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Stationary, axially symmetric Brans-Dicke-Maxwell solutions are reexamined in the framework of the
Brans-Dicke (BD) theory. We see that, employing a particular parametrization of the standard axially
symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric
electrovacuum spacetimes for this theory. This analysis also permits us to construct a two parameter
extension in both Jordan and Einstein frames of an old solution generating technique frequently used to
construct axially symmetric solutions for BD theory from a seed solution of general relativity. As
applications of this technique, several known and new solutions are constructed including a general axially
symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e., the
Kinnersley solution and general magnetized Kerr-Newman–type solutions. Some physical properties and
the circular motion of test particles for a particular subclass of Kinnersley solution, i.e., a Kerr-Newman-
NUT–type solution for BD theory, are also investigated in some detail.
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I. INTRODUCTION

Brans-Dicke (BD) scalar-tensor theory [1] is the most
studied alternative theory of gravity generalizing general
relativity (GR) in a consistent way by introducing a scalar
field replacing Newton’s gravitational constant. Being one
of the most straightforward extension of GR, this theory
draws a lot of interest and helps to test various aspects of
GR. The peculiar differences were noted in the exact
solutions of this theory compared to the similar solutions
of GR. For example, static spherically symmetric vacuum
solutions of BD theory [2], unlike GR, do not describe
asymptotically flat black holes [3] resulting from gravita-
tional collapse, unless the scalar field becomes a constant.
This is due to the fact that corresponding solutions in BD
theory cannot meet three important criteria, namely,
asymptotic flatness, regularity at the horizon and the weak
energy condition, simultaneously. After the discovery of
spherically and axially symmetric exact solutions, it was
realized that there are ranges of parameters in which these
solutions describe black holes [4–8] where the first two
criteria are met but the third one is not. However, these
ranges are at the nonphysical negative values of the BD
parameter, ω, where the kinetic term becomes negative.
Hence, it is concluded that the black holes of BD theory
obeying these three conditions must be the same as the
black holes of GR, requiring a constant BD scalar.
Although they are the same, their perturbations can behave
differently [9] owing to the fact that they are the solutions
of different theories. Thus, the differences between pertur-
bations of GR and BD theories for the same black hole

solution might be another tool [9,10] to test BD theory
against GR.
Obtaining exact solutions of any theory is important for

several reasons, such as for comparisons with observational
results or for obtaining the outcomes of the theory under
consideration. One important class of these solutions with a
great physical importance are the family of stationary,
axially symmetric solutions, since the gravitational field of
compact celestial objects such as stars, galaxies and black
holes can be represented by such solutions. Investigating
their properties may have some important astrophysical
effects such as the existence and stability of orbits of
planets and stars around such objects. In order to discuss
these important properties of a gravitation theory, exact or
approximate solutions must be obtained. For the BD theory
we are considering, the field equations are more complex
then those of GR, due to the presence of the extra scalar
field. Even in GR, several solution generating techniques
are developed due to the complexity of the field equations.
Thus, in order to obtain exact solutions of BD theory,
similar techniques were used. One of the methods fre-
quently employed is making use of the Ernst equations
[11,12] derived from BD field equations [13–15]. Another
method considers conformal transformation properties of
scalar-tensor theories and using the equivalence of vacuum
or Maxwell BD theory with Einstein-Maxwell scalar
solutions [16,17].
Besides thesemethods, following the earlierworks on this

subject [18–22], an identification technique is presented by
Nayak and Tiwari [23] for axially symmetric vacuum
solutions and generalized for Maxwell vacuum fields by
Singh and Rai [24]. The main idea of this method is to
employ a standard stationary, axially symmetric spacetime
metric and the field variables sharing the symmetries of this
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metric and compare the field equations of both theories to
find some transformations to reduce the field equations of
BD theory to those of GR. Once the transformations linking
general axially symmetric solutions of GR theory to BD
theory are found, one can effortlessly obtain new BD
solutions for a given axially symmetric solution of GR.
Thus, this method, which we call the Tiwari-Nayak-Singh-
Rai (TNSR) method, is the most direct one. Using this
method, Kerr-Newman [7] and black dihole–type [25]
solutions were constructed. On the other hand, one caveat
for the present form of the TNSR method is that it contains
only one extra parameter, theBDparameter,ω, in addition to
the parameters of the originalGR solution.However, various
vacuum or Maxwell vacuum solutions such as the spheri-
cally symmetric BD vacuum solutions [2], the Kerr-like
solution presented in [19], and cylindrically symmetric static
vacuum or Einstein-Maxwell solutions [26] all contain an
extra arbitrary parameter in addition toω.Moreover, a recent
work [27] presenting cylindrically symmetric Einstein-
Rosen– type vacuum solutions also employed a similar
technique involving two parameters. This fact implies that
the TNSR method is not in its most general form.
In this paper, our main aim is to investigate general

stationary axially symmetric solutions of BD-Maxwell
theory by first obtaining a more general extension of
TNSR method with one extra parameter that can be
regarded as a measure of departure from GR. In order to
do this, we first analyze the field equations for the general
stationary axially symmetric spacetime given in the cylin-
drical coordinates in Sec. II. By employing a nonstandard
reparametrization for the metric functions of a standard
axially symmetric metric, we are able to obtain the Ernst
equations from the field equations more easily. Analyzing
this equation and remaining field equations together permit
us to construct a two parameter extended version of the
TNSR method in Sec. III, in both Jordan and Einstein
frames. Using this extended method we will first give some
simple examples to show how this method works. Then we
will obtain a BD version of the general axially symmetric
Einstein-Maxwell typeD solution, known as the Plebanski-
Demianski solution in the case of the vanishing cosmo-
logical constant [28–30] in Sec. IV. We will also investigate
some physical properties and the geodesics of a particular
subclass of these solutions, namely, the BD version of a
Kerr-Newman-NUT–type solution, where the detailed cal-
culations of the geodesic motion will be given in the
Appendix. Section V is devoted to the discussion of ways
of obtaining magnetized solutions for BD theory from a
seed solution. Thanks to the technical convenience pro-
vided by this method, we have obtained the general
magnetized BD Kerr-Newman–type solution with a little
effort using the corresponding GR solution and the
extended TNSR method. As a last section in the paper,
we will discuss the GR limit of these solutions in detail.
This paper ends with a brief discussion.

II. FIELD EQUATIONS AND SOME SOLUTION
GENERATING TECHNIQUES

A. Spacetime and field equations

In this paper we consider Brans-Dicke scalar-tensor
theory with a Maxwell field, described by the action in
the Jordan frame as

SJBD¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕR−

ω

ϕ
gμν∂μϕ∂νϕ−FμνFμν

�
: ð1Þ

The field equations of this action can be expressed as

Gμν ¼
Tμν

ϕ
þ ω

ϕ2

�
ϕ;μϕ;ν −

1

2
ϕ;λϕ;λ

�
−
1

ϕ
ðϕ;μ;ν − gμν□ϕÞ;

ð2Þ

ð2ωþ 3Þ□ϕ ¼ T ¼ 0: ð3Þ

Here Tμν is the energy-momentum tensor of the Maxwell
field given by

Tμν ¼ 2

�
Fμ

αFνα −
1

4
gμνFαβFαβ

�
; ð4Þ

and T ¼ Tμ
μ is its trace which is vanishing in four

dimensions.
A general stationary axially symmetric spacetime can be

represented with a metric in cylindrical coordinates in the
canonical form as

ds2 ¼ −e2UðdtþAdφÞ2 þ e2ðK−UÞðdρ2 þ dz2Þ
þ e−2UW2dφ2; ð5Þ

where the metric functionsU,K,A andW are the functions
of ρ and z. This metric admits two Killing vectors, ∂t and∂φ. This metric can also be expressed in terms of other
relevant coordinate systems such as Boyer-Lindquist coor-
dinates by some suitable coordinate transformations. We
also consider a Maxwell field sharing the symmetries of
spacetime given by the following potential one-form:

A ¼ A0ðρ; zÞdtþ A3ðρ; zÞdϕ: ð6Þ

B. Ernst equation for Brans-Dicke-Maxwell theory

Now we discuss how to reduce BD field equations into
an Ernst equation for axially symmetric spacetimes. In
order to do this, following [31,32], it is appropriate to use a
different but equivalent metric Ansatz given by

ds2 ¼ −αeΩ
2ðdtþAdφÞ2 þ αe−

Ω
2dφ2 þ e2νffiffiffi

α
p ðdρ2 þ dz2Þ;

ð7Þ
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which simplifies the forthcoming equations considerably.
The relation between the metric functions of (5) and (7) are
given by

U¼Ω
4
þ1

2
lnα; K¼Ω

4
þνþ1

4
lnα; W¼α: ð8Þ

Note that althoughW and α are the same, we will keep both
symbols and use whichever one is relevant, in order to
remind ourselves which metric Ansätze we are using.
In the presence of a Maxwell field of the form given in

(6), BD-Maxwell field equations can be written in a
compact form as

∇2ðαϕÞ ¼ 0; ð9Þ
1

2
~∇:ðαϕeΩ ~∇AÞ þ 2eΩ=2½Að ~∇A0Þ2 − ~∇A0

~∇A3� ¼ 0; ð10Þ

1

2
~∇:ðαϕ ~∇ΩÞ þA ~∇:ðαϕeΩ ~∇AÞ þ αϕeΩð ~∇AÞ2

þ 2e
Ω
2 ½A2ð ~∇A0Þ2 − ð ~∇A3Þ2� − 2e−

Ω
2ð ~∇A0Þ2 ¼ 0; ð11Þ

1

2
αϕeΩð ~∇AÞ2 − 1

8
αϕð ~∇ΩÞ2 þ 1

2
∇2ðαϕÞ − 2αϕ∇2ν

−
3

2
α∇2ϕ − ωα

ð ~∇ϕÞ2
ϕ

¼ 0; ð12Þ

e−2νffiffiffi
α

p ð2ωþ 3Þ ~∇ðα ~∇ϕÞ ¼ 0; ð13Þ

~∇:½e−Ω=2 ~∇A0 þAeΩ=2ð ~∇A3 −A ~∇A0Þ� ¼ 0; ð14Þ

~∇:½eΩ=2ð ~∇A3 −A ~∇A0Þ� ¼ 0: ð15Þ

The above equations (9)–(12) are obtained from BD field
equations (2), Eq. (13) is the scalar field equation (3) and
(14) and (15) are the nontrivial Maxwell equations which
do not involve the scalar field ϕ. Here the differential
operators are the operators in the flat Minkowski spacetime,
i.e., ∇¼∂ρ~eρþ∂z~ezþ∂φ~eφ such that ∇2 ¼ ∂2

ρ þ ∂2
z þ ∂2

φ.
Note that in Eqs. (9)–(11) the functions α and ϕ are present
only as products αϕ. Following [11,12,32] we can put
Eqs. (10), (11), (14) and (15) into two complex equations
given by

ðRe εþ jΦj2Þ 1
ᾱ
~∇:ðᾱ ~∇ εÞ ¼ ð ~∇εþ 2Φ� ~∇ΦÞ: ~∇ε; ð16aÞ

ðRe εþ jΦj2Þ 1
ᾱ
~∇:ðᾱ ~∇ΦÞ ¼ ð ~∇εþ 2Φ� ~∇ΦÞ: ~∇Φ; ð16bÞ

where the new function ᾱ is given by

ᾱ ¼ ϕα ¼ ϕW; ð17Þ

satisfying Eq. (9), i.e., ∇2ᾱ ¼ 0. The complex potential Φ
and the complex function ε are defined as

ε ¼ f − jΦj2 þ ih; ð18Þ

Φ ¼ A0 þ i ~A3: ð19Þ

Here the scalar function f is given by

f ¼ eΩ=2αϕ ¼ eΩ=2ᾱ; ð20Þ

and new vector potentials ~A3 and h are defined by

~eφ × ~∇ ~A3 ¼ eΩ=2ð ~∇A3 −A∇A0Þ; ð21aÞ

~eφ × ~∇h ¼ eΩᾱ ~∇A − 2~eφ × ImðΦ� ~∇ΦÞ; ð21bÞ

where ~eφ belongs to the set of basis vectors of three-
dimensional flat space f~eρ; ~eφ; ~ezg.
Equations (16a) and (16b) are actually in the same form

as the corresponding equations in GR [33]. The real and
imaginary parts of Eq. (16a) are equivalent to the Eqs. (10)
and (11) whereas the real and imaginary parts of the
Eq. (16b) are equivalent to Eqs. (14) and (15).
The field equation (9), namely, ∇2ðαϕÞ ¼ ∇2ᾱ ¼ 0,

permits us to employ the canonical value for ᾱ, such that
we can set ᾱ ¼ ρ. This brings Eqs. (16a) and (16b) into

ðεþ ε� þ jΦj2Þ ~∇2ε ¼ 2ð ~∇εþ 2Φ� ~∇ΦÞ: ~∇ε; ð22aÞ

ðεþ ε� þ jΦj2Þ ~∇2Φ ¼ 2ð ~∇εþ 2Φ� ~∇ΦÞ: ~∇Φ; ð22bÞ

where now ~∇2 is the Laplacian operator in the three-
dimensional flat cylindrical coordinates. These equations
are exactly in the same form with the Ernst equation [11,12]
for GR in the presence of a Maxwell field. Thus, the choice
of themetric form (7) simplifies the calculations in obtaining
Ernst equations for BD theory considerably. Actually, the
above Ernst equations for BD theory were already derived
before [13–15] in the Einstein frame, and some exact
solutions were obtained by integrating these equations.
Note that the above Ernst equations of BD theory in the
Jordan frame can also be put in the other useful forms of the
Ernst equations known in the literaturewith exactly the same
transformations. However, we will not pursue this path
further in this paper. Note also that, for the following
discussion, we will retain the ᾱ term in order to cover some
exact solutions where ᾱ ≠ ρ.
For given Ernst potentials solving these two equations,

the remaining field equations (9), (12) and (13) must be
integrated to obtain the full solution. The fact that the form
of the BD Ernst equations given above are exactly the same
equations with the Ernst equations of GR enables us to
make an important observation that any solutions of the

STATIONARY AXIALLY SYMMETRIC SOLUTIONS IN … PHYSICAL REVIEW D 92, 104045 (2015)

104045-3



Ernst equations of GR are also the solutions of BD theory
formulated in the manner presented above. This requires
the identifications

ᾱ ¼ αϕ ¼ αE; Ω ¼ ΩE; A ¼ AE; A ¼ AE;

ð23Þ
where subscript E represents any solution of the Ernst
equation in GR. The above relations are due to the uncon-
ventional parametrization (8) of the stationary axially
symmetric metric (7). Note that there is an arbitrariness in
the metric function α and the scalar field ϕ for the choice
ᾱ ¼ αϕ, since any choice of α and ϕ satisfying Eq. (9) is not
guaranteed to solve Eq. (13). Hence, among all the possible
choices of α and ϕ satisfying (9), only the ones satisfying
Eq. (13) are the solutions of the BD field equations. Thus,
although it is a powerful method, obtaining solutions from
Ernst equations still requires some effort to solve the field
equation (13) and integrate Eq. (12) to find ν. Hereafter, we
will employ a more direct method, yielding the solutions
readily from known GR solutions, up to possible coordinate
transformation. Actually, as we have discussed in the
Introduction, there is such a method in the literature,
given in [23,24], which successfully generated many BD
(-Maxwell) solutions from the known solutions of GR
theory. In the next subsection, a more general form of this
method, containing one extra parameter apart from the BD
parameter ω, will be presented, with the help of the Ernst
equations obtained in the above analysis.

