the coast phase. Such a rotation spectrally
shifts all disturbances produced internally to the spacecraft
in the plane perpendicular to the rotation axis. Since, to first
order, only accelerations along the coasting direction are
important, the plane of rotation is chosen to contain the Sun.
For the purposes of preliminary calculations, we assume a
rotation rate of ∼0.1 Hz, which is sufficient to reduce many
nuisance interactions to negligible levels while remaining
easily achievable with onboard thrusters.
Due to the rotation of the probe and to the need for a high

gain directional antenna for communications from deep
space, we envisage the mission to include a second, trailing
spacecraft approximately 10 km behind the DF probe, to
relay telemetry to and from Earth. The 10 km distance
renders the gravitational coupling between the trailing
spacecraft and the PM negligible, while being short enough
to allow for simple omnidirectional communications. The
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FIG. 2 (color online). Conceptual view of the drag-free (DF)
and relay spacecraft. The figure is not to scale, and the DF craft is
shown in cross section. The DF craft uses microthrusters to
remain centered on the free-falling “proof mass” (PM) while
rotating in a plane perpendicular to the Sun to reduce thermal and
gravitational backgrounds. The relay craft carries a high-gain
antenna, always pointing towards Earth, for DSN ranging and
communication. Communication and ranging between the two
spacecraft are performed by small omnidirectional transponders.

TESTING LONG-DISTANCE MODIFICATIONS OF … PHYSICAL REVIEW D 92, 104048 (2015)

104048-3



DF and relay crafts would be docked together during the
maneuvering phase of the mission, and then separate and
take their relative positions at the beginning of the coast. The
relay spacecraft does not need to accurately maintain its
position relative to the DF probe, as long as their relative
position and velocity is constantly measured with sufficient
precision. In the rest of this paper we assume that all such
ranging and velocity measurements are the combination of
the two segments: Earth–relay craft and relay craft–DF craft.
Radioisotope thermal generators (RTGs) will have to be

used to provide power to the spacecraft because of the large
heliocentric distance reached.We expect a conventional RTG
rated for 1 kW thermal and 50 W electrical power to be
sufficient for the relay craft. A smaller RTG or a system to
optically transmit power can be used for the drag-free probe.
Optical transmission of power may benefit from a flight
formation in which the two crafts are separated in the plane
orthogonal to the Sun-PMaxis, so that the center of rotationof
the drag-free probe is visible from the relay craft.
The relevant parameters of the proposed spacecraft are

summarized in Table I.

B. Trajectory

The spacecraft trajectory is a key factor in determining
the sensitivity of the experiment. The trajectory determines
the effects of any new physics as well as Solar System
backgrounds. For instance, trajectories that remain quite
close to the Sun (say, in a bound, nearly circular orbit) have

larger effects from new physics, but cannot discriminate
between new physics and backgrounds—in this limit, all
effects are, to first order, perihelion precessions. Such
experiments can set excellent limits with null results (lunar
laser ranging, for example, sets the strongest limit on jαj of
any existing experiment) but are unable to directly confirm
any signal they may observe. For that reason, we focus on
trajectories that traverse a wide range of distance scales,
making possible the identification of a signal based on its
radial dependence.
The Pioneer and Voyager spacecraft followed such tra-

jectories, close to the ecliptic plane of the Solar System in
order to conduct several planetary flybys and observations.
However, a trajectory in the ecliptic plane passes through the
Kuiper belt, which has a very poorly constrained mass
distribution. The systematic uncertainty introduced by the
Kuiper belt in this case is found to be substantial. A polar
trajectory, coasting perpendicular to the ecliptic plane,
reduces the effect of the Kuiper belt while also allowing its
mass distribution to be fit with a small number of parameters
(see Appendix A). We note here that future experimental
constraints on the mass distribution of the Kuiper belt may
turn the ecliptic trajectory into a competitive option, but that
possibility is not considered further in this work.
Reference [29] shows that spacecraft velocities of up to

14 AU=yr are achievable with a sequence of planetary
flybys. Achieving these high speeds requires careful
trajectory designs which we do not attempt here. Instead
we present an estimate of sensitivity using a representative
trajectory whose final flyby is around Earth, out of the
ecliptic, and at an initial speed of 14 AU=yr, reaching
77 AU from the Sun in seven years.

III. ANALYSIS OF SYSTEMATICS

The fundamental limit to the sensitivity of the experi-
ment is the accuracy with which the position of the PM is
measured via DSN ranging. However, there are numerous
other sources of error, resulting from external forces which
act on the PM. Although the drag-free system eliminates
the largest external forces on the PM, forces which act
directly on the PM (either external or caused by the shell
itself) will still affect the net motion of the spacecraft. These
forces must be minimized and well constrained in order to
be able to positively identify a signal.
Some forces (especially those from the shell itself) can

be made sufficiently small so as to be negligible compared
to the ranging measurement uncertainty. Requiring that the
force lead to a displacement of less than 1 m after the full
7 yr coast of the spacecraft translates into a constraint on the
design of the shell and the precision of its construction.
External forces, such as the gravitational forces from
objects in the Solar System, cannot be engineered away.
Instead they must be precisely modeled and subtracted
from the motion of the PM. We find that the masses and
positions of the planets are sufficiently well known to

TABLE I. Summary of relevant parameters, as outlined in the
text. The PM mass assumes the use of platinum for its
construction, and the fuel mass required includes only the amount
necessary for operating the DF system. The RTG thermal power
refers to the trailing spacecraft and would result in ∼50 W of
electrical power. The drag-free craft may use a substantially
smaller RTG or, maybe more likely, receive power transmitted
optically from the relay craft. The symbols in parentheses match
those used in Table II.

