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Thermodynamics of topological black holes in Brans-Dicke gravity
with a power-law Maxwell field
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In this paper, we present a new class of higher-dimensional exact topological black hole solutions of the
Brans-Dicke theory in the presence of a power-law Maxwell field as the matter source. For this aim, we
introduce a conformal transformation which transforms the Einstein-dilaton-power-law Maxwell gravity
Lagrangian to the Brans-Dicke-power-law Maxwell theory one. Then, by using this conformal trans-
formation, we obtain the desired solutions. Next, we study the properties of the solutions and conditions
under which we have black holes. Interestingly enough, we show that there is a cosmological horizon in the
presence of a negative cosmological constant. Finally, we calculate the temperature and charge and then by
calculating the Euclidean action, we obtain the mass, the entropy and the electromagnetic potential energy.
We find that the entropy does not respect the area law, and also the conserved and thermodynamic
quantities are invariant under conformal transformation. Using these thermodynamic and conserved

quantities, we show that the first law of black hole thermodynamics is satisfied on the horizon.
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I. INTRODUCTION

During the years between 1905 and 1915, many attempts
were done to enter gravity into special relativity. Einstein,
himself, and Nordstrom were pioneers in this issue.
Nordstrom presented a scalar theory of gravitation [1]
while Einstein proposed a tensorial theory of gravitation
[2]. Eventually, the Einstein tensorial theory of gravitation,
known today as general relativity (GR), was more suc-
cessful to pass observational tests and became the standard
theory of gravitation [3]. However, some time later, GR
showed some failures. The most important failure was the
inability to describe accelerating expansion of the Universe
[4]. In addition to latter failure, the fact that Mach’s
principle is not respected by GR led physicists to modify
Einstein theory of gravity. One of the most impressive and
physically viable modifications is Brans-Dicke (BD) theory
adding a scalar degree of freedom to previous 10 degrees of
freedom coming from metric tensor g, in four dimensions
[5]. This theory was motivated from one side by Mach’s
principle encoded by varying gravitational constant in it
and from other side by Dirac’s large number hypothesis.
These two motivations are summed up in this theory by
considering a scalar field, ®, which is inversely propor-
tional to the gravitational constant G and nonminimally
coupled to gravitation [6]. Another important aspect of BD
theory is its equivalence to several other modifications
of GR in particular f(R) theories that causes better
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understating of these theories [7]. Also, BD theory may
be considered as a special case of more general scalar-
tensor gravity which has been considered in [8].

The first solutions of BD theory have been published by
Brans himself. These solutions were in four dimensions and
classified in four classes [9]. Among these four classes just
two of them are really independent [10] while just one of
these two independent classes are valid for all values of .
Also, linearly charged solutions of BD gravity have been
presented in [11]. These latter solutions are just allowed in
the presence of a trivial (constant) scalar field in four
dimensions. This is due to the conformal invariance of
linear Maxwell Lagrangian in four dimensions. Since linear
Maxwell Lagrangian is no longer conformally invariant
in higher dimensions, the linear Maxwell field can play
the role of source of scalar field for higher-dimensional
BD gravity [11]. The highly nonlinear nature of BD
theory makes it non-straightforward in many cases to find
the solutions by solving BD field equations directly.
Fortunately, there is a way to overcome this problem. As
it has been shown in many cases, the solutions of BD theory
can be found by applying a conformal transformation on
known solutions of other theories such as dilaton theory
[12]. For instance, linearly charged rotating black branes
have been obtained in BD theory by applying a conformal
transformation from the known solutions of dilaton gravity
[13]. Also, by using a similar method, asymptotic anti— de
Sitter (AdS) black holes and topological black holes with
nonflat and non-AdS asymptotic behaviors have been
investigated in Refs. [14] and [15], respectively. The fact
that one can transform the Lagrangian of BD gravity to
the Lagrangian of dilaton gravity by a conformal

© 2015 American Physical Society
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transformation has been also used for more general scalar-
tensor gravities in [8] to investigate the different aspects of
scalar-tensor gravities in the presence of nonlinear electro-
magnetic field [8].

