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Four-dimensional static Schwarzschild-like solutions obtained in [H.Maeda andN.Dadhich, Phys.Rev.D
74, 021501(R) (2006).H.Maeda andN.Dadhich, Phys. Rev.D75, 044007 (2007).N.Dadhich andH.Maeda,
Int. J. Mod. Phys. D 17, 513 (2008).A. Molina and N. Dadhich, Int. J. Mod. Phys. D 18, 599 (2009).] in the
frames of the Einstein-Gauss-Bonnet gravity at the Kaluza-Klein split are analyzed. In such models matter is
created by auxiliary dimensions. The main goal of our work is to check that these solutions are physically
sensible, and to examine their characteristics, which could be observable. A noncontradictive definition of a
total mass (energy) is given. Study of the perturbed equations demonstrates a possibility of their stability
under linear perturbations. Depending on the combination of the parameters, black hole-like objects with one
or two horizons or naked singularity are described in detail. Stable orbits of test particles around these black
holes are presented. We show the exotic thermodynamical properties of the solution, in which the Hawking
evaporation law has the behavior opposite to the usual one in general relativity. Unfortunately, current
astronomical data do not allow one to distinguish special observable evidences, which we find for the
solutions under consideration, from usual Schwarzschild ones.
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I. INTRODUCTION

String/M-theory [1] is still a perspective candidate for the
unified theory of all physical interactions, but a problem of
its experimental verification remains unsolved. However,
the generic formulation of a string theory is not completed
and in some cases it is appropriate to consider the low
energy approximation. The second order expansion is the
Gauss-Bonnet one. In the framework of Einstein-Gauss-
Bonnet (EGB) gravity a set of interesting solutions has
been obtained, especially black hole ones [2]. One can use
the results of their physical effects to test the string theory
and to search for the new physics in gravitation. In the
present study we are looking for such effects in the solution
obtained in the Maeda and Dadhich (MD) papers [3–5]
devoted to EGB gravity with a cosmological constant. Of
course, basic properties of the MD solutions were analyzed
carefully by Maeda and Dadhich [5]. On the other hand,
properties which could be useful for experimental/
observational physics were not considered completely.
Thus, it is possible to study physically sensible properties
and characteristics, which could be observable.
The main assumption for the MD solutions is the Kaluza-

Klein-type splitting of the EGB space-time. So there is a

physical (dynamic) space-time (of two, three or four
dimensions) and a space of auxiliary dimensions. The later
one has a constant curvature with the negative sign, whereas
in the standardKaluza-Kleinmodel a space-time of auxiliary
dimensions is flat. We concentrate on the four-dimensional
(4D) static Schwarzschild-like solution because it seems to
be more promising in searching for physically sensible
effects. For simplicity we restrict ourselves to the minimal
case of six-dimensional (6D) EGB space-time that has been
studied separately byMolina andDadhich [6] andwe denote
this as DM. The EGB solution properties in 6D are similar to
those in arbitrary EGB dimensions with N > 6.
We check the DM solutions from two points of view. To

be physically sensible these solutions have to have, first,
acceptable theoretical description, and, second, observable
evidences, at least principally. Theoretical description has
to give a noncontradictive definition of important character-
istics. Undoubtedly, for solutions, which pretend to present
astrophysical gravitating objects, such a characteristic is a
total mass (energy) of the system. A separate section is
devoted to this problem, where we use a well-developed
superpotential technique. A no less important theoretical
property is the stability of the solution. We notice that a
stability is directly connected with a well-defined total
mass. Independently we state possibilities, when the DM
solutions are left stable. Thus, chances to detect related
astrophysical objects arise.
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Properties, which could be potentially observable and
which we study, are orbital and thermodynamic effects
related to the DM solutions. The last part of the paper is
devoted to just these problems. As known, thermodynamic
properties are directly connected with a horizon structure of
solutions. As it turns out, geometrical structure of the DM
solutions is quite nontrivial and we examine it in signifi-
cantly more detail than is given in [3–5].
Our paper is organized as follows. In Sec. II, we briefly

recall the MD idea of constructing solutions of specific type
in the EGB gravity, and present the DM solution and its
main features. In Sec. III, we discuss the problems of the
total energy in the DM models and present the total mass
calculation. In Sec. IV we study the stability of the DM
solutions. In Sec. V we discuss geometrical structure of the
DM solution in the form of black hole-like objects with
one/two horizons or naked singularities. In Sec. VI, we
establish a possibility of stable orbits and corresponding
effects. In Sec. VII, we calculate thermodynamical proper-
ties. Section VIII contains a discussion of the role of the
DM solution and corresponding conclusions. In the appen-
dix we present differential operators for Sec. IV.

II. DADHICH-MOLINA SOLUTION

The restriction of the EGB gravity in 6D in the DM
solution [6] leads to the following form of action:

S ¼ 1

2κ6

Z
d6x

ffiffiffiffiffiffi
−g

p ðR − 2Λþ αLGBÞ þ Smatter: ð2:1Þ

Here and below we use c ¼ ℏ ¼ 1 units, κ6 is the six-
dimensional gravitational (Einstein) constant, α > 0 is the
Gauss-Bonnet coupling constant, R is a six-dimensional
Ricci scalar, Λ is the cosmological constant and LGB is the
Gauss-Bonnet term:

LGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð2:2Þ

Varying the action (2.1) with respect to metric, one obtains
EGB gravitational equations:

Gμ
ν þ αHμ

ν þ Λδμν ¼ κ6Tμ
ν ð2:3Þ

where Gμν is the Einstein tensor,

Gμν ¼ Rμν −
1

2
gμνR; ð2:4Þ

and Hμν is the tensor corresponding to the Gauss-Bonnet
term LGB in the action.
The main MD assumptions are as follows:
(i) The space-time of EGB gravity (6D in our case) is

homeomorphical to M4 × K2 where M4 is a four-
dimensional physical space-time and K2 is a space
of constant curvature with radius r0 and sign k̄ (they

are not determined now). It is just the Kaluza-Klein-
type splitting.

(ii) EGB vacuum case Smatter ¼ 0 is considered.
Under such assumptions the gravitational equations (2.3)

are automatically decomposed into the system:

�
1þ 4k̄α

r20

�
G
ð4Þ

A
B þ αH

ð4Þ
A
B þ

�
Λ −

k̄
r20

�
δ
ð4Þ

A
B ¼ 0; ð2:5Þ

δab

�
−
1

2
R
ð4Þ

þ Λ −
α

2
L
ð4Þ

GB

�
¼ 0; ð2:6Þ

where A; B ¼ 0;…3 and a; b ¼ 4, 5 and index “(4)”
denotes four-dimensional quantities. Because the tensor

H
ð4Þ

A
B vanishes in 4D space-time Eqs. (2.5) acquire the form

of the vacuum Einstein equations with a modified cosmo-
logical constant, while Eq. (2.6) plays a role of a constraint
for the main equations only.
However, the authors of [3–5] claim that the system of

(2.5)–(2.6) has no black hole-like solutions. Furthermore
they suggested that the coefficients in square brackets in
(2.5) be put equal to zero. It turns out that in the case when
the EGB-DM parameters are restricted by the equalities

k̄=r20 ¼ −1=4α ¼ Λ; ð2:7Þ

instead of (2.5)–(2.6) one can consider only the scalar
constraint (2.6) that can be rewritten in a simpler form:

R
ð4Þ

þ αL
ð4Þ

GB þ 1

2α
¼ 0: ð2:8Þ

Equation (2.8) has a set of interesting solutions. Among
them there is the DM one that we consider in this paper. It
can be represented as

ds2 ¼ f�dt2 −
dr2

f�
− r2ðdθ2 − sin2θdφÞ; ð2:9Þ

f� ¼ 1þ r2

4α

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
þ 16

�
α

3
2M
r3

−
α2q
r4

�s �
; ð2:10Þ

where the integration constants M and q appear to be the
main solution parameters. Historically, M is treated as a
mass of a black hole and q is an additional charge.