Parameter Value

DF spacecraft mass (M) 200 kg
DF spacecraft radius (rS) 1 m
Experiment duration (t) 7 yr
PM mass (m) 10 kg
PM radius 5 cm
DF cavity radius (rC) 10 cm
Required thruster bandwidth 10−2 Hz
Optical sensing deadband (d) 10 μm
Minimum correction period 100 s
Time between DSN measurements 2 × 106 s
PM discharge period 2 × 105 s
Microthruster fuel mass <50 g
Angular velocity (ω=2π) 0.1 Hz
Spacecraft velocity, radial (v) 14 AU=yr (initial)
Trailing spacecraft distance 10 km
RTG thermal power requirement 1 kW
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model and subtract their effect [43,44]. The Kuiper belt,
despite its small total mass, has a mostly unknown mass
distribution and cannot be subtracted or fit by a single
parameter; we find that for a polar trajectory, three fit
parameters are required, corresponding to the first three
terms in the expansion of the Kuiper belt’s gravitational
potential discussed in Appendix A.
The sources of error and resulting design constraints are

summarized in Table II and fully detailed below.
The forces acting on the PM that we wish to minimize

fall into a few categories based on the resulting displace-
ment of the PM. We find that constant, R−2, rotating, and
random forces all come into play. A constant force leads to
a displacement 1

2
aT2 after a coast of time T. A force which

falls off with distance (e.g. as R−2) is most important at the
beginning of the coast, where it builds up some additional
velocity, which then adds to the displacement only linearly;
the displacement at the end of the coast is roughly
a0R0T=v, where a0 is the acceleration at the starting
position R0 ≃ 1 AU of the coast, and v≃ 11 AU=Yr is
the average velocity of the spacecraft. Since the shell will
be rotating with angular velocity ω≃ 2π

10 s, the effects of
some forces originating from it will average down over
many rotations; the components of the force lying in the
plane of rotation are much less effective at producing a net
displacement. ForωT ≫ 1, the displacement of the PMwill
be aT=ω. Finally, the PM may be subject to stochastic
forces. If the time scale of the force’s fluctuations is much

shorter than the coast time, the root-mean-square (RMS)
displacement is ≃âT3=2, where â ¼ σā

ffiffiffi
τ

p
, σā is the

standard deviation of the stochastic acceleration, averaged
over a time period τ long enough that successive averages are
independent while still shorter than the coast time. The types
of forces, their resulting displacements, and the constraints
required to keep their displacements below 1 m are shown in
Table III. As we discuss below, these constraints appear
achievable with careful design and engineering of the
spacecraft; therefore, we treat the DSN ranging as the
limiting source of error for the experiment.

A. Ranging

The radial position of the spacecraft needs to be
periodically measured with considerable precision during

TABLE III. Summary of the types of forces acting on the proof
mass, along with the resulting displacements and the constraint
on their sizes obtained by requiring that the displacement remain
below 1 m for the entire coast.

Type Displacement Constraint

Constant 1
2
aT2 a≲ 4 × 10−17 m=s2

R−2 ≃ a0R0T
v a0 ≲ 2 × 10−15 m=s2

Rotating aT
ω a≲ 3 × 10−9 m=s2

Stochastic ≃âT3=2 â≲ 3 × 10−13 m
s2

ffiffiffiffi
Hz

p

TABLE II. Statistical and systematic errors constraining the sensitivity of the experiment. “Random?” is either “yes” for purely
statistical errors, “no” for purely constant systematics, or a list of potentially random quantities that the error depends on. (We
conservatively assume that these values are constant and set to their maximum value.) “Type” is either “pos.” for an error in the position
measurement or “accel.” for a force acting on the PM, optionally with “rot.” to indicate that force is rotating (and hence averaged down
over many rotations of the shell). “Magnitude” is the parametric size of the effect, and δR is the displacement of the PM due to the effect
after a time t. “Design constraint” gives the required size of various parameters in order to keep δR < 1 m after the entire 7 yr coast,
assuming the gross parameters given in Table I. Each source of error is discussed further in the text.