The nonlinear electrodynamics was first introduced by
Born and Infeld in order to obtain the finite energy density
for an electron [16]. In recent years other types of Born-
Infeld-like nonlinear electrodynamics have been proposed
[17,18]. The studies were also extended to dilaton gravity
[19]. However, the energy-momentum tensors of Born-
Infeld theory or the Born-Infeld-like theories are not
traceless even in four dimensions. A nonlinear electrody-
namic theory with a traceless energy-momentum tensor in
higher dimensions has been introduced in [20]. The power-
law Maxwell matter source is conformal invariant in higher
dimensions for special choice of power. To be more clear,
the Lagrangian of power-law Maxwell field (—F,, F*)? is
invariant under conformal transformation g,, — ngﬂy,
A, = A, provided p = (n+ 1)/4. Despite of the men-
tioned special property for p = (n + 1)/4, many solutions
have been studied from different aspects with nonfixed p
[21]. In this paper we extend the study of [15] to nonlinear
power-law Maxwell field electrodynamics and try to solve
field equations of BD theory by using known solutions of
dilaton gravity that we have recently presented in [22].

The layout of the paper is as follows. In the next section,
we introduce the basic field equations of BD theory with
power-law Maxwell Lagrangian. We also introduce a
conformal transformation which transforms this theory to
Einstein-dilaton gravity. In Sec. III, we obtain a class of
topological black hole solution of this theory and inves-
tigate its properties. In Sec. IV, we investigate thermody-
namics of the solutions and check the validity of the first
law of thermodynamics. We finish our paper with closing
remarks in the last section.

II. FIELD EQUATIONS AND CONFORMAL
TRANSFORMATION

The action of Brans-Dicke theory coupled to a power-
law Maxwell (BDPM) field can be written as

SBD — _E dn+1x\/_
x <<I>R—$(V<I>)2 — V(D) + (—F)”), (1)

where R is the Ricci scalar, o is the coupling constant, ¢
denotes the BD scalar field, p is a constant determining the
nonlinearity of the electromagnetic field and V(&) is a self-
interacting potential for ®. In Eq. (1), F = F,, F* where
F,, = 0,4, is the electromagnetic tensor field and A, is
the vector potential. Varying the action (1) with respect to
the metric g, the scalar field ® and the electromagnetic

field A,,, one can obtain the field equations as
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G (v PV, 0~ 2 gW(VqD) )

w = q)

1
+ > (V,V,® - g, V)

- Vg ) G — 2(_?,,_ G Fg,, — pF,F, ) (2)
_(n=4p +1)(=F)?
VO = -+
[(n = 1) _ (0 4 1)V(D)] )
2[(n = @ + n)] ’
V[(=F)P F] =0, (4)

As it is clear from the right-hand side of (2), there are
second order derivatives of the scalar field. This fact makes
the problem of solving the field equations (2)—(4) difficult.
Fortunately, this difficulty can be circumvented by using
the following conformal transformation:

~ -1
§oVnton-1, &
2
éﬂb = CI)Z/(n_l)gﬂw
F;w = ~/w’ (5)
where @ is the dilaton field and
V(D) = o=t/ (=D y (). (6)

Indeed, the transformation (5) transforms the action (1) to
the action of Einstein-dilaton gravity coupled to power-law
Maxwell field [22]

SED—_F Ay /— { Y ~)2

V(D) + (_€—4a<f>/(n—1)i7)17}’ (7)

where a= (n—4p+1)/2py\/n+w(n—1). One may
note that a is a constant which determines the strength
of coupling of the scalar and electromagnetic field and is
equal to zero for p = (n+1)/4. So, we assume that
p # (n—1)/4. The field equations corresponding to action
(7) are

- (V(d
R/,w:g/w{ ( )+

n—1

Cp=1),  _4é/m1z
e (—e~dad/ (=D FyP

4 ~ ~ ~ ~ ~ ~
—|— m&ll@ayq) + 2p€_4ap(l)/(n_l)(—F)p_lF}MFDﬂ,
(8)
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V2 — ”__ldv_@ PR ptap® /- (_F)r = 0, (9)

6/4(6_40,,7&)/(11—1)(_ﬁ')l’—lﬁﬂy) =0. (10)

One should note that the field equation (8) does not contain
second order derivatives of scalar field and, therefore, one
can solve Eqgs. (8) and (9) in a simpler way than the field
equations (2)—(4). In [22], the solution of Einstein-dilaton-
power Maxwell (EDPM) gravity has been presented. We
first review these solutions in the next section.