III. TOTAL MASS

Energy connected characteristics play a crucial role in a
description of potentially observable physical objects. So,
first of all, we have to define and calculate total mass
(energy) of the solution (2.9)–(2.10). Other conserved
characteristics are zero by symmetries of the solution.
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One finds that the four-dimensional metric (2.9)–(2.10)
at r → ∞ behaves as

f� ∼
r2

l2�
þ 1� 2Meff

r
∓ qeff

r2
þO

�
1

r4

�
: ð3:1Þ

Asymptotically the solution (2.9)–(2.10) tends to the
anti–de Sitter (AdS) metric

ds̄2 ¼ f̄�dt2 −
dr2

f̄�
− r2dΩ2; f̄� ¼ r2

l2�
þ 1: ð3:2Þ

Here and below “bar” denotes a background quantity. So, in
(3.1)–(3.2) the effective curvature radius of AdS, l�,
effective mass parameter,Meff , and effective charge param-
eter qeff, are defined, respectively, as

l2� ¼ 12α

3� ffiffiffi
6

p ;

Meff ¼
ffiffiffi
3

2

r
α1=2M

qeff ¼
ffiffiffi
6

p
αq:

So, the DM solution (2.9)–(2.10) behaving as (3.1) can
be considered as a perturbed metric respectively (3.2). Such
a presentation allows one to use the superpotential tech-
nique for a total mass calculation. The asymptotic metric is
chosen as a background space-time. It could be written in
two ways: both in four physical dimensions and in full six
EGB gravity dimensions. Thus, the background metric
could be chosen in the form (3.2) as ḡAB, or (3.2) together
with the metric of K2 space-time, where ḡμν ¼ ḡAB × ḡab
(ḡab ¼ gab). Such a background provides the following
timelike Killing vector,

ξα ¼ ð1; 0Þ; ð3:3Þ

necessary for defining the energy; 0 includes all the space-
time dimensions.
Various forms of superpotentials in D > 4 dimensions,

J αβ
D ðξÞ, applicable in AdS and AdS-like backgrounds, have

been constructed both in general relativity (GR) and in
EGB theory; see, for example, [7–11] and references
therein. For future work it is useful to rewrite them in a
united form via antisymmetric tensors JαβD as

J αβ
D ðξÞ ¼

ffiffiffiffiffiffiffiffiffi
−ḡD

p
κD

JαβD ðξÞ:

Here and below gD ¼ det gμν and ḡD ¼ det ḡμν are deter-
minants of D-dimensional dynamical and background
metrics respectively; κD is the gravitational constant in
D-dimensional space-time. Using a timelike Killing vector,
one calculates a total mass in a D-dimensional space-time:

EðξÞ ¼ lim
r→∞

1

κD

I
∂Σ

dsi
ffiffiffiffiffiffiffiffiffi
−ḡD

p
J0iDðξÞ ð3:4Þ

where ∂Σ is the ðD − 2Þ-dimensional boundary of a
ðD − 1Þ-dimensional spacelike hypersurface Σ defined as
x0 ¼ const; dsi is the integration element on ∂Σ.
The discussed metric (2.9) with the asymptote (3.1)

looks very similar to the Reisner-Nordström-AdS solution:

f ¼ r2

l2
þ 1 −

2M
r

þQ2

r2
: ð3:5Þ

Then it seems total mass of the solution (2.9)–(2.10) could
be calculated by the standard methods like the mass in
(3.5). However, the solution (3.5) is a solution of GR
equations, whereas (2.9)–(2.10) resolves the EGB ones.
Moreover, they degenerate into the simplest scalar form
(2.8). Thus, for applying the usual GR methods it is
important to present a more serious foundation and we
provide it below.
It is better to apply the generic formula (3.4) to the EGB

model (2.1)–(2.3) using Killing vector (3.3) from the very
beginning. So we take a Belinfante corrected superpotential
constructed in [10] as

J αβ
D ¼ J αβ

E þ J αβ
GB: ð3:6Þ

Other superpotentials in [7–11] lead to the same result but
through a longer path. The GR and the Gauss-Bonnet parts
of the superpotential (3.6) are

J αβ
E ¼

ffiffiffiffiffiffiffiffiffi
−ḡD

p
κD

ðξ½α∇̄λhβ�λ − ∇̄½αhβ�σ ξσ þ hλ½α∇̄λξ
β�Þ; ð3:7Þ

J αβ
GB ¼ ȷαβGB − ȷ̄αβGB;

ȷαβGB ¼ α

κD
∇̄λf

ffiffiffiffiffiffi
−g

p
Rσ

λαβ þ 4
ffiffiffiffiffiffi
−g

p
gλ½αRβ�

σ þ 2
ffiffiffiffiffiffi
−g

p ½Rτ
ρλ½α

−Rρλ
τ
½α − 2Rλ

τgρ½α þ 2Rρ
τgλ½α þ 2gρλR½α

τ

þRðδλτgρ½α − δρτgλ½αÞ�ḡβ�τḡρσgξσ

−
2α

ffiffiffiffiffiffi−gp
κD

fRσ
λαβ þ 4gλ½αRβ�

σ þ δ½ασ gβ�λRg∇̄λξ
σ

ð3:8Þ

where the metric perturbation hαβ is defined by the relation

ffiffiffiffiffiffiffiffiffi
−ḡD

p
hαβ ¼ ffiffiffiffiffiffiffiffiffi

−gD
p

gαβ −
ffiffiffiffiffiffiffiffiffi
−ḡD

p
ḡαβ;

and ∇̄λ is a covariant derivative constructed with the help of
ḡαβ. It is important to notice that the GR part, J αβ

E in (3.7),
being constructed in arbitrary D dimensions, has the form
of a Belinfante corrected superpotential for GR [12]. In
Minkowski background with Cartesian coordinates and
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translation Killing vectors J αβ
E transforms into the well-

known Papapetrou superpotential [13].
Now we turn to Eq. (3.4). Taking into account the MD

restrictions in EGB gravity from Sec. II, one immediately
concludes that J0iD (when D ¼ 6) depends upon physical
metric gAB and its derivatives only in the physical sector.
Besides,

ffiffiffiffiffiffiffiffiffi
−ḡD

p ¼ ffiffiffiffiffiffiffiffi
−ḡ4

p ffiffiffiffiffiffiffiffiffiffi
ḡD−4

p
where ḡ4 ¼ det ḡAB and

ḡD−4 ¼ det ḡab. Further, because of a spherical symmetry
in the metric discussed one needs a 01-component of the
superpotential, x1 ¼ r, J0iD → J01D and

ffiffiffiffiffiffiffiffi
−ḡ4

p ¼ r2 sin θ for
(3.2). Thus, (3.4) could be rewritten in the form

EðξÞ ¼ lim
r→∞

1

κD

I
dθdϕðr2 sin θÞJ01D ðξÞ

I
r0

dxD−4 ffiffiffiffiffiffiffiffiffiffi
ḡD−4

p
:

ð3:9Þ

Returning to the Kaluza-Klein idea fromMD papers, one
treats the additional dimensions as compact ones. Thus, a
volume

V2 ¼
I
r0

dxD−4 ffiffiffiffiffiffiffiffiffiffi
ḡD−4

p ð3:10Þ

is finite, and Eq. (3.9) is established as

EðξÞ ¼ lim
r→∞

1

κ4

I
dθdϕðr2 sin θÞJ016 ðξÞ: ð3:11Þ

Here, according to the Kaluza-Klein prescription, κ4 ¼
κ6=V2 is the gravitational constant of a four-dimensional
space-time. So one can conclude that Eq. (3.11) represents
the result of a gravitational interaction in a four-
dimensional space-time. However, then one points out that
Eq. (3.11) is incomplete because a superpotential J αβ

6 ðξÞ
has to be exchanged by J αβ

4 ðξÞ constructed in four
dimensions. But a 4D metric theory, in the framework of
whichJ αβ

4 ðξÞ could be constructed, is not determined at the
moment, although from the theoretical point of view the
GR one is more preferable. Moreover, it turns out that
GR is preferable for applications. We test the solution
(2.9)–(2.10) on astronomical and cosmological scales
where GR explains the experimental data correctly.
Thus, GR is better to choose J αβ

4 ðξÞ constructed in the
framework of GR. So we use the GR part (3.7) of (3.6)
changing κD → κ4. Finally, instead of (3.11) one has to use

EðξÞ ¼ lim
r→∞

1

κ4

I
dθdϕðr2 sin θÞJ01E ðξÞ: ð3:12Þ

The GR equations corresponding to (3.12) with the
solution (2.9)–(2.10) can be derived as

GAB þ gABΛ� ¼ κ4T AB: ð3:13Þ

Here Λ� ¼ −1=l2�. Of course, a trace of Eq. (3.13) must be
compatible with the main equation (2.8). Such a model
based on Eqs. (3.13) cannot be described in the framework
of the standard GR. The Einstein tensor GAB is determined
as usual, whereas the energy-momentum tensor T AB of
induced matter is generally unknown. Only one solution of
Eq. (2.8) determines a particular form of T AB after the
substitution of (2.9)–(2.10) in the left-hand side of (3.13).
Therefore, we treat the theory based on Eqs. (3.13) as an
“effective” version of GR. Nevertheless, such a derivation
is enough to define a superpotential J αβ

E ðξÞ without
ambiguities because for construction J αβ

E ðξÞ one needs a
pure gravitational presentation without matter part. So we
use (3.12) to calculate total mass of the system (object)
presented by the solution (2.9)–(2.10). Taking into account
the asymptotic behavior (3.1) and the background metric
(3.2) one obtains

E ¼ �Meff : ð3:14Þ

A system is physically sensible if its total energy is not
negative E ≥ 0; therefore one must set �Meff ≥ 0.
Furthermore, the charge parameter q does not contribute
to E, so we have an analogy with the Reisner-Nordsröm-
AdS black hole (3.5), where E ¼ M, and Q2 does not
contribute to E.
Finally, a move from (3.9) to (3.14) supports the MD

assertion [3–5], so the matter is induced by additional
dimensions. Starting from the vacuum system (2.5)–(2.6)
we derive formula (3.9), which is defined for the vacuum
EGB model and step by step we obtain (3.14) with the
correctly defined total mass of the system. Unambiguously,
the mass defined by the parameter M is a characteristic of
matter created by compactified additional dimensions. The
charge parameter q also describes the induced matter. This
can be proved by changing the limit in (3.12) from r → ∞
to r → R0 ¼ const. So a mass inside a sphere with the
radius R0 is determined both by the parameters M and q,
although q does not contribute to the total mass like Q2 in
electrodynamics.
Concluding the section, we return to (3.9) again. Let us

assume that we suppress a desire to transfer to a metric
theory in four-dimensional space-time like (3.14). In other
words, let us restrict ourselves to a consideration of 6D
EGB theory only. Then, in (3.9), one must use the complete
superpotential (3.6)–(3.8). After direct and cumbersome
calculations one finds E ¼ 0 for the solution (2.9)–(2.10).
This result coincides with the conclusions of [14], where
the solution (2.9)–(2.10) represents a particular case of a
Lovelock gravity.

IV. STABILITY

The problem of DM solution stability is important from a
theoretical point of view and is crucial in cosmological and
astrophysics applications. Usually, for such a test one
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perturbs metric coefficients and checks their further
behavior. Technically this is carried out by perturbing
initial field equations and solving them. However, to obtain
the DM solution special restrictions and conditions have
been used. Therefore, a study of the perturbation problem
cannot be provided in the standard steps and requires more
attention.
A first fundamental question that arises is as follows.

Have we considered a stability of the DM solution in the
six-dimensional EGB spacetime or in the four-dimensional
physical space-time? Let us consider the system (2.5)–(2.6)
together with (2.7). Following the paper by Cai with
coauthors [14] one finds that vanishing coefficients in
the vacuum Einstein equations (2.5) correspond to an
infinite gravitational constant. So a model presented by
all the Eqs. (2.5)–(2.6), of course, with (2.7) in six
dimensions is fundamentally stable. Then, because (2.7)
have to be left unchanged, one has a possibility to consider
perturbations of the unique equation (2.8) in four-
dimensional spacetime only. Beside of that, there is another
argument for considering the conditions (2.7) as unper-
turbed. Assume that one disturbs all the equations in six
dimensions of EGB spacetime and recall that the DM
solution exists only when the conditions (2.7) are fulfilled.
Then, destructing conditions (2.7) even by extremely
small perturbations, or even by time independent pertur-
bations, one finds immediately that the DM solution does
not exist at all. Thus, perturbations of a general kind in six
dimensions make the stability problem of the DM solution
senseless itself.
Another problem in studying the stability of the DM

solution appears because one has a possibility to analyze
the unique equation (2.8), whereas in a general case one has
to study ten perturbed metric functions. One could try to
use the ten Eqs. (3.13). However, in this case, it is
impossible to apply the standard methods because a general
form of (3.13) is unknown. Nevertheless, the idea of the
effective GR with Eqs. (3.13) could be useful. So Abbott
and Deser in [7] proved the stability of an asymptotically
AdS system in the framework of GR. They based this on
the statement that total energy of the system is positive for
asymptotically AdS space-time. In fact, if we are sure of the
validity of the Kaluza-Klein mechanism of matter creation
and the positive total mass (energy) (3.14), the Abbott-
Deser arguments are sufficient to state that the DM solution
is also stable.
In spite the above conclusion being quite concrete, it