Source Random? Type Magnitude δR Design constraint

Ranging Yes Pos. 1 m 1 m � � �
Thermal gradient
—External No R−2 accel. a0 ¼ 4σAT3ΔT

mc a0t2
R0

R ΔT ≲ 3 × 10−5 Kð300 K
T Þ3

—Internal No Rot. accel. a ¼ 4σAT3ΔT
mc

at
ω ΔT ≲ 50 Kð300 K

T Þ3
Charging
—Electrostatic ∝ q; d Accel. a≃ q2d

4πϵ0r3Cm
1
2
at2 qmax ≲ 1 × 107e

—Lorentz ∝ q; B Accel. a ¼ qvB
m

1
2
at2 qmax ≲ 3 × 107eð1 nT

B Þ
Self gravity
—Dipole ðx; yÞ No Rot. accel. a≃ GΔM

r2C

at
ω ΔM ≲ 0.5 kg

—Dipole ðzÞ No Accel. a≃ GΔM
r2C

1
2
t2δða sin θÞ δðΔM sin θÞ≲ 6 × 10−6 g

—Quadrupole ðQÞ ∝ d Accel. a≃ fGMd
r3S

ln rS
rC

1
2
at2 f ≲ 1 × 10−4

Residual gas Yes Accel. â≃ ffiffiffiffiffi
pA

p
m ðμkTÞ1=4 1

2
ât3=2 p < 30 Pað10 amu

μ Þ1=2ð300 K
T Þ1=4

Solar System uncertainties No Accel. See text � � �
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the entire coast phase. Here we assume that the uncertainty
of this ranging measurement is dominated by the perfor-
mance of the DSN [35]. The reported range 1σ accuracy is
1 m. The DSN can also perform a Doppler measurement of
the spacecraft’s velocity with an accuracy of 0.1 mm=s;
however, successive ranging measurements determine the
average velocity more precisely, so Doppler information
would contribute little additional information to the fit. For
this reason, we only consider ranging measurements in the
rest of this paper. Negligible uncertainties of 10−16 yr=yr
are to be expected in the time base for such measurements,
using conventional atomic clocks. We note here that the
trajectory of the coast, discussed in Sec. II B, affects the
telemetry and ranging. While a single DSN antenna can be
used for the polar coast considered here, a trajectory in the
ecliptic plane would require a network of ground based
antennas during the later stages of the coast once the round-
trip travel time of the DSN signal exceeds a few hours.
The two-spacecraft formation slightly complicates the

range measurements. However, the short distance between
the DF and the communication spacecraft should be easily
measurable with negligible uncertainty compared to the
Earth–spacecraft distance. An interval of ∼3 weeks
between measurements, during the entire coast, is sufficient
to achieve the accuracy required.

B. Thermal forces

Temperature differences on the inner surface of the DF
cavity lead to a net force on the PM. Fairly large ΔT s
should be expected from internal components of the DF
spacecraft, including electronics and power sources (espe-
cially if powered by an RTG). However, external sources of
temperature differences are more constraining because they
do not rotate with the shell; internal sources are discussed at
the end of this section.
The flux of solar radiation incident on the shell of the

spacecraft leads to a thermal gradient across the outer surface
of the shell. This gradient can propagate to the inner surface
of the shell, leading to a net force on the PM proportional to
ðT þ ΔTÞ4 − T4 ∼ 4T3ΔT, where T is the average temper-
ature of the surface and ΔT is the temperature differential
between the hot and cold sides. Although the shell is
rotating, the equilibrium temperature difference and hence
direction of the net force does not corotate with the shell but
rather maintains its alignment relative to the Sun. This leads
to a constraint on the (noncorotating) inner surface temper-
ature gradient of ΔTð1 AUÞ ≲ 3 × 10−5 Kð300 K

T Þ3, using
the fact that the gradient due to the solar flux falls with
distance as R−2. Assuming the total mass, size, and rotation
values from Table I and using the heat capacity of mm-thick
aluminum as a typical value, the temperature difference on
the outer surface of the spacecraft at R ¼ 1 AU will be on
the order of 1 K. Therefore the outer and inner surfaces of the
shell must be thermally decoupled by some insulating layer
in order to prevent a large thermal force on the PM.

Such a small inner ΔT can in fact be achieved by adding
an insulating layer (e.g. vacuum with low-emissivity coat-
ings) between the outer and inner surfaces of the shell (see
Fig. 3). The temperature difference on the inner surface is
then suppressed relative to that on the outer surface if the
shell rotates with a period much shorter than the character-
istic time of the heat transport between the surfaces. (Note
that the inner and outer shells can be mechanically fixed
together and corotating; it is the rotation of the shell relative
to the Sun that smooths out the temperature.) The heat
transport equations are analyzed more fully in Appendix B.
The main result is that in the limit of fast rotations, the
suppression from a single layer of vacuum insulation is
ΔT inner ¼ ΔTouter

ωτrad
, where ω≃ 0.6=s is the angular frequency

of the shell’s rotation and τrad ≃ 400 s × ð2−ϵϵ Þ for 1 mm-
thick aluminum at 300 K; ϵ is the emissivity of the surfaces.
A large enough suppression may be generated either by
making ϵ small or adding a second insulating layer, as the
suppressions from additional layers multiply.
Temperature differences much larger than that created by

the Sun will arise from sources internal to the shell, such as
electronics and power source; unlike those from the Sun,
these differences rotate with the shell and are therefore
much less constrained. The temperature differences in
the plane of rotation can be as large as 50 K without
significantly displacing the PM. The effect of the temper-
ature difference along the axis of rotation is suppressed
by choosing the axis of rotation perpendicular to the
Sun-spacecraft axis, but in the end will be absorbed by
fitting to the transverse acceleration aT of the PM, which is
discussed further in Sec. III D.