III. TOPOLOGICAL BLACK HOLE SOLUTIONS
IN BDPM GRAVITY

In order to obtain the topological black hole solutions of
BDPM gravity, we first review the (n + 1)-dimensional
topological black hole solutions of EDPM gravity (7)
presented in [22]. The metric of a general static spacetime
can be written as

;l(—r:)—i— r2R2(r)in_l, (11)

where dQ?_| = h;;(x)dx'dx’ is the metric of an (n — 1)-
dimensional constant curvature hypersurface. The curva-
ture of this hypersurface is equal to (n — 1)(n — 2)k, where
k =0, £1. We have shown in [22] that in order to have
topological black holes with a general k and p, the potential
should be chosen as

d5? = —f(r)di* +

V(D) = 2A,021® 4+ 20,0200 4+ 2020, (12)

where
2 2p(n—1+a?)
=7 &= )
(n—=1)a (n=1)2p—1a
2a k(n—1)(n-2)a?
_ — A =
SELTT ! 20%(a*—1)
2071 2p = 1) (p = 1)a?q??
Ay = ( )25171),) ) . (13)
[y 21

The solutions of EDPM field equations are [22]

 k(n=2)(1+a?)2r m
512[7 2Ab2r(1 + a2)2r2(1—7) 14
+ FLH=1)(1=y)-1 (n=1)(n- a?) (14)
- (n—=1Da (b
d(r) =———"—In( -, 15
=@ 1)

PHYSICAL REVIEW D 92, 104035 (2015)

R = (1) (16)

b(Z()ZJrlflr)v)y

~ q P=

A =——, 17
=T (17)

where
~p 2°p(2p — 1)g*
(1- y)HYb2<n—2)py/(2n—l) ’
OD=ao+(n-1-a*p,
(n—2p+a?)
2p-1)(1+a*)’

b is an arbitrary nonzero positive constant, and
y = a*/(a® + 1). In the above relations m and q are two
constants proportional to the mass and charge of the black
holes, respectively, and A is a free constant which can be
interpreted as cosmological constant, since in the absence
of the dilaton field (@ = 0), we have V(®) = 2A. Thus as
usual, we redefine it as A = —n(n — 1)/21> where [ is a
constant with length dimension.

With the solutions of EDPM gravity in hand, we can
construct (n + 1)-dimensional solutions of BDPM by
applying conformal transformation (5). The line element
of the spacetime can be obtained as

A PR dddy,  (18)
— 4 r rYh;dxidx/
V(r) N

where U(r), V(r), H(r) and ®(r) are

U(r) = (9) ")

ds> = =U(r)dt* +

p
k(n=2)(1+a?)* [r\I*%
(1-a)(a*+n-2) (E)
mbT bTg2r
FTH=D)(1=y)=1 T T4+ (n=1)(1=p)-1
2APA(1 + a?)? [ r\T+20-7)
S (n=1)(n-a) <5> ’

v =(2) s

r

(19)

k(n=2)(1 +a*)? [r\ T+
T (0-ad) (@ +n-2) (E)
mb" bra2r
T D=1 T TR e (1=
2AD%(1 + ?)? [r\-T+2(-7)
S (n=Dn-a?) (;,) ’
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H(r) = (9)7_”2, 21)

r

o= (1) 22)

r

where I' = 4py/(n —4p + 1). The electromagnetic gauge
potential A, and potential of scalar field can also be
obtained as

b(ZPH—n)r
q (2p-1)
At:T, (23)
V(®) = 24,05 1 20,05 1 2AD5, (24)
where
£ _n—4p+1+pat(n+1)
b p(n—1)a’ ’
5_n—4p+1+2pa2 5_p(n—3)+n+1
Po@p-1) T p-1)

It is worth mentioning that for the case of p = 1 and k = 0,
both A, and A, vanish and therefore V(®) = 2, A®? [13].
Also, one may note that as @ — oo (o =y = 0) for the
linear Maxwell theory (p = 1), solutions (19) and (20)
reduce to

m 24>

U(r):v(r):k_m (n—l)(n—Z)rz(”'z)

- —n(nzji 0 r, (25)

which describes an (n 4 1)-dimensional asymptotically (A)
dS topological black hole for positive (negative) cosmo-
logical constant with a flat (k = 0), spherical (k =1) or
hyperbolic (k = —1) horizons (see for example [23-25]).
For p =1, our solutions reproduce the solutions of
Ref. [15].

One should note that there are some constraints on
the values of p and a. We stress on this fact that the
electromagnetic gauge potential A, should vanish at infinity
and, therefore, T > 0 which leads to

1 n+ a?