was obtained in an indirect way. Therefore it is interesting
and important to consider the problem being restricted
only to the unique equation. It is important that we cannot
solve the perturbation problem completely and classically.
Analyzing (2.8) we work within the linear metric pertur-
bations. Then each of the perturbations within a linearized
equation (2.8) can be considered as separate. In such a
presentation, we obtain several equations for each

perturbation. So we have no possibility to study the
perturbation problem directly and fully. But it is possible
to find a behavior of perturbations that does not destroy the
DM solution (among others, which could destroy it). If
such a behavior exists, we assert that a system might be
stable. For our purposes this is enough, and we follow such
a strategy.
It is constructive to consider two cases: when (i) axial

symmetry is applied, and when (ii) there are no symmetries.
The case (i) means the existence of perturbations with axial
symmetry, corresponding to black holes with small angular
momentum. This case is quite important because the MD
model excludes rotating black holes as is stated in [3–5].
Further, the instability of the DM metric with axial
perturbations means that the solution must be destroyed
by a rotation. Such a conclusion could be fatal for
cosmological and astrophysics applications where most
of objects rotate.
We turn to an axial case in general and use the expression

in a generic form with a nonstationary axially symmetric
metric suggested by Chandrasekhar [15]. It has the form

ds2 ¼ e2Ndt2 − e2Ψðdφ −Qdr − Pdθ −ΩdtÞ2
− e2Mdr2 − e2Λdθ2 ð4:1Þ

where N, M, Ψ, Λ, Ω, P and Q depend on t, r and θ (usual
spherical coordinates). For the DM solution that is treated
as background metric these functions acquire the form

N ¼ 1

2
ln f�ðrÞ; ð4:2Þ

M ¼ −
1

2
ln f�ðrÞ; ð4:3Þ

Ψ ¼ lnðr sin θÞ; ð4:4Þ
Λ ¼ lnðrÞ; ð4:5Þ
Ω ¼ 0; ð4:6Þ
P ¼ 0; ð4:7Þ
Q ¼ 0: ð4:8Þ

Perturbing the functions (4.2)–(4.8) and introducing a
perturbative parameter ε one gets

N ¼ 1

2
ln f�ðrÞ þ εν; ð4:9Þ

M ¼ −
1

2
ln f�ðrÞ þ εμ; ð4:10Þ

Ψ ¼ lnðr sin θÞ þ εψ ; ð4:11Þ

Λ ¼ lnðrÞ þ ελ; ð4:12Þ
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Ω ¼ εω; ð4:13Þ
P ¼ εp; ð4:14Þ
Q ¼ εq; ð4:15Þ

where functions μ, ν, ψ , λ, ω, p and q depending on t, r and
θ are treated as perturbations. Recalling our assumption for
a linear approximation we neglect the terms, quadratic in ε
in (4.1), which appear after substituting (4.9)–(4.15), and
derive gμν matrix in the form

gμν ¼

0
BBBBBBBB@

ð1þ 2ενÞf� 0 0 εωr2sin2θ

0 −ð1þ 2εμÞ 1
f�

0 εqr2sin2θ

0 0 −ð1þ 2ελÞr2 εpr2sin2θ

εωr2sin2θ εqr2sin2θ εpr2sin2θ −ð1þ 2εψÞr2sin2θ

1
CCCCCCCCA

þ oðε2Þ: ð4:16Þ

Substituting (4.16) into the main DM equation (2.8),
leaving the linear in ε terms only and considering each
perturbation separately one obtains the following system,

DðζÞζ ¼ 0; ð4:17Þ
where the notation ζ is used for each perturbation:
ζ ¼ μ; ν;ψ ;…; q, DðζÞ is a differential operator for ζ
perturbation. Equation (4.17) implies that we can consider
an influence of the DM solutions of different kinds
separately. A concrete form for the differential operators
in (4.17) is presented in the appendix.
Of course, the representation of the unique equation for

perturbations in the form of the system (4.17) significantly
simplifies the analysis. As a result, we lose various variants
to find many both stable and unstable possibilities for
behavior, which could follow from the unique equation.
However, if we find a behavior of the set of the functions ζ
that leaves the MD solution stable then our task to find a
possible stability of the MD solution is achieved.
As DðpÞ, DðqÞ and DðωÞ are not differential operators,

Eqs. (4.17) for p, q and ω lead to vanishing of p, q and ω
values. Equations (4.17) for all the other perturbations
allow one to apply the procedure of variables separation
and pick out time, radial and angular parts for each one. We
concentrate on t dependency, because it is crucial for the
stability study.
For ν perturbation, DðνÞ does not contain time deriva-

tives, so, among other possibilities, we can consider ν

perturbation as time independent only. For μ perturbation, a
time dependent part of DðμÞ has a simple form and is
satisfied by a time dependence exp½−t=τ�, where τ is a
constant of variable separation. There are no restrictions on
a complex number τ from a radial part equation. Therefore
to find the perturbation μ that vanishes exponentially in
time one treats τ as a positive real number. Operators DðψÞ

and DðλÞ contain a more complicated wavelike operator
DðrtÞ. However, similarly for perturbations ψ and λ with
DðψÞ and DðλÞ operators a behavior exp½−t=τ� with an
arbitrary complex number τ is permitted also. Therefore, in
general, wave and wavelike solutions are possible.
However, again one treats τ as a positive real number
and finds that ψ and λ vanish exponentially in time. Thus,
based on the result that perturbations can die away
exponentially, we assert that the DM solution has the
possibility to remain stable.
Finally, let us discuss the case (ii) without space-time

symmetries. First, one has to consider ten perturbations;
secondly, all of them depend on the coordinates t, r, θ
and φ. In general, the study looks very cumbersome. To
simplify it we apply the idea of the effective GR. Because
of the general covariance of the Einstein equations (3.13),
there is a freedom in coordinate transformations at the level
of perturbations. Using this possibility we set four of ten
perturbations equal to zero from the very beginning. Using
the Chandrasekhar frame we derive a perturbed metric
matrix as

gμν ¼

0
BBBBBBBB@

ð1þ 2ενÞf�ðrÞ 0 0 0

0 −ð1þ 2εμÞ 1
f�ðrÞ 0 εqr2sin2θ

0 0 −ð1þ 2ελÞr2 εpr2sin2θ

0 εqr2sin2θ εpr2sin2θ −ð1þ 2εψÞr2sin2θ

1
CCCCCCCCA

þ oðε2Þ; ð4:18Þ
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instead of (4.16). The study of (4.18) in analogy to
analyzing (4.16) with (4.17) leads to the same conclusion:
perturbations can die away exponentially in time, and, thus,
the DM solution has the possibility to conserve a stability.