III. EXTENDED TIWARI-NAYAK-RAI-SINGH
METHOD

It is usually difficult to directly solve the field equations of
Einstein’s or Brans-Dicke theory of gravity to obtain exact
solutions. Due to this difficulty, some solution generating
techniques are developed. Here we extend one of them,
which enables one to generate an axially symmetric sta-
tionary or static solution of Brans-Dicke(-Maxwell) theory
from a known solution of Einstein(-Maxwell) gravity with
the same symmetry properties. The essence of the method is
the following. One starts with general BD(-Maxwell) field
equations of a metric of the form (5), where the scalar fieldϕ
and the Maxwell field share the symmetries of the metric,
with metric and field variables K, U, A, W, A, ϕ. Then by
investigating the transformations on these metric functions
such that the field equations exactly reduce to field equations
of Einstein(-Maxwell) theory for the metric and field
variables of GR with KE, UE, AE, WE, AE.
An immediate observation of the field equations (9)–(15),

as we have discussed above, is that in Eqs. (10) and (11)
or equivalently in (16a) and (16b) the metric function
Wð¼ αÞ and the scalar field ϕ enters the expressions only
as products ᾱ ¼ αϕ, owing to the form of the metric Ansatz
(7). Since, in the above choiceswe have considered, the form
of the Ernst equations are similar for GR and BD theories,

any solutions of this equation for GR can be considered as
solutions of this equation in BD theory provided that the
product αϕ is equal to the corresponding metric function for
Einstein-Maxwell theory αE, together with the remaining
metric functions and Maxwell fields except ν. Note that for
this choice αϕ ¼ αE, it is easy to show that the requirement
that α and ϕ solve the remaining field equations (9) and (13)
is met by the Ansätze α ¼ αkE, ϕ ¼ α1−kE with k being a
constant parameter, measuring the departure from GR.
Actually, the choice is well motivated, since this Ansatz is
a general solution for the canonical value αE ¼ ρ with the
choice ϕ ¼ fðρÞ, α ¼ ρ=fðρÞ. For these choices Eq. (13)
becomes �

ρf0

f

�0
¼ 0; ð24Þ

whose general solution is

fðρÞ ¼ ρc0 ; ð25Þ
and we have chosen the integration constant c0 ¼ 1 − k
similar to some previous solutions [26,27] exist in the
literature. We will not consider the possibility of more
general choices of α and ϕ in this paper.
By a careful analysis we have obtained the following

theorem.
Theorem 1.—From any solution of the Einstein or the

Einstein-Maxwell theory with the metric of the form (7)
labeled by a subscriptE and a possibleMaxwell field for the
Einstein-Maxwell case, i.e.,AE ¼ A0ðρ; zÞdtþ A3ðρ; zÞdϕ,
the corresponding BD or BD-Maxwell solution can be
obtained by the following transformations:

α ¼ αkE; ϕ ¼ α1−kE ; Ω ¼ ΩE; ð26aÞ

A ¼ AE; A ¼ AE; ð26bÞ

ν ¼ νE þ 2ω − ð2ωþ 3Þk
4

lnϕ: ð26cÞ

To prove this theorem we only need to prove the relation
(26c), which can be easily obtained by applying the trans-
formations (26a) and (26b) to BD-Maxwell field equations
above and solving for ν. Thus, for this form (7) of the axially
symmetric stationary spacetime, the transformation equa-
tions relating GR solutions to BD ones turn out to be quite
simple. The advantage of this form of the metric is that the
Ernst equations of BD and GR theories are obtained
straightforwardly in these coordinates and the related
developments for the Ernst equation are easily applicable
to BD theory in this parametrization. However, the form of
the metric (7) is rather unfamiliar. Hence, in order to
compare our results with the existing solutions in the
literature and also to apply this method to obtain new
solutions, we need to express the above theorem in terms
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of the metric (5). By considering the relations (8) the above
theorem becomes as follows.
Theorem 2.—From any solution of the Einstein or the

Einstein-Maxwell theory with the metric of the form (5)
labeled by a subscriptE and a possibleMaxwell field for the
Einstein-Maxwell case, i.e.,AE ¼ A0ðρ; zÞdtþ A3ðρ; zÞdϕ,
the corresponding BD or BD-Maxwell solution can be
obtained by the following transformations:

W ¼ Wk
E; ϕ ¼ W1−k

E ; A ¼ AE; A ¼ AE;

U ¼ UE −
1

2
lnϕ;

K ¼ KE þ 2ω − 1 − ð2ωþ 3Þk
4

lnϕ: ð27Þ

The only possible technical difficulty in using the above
method is to put theGRsolutions into the particular form (5),
since the stationary axisymmetric solutions can be expressed
in various coordinate systems. For convenience, let us
present the corresponding line element in the Jordan frame
explicitly as

ds2JBD ¼ ϕ−1½−e2UEðdtþAEdφÞ2
þ e2ðKE−UEÞϕð1−kÞðωþ3=2Þðdr2 þ dz2Þ
þ e−2UEW2

Edφ
2�: ð28Þ

Now we can compare this result with the results present in
the literature. Note that the above theorem is known in the
literature in a more restricted form, in which in the works
[23,24] the case K ¼ KE is considered, which relates the
parameter k with the BD parameter, ω as k ¼ ð2ω − 1Þ=
ð2ωþ 3Þ. The restricted form with K ¼ KE is used to
construct Kerr-Newman–type solutions [7] in BD theory
from GR and also Bonnor-type black dihole solution is
discussed in [25]. Note that a similar construction was used
to generate Einstein-Rosen–type gravitational wave solu-
tions in BD theory [27] for the special case W ¼ ρ.

A. Extended TNSR method in the Einstein frame

It is well known that a conformal transformation of the
form

~gμν ¼ ϕgμν; ψ ¼
�
ωþ 3

2

�
lnϕ ð29Þ

brings Jordan frame BD action into the Einstein frame as

SEBD ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
~R −

1

2
~gμν∂μψ∂νψ − FμνFμν

�
:

ð30Þ

Note that we use the unit system where 8πG ¼ 1. One
important property of the above transformation is that the

Maxwell Lagrangian is invariant under the conformal
transformations in four dimensions. Hence, unlike in the
case of other matter fields, the scalar field is not coupled
with the Maxwell field and the Einstein frame of BD theory
for the Maxwell field is equivalent to Einstein-Maxwell–
scalar solutions. Now, let us investigate the results of the
previous section in the Einstein frame. Recall that for a
given axially symmetric solution of Einstein-Maxwell
theory has a corresponding BD-Maxwell solution given
in Theorem 2. After applying the conformal transformation
(29) to the metric (28) and the scalar field, the correspond-
ing solution of BD-Maxwell field equations in the Einstein
frame becomes

ds2EBD ¼ −e2UEðdtþAEdφÞ2
þ e2ðKE−UEÞþð1−kÞψðdρ2 þ dz2Þ þ e−2UEW2

Edφ
2;

ð31Þ

ψ ¼ ð1 − kÞð2ωþ 3Þ
2

lnWE: ð32Þ

Clearly, we have the following theorem.
Theorem 3.—From any solution of the Einstein or the

Einstein-Maxwell theory with the metric of the form (5)
labeled by a subscriptE, and a possibleMaxwell field for the
Einstein-Maxwell case, i.e.,AE ¼ A0ðρ; zÞdtþ A3ðρ; zÞdϕ,
a correspondingBD or BD-Maxwell solution in the Einstein
frame (Einstein-Maxwell–scalar solution) can be obtained
by the following transformations:

~W ¼ WE; ψ ¼ ð1 − kÞð2ωþ 3Þ
2

lnWE;

~A ¼ AE; ~A ¼ AE;

~U ¼ UE; ~K ¼ KE þ 1 − k
2

ψ : ð33Þ

Note that a solution generating technique was presented for
Einstein-Maxwell–scalar (EMS) theory in [22] where in that
work it was shown that, for a given Einstein-Maxwell
solution, the corresponding EMS solution can be found
by solving a set of differential equations involving only K
and ψ in our notation.