2P =T

(26)

On the other hand, we assume that the scalar field of BD be
a localized function. That is ® should go to zero as r — o
which implies I" > 0 and therefore

n—+1
p<—y (27)
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One can summarize (26) and (27) to receive

1 n—+1

<p< ,
2P =7y

(28)

which is the allowed range of p. In the above allowed range
of p the charge term of the metric functions U(r) given in
Eq. (19) dominates in the vicinity of r = 0. Consequently,
it is sufficient to check the sign of the power of r in the mass
term in U(r) in order to guarantee that the effects of mass
and charge vanish at infinity in both U(r) and V(r) given
by (19) and (20) [note that according to (28), ' > 0]. One
can easily show that the effects of mass in U(r) disappear at
infinity provided

a2<(n—4p+1)(n—2).

29
n+1 (29)
or equivalently
-4 1 1
o> dpd Dt l) g,
n—1 4p*(n—-1)(n=2)
Hence the allowed ranges of p and « or w are
1 n+1 , (n=4p+1)(n-2)
— 1
2Py * T n+ 1 (31)

or equivalently

1 n+1 n

_n (i=dpD(nt1)

4p*(n—1)(n=2) °
(32)

<p< ,
2P~y

n—1

Before discussing the properties of our solutions, we pause
to consider the stability of the system. In order to have a
stable system, it is necessary for V(®) to have a lower
bound. As it can be seen from Fig. 1, V(®) is bounded from
below for suitable choices of the parameters.

4

FIG. 1 (color online). The self-interacting potential 107! V()
versus & for n=5, p=12, a=06, I=b=1, A=-10
and g = 10.
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A. Properties of the solutions

Now, we are ready to discuss physical properties of the
topological BD black holes in the presence of power-law
Maxwell field. First, we discuss the domain of validity of
our solutions. It is worth mentioning that, as one can see
from Eqgs. (19) and (20), our solutions are ill defined for
the string case where a = 1 [corresponding to the case of
w=[(n—4p +1)> —4np?|/4p*(n —1)], except for the
flat horizon case i.e. k = 0. For other values of a, our
solutions are well defined in the permitted ranges of p and
a. Second, it is easy to show that there is an essential
singularity at r =0 since the Kretschmann scalar R, 1o RHAe
diverges at r = 0. Kretschmann scalar also is finite for
r # 0 and vanishes as r — oo. Third, the charge term in
both V(r) and U(r) is the dominant term in the vicinity of
r = 0 and goes to infinity for the allowed ranges of p and
(%" > 0). Thus, the singularity is timelike as in the case of
Reissner-Nordstrom black holes. That is, there is no
Schwarzschild-like solution and one encounters with the
solutions with two inner and outer horizons, extreme black
holes and naked singularities depending on the values of
the metric parameters such as p, ¢, m, a and k. Fourth, we
investigate the asymptotic behavior of the solutions. In
order to consider the asymptotic behavior of our solutions,
it is enough to investigate the behavior of the metric
function V(r) at infinity. In the case of k = 0, for o <
min[(n—4p+1)/2p,(n—4p+1)(n—2)/(n+1)] [note
that o®> < (n —4p + 1)/2p implies that -['+2(1-y)>0
and > < (n—4p +1)(n—2)/(n+ 1) is (29)], the metric
functions go to infinity as r goes to infinity provided A < 0,
and one has cosmological horizon for A > 0. In the case of
k = *£1, for &® > 1, the first term of V(r) is the dominant
term at infinity. Therefore, the metric functions go to
infinity in the case of k = —1 and one has cosmological
horizon in the case of k=1 provided p < (n+1)/6
(=T +2y > 0). For o> <1 where the fourth term of
V(r) is dominant at infinity, the metric functions go to
infinity for A <0 and the solutions have cosmological
horizon for A > 0 provided @ < min|[(n—4p +1)/2p,
(n—=4p+1)(n-2)/(n+1)].

Finally, we investigate the causal structure of our
solutions. In order to do this, and find out whether the
singularity is naked or not, we should study the zeros of
g = V(r). Although it is difficult to find the roots of
V(r) = 0 analytically, we can gain some insight into the
behavior of it by studying m(r;):

m(r ) _ k(l’l - 2)(1 + a2)2b—2y r(n—3)(1—y)+1
M -a) (@ +n-2) "
g 207 (1+0%) (uriy(1—p)-1

MR TR LA

which comes from this fact that V(r;,) = 0 where r, is the
radius of the horizon. We consider m(r,) in the absence of
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0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 2 (color online). The function m(ry) versus ry, for n = 4,
p=12,a=026,l=b=1, A= -6 and g = 0.6.

the cosmological horizon and with cosmological horizon,
separately. In the absence of cosmological horizon, as r,
goes from zero to infinity, the function m(r;,) starts from
infinity and goes to infinity as one can see in Figs. 2 and 3.
The intersections of the line m = constant with the curve
m(ry,) are inner and outer horizons r_ and r, in these
figures. There is also a minimum in these figures. The value
of the minimum is mg, which is the solution of
V(r)=0=V'(r):