V. GEOMETRICAL STRUCTURE

As the DM solution is stable, we analyze its geometrical
structure up to r → 0. For the sake of simplicity hereafter
we work within c ¼ ℏ ¼ α ¼ 1 units. Then f� defined in
(2.10) is rewritten as

f�ðrÞ ¼ 1þ r2

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
þ 16

�
M
r3

−
q
r4

�s �
: ð5:1Þ

We call fþ and f− positive and negative branches of the
solution, respectively.
First of all, there are some general restrictions on

parameters M and q. The requirement for a total mass
(energy) of the system (3.14) to be non-negative leads to the
conclusion that for the fþ branch the mass parameter M is
nonpositive, whereas for the f− branch it is non-negative.
The positive branch is not valid for black hole-like objects
because fþ do not vanish and so a horizon could not be
defined. The negative branch can describe black holes
because f− is allowed to acquire zero’s values. Both fþ and
f− could correspond to objects with naked singularities. We
are interested in potentially observable consequences.
Therefore, as Eq. (3.14) is valid for both branches, it
can be applied to describe both black holes and naked
singularities. To study the charge parameter q, we compare
the asymptotic behavior (3.1) with the Reisner-Nordström-
AdS (RN-AdS) solution (3.5) in electrodynamics. In the
later case the coefficient before r−2 is positive, whereas in
the case that we discuss in the paper the coefficient before
r−2 can also be negative. This means that the charge
parameter q can describe the additional gravitational
potential with the asymptotes analogous to the electric
charge in (3.5) and a tidal charge of the Dadhich-Rezania
solution [16]. Such an exotic charge describes a bulk
influence on a brane. In the DM solution additional
dimensions are a part of the construction, so it is natural
to expect a similar behavior for the charge q.
For both branches the expression under square root must

be non-negative. So the range of definition of M − q is
restricted by inequality:

r4 þ 24Mr − 24q ≥ 0: ð5:2Þ
We consider it as a limitation for q parameter in bothM > 0
and M < 0 cases.
Before studying structures of black hole-like objects

with horizons and naked singularities we have to state a few
necessary relations arising from (5.2). We start from the
negative branch with M > 0. Let us rewrite (5.2) in the
form

q ≤
r
24

ðr3 þ 24MÞ: ð5:3Þ

It is natural to require the existence f− everywhere in
r ≥ 0 area both in black hole-like and naked singularity
cases. The limitation (5.3) leads to the following condition:
q ≤ 0. However, when the area inside the horizon rH is not
defined, we can continue to treat an external area as a
physical one. So instead of (5.3) we consider the relation

q ≤
rH
24

ðr3H þ 24MÞ: ð5:4Þ

As a result, there are two possible cases: r ≥ 0 and (5.4).
For the naked singularity case only the restriction q ≤ 0 is
allowed. We turn to the positive branch where M < 0. It
describes naked singularities. To do this we return to (5.3),
considering the case r ≥ 0 and M < 0. This leads to a
simple limitation:

q ≤ −
1

8
ð6jMjÞ43: ð5:5Þ

Note that this is a restriction for q in the region M < 0.
We turn to the conditions under which the discussed

solution becomes a black hole. We return to the negative
branch f−. Horizons are defined by the following con-
dition: f− ¼ 0 which appears when the inequality

r4 þ 24r2 − 48Mrþ 48qþ 48 ≤ 0; ð5:6Þ

following from (5.1): f− ≤ 0 holds.
To clarify, it is enough to consider a simpler case q ¼ 0.

Then, (5.6) can be rewritten in the form

r4 þ 24r2 þ 48 ≤ 48Mr: ð5:7Þ

Such a configuration becomes a black hole when the
positive mass parameter M achieves the critical value
Mc. Equation (5.7) is fourth order. Its analytical solution
for the expressionMc exists and can be obtained, using the
discriminant of (5.7) resolvent

Mc ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ

ffiffiffi
2

p
Þ

q
: ð5:8Þ

In fact, it defines a radius for a unique horizon rc ≃ 1.3.
Figure 1 illustrates the situations presented by the inequal-
ity (5.7) derived for the q ¼ 0 case: the upper curve
corresponds to the case without horizons (naked singular-
ity), the middle curve corresponds to a single horizon, and
the lower curve corresponds to the case with two horizons.
Here it is necessary to emphasise an interesting case with

M ¼ 0 occurring for both branches f�. As theM parameter
is coupled to the total mass (3.14) of the system, theM ¼ 0
case looks strange. To clarify, it is necessary to add the
charge parameter q to the consideration. First, the meaning
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of q differs from the electric charge Q in electrodynamics.
Indeed, Q does not exist when M ¼ 0; in other words, the
RN-AdS solution (3.5) is meaningless for the M ¼ 0 case.
Secondly, as discussed after (3.14), q represents matter
induced by additional dimensions. So the conditionM ¼ 0
restricts the consideration for the f− branch to q ≤ 0
condition. Adding it to (5.5) one finds that for M ¼ 0
the restriction q ≤ 0 is fulfilled for both branches.
Introducing the cutoff and, therefore, changing the inte-
gration limit from r → ∞ to r → R0 ¼ const in (3.12), it
appears to be possible to find a mass situated inside a
sphere with the radius R0 defined by q. Thus, the parameter
q totally defines the gravitational interaction in spite of the
massless solution. Such gravitational potential unlike the
Newtonian one has a falloff behavior like ∼r−2 analogous
to the electric field one in (3.5). However, there are no
electrically charged objects in the Universe, because they
would be immediately screened by opposite charged ones.
From this point of view, a q-potential with the falloff ∼r−2
could be observed. For example, in combination with the
usual Newtonian potential it could describe an irregular
dynamics in galaxies. So instead of the idea of dark matter
as new physics it is possible to treat it as a geometrical
contribution from string-inspired higher-dimensional
space-time. This idea requires additional study.
Now we switch to a configuration withM ¼ 0 in the case

of the f−. Then, (5.1) is rewritten as

f− ¼ 1þ r2

4

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
−
16q
r4

r �
: ð5:9Þ

One obtains easily that for q > −1 there are no horizons;
for q ≤ −1 one horizon appears and there is no possibility
for two horizons. A possibility to construct horizons for
totally massless objects looks quite surprising. Unlike GR,
in the DM solution case the total mass determined by M
does not describe all the gravitational properties of the
solution. This assertion supports our proposal about an
analogy between the charge q and a tidal charge from

Dadhich-Rezania solution [16] that describes bulk gravity
influence at the brane. So it turns out that gravitational
effects related with q are also induced by additional
dimensions. Here we have to recall that a massless black
hole described by one parameter in the Lovelock gravity is
discussed in [14].
Now we present a generic picture with arbitrary values of

M and q. It is useful to rewrite expression (5.6) in the
following form:

r4 þ 24r2 þ 48 ≤ 48Mr − 48q: ð5:10Þ
Recall that it is a condition for existence of horizons, which
exist in the case of the negative f− branch only. In the left-
hand side of (5.10) there is a fourth order parabolic
equation, while on the right-hand side there is linear
one. If we draw plots of the parabola from the left-hand
side of (5.10) and the line from the right-hand side of
(5.10), we see only three possibilities of mutual curve
positions. The first one is when the line lies completely
under the parabola, and means an absence of horizons. The
second case is when the line crosses the parabola at two
points. Hence, there are two horizons. Lastly, when the line
is tangential to the parabola, the equation in (5.10) contains
a single horizon only. These arguments show that there are
three areas onM − q parameter phase space corresponding
to the naked singularity configuration, one and two horizon
configurations. Figure 2 presents a corresponding diagram.
To find the configurations with one horizon it is necessary
to use the standard calculus. A “one-horizon curve” is
defined by the following parametrization,

�
M ¼ s3

12
þ s;

q ¼ s4
16
þ s2

2
− 1;

ð5:11Þ

where s is the point at which the straight line touches the
parabola. In Fig. 2 it is drawn by a dashed curve on the right

FIG. 1. f− functions for different masses.