C. Charging

Electromagnetic forces also affect the PM as it charges
from cosmic ray collisions. A charged mass inside a
spherical (or cylindrical) conducting cavity experiences
an acceleration if the mass is offset from the center.

vacuum

Su
n

ho
t

co
ld

hot

cold

FIG. 3. Cross-sectional diagram of the rotating shell with a
layer of vacuum insulation. The surfaces facing the vacuum are
assumed to have emissivity ϵ. While the material of the shell
rotates at ω, the direction of the inner and outer temperature
differences ΔT is fixed relative to the Sun.
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Additionally, without magnetic shielding, the PM will
experience a Lorentz force from (at minimum) the ∼nT
magnetic field in the Solar System, as well as any stray
fields from the electronics in the shell. If the Solar System
magnetic field is dominant, the magnetic and electrostatic
effects have a similar strength with the electrostatic effect
giving a slightly stronger constraint of qmax ≲ 1 × 107e.
Assuming a charging rate of 10 protons=s (similar to that
expected for the PM in LISA’s drag-free system [45]),
discharging the PM using UV LEDs [38,39] once every
three days is sufficient to keep the resulting electromagnetic
forces sufficiently small. Most likely, by discharging more
frequently, the stray fields from the electronics will not
need to be engineered or shielded all the way down to ∼nT,
but a detailed analysis of the electronics and associated
fields is beyond the scope of this study.

D. Self gravity

Gravitational interactions between the shell and PM are
not corrected by the drag-free setup and are therefore a
potential source of error. To gain an understanding of the
typical size and type of gravitational force that can arise, we
consider a generic mass distribution ρðrÞ for the shell and
assume that ρðrÞ ¼ 0 for jrj < rC, the inner radius of the
cavity in which the DF system operates. The PM is taken to
lie at r ¼ 0. Then we can perform an internal multipole
expansion of the gravitational potential, so that

ai ¼ Pi þQijrj þ higher multipoles; ð2Þ

Pi ¼ G
Z

d3r0
ρðr0Þr0i
r03

; ð3Þ

Qij ¼
1

2
G
Z

d3r0
ρð3r0ir0j − r02δijÞ

r05
; ð4Þ

where we have included only the dipole Pi and quadrupole
Qij because the higher order terms are negligible: the
maximum size of the acceleration from lth multipole
moment is GM

r2C
ð drCÞl−1, where d is the PM’s displacement

from the center of the cavity. For the parameters assumed in
Table I, the l ¼ 3 and higher terms are naturally small
enough to ignore.
Since the shell is rotating, the multipole moments vary in

time. Expressed (as we have) as tensors, they transform like
tensors under a time-dependent rotation matrix. However,
the PM displacement does not rotate, so the force on the
PM from Eq. (2) has a complicated (nontensorial) trans-
formation. The largest effects come from time-independent
forces, so we first consider those. Each multipole moment
has 2lþ 1 independent components and one of those
(which can be identified as the m ¼ 0 part) does not
transform under rotations in the x-y plane. For the dipole
this is simply Pz, which leads to a constant force

perpendicular to the plane of rotation. Since we have
chosen the plane of rotation to contain the Sun, this force
does not have a leading-order effect on the PM’s motion.
However, the plane of rotation must be carefully chosen to
ensure that the effect remains small, and the second-order
effect from misalignment is still significant. To address this,
we leave the constant transverse acceleration aT ≃ Pz as a
free parameter in the fit; then, as long as the spacecraft is
pointed accurately, the aT measured from the fit can be
combined with the pointing of the spacecraft to accurately
subtract this systematic. Fitting to aT accounts for all
constant, nonrotating forces along the axis of rotation,
including the internal temperature difference discussed in
Sec. III B. The coordinate system and the geometry of the
situation is shown in Fig. 4.
For the quadrupole, the time-independent component

Q appears on the diagonal: Qxx;yy ¼ Qþ time-dependent
terms, Qzz ¼ −2Q. The magnitude of the resulting accel-
eration (in the x-y plane) is a ¼ Qd where d is the
displacement from the origin. The bound on the size of
Q≲ GM

r3C
is much larger than can be ignored, but is also very

conservative, so a more careful argument is required. In
particular, the bound assumes all of the shell’s mass is
concentrated near the DF cavity, while a more realistic mass
distribution would have most of the mass located towards
the outer surface of the craft, changing the parametric
dependence of Q. For a uniform mass density ρ, we have
Q ∼ Gρ ln rS

rC
∼ GM

r3S
ln rS

rC
, giving a≃ 3 × 10−13 m=s2 for the

parameters in Table I. Precise engineering of the spacecraft
shell, on the order of 10−4 fractional precision on the mass
and position of components, is required to reduce this
acceleration to a negligible level. The actual form of the
spacecraft shell could be based roughly on a zero-Q
geometry (such as a uniform-density sphere or cylinder
with equal length and diameter) as a starting point and
then be shimmed to reduce Q to the necessary level.
Furthermore, this estimate of the required precision is still
conservative because, with periodic corrections to the offset

FIG. 4. Coordinate system used in Sec. III D for the rotating
shell. θ is the misalignment angle between the plane of rotation
and the direction to the Sun.
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d provided by the DF system, the displacement will grow
more slowly than t2 as assumed here. This argument is only
intended to estimate the required precision and establish
plausibility; a detailed analysis of the mass distribution and
associated uncertainties will be required for any proposed
implementation.
The relevant time-dependent components are Px and Py,

but these components are naturally small enough given the
stringent constraint on Q.