B. Examples in Jordan frame

1. Flat spacetime

Let us apply the above procedure to flat Minkowski
spacetime, to demonstrate the method and clarify some
issues in the previous restricted form of this technique. If
we consider Minkowski spacetime in Cartesian coordi-
nates, we see that since WE ¼ 1, the resulting solution is
also the same flat spacetime in Minkowski coordinates,
since ϕ ¼ W1−k

E becomes constant. In order to obtain a
nontrivial scalar field, we have to use coordinate systems
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whereWE is not a constant, such as the flat spacetime given
in spherical coordinates:

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð34Þ

Note that here r denotes spherical radial coordinate. In
order to bring this metric into the form (5), we can consider
the transformation r ¼ eR, which brings the metric into the
form as

ds2 ¼ −dt2 þ e2RðdR2 þ dθ2 þ sin2θdφ2Þ: ð35Þ

Here, by comparing this with (5), we see that it resembles
the form with the identification R ¼ ρ, θ ¼ z, and

WE ¼ eR sin θ; UE ¼ 0; KE ¼ R;

AE ¼ AE ¼ 0:
ð36Þ

Now applying the procedure in Theorem 2, we obtain

ds2 ¼ ðr sin θÞk−1½−dt2 þ ðr sin θÞð1−kÞ2ðωþ3=2Þ

× ðdr2 þ r2dθ2Þ þ ðr sin θÞ2dϕ2�; ð37Þ

ϕ ¼ ðr sin θÞ1−k: ð38Þ

Clearly, the application of this method breaks the spherical
symmetry of the BD empty spacetime, as discussed in [25].
Namely, even if one starts with a spherically symmetric
static solution as a seed, the resulting metric will be also
static but axially symmetric. Thus, this method is not
appropriate for obtaining the spherically symmetric BD
solutions and one may use the methods given, for example,
in [17] to obtain spherically symmetric solutions. The
reason is that the gzz and gφφ components are changed after
the application of this method.
One can also consider the cylindrical flat spacetime

given by

ds2 ¼ −dt2 þ dρ2 þ dz2 þ ρ2dφ2; ð39Þ

as the seed solution with KE ¼ UE ¼ 0, WE ¼ ρ. After
applying the algorithm, the resulting flat space solution of
BD theory becomes

ds2 ¼ ρk−1½−dt2 þ ρð1−kÞ2ðωþ3=2Þðdρ2 þ dz2Þ þ ρ2dφ2�:
ð40Þ

Note that one can also obtain this solution from (37) by
usual transformation relations between spherical and cylin-
drical coordinates. Clearly, unlike spherical symmetry, the
cylindrical symmetry is preserved by this method.

2. Bonnor-type dipole solution

As we have discussed, this method cannot be used to
construct spherically symmetric solutions even if one starts
with a spherical seed solution. The resulting solution
becomes axially symmetric. Thus, we cannot obtain a
Schwarzschild-type solution using this algorithm.
However, for static axially symmetric solutions we can
use this method to obtain new solutions with the same
symmetry. Using this fact, we now generalize a previous BD
solution constructed using the restricted form of the TNSR
algorithm to its more general form. The solution we choose
as the seed solution is a static axially symmetric solution of
Bonnor [34] representing a magnetic dipole in GR. The
corresponding BD solution of themagnetic dipole presented
by Bonnor as a solution of Einstein-Maxwell theory was
presented in [25] using the TNSR algorithm. Since the
original method is restricted, we now present the more
general version of this solution using the extended version
we have discussed. The GR solution reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
2
�
−dt2 þ Σ4

½Δþ ðM2 þ a2Þsin2θ�3

×
�
dr2

Δ
þ dθ2

��
þ Δsin2θ
ð1 − 2Mr

Σ Þ2 dφ
2; ð41Þ

A0 ¼ 0; A3 ¼
2aMrsin2θ
Δþ a2sin2θ

;

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 − a2cos2θ: ð42Þ

In order to apply the algorithm, we need to bring the metric
into the form of (5). To do this we need to apply a transforma-
tion r¼eRþMþðM2þa2Þe−R, bringing the ðr; θÞ sector of
the metric into the form dr2=Δþdθ2¼dR2þdθ2. Hence by
comparing the obtained metric with (5), we can read the
metric functions of Einstein-Maxwell theory as follows:

e2UE ¼
�
1 −

2mr
Σ

�
2

; AE ¼ 0; W2
E ¼ Δsin2θ

e2KE ¼ Σ4

½Δþ ðM2 þ a2Þsin2θ�3
�
1 −

2mr
Σ

�
4

: ð43Þ

By applying the extended TNSR algorithm and transforma-
tion back to the Boyer-Lindquist coordinates, the BDversion
of the Bonnor’s solution becomes

ds2 ¼ ð
ffiffiffiffi
Δ

p
sin θÞk−1

�
−
�
1 −

2Mr
Σ

�
2
�
−dt2

þ Σ4ð ffiffiffiffi
Δ

p
sin θÞð1−kÞ2ðωþ3=2Þ

½Δþ ðM2 þ a2Þsin2θ�3
�
dr2

Δ
þ dθ2

��

þ Δsin2θ
ð1 − 2Mr

Σ Þ2 dφ
2

�
; ð44Þ
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ϕ ¼ ð
ffiffiffiffi
Δ

p
sin θÞ1−k; A ¼ A3dφ: ð45Þ

Note that this solution reduces to one given in [25] for the
restricted case given by k ¼ ð2ω − 1Þ=ð2ωþ 3Þ.

IV. A GENERAL AXIALLY SYMMETRIC
SOLUTION: BRANS-DICKE-KINNERSLEY

SOLUTION

A. Brans-Dicke-Kinnersley solution

The general Einstein-Maxwell typeD solution, known in
the literature as the Plebanski-Demianski solution [28], first
presented by Debever [29] is given by the metric [33]

ds2 ¼ ð1 − pqÞ−2
�
Xðdtþ q2dσÞ2 − Yðdt − p2dσÞ2

p2 þ q2

þ ðp2 þ q2Þ
�
dp2

X
þ dq2

Y

��
; ð46Þ

X ¼ ð−g2 þ γ − Λ=6Þ þ 2lp − ϵp2 þ 2mp3

− ðe2 þ γ þ Λ=6Þp4; ð47Þ
Y ¼ ðe2 þ γ − Λ=6Þ − 2mqþ ϵq2 − 2lq3

þ ðg2 − γ þ Λ=6Þq4: ð48Þ
Here m is mass, l is the Newman-Unti-Tamburino (NUT)
parameter, γ and ϵ are related to the angular momentum per
unit mass a, and the acceleration b and e and g are the
electrical and magnetic charges. Now we want to find the
BD version of this solution. Thus, we need to cast the metric
to the form given in (5). To do this, since the method do not
work in the presence of a cosmological constant, we set
Λ ¼ 0 [30]. We also factorize the dt, dσ sector of the metric
and apply the following coordinate transformations
dp ¼ ffiffiffiffi

X
p

dθ, dq ¼ ffiffiffiffi
Y

p
dr, σ ¼ φ, then the metric compo-

nents of GR for this solution in the form (5) becomes

2KE ¼ ln

�
Y − X

ð1 − pqÞ4
�
; AE ¼ q2X þ p2Y

X − Y
;

2UE ¼ ln

�
Y − X

ð1 − pqÞ2ðp2 þ q2Þ
�
; WE ¼

ffiffiffiffiffiffiffi
XY

p

ð1 − pqÞ2 :

ð49Þ
By applying the method given in Theorem 2, and trans-
forming back to the p, q coordinates, the BD version of the
Plebanski-Demianski solution with a vanishing cosmologi-
cal constant is found to be of the form

ds2¼
� ffiffiffiffiffiffiffi

XY
p

ð1−pqÞ2ð1þ 1
k−1Þ

�k−1�Xðdtþq2dσÞ2−Yðdt−p2dσÞ2
p2þq2

þðp2þq2Þ
�
dp2

X
þdq2

Y

�� ffiffiffiffiffiffiffi
XY

p

ð1−pqÞ2
�ð1−kÞ2ðωþ3

2
Þ�
;

ð50Þ

ϕ ¼
� ffiffiffiffiffiffiffi

XY
p

ð1 − pqÞ2
�1−k

: ð51Þ

As to the best of our knowledge, this solution for BD theory
is new. Note that, setting the acceleration parameter to zero
and employing Boyer-Lindquist–type coordinates, one can
recover a BD Kerr-Newman-NUT–type solution. Note also
that, due to Hawking’s theorem [3], these solutions do not
describe asymptotically flat black holes originated from the
gravitational collapse of stars, unless the scalar field is a
constant. However, these solutions may represent the
exterior fields of compact bodies whose interior is charac-
terized by the parameters of this solution. Hence, it is still
important to investigate certain properties of this solution.