FIG. 2. Dadhich-Molina solution phase diagram.
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part of the picture. The condition (5.10) shows that the area
below the one-horizon curve is the two-horizon configu-
ration zone. Analogously the area above the one-horizon
curve is to be the naked singularity configuration zone.
However, it is so at q > 0. Indeed, if this naked singularity
is allowed, we have to set r ≥ 0, but then from (5.3) the
relation q ≤ 0 follows only. Therefore, the area of naked
singularity with a positive charge q is forbidden; see Fig. 2.
Only positive values of q are restricted by (5.4). To state the
sense of the area under line q ¼ −1 (more exactly q ≤ −1)
at the right part of Fig. 2 one has to use the same arguments,
which are used for the case M ¼ 0 and q ≤ −1. One finds
immediately that it is the one-horizon zone.
To finish the discussion on Fig. 2, we return to the

positive fþ branch and use (5.5), which represents a curve
at the left part of the picture that divides it onto a forbidden
zone and zone of naked singularity.
It seems to be interesting to compare the description of

the DM objects with charged Schwarzschild or charged
Schwarzschild-AdS solutions. Everywhere the relations
between two parameters, mass and charge, define whether
there are two- or one-horizon or naked singularity con-
figurations. The critical mass-charge relation defines the
condition for one-horizon configuration existence that
can be seen from Fig. 3. It is important to notice that
configurations situated left from the Dadhich-Molina criti-
cal charge plot are forbidden. We also skip q < 0 area,
because for the charged solutions in GR this region is
nonphysical.
As one can conclude from Fig. 3, the DM charge acts in a

manner different from the electric one. This statement
supports the assertion that q in DM solution is rather
gravitational charge describing the contribution of addi-
tional dimensions.
Concluding this section, we point out that the MD

solution generalizes the DM one. We do not perform the

study of the MD solution because its behavior is exactly the
same as for the DM case. For example, increasing the
number of additional dimensions only shifts a one-horizon
curve to a higher position. The unique parameter of the MD
solution Θ is the Weyl’s tensor of additional dimensions as
the normalization factor. A smaller Θ defines lowering the
one-horizon curve.

VI. ORBITAL EFFECTS

Orbital effects play an important role in black hole-like
solutions, as they are coupled with an accretion picture that
is actually observed [17]. We assume cosmological and
astronomical scales and, therefore, can use several approx-
imations. We assume that the solution has a mass of stellar
range or higher; hence one may work with series expansion
of a metric. Thus, it is possible to use the asymptotic series
(3.1). We work both with fþ and f− branches, because
asymptotically orbital effects depend upon the M and
q only.
Because the MD metric is static and spherical symmetric

the standard method presented in Chandrasekhar’s book
[15] can be applied effectively to study stable orbits.
Already, this method has been used in [18] for examining
the Dadhich-Rezania solution [16] that has many similar
properties with the DM solution. Therefore, not repeating
here the derivation of an application of the Chandrasekhar
method, we rather compare the results of its application to
both the DM solution and the Dadhich-Rezania solution.
If parameter q takes a positive value, the expression (3.1)

transforms into the Reissner-Nordström form that describes
a black hole with electric charge, although q is not related
with electric charge. If q has a negative value, the
expression (3.1) transforms into the aforementioned
Dadhich-Rezania solution [16] that describes a black hole
in the Randall-Sundrum II model and has the form

ds2 ¼ fDRdt2 −
dr2

fDR
− r2dΩ2; ð6:1Þ

fDR ¼ 1 −
2M
r

þ β

r2
; ð6:2Þ

whereM is the solution’s mass; β describes bulk influence.
The Dadhich-Rezania solution and its properties were
studied in [18–21]. As was established in [18], the critical
dependence β upon mass exists and has the form β ∼M2.
The Dadhich-Rezania solution turns to the Schwarzschild
one if β is sufficiently smaller than squared solution mass. It
was shown that the critical dependence of β upon mass has
the form

β ≤ 9=8M2: ð6:3Þ
If β is bigger than 9=8M2, test particle orbits change [21] as
the quasinormal modes for the scattering [20] and the
shadow size of the black hole [19].

FIG. 3. Critical charge-mass dependence for different solutions.
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It is possible to adopt the limitation (6.3) to the DM
solution and to obtain the same one for q, which would
define an area where orbital effects, scattering effects and
shadow size are different from the GR case:

jqj ≤ 9

8
ffiffiffi
6

p M2: ð6:4Þ

Engaging the recent data on M87 galaxy [22], we see that
there is no evidence in Dadhich-Rezania model manifes-
tation, so the real difference between the DM solution and
the Schwarchild one is negligibly small for existing
accuracy level. It is possible to demonstrate that the DM
solution fits (6.4). For fþ branch the parameter q cannot
take values bigger than − 1

8
ð6jMjÞ4=3. Hence, for large

masses there is an area of small q values. The q existence
influences the mentioned effects. Further, for big masses
charge values are also limited from above. Asymptotically
this limitation acts like q < M4=3. So any allowed DM
black hole with positive charge has the properties similar to
ones in GR. Nevertheless, restriction (6.4) allows one to
exclude the area with large negative values of q.

VII. THERMODYNAMICS AND EVAPORATION

Hawking radiation is the other important effect that
provides an instrument for model testing at cosmological
scales. We use both the Hawking method [23] and the
Shankaranarayanan-Padmanabhan-Srinivasan (SPS) one
[24,25]. The SPS approach operates with semiclassical
wave functions and describes black hole evaporation in
terms of quantum tunneling. The method gives the DM
temperature in the following form:

T ¼ 1

4πres 1
f−

; ð7:1Þ

where res is the residue of f− function on the horizon. The
Hawking method gives expression for temperature in terms
of surface gravity:

T ¼ k
2π

; ð7:2Þ

where k is surface gravity. It is defined as a coefficient in
kμ∇μkν ¼ kkν, where kμ is the normalized Killing vector
that is normal to horizon; ∇μ is a covariant derivative
constructed from the dynamical metric.
We performed numerical calculations for q ¼ 0 and both

for the Hawking and the SPS method. Both strategies lead
to similar results and provide temperature-mass depend-
ence shown in Fig. 4.
An interesting particularity of the discussed model is that

the temperature grows with M parameter increasing.
Similar behavior takes place in Schwarzschild-AdS-like
solution [26], but for sufficiently big masses only. If the

mass is small, the temperature of the Schwarzschild-AdS-
like black hole decreases with increasing mass. Note that
there is the temperature area that is unreachable for black
holes. However, the DM solution temperature only
increases with increasing mass; the temperature can achieve
arbitrary values.
Numerical calculations show that the decreasing of q

corresponds to the temperature growth. In GR black holes
with electrical charge have the same temperature-charge
dependence. Strictly speaking, q appears to change during
the evaporation because properties of outgoing thermal
radiation are defined by horizon geometry only. In contrast,
it is crucial to point out that q must not change during
evaporation because it describes the influence of additional
dimensions, and their properties are independent of the 4D
black hole local topology.
Within the discussed assumption we estimate that the

lifetime of a black hole is infinite. This effect appears because
of the temperature decreasing with the DMmass decreasing,
whichmeans that theevaporation ratebecomes smaller during
the evaporation. This conclusion is opposite to the usual
Hawking evaporationmodel. In addition, the temperature also
depends upon q and evaporation rate of black holes with
differentq values stronglydiffers. For instance, all black holes
on the single horizon curve (5.11) do not evaporate.
In this context, the question about the final state of a

black hole evaporation arises. One can see that within
assumption of q behavior during evaporation of DM black
holes with q > −1 takes a configuration from one horizon
curve (5.11) as final state. All these configurations have
nonzero masses, not depending upon the initial mass of a
black hole. In order to obtain the final value of mass for the
evaporating DM black hole one should solve Eqs. (5.11)
with respect to M, where q is the initial DM black hole
charge. Moreover, for q > −1 any final state is a black hole
one. For DM black holes with initial q smaller than −1 the
final states of evaporation are black holes with zero M
parameter and nonzero q value.

FIG. 4. Temperature-mass dependence for Dadhich-Molina
black hole.
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One could conclude that such a situation leads to a
contradiction, as in the final state the DM black hole has
zero mass. This is not true. Calculations of mass from
Sec. III are performed with respect to an infinitely distant
observer. In reality one observes a black hole from huge but
finite distance. Hence the expression for mass, measuring
by the Earth observer, contains the terms depending on q
and 1=L, where L is distance to a black hole. Therefore the
final state of the DM black holes with q < −1 has nonzero
mass. Within the assumption of q conservation during the
evaporation one comes to a conclusion that such a state
belongs to the DM black hole one. In order to obtain the
precise value one should accurately calculate the evapora-
tion rate, taking into account backreaction. We do not do
this here because the endpoint masses of the evaporating
black holes with q < −1 are too small to be found in
observations.
Summarizing the results of this section, we conclude that

the evaporation strongly depends upon the initial charge q.
Until one estimates the charge of the DM black hole, it is
impossible to find the black hole endpoint mass after the
evaporation. Similarly, one has no right to make any
conclusion about the evaporation rate of the DM black
hole until q parameter is unknown.

VIII. DISCUSSION AND CONCLUSIONS

In this work we studied Maeda-Dadhich solution
obtained in the framework of N > 4 Einstein-Gauss-
Bonnet gravity. We proved the solution stability under
linear perturbations; therefore, Maeda-Dadhich metrics is
valid for the description of real astrophysical black holes.
We investigated the existence of the solution in positive
mass region that was not mentioned in the original papers
[3–6]. We found additional limitations on solution param-
eters (Sec. V) that resulted in valuable consequences. The
positive branch is valid only for a naked singularity
description, while the negative one could describe a black
hole with one or two horizons. We established that the
black hole temperature is not governed by Hawking
evaporation law and this fact causes additional limitations
on the Maeda-Dadhich black hole. Unfortunately, the
accuracy of existing data on compact objects accretion

cannot allow one to distinguish thermodynamically stable
Maeda-Dadhich black holes from usual Schwarzschild
ones. Our result agrees with the estimations obtained
earlier [18,27]. Moreover, according to the recent results
of [19], the study of accretion disc shadows and neutral
particle scattering cannot help in this regard. Therefore, the
Maeda-Dadhich solution can describe astrophysical black
holes, but current astronomical data do not allow one to
distinguish them from Schwarzschild ones from general
relativity.
In conclusion, we make two remarks. First, gravitational

lensing is considered for testing the presence of both black
holes and naked singularities in the Universe; see [28,29]
and references therein. We do not check such a possibility
here, but plan this in future. Second, it is no secret that EGB
gravity is criticized from different sides. So in [30] it is
shown that the EGB gravity violates causality on general
grounds with the Lagrangian (2.1). The authors [30] assert
that the only way to avoid this problem is by adding an
infinite tower of massive higher-spin particles with a
delicate tuning in their couplings. What we describe here
is also not the study of the EGB gravity in the general form
of the Lagrangian (2.1), but we study it at the Kaluza-Klein
split and create matter by additional dimensions. In fact, we
consider effective GR with Eqs. (3.13), where, at least, a
problem of causality does not appear. Thus, there is no
contradiction with such a criticism.
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APPENDIX: DIFFERENTIAL OPERATORS
FOR THE AXIALLY SYMMETRIC CASE

Here we present the concrete form for differential
operators from (4.17).

DðνÞ ¼ 2F0

r3
DðθÞ þ

1

r2

�
f4f0ð5f − 3Þ þ 4frþ 3f0r2g ∂

∂rþ 4fF
∂2

∂r2
�
; ðA1Þ

DðμÞ ¼ 2F0

r3
DðθÞ −

2

r2
ððr2 − 4Þf00 þ 8f02 þ 4rf0 þ fð8f00 þ 2ÞÞ −

�
1

r2
ðr2 − 4Þf0 þ 4fð3f0 þ rÞ

� ∂
∂r −

4F
r2f

∂2

∂t2 ; ðA2Þ

DðψÞ ¼ 2F00

r2
DðθÞ þG

∂
∂rþ

2fF0

r
DðrtÞ; ðA3Þ
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DðλÞ ¼ −
2F00

r2

� ∂
∂θ − 2

�
þG

∂
∂rþ

2fF0

r
DðrtÞ; ðA4Þ

DðωÞ ¼ 4

r2f
½4sin2ðθÞðrf0 − 1Þ2 − fðr2f002 þ 4f02 þ 4rf0ðf00 þ cosð2θÞ − 1Þ þ 8sin2ðθÞÞ þ 4f2sin2ðθÞ�; ðA5Þ

DðpÞ ¼ 8ðcosð2θÞ − 3Þðrf0ðrÞ þ fðrÞ − 1Þ2
r4

; ðA6Þ

DðqÞ ¼ −
4

r2
½8f2 sin2ðθÞðrf0 − 1Þ þ 4f sin2ðθÞðrf0 − 1Þ2 þ ðrf00 þ 2f0Þ2 þ 4f3 sin2ðθÞ�; ðA7Þ

where the following notations are used:

DðθÞ ¼
∂2

∂θ2 þ cot θ
∂
∂θ ; ðA8Þ

DðrtÞ ¼
� ∂2

∂r2 −
1

f2
∂2

∂t2
�
; ðA9Þ

F ¼ 1

2
ð4f þ r2 − 4Þ; ðA10Þ

G ¼ 2

r2
½rf0ð2f0 þ rÞ þ fð4f0 þ rð2f00 þ 3ÞÞ�: ðA11Þ

[1] J. H. Schwarz, in 100 Years of Subatomic Physics (Word
Scientific, Singapore, 2013), p. 519.