E. Residual gas

The spacecraft shell will be under a high but finite
vacuum. Residual gas will induce a stochastic acceleration
of the PM via molecular collisions. We assume the gas to
be in thermal equilibrium with the shell and PM, with a
temperature T, pressure p, and typical particle mass μ.
Since the size of fluctuations of the average acceleration
depends on the averaging time scale, the relevant quantity
to calculate is â≡ σā

ffiffiffi
τ

p
where ā is the average accel-

eration over time scale τ and σā denotes the standard
deviation of ā. Then, for τ long enough that successive ās
are statistically independent, the RMS displacement of the
PM will be given by ≃âT3=2. For the case of gas in the
molecular regime, we can take τ to be the mean time
between collisions and σā to be typical acceleration
imparted by a single collision over time τ. Then it is clear
that σā ≃ pA

m and τ ≃ ðnAvÞ−1. For an ideal gas n ¼ p
kT and

hv2i ¼ kT
μ , so altogether â≃ ffiffiffiffiffi

pA
p
m ðμkTÞ1=4. The constraint

on the size of a stochastic force from Table III translates
into a limit on the pressure p≲ 10 Pa for 10 amu gas
particles at 300 K.

F. Solar System objects

Objects in our Solar System exert irreducible gravita-
tional forces on the PM. Hence, they must be included in
the model of the spacecraft’s trajectory. Most objects,
including all of the inner planets, are well measured enough
to include in the model with no effect on the experiment’s
sensitivity [43,44]. However, the effects of the Sun and the
Kuiper belt are uncertain enough that they must be included
as free parameters in the fit. (As a side effect, this experi-
ment will provide the best measurement of the Kuiper belt’s
mass distribution; see Sec. IV D.) The Sun is always
included as a free parameter since for large Yukawa scales
λ the dominant effect of the new force is to unobservably
rescale the mass of the Sun.
Of particular importance is the modeling of the Kuiper

belt. Unlike a point-mass-like planet, the mass distribution
of the Kuiper belt is highly uncertain. In particular, a
trajectory which passes directly through the Kuiper belt in
the ecliptic plane is subject to a large systematic uncertainty
which is difficult to characterize. One could still set a
conservative limit using the data from such a trajectory, but
the resulting limit would be much worse than existing
limits from planetary motion. However, a polar trajectory

does not pass through the Kuiper belt and allows for a
systematic expansion of its gravitational potential (see
Appendix A). As a result we can include a finite number
of parameters in our Solar System model. Under the
assumption of a very nearly polar orbit (so that the
Kuiper belt can effectively be averaged azimuthally), we
find that the necessary parameters to fit to are (equivalent
to) the mass, radius, and offset from the ecliptic plane.

G. Statistical method

To translate the periodic range measurements obtained
from the DSN into a measurement of (or limit on) new
Yukawa-type forces, we must fit the measurements to a
model that includes both the hypothetical new force and all
of the known systematic effects. We consider the simplest
case where all of the ranging measurements Xi are
independent and Gaussian with equal variances. This case
is realized if all of the design constraints in Table II are
satisfied, although random forces can also be accounted for
by the fit procedure with a slight generalization. In this case
the best-fit (maximum-likelihood) parameters of the model
are determined by minimizing

χ2ðθÞ ¼
X
i

ðXi − μðti; θÞÞ2
σ2

: ð5Þ

Here θ ¼ fθag is a vector of the free parameters of the
model μðt; θÞ, which gives the expected range of the
spacecraft as a function of time and the model parameters.
The standard deviation of each range measurement is σ. We
indicate the best-fit parameters by θ̂. Then the uncertainty
of each of the θ̂ is encoded in the matrix inverse of the
second derivative of χ2:

ðV−1Þab ¼
1

2

∂2χ2ðθÞ
∂θa∂θb

����
θ¼θ̂

; ð6Þ

where the inverse on the lhs is a matrix inverse. Vab is
the covariance matrix of the best-fit parameters, so that the
one-sigma uncertainty in θ̂a is

ffiffiffiffiffiffiffiffi
Vaa

p
. Of course, this value

depends on all of the derivatives of χ2 via the matrix
inverse, and the best-fit parameters may have substantial
covariance.
The expected sensitivity of the experiment can be

computed approximately by taking the expectation value
of Eq. (6), leading to

hðV−1Þabi ¼
X
i

σ−2
∂μðtiÞ
∂θa

∂μðtiÞ
∂θb ; ð7Þ

also known as the Fisher information matrix. Note that
taking the expectation value of Eq. (6) is equivalent to
neglecting terms ∝ ðXi − μðtiÞÞ ∂