B. Kerr-Newman-Taub-NUT solution in BD theory

Here we obtain the BD version of general Kerr-Newman-
Taub-NUT (KNTN) solution using the extended method.
Note that the solution can also be obtained from the
Plebanski-Damianski–type solution discussed above by a
relevant limiting procedure. In GR, this solution has the
metric and Maxwell field as follows:

ds2 ¼ −
�
Δ − a2sin2θ

Σ

�
ðdtþAdϕÞ2

þ Δsin2θ
Σ

�ðr2 þ a2 þ n2 − abÞ2
Δ − a2sin2θ

dϕ2

�

þ Σ
�
dr2

Δ
þ dθ2

�
; ð52Þ

AE ¼ −
qr
Σ
ðdt − bdϕÞ; ð53Þ

where the metric functions are given by

Δ ¼ r2 − 2mrþ a2 − n2 þ q2;

Σ ¼ r2 þ ðnþ a cos θÞ2;

A ¼ aðr2 þ a2 þ n2Þsin2θ − bΔ
Δ − a2sin2θ

;

b ¼ asin2θ − 2n cos θ: ð54Þ

By transforming the radial coordinate as r ¼ eR þmþ
ðm2 − a2 þ n2 − q2Þ=4e−R and using the transformation
given in [35], the ðr; θÞ sector of the metric becomes
dr2=Δþ dθ2 ¼ dR2 þ dθ2 such that it resembles the form
of the metric (5) with the identification R ¼ r, θ ¼ z. Then,
one can apply the above theorem and find the correspond-
ing solutions in BD theory easily in these coordinates.
Transforming back to the original coordinates, the KNTN
solution in BD theory can be expressed in Boyer-
Lindquist–type coordinates as follows:
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ds2 ¼ ð
ffiffiffiffi
Δ

p
sin θÞk−1

�
−
�
Δ − a2sin2θ

Σ

�
ðdtþAdϕÞ2

þ Δsin2θ
Σ

�ðr2 þ a2 þ n2 − abÞ2
Δ − a2sin2θ

dϕ2

�

þ ð
ffiffiffiffi
Δ

p
sin θÞð1−kÞ2ðωþ3

2
ÞΣ
�
dr2

Δ
þ dθ2

��
; ð55Þ

A ¼ AE: ð56Þ

This solution is also presented in [8] by using a sigma-
model analysis having a different constant parameter α
where the relations of this parameter and the parameter k
are given by α ¼ ð1 − kÞð2ωþ 3Þ=4. The Ricci scalar of
this solution is given by

R ¼ ðk − 1Þ2ωΔcos2θ þ ðM − rÞ2sin2θ
Σ

× ð
ffiffiffiffi
Δ

p
sin θÞk−3−1

2
ðk−1Þ½1−2ωþkð2ωþ3Þ�; ð57Þ

which is helpful to better understand spacetime singularity
structure and it vanishes for the limit k → 1. Clearly,
there is a ringlike singularity at the location described
by Σ ¼ 0. The last term in the parentheses vanishes if its
exponent becomes zero. Note that the parameter range of
this spacetime is investigated [8] for the existence of a black
hole–type solution with a regular horizon by consider-
ing some regularity and existence conditions and concluded
that for ω < −3=2, α� ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4j2ωþ 3jp Þ=4
spacetime may represent a black hole with a regular
horizon. In our notation the latter condition is
k� ¼ 1 − ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4j2ωþ 3jp Þ=ð2ωþ 3Þ. Note that the
symmetry axis is non-null for α− but null for αþ. In these
black hole–type solutions, there is a caveat: the scalar field
does not satisfy the weak energy condition. Hence, these
black holes do not satisfy Hawking’s criteria [3]. Moreover,
this black hole has a vanishing surface gravity and they are
ergo cold since they have zero Hawking temperature [7,8].

C. Circular geodesics of the BD-KNTN spacetime

Most of the previous studies of axially symmetric
spacetimes in BD theory are focused on the obtaining
the solutions and analyzing the solutions for whether these
solutions represent black holes. Another property of these
solutions with possible astrophysical importance is the
motion of the test particles. There are few works on this
issue [36]. In this paper we have also investigated the
circular geodesics of BD-KNTN solution. However, since
the calculations and equations are rather complicated and
lengthy, we present them in the Appendix. Here below we
summarize our general results.
We have first calculated the general geodesics equations

in the case of equatorial motion. Then we have considered
null and timelike geodesics. For photons, we have reduced

general radial geodesics equations to integrals depending
on the radial coordinate in the special case L ¼ aEwhere E
is the energy and L is the angular momentum of the test
particles or photons. For general case, we have been able to
obtain the equation of the photon sphere and realized that it
is the same as the corresponding GR case. For timelike
particles, we have obtained an effective potential equation
for radial motion. We have analyzed this equation for the
existence of the innermost stable circular orbit (ISCO).
After long and complicated calculations, we are able to
obtain the equation determining ISCO. This equation has
been analyzed for the special cases such as the extremal
case and the BD-Kerr case as well. These equations agree
with the corresponding limiting cases in GR.

V. MAGNETIZED SOLUTIONS IN
BRANS-DICKE THEORY

Obtaining a magnetized solution from a given seed
solution using Ehlers-Harrison–type transformations has
a long history [37]. Using these transformations one can
generate a magnetized solution from a given Einstein-
Maxwell solution. For example for a given axisymmetric
solution with property giφ ¼ 0, the following transforma-
tions [38] bring a given solution of EMS solutions (i.e., the
BD-Maxwell vacuum solutions in the Einstein frame) into
the magnetized one:

g0ij ¼ Λ2gij ði; j ≠ φÞ; g0φφ ¼ Λ−2gφφ; α0 ¼ α;

A0
φ ¼ −

2

ΛB

�
1þ 1

2
BAφ

�
þ 2

B
;

Λ ¼
�
1þ 1

2
BAφ

�
2

þ 1

4
B2gφφ:

One can also transform the obtained solutions to the Jordan
frame by using (29) to obtain magnetized BD solutions as
well. This method is used for BD theory [25] in connection
with the previous version of the TNSR method [23,24] to
obtain amagnetized black dihole–type solution. However, if
a magnetized solution is already presented in the Einstein-
Maxwell theory, we can use the extended TNSR method to
obtain the corresponding magnetized solution in BD theory
for Jordan or Einstein frames considering Theorem 2 or 3.
Using the extended TNSR method discussed above, we

can now present some new magnetized BD solutions such
as the magnetized Kerr-Newman–type solution or the
magnetized Bonnor dihole solution.