[2] S. Alexeyev and M. Ponazanov, Black hole solutions with
dilatonic hair in higher curvature gravity, Phys. Rev. D 55,
2110 (1997); S. O. Alexeyev and K. A. Rannu, Gauss-
bonnet black holes and possibilities for their experimental
search, JETP Lett. 114, 406 (2012).

[3] H. Maeda and N. Dadhich, Kaluza-Klein black hole with
negatively curved extra dimensions in string-generated
gravity models, Phys. Rev. D 74, 021501(R) (2006).

[4] H. Maeda and N. Dadhich, Matter without matter: Novel
Kaluza-Klein spacetime in Einstein-Gauss-Bonnet gravity,
Phys. Rev. D 75, 044007 (2007).

[5] N. Dadhich and H. Maeda, Origin of matter out of pure
curvature, Int. J. Mod. Phys. D 17, 513 (2008).

[6] A. Molina and N. Dadhich, On Kaluza-Klein space-time in
Einstein-Gauss-Bonnet gravity, Int. J. Mod. Phys. D 18, 599
(2009).

[7] L. F. Abbott and S. Deser, Stability of gravity with a
cosmological constant, Nucl. Phys. B195, 76 (1982).

[8] S. Deser and B. Tekin, Energy in generic higher curvature
gravity theories, Phys. Rev. D 67, 084009 (2003).

[9] N. Deruelle, J. Katz, and S. Ogushi, Conserved charges in
Einstein Gauss–Bonnet theory, Classical Quantum Gravity
21, 1971 (2004).

[10] A. N. Petrov, Three types of superpotentials for perturbations
in the Einstein–Gauss–Bonnet gravity, Classical Quantum
Gravity 26, 135010 (2009).

[11] A. N. Petrov and R. R. Lompay, Covariantized Noether
identities and conservation laws for perturbations in metric
theories of gravity, Gen. Relativ. Gravit. 45, 545 (2013).

[12] A. N. Petrov and J. Katz, Conserved currents, superpoten-
tials and cosmological perturbations, Proc. R. Soc. A 458,
319 (2002).

[13] A. Papapetrou, Einstein’s theory of gravitation and
flat space, Proc.Roy.Irish Acad.(Sect.A) 52A, 11
(1948).

[14] R.-G. Cai, L.-M. Cao, and M. Ohta, Black holes without
mass and entropy in Lovelock gravity, Phys. Rev. D 81,
024018 (2010).

[15] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Clarendon Press, Oxford, 1998).

[16] N. Dadhich, R. Maartens, P. Papadopoulos, and V. Rezania,
Black holes on the brane, Phys. Lett. B 487, 1 (2000).

[17] N. I. Shakura and R. A. Sunyaev, Black holes in binary
systems. Observational appearance, Astron. Astrophys. 24,
337 (1973).

[18] S. O. Alexeev and D. A. Starodubceva, Black holes in
models with noncompact extra dimensions, J. Exp. Theor.
Phys. 111, 576 (2010).

[19] A. F. Zakharov, Constraints on a charge in the Reissner-
Nordstrom metric for the black hole at the Galactic Center,
Phys. Rev. D 90, 062007 (2014).

[20] C. Chirenti, A. Saa, and J. Skakala, Quasinormal modes for
the scattering on a naked Reissner-Nordström singularity,
Phys. Rev. D 86, 124008 (2012).

[21] D. Pugliese, H. Quevedo, and R. Ruffini, Circular motion of
neutral test particles in Reissner-Nordström spacetime,
Phys. Rev. D 83, 024021 (2011).

[22] S. S. Doeleman et al., Jet-launching structure resolved near
the supermassive black hole in M87, Science 338, 355
(2012).

S. O. ALEXEYEV, A. N. PETROV, AND B. N. LATOSH PHYSICAL REVIEW D 92, 104046 (2015)

104046-12

http://dx.doi.org/10.1103/PhysRevD.55.2110
http://dx.doi.org/10.1103/PhysRevD.55.2110
http://dx.doi.org/10.1134/S1063776112030119
http://dx.doi.org/10.1103/PhysRevD.74.021501
http://dx.doi.org/10.1103/PhysRevD.75.044007
http://dx.doi.org/10.1142/S0218271808012188
http://dx.doi.org/10.1142/S0218271809014650
http://dx.doi.org/10.1142/S0218271809014650
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1103/PhysRevD.67.084009
http://dx.doi.org/10.1088/0264-9381/21/8/004
http://dx.doi.org/10.1088/0264-9381/21/8/004
http://dx.doi.org/10.1088/0264-9381/26/13/135010
http://dx.doi.org/10.1088/0264-9381/26/13/135010
http://dx.doi.org/10.1007/s10714-012-1487-4
http://dx.doi.org/10.1098/rspa.2001.0865
http://dx.doi.org/10.1098/rspa.2001.0865
http://dx.doi.org/10.1103/PhysRevD.81.024018
http://dx.doi.org/10.1103/PhysRevD.81.024018
http://dx.doi.org/10.1016/S0370-2693(00)00798-X
http://dx.doi.org/10.1134/S1063776110100080
http://dx.doi.org/10.1134/S1063776110100080
http://dx.doi.org/10.1103/PhysRevD.90.062007
http://dx.doi.org/10.1103/PhysRevD.86.124008
http://dx.doi.org/10.1103/PhysRevD.83.024021
http://dx.doi.org/10.1126/science.1224768
http://dx.doi.org/10.1126/science.1224768


[23] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[24] K. Srinivasan and T. Padmanabhan, Particle production
and complex path analysis, Phys. Rev. D 60, 024007
(1999).

[25] S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan,
Hawking radiation in different coordinate settings: complex
paths approach, Classical Quantum Gravity 19, 2671
(2002).

[26] J. Crisostomo, R. Troncoso, and J. Zanelli, Black hole scan,
Phys. Rev. D 62, 084013 (2000).

[27] S. O. Alexeyev, K. A. Rannu, P. I. Dyadina, B. N. Latosh,
and S. G. Turyshev, Observational limits on Gauss-Bonnet
and Randall-Sundrum gravities, JETP 147, 1120 (2015).

[28] K. S. Virbhadra and G. F. R. Ellis, Gravitational lensing by
naked singularities, Phys. Rev. D 65, 103004 (2002).

[29] K. S. Virbhadra and C. R. Keeton, Time delay and magni-
fication centroid due to gravitational lensing by black holes
and naked singularities, Phys. Rev. D 77, 124014 (2008).

[30] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A.
Zhiboedov, Causality constraints on corrections to the
graviton three-point coupling, arXiv:1407.5597.

MAEDA-DADHICH SOLUTIONS AS REAL BLACK HOLES PHYSICAL REVIEW D 92, 104046 (2015)

104046-13

http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.60.024007
http://dx.doi.org/10.1103/PhysRevD.60.024007
http://dx.doi.org/10.1088/0264-9381/19/10/310
http://dx.doi.org/10.1088/0264-9381/19/10/310
http://dx.doi.org/10.1103/PhysRevD.62.084013
http://dx.doi.org/10.1103/PhysRevD.65.103004
http://dx.doi.org/10.1103/PhysRevD.77.124014
http://arXiv.org/abs/1407.5597