2μ
∂θ2, which are suppressed

in our case since the Δθ corresponding to Δμ ∼ σ are well
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within the linear regime, and so inverting Eq. (7) is an
excellent approximation to the true expected sensitivity
hVabi. Furthermore, computing Eq. (7) involves only first
derivatives of μ, which is a substantial simplification since
μ must be numerically integrated with very high precision
for each value of θ.
It must be noted that the confidence interval obtained

from this procedure is only as trustworthy as the model
itself, so care must be taken to include all relevant
contributions. In particular, a small value of χ2 at the
minimum is not a sufficient condition for the validity of the
confidence intervals—one-sigma fluctuations of χ2 are of
size

ffiffiffiffiffiffiffi
2N

p ≃ 14 for N ≃ 100 measurements, comparable to
a 14-sigma systematic effect. Instead we useΔχ2 < 1 as the
criterion for exclusion from the fit.
The free parameters in our simplified Solar System are the

masses of the Sun and the Kuiper belt; the Kuiper belt s and
z moments (defined in Appendix A, equivalent to the radius
and offset from the ecliptic plane); the initial position and
velocity of the spacecraft; and the transverse acceleration
of the spacecraft along its rotation axis. The model is then
augmented with the parameters of the new physics model
under consideration, for instance α for a new Yukawa force
with some scale λ, or m−1 for a theory of massive gravity.
The effects of the various fit parameters on the experi-

ment’s sensitivity are shown in Fig. 5 for the case of a new
Yukawa force; the results are discussed further in Sec. IVA.

IV. SENSITIVITY

A. New forces

To compute the sensitivity of the experiment to new
Yukawa forces, we compute the expected inverse covariance

matrix according to Eq. (7), modifying the gravitational
potential in accordance with Eq. (1) and including the free
parameters of our simplified Solar System as well as the
strength α of the Yukawa correction. We present the
expected 2σ limit on jαj as a function of the scale λ in Fig. 6.
At scales λ much greater than the distance scale of any

particular experiment, the Yukawa correction to Eq. (1)
becomes approximately δΨ∼−αGM

R ð1−R
λþ R2

2λ2
þOðλ−3ÞÞ.

The first term is degenerate with rescaling the source mass,
and the second term is an unobservable constant shift in the
potential, so that the leading observable correction is a
constant radial acceleration a ¼ αGM

2λ2
. As a result the limit

on jαj is generically proportional to λ2 at large λ. At scales
λ≳ 100 AU our expected limit, assuming 1 m ranging, is
uniformly two orders of magnitude stronger than the best
existing limit (planetary tests of Kepler’s third law).
Ten-centimeter ranging, which may be possible in the
future [46], would improve the limit by another order of
magnitude if it remained the limiting source of uncertainty.

B. Long-distance modifications of gravity

While Yukawa forces are a generic possibility for new
physics at long characteristic distance scales, it is generi-
cally difficult to construct complete models of Yukawa
forces with scales longer than the Earth–Moon distance that
our proposed experiment is sensitive to without running
afoul of limits on equivalence principle (EP) violation. One
class of models (including DGP gravity [7] and some
theories of massive gravity [13]) that respects EP while also
modifying gravity at long distances relies on the Vainshtein
mechanism [47] to screen the scalar mode of the graviton
at short distances, resulting in a nonlinear power-law
correction to the effective Newtonian potential [48–51].

FIG. 6 (color online). Expected 2σ exclusion limit on the
strength α of a new Yukawa-type force with range λ. The blue
solid curve is for conservative 1 m ranging precision, while the
red dashed curve is an optimistic experiment with 10 cm ranging
as the limiting uncertainty. The shaded region is excluded by
planetary tests of Kepler’s third law.

FIG. 5 (color online). Effect of fit parameters on experimental
sensitivity to a new Yukawa force. The lowest curve results from
fixing all parameters except GMSun and α; from bottom to top we
add as free parameters the initial position and velocity and
transverse acceleration, mass of the Kuiper belt, and shape of the
Kuiper belt as described by its radius and offset from the ecliptic
plane.
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To accommodate a variety of models simultaneously, we
parametrize the correction to the gravitational potential
Ψ as

δΨ≃GM
R

�
R
R�

�
νþ1

ð8Þ

where ν is the “index” of the power law (δΨ ∝ Rν) and R�
is the Vainshtein radius, the distance below which the scalar
graviton is screened. Equation (8) holds in the screened
regime, R ≪ R�. In terms of the graviton mass m,
R� ¼ ðGM=m2Þ1=3. (In this section we set c ¼ ℏ ¼ 1 so
that m−1 represents a length scale.)

For DGP gravity, ν ¼ 1
2
and m−1 ∼ M2

Pl
M3

5

is the DGP length

scale expressed in terms of the four-dimensional and five-
dimensional Planck masses,MPl andM5; Eq. (8) reduces to
δΨ≃m

ffiffiffiffiffiffiffiffiffiffiffiffi
GMR

p
, in agreement with Ref. [16]. A different

power-law potential with ν ¼ 2 results in the Vainshtein-
screened regime of “ghost-free” (or “Λ3”) massive gravity
[13,49]; in this case Eq. (8) reduces to δΨ≃m2R2. In both
DGP and massive gravity, the value of the graviton Compton
wavelength m−1 relevant to the cosmological constant
problem is today’s Hubble scale, OðH−1

0 Þ ∼ 4 Gpc, corre-
sponding to a graviton mass of m ∼ 10−33 eV.
The expected sensitivity of our proposed experiment

to m−1 as a function of ν is presented in Fig. 7. The
experiment is sensitive to length scales below the curves;
the index ν characterizes a particular theory. (Here we

compare to lunar laser ranging since it is a direct probe of
the potential in the screened regime; Ref. [52] has con-
sidered indirect effects of a graviton mass on weak lensing.
They do not directly constrain the parameter space in Fig. 7
because they rely on the unscreened regime of massive
gravity where the potential cuts off exponentially.) For the
particular case of DGP gravity (ν ¼ 1

2
), our expected 2σ

limit on m−1 is 1 Gpc (10 Gpc) for 1 m (10 cm) ranging,
compared to the current best limit of≃100 Mpc from lunar
laser ranging [1,16,53]. Thus, our proposed experiment is
sensitive to the most interesting range of DGP parameter
space. For steeper power laws (such as the ν ¼ 2 potential
of Λ3 massive gravity; see Fig. 7) our experiment becomes
even more sensitive relative to lunar laser ranging due to the
longer baseline of our measurements.