A. Magnetized Kerr-Newman solution

The magnetized Kerr-Newman solution is first discussed
in [37,39] but since the Harrison transformations for
stationary metrics are more complicated and cumbersome
then the static ones, the full exact solution is first presented
recently by [40]. In their notation, the solution reads
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ds2 ¼ H

�
−fdt2 þ R2

�
dr2

Δ
þ dθ2

��

þ Σsin2θ
HR2

ðdφ −ΩdtÞ2; ð58Þ

AE ¼ Φ0 þ Φ3ðdφ −ΩdtÞ; ð59Þ

where

R2 ¼ r2 þ a2cos2θ; Δ ¼ ðr2 þ a2Þ − 2mrþ q2 þ p2;

f ¼ R2Δ
Σ

; Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ; ð60Þ

and the (very lengthy) expressions of the other metric and
field variables H, Ωð≡ω in their paperÞ, Φ0, Φ3 can be
found in [40].
To use the extended TNSR method, we need to bring the

above metric into (5), and to do this we should regroup the
t, φ sector of the metric and consider the transformation
dr=

ffiffiffiffi
Δ

p ¼ dR, then we can read off the metric functions of
the GR solution as

e2UE ¼ Hf −
ΣΩ2sin2θ
HR2

; e2KE ¼ HR2e2UE;

AE ¼ ΩΣsin2θ
fH2R2 − ΣΩ2sin2θ

; WE ¼
ffiffiffiffi
Δ

p
sin θ: ð61Þ

Then applying the extended TNSR method, the corre-
sponding magnetized Kerr-Newman–type solution for BD
theory in the Jordan frame can be obtained as

ds2 ¼
� ffiffiffiffiffiffi

fΣ
p

sin θ
R

�
k−1�

H

�
−fdt2

þ R2

� ffiffiffiffiffiffi
fΣ

p
sin θ
R

�ðk−1Þ2ðωþ3
2
Þ�dr2

Δ
þ dθ2

��

þ Σsin2θ
HR2

ðdφ − ΩdtÞ2
�
: ð62Þ

ϕ ¼
� ffiffiffiffiffiffi

fΣ
p

sin θ
R

�
1−k

ð63Þ

Note that the Einstein frame solution can be obtained by
considering only the terms in the curly bracket and
replacing ϕ with ψ as in (31) and (32). The physical
properties of this solution will be treated elsewhere.

B. Magnetized Bonnor dihole solution

Now as a final application of the method discussed in this
paper, we present a two parameter extended version of the
BD solution [25] for Bonnor-type dihole solution [34]
embedded in a Melvin magnetic universe presented in [41].
Starting from Einstein-Maxwell magnetized solution and
applying Theorem 3, we obtain the following solution:

ds2 ¼ ð
ffiffiffiffi
Δ

p
sin θÞk−1

�
Λ2

�
−dt2 þ Σ4ð ffiffiffiffi

Δ
p

sin θÞð1−kÞ2ðωþ3=2Þ

½Δþ ðM2 þ a2Þsin2θ�3
�
dr2

Δ
þ dθ2

��
þ Δsin2θ

Λ2
dφ2

�
; ð64Þ

ϕ ¼ ð
ffiffiffiffi
Δ

p
sin θÞ1−k; ð65Þ

A ¼ A3dφ ¼ −
2Mraþ B=2½ðr2 − a2Þ2 þ Δa2sin2θ�

ΛΣ
sin2θdφ ð66Þ

Λ ¼ Δþ a2sin2θ þ 2BMrasin2θ þ B2=4sin2θ½ðr2 − a2Þ2 þ Δa2sin2θ�
Σ

: ð67Þ

VI. GENERAL RELATIVISTIC LIMIT

The GR limit of the solutions of the BD theory is not as
trivial as it sounds. It was often claimed that as ω↦∞ BD
solutions reduce to the corresponding GR solutions.
However, several counterexamples of this claim are present
in the literature. For example, for the special case of
vanishing trace of the energy-momentum tensor, T, several
papers [26,42–46] are showed that this is not true in
general. This fact is related in [44] with the conformal
invariance of BD theory for vanishing T. This may be also
due to fact that the scalar field equation becomes sourceless
and the integration constant of this scalar equation becomes

independent of ω since the remaining field equations
cannot fix this constant in terms of ω. A perfect example
is a recent paper [46], in which BD-Maxwell solutions for
higher dimensional static cylindrically symmetric space-
time were obtained. In these solutions, when the spacetime
dimensions are greater than 4, the trace T does not vanish
and this yields an equation relating BD parameter ω and the
extra integration constant of the solution and solving this
constant for ω, one recovers the corresponding GR sol-
utions [47] in the ω↦∞ limit. However, in four dimen-
sions, the field equations do not yield such an equation and
for this case [26] the GR limit is achieved not by ω↦∞ but
a specific value of this integration constant where the BD
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scalar becomes a constant. Even for a nonvanishing T,
some counterexamples were found [48] where the scalar
field does not go to a constant sufficiently fast and therefore
the GR limit is not recovered as ω↦∞ for these solutions.
For the cases where this limit does not arise as a result

of field equations, some physical arguments can be put
forward to fix this extra constant in terms of ω. However,
these arguments are not in general the result of encompass-
ing physical requirements but the results of some special
considerations. For example in [45] where some spherically
symmetric BD solutions were discussed, the extra constant
is fixed by demanding the matching of the solution to an
internal source in the weak field approximation. Although
the GR limit is obtained as ω↦∞ for this special case, one
cannot ensure that this procedure also works for the full
theory, especially in the presence of a source having a
strong field. Thus, in order to investigate the GR limit of
BD solutions, not only mathematical results but also
additional physical arguments might be required, as in [45].
In order to avoid all these complexities in this paper,

when we have discussed the GR limit, we have only
considered the case where the scalar field becomes a
constant. As is clear from Eq. (26a), as k → 1, the
stationary axially symmetric BD(-Maxwell) vacuum sol-
utions reduce to GR for any finite ω irrespective of whether
it is large or small, since ϕ becomes a constant. Note that,
similar to the case of generic finite values of ω where the
BD theory is equivalent to GR with a minimally coupled
scalar field, modulo potential singularities in transforma-
tion between frames, when ω↦∞, it is known that the
theory reduces to GR plus a minimally coupled (residual)
scalar field [49] even if limω↦∞ϕ ¼ ϕ0 ¼ constant. Hence,
we need some consistency requirements on the k, since this
requires limω↦∞k ¼ 1. For example, the regularity of the
spacetime can be ensured by choosing k such that

limω↦∞k ≈ 1 −
ffiffiffiffiffiffiffiffiffi
β

2ωþ3

q
with β an arbitrary constant. In

the limit ω↦∞, for this value of k, the metric function K
does not approach to its corresponding GR value but
becomes K ¼ KE þ β

4
lnWE. Hence, as ω↦∞, BD solu-

tions discussed in this paper do not approach their
corresponding GR solutions. Note also that although for
k↦1 the GR limit is obtained since the BD scalar becomes
a constant, the additional scalar degrees of freedom is
always present at the level of the fluctuations, even for the
constant background solutions.

VII. CONCLUSIONS

In this paper, we have investigated stationary axially
symmetric vacuum solutions of the Brans-Dicke-Maxwell
theory in both Jordan and Einstein frames. We first show
that, employing a particular form of the standard metric
simplifies the procedure of obtaining the Ernst equation
from the BD field equations. By investigating the Ernst
equation and also the remaining field equations, we are able

to obtain a two parameter extension of a particular solution
generating technique for BD theory. In order to show how
this method works, we have constructed several known
solutions and also some new solutions for BD theory, such
as a Plebansky-Demiansky–type solution with a vanishing
cosmological constant or magnetized Kerr-Newman–type
solutions. We have also discussed the GR limit of these
solutions in some detail.
As a further physical application, we have also inves-

tigated the geodesics equations for Kerr-Newman-NUT–
type solution of BD theory in the Appendix, where we have
focused on the circular null and timelike geodesics of this
solution and successfully obtained the ISCO for this
spacetime. A question arises whether this known solution
generating technique generalized in this paper to two
parameters can be applicable to other theories such as f
(R)-type theories or EMS-type theories. Specifically, EMS-
type theories are quite interesting since a regular black hole–
type solution with scalar hair [50–52] exists and interest has
recently been focused on the possibility of the existence of
stationary-type hairy black hole solutions [15,53–57].
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APPENDIX: CIRCULAR GEODESICS OF THE
BD-KNTN SPACETIME

In order to determine the geodesic equations of
BD-KNTN solution given in Sec. IV B, we first define
the Lagrangian of the system as

L ¼ 1

2
ðgtt_t2 þ gtφ_t _φþgφφ _φ2 þ grr _r2 þ gθθ _θ

2Þ; ðA1Þ

where here the overdot denotes the differentiation with
respect to the proper time τ for timelike case and an affine
parameter for the null case. The symmetries of this
Lagrangian enable us to determine the following first
integrals of the motion

gtt_tþ gφt _φ ¼ −E; gtφ_tþ gφφ _φ ¼ L; ðA2Þ

where the constants E and L are related with energy and
angular momentum of the particle. Furthermore, using the
metric itself, we have

ϵ ¼ gtt_t2 þ 2gtφ_t _φþgφφ _φ2 þ grr _r2 þ gθθ _θ
2; ðA3Þ

where ϵ ¼ 1, 0, −1 for spacelike, lightlike and timelike
geodesics, respectively. From (A2) we obtain
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_t ¼ −e2ULB − e2UEB2 þ e−2UEW2

W2
; ðA4aÞ

_φ ¼ e2UðLþ EBÞ
W2

: ðA4bÞ

To determine the geodesics in the equatorial plane, we set
θ ¼ π

2
and _θ ¼ 0, and also use (52), then the above

equations become

_φ ¼ ðΔ − a2ÞðL − aEÞ þ aEðr2 þ n2Þ
ðr2 þ n2ÞΔðkþ1Þ=2 ; ðA5aÞ

_t ¼ 1

ðr2 þ n2ÞΔðkþ1Þ=2 × ½aðΔ − a2ÞðL − aEÞ

þ ðr2 þ n2ÞðEðr2 þ n2Þ − aðL − 2EaÞÞ�: ðA5bÞ

Using these expressions in (A3),weobtain the radial equation
determining the geodesics of BD-KNTN spacetime as

_r2 ¼ Δe−2K½−e4UðLþ EBÞ2 þ E2W2 þ ϵW2e2U�
W2

¼ 1

ðr2 þ n2Þ2Δ1−k
4
½2ω−1−kð2ωþ3Þ� fða2 − ΔÞðL − aEÞ2

þ ðr2 þ n2Þ½E2ðr2 þ n2Þ
þ 2aEðaE − LÞ þ ϵΔðkþ1Þ=2�g: ðA6Þ

These last three equations are the general geodesics equations
for equatorial motion. Now, let us consider null and timelike
motion in some detail. These equations reduce to correspond-
ing GR ones [58,59] for k↦1.

1. Lightlike geodesics (ϵ ¼ 0)

Null geodesics are obtained by setting the parameter
ϵ ¼ 0, then the radial equation becomes

_r2 ¼ 1

ðr2 þ n2Þ2Δ1−k
4
½2ω−1−kð2ωþ3Þ� fða2 − ΔÞðL − aEÞ2

þ ðr2 þ n2Þ½E2ðr2 þ n2Þ þ 2aEðaE − LÞ�g: ðA7Þ

In order to distinguish the geodesics with different impact
parameter D ¼ L=E, we consider the following cases:
(a) The special case L ¼ aE:

For this case the impact parameter becomes D ¼ a,
which plays an important role to study the radial
geodesics. Equations (A5a), (A5b) and (A6) become

_φ ¼ aE

Δðkþ1Þ=2 ; ðA8aÞ

_t ¼ ða2 þ r2 þ n2ÞE
Δðkþ1Þ=2 ; ðA8bÞ

_r ¼ �EΔk−1
8
ð2ω−1−kð2ωþ3ÞÞ: ðA8cÞ

Here the positive sign represents outgoing photons whereas
the negative sign represents ingoing photons. Using these
equations we find that

�φ ¼ a
Z

Δ1
8
½ðk−1Þ2ð2ωþ3Þ−8�dr; ðA9aÞ

�t ¼
Z

ða2 þ r2 þ n2ÞΔ1
8
½ðk−1Þ2ð2ωþ3Þ−8�dr; ðA9bÞ

�Eτ ¼
Z

Δ1−k
8
½2ω−1−kð2ωþ3Þ�dr: ðA9cÞ

These equations are more complicated than similar equa-
tions for GR case [58,59]. For example, unlike GR case, the
radial coordinate is not changing uniformly in BD theory.
(b) The general case D ¼ L=E:

Using Eq. (A7), we obtain the equations corre-
sponding the radius rc of the circular photon orbit at
E ¼ Ec and L ¼ Lc as

ðr2c þ n2Þ_r2 ¼ 1

Δk−1
4
½2ω−1−kð2ωþ3Þ�

×

�
ðr2c þ n2ÞE2

c þ
ða2 − ΔÞðaEc − LcÞ2

ðr2c þ n2Þ

− 2aEcðLc − aEcÞ
�
¼ 0: ðA10Þ

For the regions where Δ ≠ 0, the derivative of the
above equation becomes

Δ1−k
4
½2ω−1−kð2ωþ3Þ�

×

�
rcE2 −

ðLc − aEcÞ2
r2c þ n2

½ðrc −mÞðr2c þ n2Þ

þ rcða2 − ΔÞ�
�

¼ 0. ðA11Þ

Substituting Dc ¼ Lc
Ec

into the above equations we
obtain

ðr2c þ n2Þ þ ða2 − ΔÞða −DcÞ2
ðr2c þ n2Þ − 2aðDc − aÞ ¼ 0;

ðA12Þ

rc −
ðDc − aÞ2
ðr2c þ n2Þ2

× ½ðrc −mÞðr2c þ n2Þ þ rcða2 − ΔÞ� ¼ 0: ðA13Þ

Note that these equations are independent of the BD
parameters k and ω, meaning that the BD scalar field
does not affect the geodesics of the photons. The
impact parameter can be obtained from Eq. (A13) as
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Dc ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rcðr2cþn2Þ2
ðrc−mÞðr2cþn2Þþ rcða2−ΔÞ

s
: ðA14Þ

Inserting this equation into (A12) yields the equation of
photon sphere [60,61] for BD-KNTN spacetime, which
turn out to be the same with the corresponding GR
solution [58,59].

2. Timelike geodesics (ϵ ¼ −1)
For timelike geodesics, Eqs. (A5a) and (A5b) remain

unchanged, but Eq. (A6) becomes

ðr2 þ n2Þ_r2 ¼ 1

Δk−1
4
ð2ω−1−kð2ωþ3ÞÞ

×

�
ðr2 þ n2ÞE2 þ ða2 − ΔÞðaE − LÞ2

ðr2 þ n2Þ

− 2aEðL − aEÞ − Δkþ1
2

�
¼ 0. ðA15Þ

Now, as in the null geodesics, let us consider the special
case L ¼ aE and the general case separately.
(a) Special case, L ¼ aE:

For this case, the above equation becomes

Δk−1
4
ð2ω−1−kð2ωþ3ÞÞðr2 þ n2Þ_r2
¼ ðn2 þ r2ÞE2 − Δðkþ1Þ=2; ðA16Þ

while Eqs. (A5a) and (A5b) become the same as for
the null geodesics (A8a) and (A8b).

(b) The general case (L − aE ¼ x):
From Eq. (A10) with employing a reciprocal radius
function (r ¼ 1

u) and substituting L − aE ¼ x we find

Δk−1
4
½2ω−1−kð2ωþ3Þ�ð1þu2n2Þ2u−4 _u2

¼E2ð1þn2u2Þ2−2aExu2ð1þn2u2Þ
−u2ð1þn2u2ÞΔðkþ1Þ=2þða2−ΔÞu4x2 ¼ 0; ðA17Þ

where Δ ¼ 1
u2 −

2m
u þ a2 þQ2 − n2 for KNTN solution.

The derivative of the above equation becomes

2n2u2E2ð1þ n2u2Þ − 2au2xEð1þ 2n2u2Þ
− u2Δðkþ1Þ=2ð1þ 2n2u2Þ þ 2ða2 − ΔÞu4x2;

− ðmu − 1Þ
�
kþ 1

2
ð1þ n2u2ÞΔðk−1Þ=2 þ u2x2

�
¼ 0.