C. Modified Newtonian dynamics

MOND invokes deviations from Newton’s second law at
small accelerations a ≲ a0 ≃ 10−10 m=s2 as an alternative
explanation of galactic rotation curves that does not require
the existence of dark matter [18,19]. However, in this form,
MOND has a free functional parameter that interpolates
between F ¼ ma for a ≫ a0 and F ∝ a2 for a ≪ a0. The
smallest acceleration (due to the Sun) that the spacecraft
experiences during its coast is a≃ 10−6 m=s2, so we are
always in the deeply Newtonian regime of MOND, where
predictions are highly dependent on the interpolating
function.
However, there are various indirect effects of MOND

(due to the external field of the galaxy [54] or the
asphericity of the Solar System [55]) that are relatively
model independent. These should manifest themselves in
the Newtonian regime as an extra quadrupolar potential
δΨ≃Q2R2. Interpreting the limit on a ν ¼ 2 power law
from Fig. 7 as a quadrupole contribution leads to an
expected limit of Q2 ≲ 10−27 s−2, roughly an order of
magnitude smaller than predicted by Ref. [54] for most
interpolating functions. (It should be noted that the precise
limit on Q2 depends on the orientation of the spacecraft
trajectory, e.g. relative to the Galactic center for the external
field effect.) Due to these effects, our experiment would
be sensitive to (or able to constrain) broad categories of
MOND models.

D. Kuiper belt measurements

As the precision of our proposed experiment requires
fitting to several parameters describing the Kuiper belt, the
experiment also provides a measurement of those param-
eters. Computing the expected sensitivity [via Eq. (7)] for
1 m ranging in the absence of any new physics contribution
results in a precise measurement of GMKB with an absolute
uncertainty of≃5 × 10−4GMEarth, corresponding to a 0.5%
precision if the measured mass is at its upper bound of
roughly 0.1GMEarth [56]. Additionally, the mass-weighted
mean radius and offset from the ecliptic plane could each

FIG. 7 (color online). Expected 2σ lower limit on the graviton
Compton wavelength m−1 of a new Vainshtein-type power-law
contribution to the gravitational potential. For a particular theory
with index ν, the experiment will be sensitive to the region below
the curve. The vertical lines at ν ¼ 1

2
and ν ¼ 2 correspond to

DGP gravity and ghost-free Λ3 massive gravity respectively, and
the horizontal line indicates the present-day Hubble scale which
is the scale of interest for models that attempt to address the
cosmological constant problem. The solid blue curve is for 1 m
ranging precision, while the dashed red curve is an optimistic
scenario with 10 cm ranging as the limiting uncertainty. The
shaded area is excluded by lunar laser ranging.
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be measured with a precision of about 0.2 AUð GMKB
0.1GMEarth

Þ.
These would constitute the first direct measurements of the
mass distribution of the Kuiper belt. Combined with optical
and infrared observations [57,58], knowledge of the mass
distribution could constrain the number and distribution of
the smallest Kuiper belt objects.

V. CONCLUSIONS

We examine the possibility of a space mission to 100 AU
dedicated to the precision study of the 1=R2 behavior of
gravity. Such an experiment would extend the long-
distance edge of our knowledge of the gravitational force.
The ∼100 AU baseline enables a much more powerful

probe of long-distance modifications of gravity because
their effects, relative to ordinary 1=R2 gravity, increase with
distance. Even assuming a simple new Yukawa-type force,
the sensitivity at the longest distance scales would improve
by two orders of magnitude over current limits. But in fact,
current Yukawa limits are an extrapolation from shorter-
distance tests and the experiment described here would
be the first direct test of gravity that actually reaches
∼100 AU. This is particularly important for validation of
various theories of modified or massive gravity that provide
alternatives to dark matter or a cosmological constant; in
particular, our proposed experiment is sensitive to the
interesting parameter space of the DGPmodel that modifies
gravity at the Hubble (∼Gpc) scale and to the effect of the
Galactic gravitational field in MOND. A space mission of
this type and range is the longest-scale direct test of gravity
achievable in the foreseeable future.
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APPENDIX A: KUIPER BELT
PARAMETRIZATION

The KB is a collection of small objects orbiting the Sun
beyond Neptune. While optical and infrared surveys con-
strain the luminosity distribution of the KB, its overall mass
is dominated by the least-luminous objects which are not
detected by these surveys and is quite poorly constrained
[57,58]. Despite its small mass (less than about 0.1MEarth ≃
3 × 10−7MSun [56]) the large uncertainty in its mass and
spatial distribution greatly limits our sensitivity to long-
range effects.

To parametrize the gravitational effect of the KB on the
PM, we perform a systematic expansion of its gravitational
potential assuming that the spacecraft does not pass
through the KB itself (i.e. assuming a trajectory somewhat
above the ecliptic). We find later that a very nearly polar
trajectory is required for a reasonably simple model of the
KB. To perform the expansion, change to cylindrical
coordinates ðs;ϕ; zÞ with a fixed radial offset a:

8<
:

x ¼ ðaþ sÞ cosϕ
y ¼ ðaþ sÞ sinϕ
z ¼ z

: ðA1Þ

In these coordinates the gravitational potential of the KB is
given by

ΨKBðrÞ ¼ −G
Z

dϕ0dz0ds0
ðaþ s0ÞρKBðs0; z0;ϕ0Þ

jr − r0j ; ðA2Þ

where ρKB is the mass density of the KB. In analogy with a
multipole expansion, we now assume s0; z0 ≪ jr − r0j over
the entire support of ρKB. In principle, one can also expand
ρKB into a Fourier series in ϕ to obtain a complete1 series
expansion for ΨKB, with coefficients indexed by the
number of powers of s0, z0, and eiϕ

0
appearing in the

associated term of the integral.
However, we can greatly reduce the number of relevant

parameters with two considerations. First, the radar ranging
measurement is most sensitive to forces aligned with the
Earth-spacecraft direction; for near-polar trajectories, the
effects of displacements in the ecliptic plane are suppressed
by ∼ AU

R , which is only a few percent or less by the time
substantial displacements from the KB are accumulated.
This fact allows us to consider only the radial force, and
hence the potential only along the trajectory itself.
Secondly, if the trajectory is exactly polar, the nonconstant
Fourier modes of ρKB do not contribute to the potential:

ΨKBðrẑÞ ¼ −G
Z

dz0ds0
ðaþ s0Þ R dϕ0ρKBðs0; z0;ϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ s0Þ2 þ ðr − z0Þ2
p ;

ðA3Þ

so only the azimuthally averaged ρKB contributes. The first
few terms are

1Unlike a multipole or Fourier expansion, this basis is actually
overcomplete, and hence not orthogonal. This does not make it
any less useful for our purposes here, but it is necessary to ensure
that linearly dependent terms are not included as independent fit
parameters; such a problem does not arise until third order in the
expansion.

TESTING LONG-DISTANCE MODIFICATIONS OF … PHYSICAL REVIEW D 92, 104048 (2015)

104048-11



ΨKBðrẑÞ ¼ −G
�

M00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p þ rðrM10 þ aM01Þ
aða2 þ r2Þ3=2 þ � � �

�
;

ðA4Þ

where Mij ≡ R
dϕdzdsasizjρKBðs; z;ϕÞ. The effects of the

iþ j ≥ 2 terms are small enough to ignore, so we include
only M00, M10, and M01 as fit parameters. (Floating these
parameters is equivalent to floating the total mass, mean
radius, and z-offset of a thin ring representing the KB.)

APPENDIX B: THERMAL GRADIENTS
ON A ROTATING SHELL

The shell of the spacecraft receives a large flux of energy
from the Sun, creating a temperature profile Toutðθ; tÞ on
the outer surface which is propagated to the inner surface
via radiative transfer through a layer of vacuum insulation.
The full heat transport equation, including conduction
around the inner layer, is

_Tðθ; tÞ ¼ ΓradðToutðθ; tÞ − Tðθ; tÞÞ þ Γcond
∂2Tðθ; tÞ

∂θ2 ;

ðB1Þ
where Γrad ¼ 4ϵσT̄3

ð2−ϵÞcρd and Γcond ¼ κ
cρa2 are the radiative and

conductive transfer rates. We have assumed that the
temperature fluctuations are small compared to the average

temperature T̄ so that the radiative term linearizes.
Assuming an outer temperature profile of the form
Toutðθ; tÞ ¼ T̄ þ ΔTouteiðθ−ωtÞ (i.e. a temperature gradient
that rotates around the shell at angular velocity ω), and
an inner temperature profile of the form Tðθ; tÞ ¼ T̄ þ
aðtÞeiðθ−ωtÞ [so that aðtÞ is the complex amplitude of
temperature oscillations on the inner surface], we obtain

_a − iωta ¼ ΓradðΔTout − aÞ − Γconda: ðB2Þ

In equilibrium, then, _a ¼ 0 and we have a ¼ zΔTout, with

z≡ ρeiϕ ¼ Γrad

Γrad þ Γcond − iω
; ðB3Þ

leading to TðθÞ ¼ T̄ þ ρΔTout cosðθ þ ϕ − ωtÞ after taking
the real part. The suppression factor is then

ΔT in

ΔTout
¼ ρ ¼ Γradffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΓrad þ ΓcondÞ2 þ ω2
p ; ðB4Þ

which reduces to ρ≃ Γrad
jωj for fast rotations.

For multiple layers, one has to solve as many coupled
transport equations. However, in the limit ρ ≪ 1, the effect
of additional layers is approximately multiplicative; in
particular, two layers of vacuum insulation give a ≃ρ2

suppression.
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