ðA18Þ

Equations (A17) and (A18) can be combined to give

ð1þ n2u2Þ2E2 ¼ u4x2ða2 − ΔÞ − ðmu − 1Þð1þ n2u2Þ

×

�
kþ 1

2
Δðkþ1Þ=2ð1þ n2u2Þ − x2u2

�
;

ðA19Þ

and consequently

2aEu2xð1þn2u2Þ¼ 2ða2−ΔÞu4x2−u2ð1þn2u2ÞΔð1þkÞ=2

− ðmu−1Þð1þn2u2Þ

×

�
kþ1

2
ð1þn2u2ÞΔðk−1Þ=2þu2x2

�
:

ðA20Þ

By eliminating E between these equations, we obtain the
following quadratic equation for u2x2:

Au4x4 þ Bu2x2 þ C ¼ 0; ðA21Þ

where we have defined

A ¼ 4Δf½2Δu2 þ ðmu − 1Þð1þ n2u2Þ�2 − 4Δa2u4g;
ðA22Þ

B ¼ 4Δðkþ1Þ=2ð1þ u2n2Þf−4Δa2u4
þ ½2Δu2 þ ðmu − 1Þð1þ n2u2Þ�2
þ kðmu − 1Þð1þ n2u2Þ½ðmu − 1Þð1þ n2u2Þ
þ 2Δu2�g; ðA23Þ

C ¼ Δkð1þ n2u2Þ2½2Δu2 þ ðkþ 1Þðmu − 1Þð1þ n2u2Þ�2:
ðA24Þ

The discriminant D ¼ B2 − 4AC of this equation is

D ¼ 64Δkþ2u4a2ð1þ n2u2Þ2f4a2Δu4
þ k2ðmu − 1Þ2ð1þ n2u2Þ2
− ½2Δu2 þ ðmu − 1Þð1þ n2u2Þ�2g: ðA25Þ

The solution of Eq. (A21) is

x2u2 ¼ −
Δðk−1Þ=2ð1þ n2u2Þ

2

×

�
1þ k0ðZþ þ Z−Þ

2ZþZ−
� 2

ffiffiffiffi
Δ

p
au2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 − ZþZ−

p
ZþZ−

�
;

ðA26Þ

where
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k0 ¼ kðmu − 1Þð1þ n2u2Þ;
ZþZ− ¼ ð2Δu2 þ ðmu − 1Þð1þ n2u2ÞÞ2 − 4Δa2u4;

Z� ¼ 2Δu2 þ ðmu − 1Þð1þ n2u2Þ � 2
ffiffiffiffi
Δ

p
au2;

and from the above equation we conclude that

x ¼ �
�
−
Δðk−1Þ=2ð1þ n2u2Þ

2u2

×

�
1þ k0ðZþ þ Z−Þ

2ZþZ−
� 2

ffiffiffiffi
Δ

p
au2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 − ZþZ−

p
ZþZ−

��
1=2

:

ðA27Þ
When we put the values of x into Eq. (A20), we obtain the
energy of circular orbit

E ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ n2u2Þ

p n
−Δk−1

2 ðkþ 1Þðmu − 1Þð1þ n2u2Þ

þ 1

ZþZ−
× ½ðmu − 1Þð1þ n2u2Þ − u2ða2 − ΔÞ�

×
h
−ZþZ− þ k0ðZþ þ Z−Þ=2

� 2au2
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 − ZþZ−

q io
1=2

: ðA28Þ
In order to determine the ISCO of this spacetime, we

need the explicit form of the effective potential. From
Eq. (A15) we obtain

1

2
_r2 ¼ E2 − 1

2Δk−1
4
½2ω−1−kð2ωþ3Þ� þ Veff ; ðA29Þ

where

Veff ¼
1

2Δk−1
4
½2ω−1−kð2ωþ3Þ�

�
1þ ða2 − ΔÞðaE − LÞ2

ðr2 þ n2Þ2

−
2aEðL − aEÞ þ Δðkþ1Þ=2

ðr2 þ n2Þ
�
: ðA30Þ

When the radial derivative of the effective potential
vanishes, the particle stays in the circular orbit. For the
ISCO equation, the second radial derivative of Veff must
also vanish, i.e., ∂2Veff∂r2 ¼ 0. We consider the region outside
the “horizon” where Δ ≠ 0. Then we have

− Δk=2ðn2 þ r2Þf−2Δ2ðn2 − 3r2Þ þ Δðkþ 1Þ
× ½n2 þ ð4m − 3rÞr�ðn2 þ r2Þ þ ðk2 − 1Þðm − rÞ2
× ðn2 þ r2Þ2g þ 4aExΔ3=2ðn2 þ r2Þðn2 − 3r2Þ
− 2x2Δ3=2½2a2ðn2 − 5r2Þ − 2Δðn2 − 5r2Þ
þ ðn2 þ r2Þðn2 þ 8mr − 7r2Þ� ¼ 0: ðA31Þ

When we set Ex and x2 using the expression above, we
obtain the ISCO equation

ðkþ 1Þðn2 þ r2Þ2½−Δm − rðk − 1Þðm − rÞ2� þ Δ½−4r3ða2 − ΔÞ − 4r5 − 4n2r3 þmðn2 þ 5r2Þðn2 þ r2Þ�
× f½2Δrþ ðm − rÞðn2 þ r2Þ�2 − 4Δr2a2 þ kðm − rÞðn2 þ r2Þ½2Δrþ ðm − rÞðn2 þ r2Þ�
� 2ar

ffiffiffiffi
Δ

p
½4a2r2Δ − ½2Δrþ ðm − rÞðr2 þ n2Þ�2 þ k2ðm − rÞ2ðn2 þ r2Þ2�1=2g ¼ 0: ðA32Þ

Having found the general expression, now let us consider
a few special cases. First, we consider the radius of ISCO
for the “extremal BD-KNTN spacetime,” where the param-
eters are related by

a2 ¼ m2 þ n2 − q2; ðA33Þ
in which the horizons of BD-KNTN spacetime

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 − q2 − a2

q
ðA34Þ

coincides with the extremal Kerr radius r ¼ m. Defining
the reduced quantities

rm ¼ r
m
; nm ¼ n

m
;

qm ¼ q
m
; am ¼ a

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 − q2

q
;

Δ ¼ m2ð1 − rmÞ2; ðA35Þ

we can express the extremal ISCO equation for BD-KNTN
spacetime as follows:

− ðkþ 1Þðrm − 1Þ2½1þ ðk − 1Þrm�ðn2m þ r2mÞ2
þm6ðrm − 1Þ4½n4m þ 2n2mr2mð3 − 4rmÞ
þ r3mð4q2m − 3rmÞ�ððkþ 1Þn4m þ 2n2mrmð2þ k − 3rmÞ
þ rmfrm½4q2m þ rmð−4þ 2kþ rm − krmÞ�g

� 2rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2m − q2m

q
½ðk2 − 1Þn4m þ 2n2mrm½−2

þ rmðk2 þ 3Þ� þ r2mf−4q2m þ rm½4þ rmðk2 − 1Þ�g�1=2Þ
¼ 0: ðA36Þ

The solution of the above equation is rm ¼ 1 or r ¼ m
which coincides with the ISCO of extremal Kerr spacetime.
For this special case, the ISCO radius of the BD-KNTN
solution does not depend on the electrical and NUT charges
or the Brans-Dicke scalar field.
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For another special case, we can calculate the ISCO equation for the BD Kerr solution by setting n ¼ 0 and q ¼ 0. Then
we have

ðkþ 1Þ½−Δm − rðk − 1Þðm − rÞ2� þ Δrð−4a2 þ 4Δ − 4r2 þ 5mrÞ × ½ð2Δþ rðm − rÞÞ2 − 4a2Δ

þ krðm − rÞ½2Δ − rðm − rÞ� � 2a
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2Δ − ð2Δþ rðm − rÞÞ2 þ k2r2ðm − rÞ2

q
� ¼ 0; ðA37Þ

where here Δ ¼ r2 − 2mrþ a2. Our results are in accordance with corresponding solutions in GR [58–60].
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