Mext

2(a2 +1) AntD(1=p)-1{ _ 2ALYTI
(2p -1 (n—a?)(n—1)
k((l’l -3 + a2)p + 1)(7’1 — 2) r47_2
p*(1-a?)(a® +n-2) ™

(34)

Thus, our solutions present black holes with inner and outer
horizons located at »_ and r, provided m > mgy, an
extreme black hole if m = m,, and a naked singularity
provided m < mgy (See Figs. 4-7). For solutions with

= x X
()
Lo

1 1.5 2 25 3 3.5

N

FIG. 3 (color online). The function 102m(r;,) versus r, for
n=5p=12,a=06,l=b=1, A=-10 and g = 10.
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m<mext

— — — - m=mext

FIG. 4 (color online).

The function V(r) versus r for k =0,

n=4,p=12a=0261=b=1,A=—-6and r,, = 1.

0.9

0.6

Vir)

0.3

m<mext
— — — - m=mext
m>mext

FIG. 5 (color online).

The function V(r) versus r for k = —1,

n=6p=11a=1181=b=1,A=15and ro = L.

cosmological horizon, the function m(r,) starts from
infinity and goes to minus infinity as r; increases from

zero to infinity. In this case it is better to study the behavior
of Om/dr;, which is given as

0.8 L) ;!
(Y m<mext , 7/
(Y — — — - m=mext /7
[ W e m>mext i
06111 , !
[ K4
[ !
(B
0.4 \\
N i
= v
\
0.2 |
Vo s
Voo [
g 7
\ \ L %
. ~ ~ /
0 - ~
0.9 1 /141 1.2
\, r,
N\, e
S
-0.2

FIG. 6 (color online).

The function V(r) versus r for k =1,

n=5p=12,a=063,l=b=1,A=-10and r,, = 1.

FIG. 8 (color online).

T ;7
[ m<mext , /
1 — — — - m=mext /
061 v\ T 7
(N 7
(A /
[
04 1)
!
-~ \
o) i
-~ \
0.2 Voo [
(Y /’ 7
oo s
\ . . /
0 A‘ - //
0.9 1 11 12 13
9 r,
. y
. P
-0.2 "~
FIG. 7 (color online). The function V(r) versus r for k = —1,
n=5 p=12, a=063, [=1, b=15 A=-10 and

Fext = 1.

om  k(o® +1)(n=2) n=3)(1-7)

o,
Yo

(1 _a2)b2y h

T+
Ty

2A(a* + 1)b% L )(1=p)=2

(l’l— 1) h (35)

As it is clear from Eq. (35), Om/0r;, has no zero for
k/(1 —a?) <0and A > 0 and the function m(r;,) starts at
infinity and goes to minus infinity without any minimum or
maximum. For this case our solution presents a naked
singularity with cosmological horizon as Fig. 8 shows.

When Om/0r;, has zeros,

the function m(r,) starts at

infinity and goes to minus infinity with a minimum and a
maximum as one can see in Fig. 9. In this case we have
black holes with three inner, outer and cosmological
horizons provided m < m < m; an extreme black hole
with cosmological horizon if m., = m < m,; and a naked
singularity with cosmological horizon for the cases m <
Mgy and m > m;, as one may see in Fig. 10. As it is clear

10
-! \ k=-1and 0=0.5
i — — — - k=0ando=1.2
O k=1and 0=1.2
5p 4!
[
[IEAY
[
0 T
05 1 15
= H \ r
Nl . N
=~ 5 i S
\ S~
L Tt T
\A
-10 \
\A
\A
\4
- N
15 .
-20
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p=11,1=b=1,A=15¢g=15and m =0.5.
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T
1
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I
1
I
I
1
I
I
I
1

-5

FIG. 9 (color online). The function m(r,) versus r;, for k = 1,
n=6p=11,a=118,1=1,b=14, A =-15.

3 N / m<mext
L 7 — — — = m=mext<mcrit
| Vs N BT mext<m<mcrit
\ / ——————— m=mcrit

A \ / — — — = m>mcrit

- \/

FIG. 10 (color online). The function V(r) versus r for k = 1,
n=6,p=111=1,b=14A=-15a=1.18and r, = 1.

from Figs. 9 and 10, we have cosmological horizon for
A < 0. This result is interesting since it shows that we can
have cosmological horizon in the presence of a negative
cosmological constant.

IV. THERMODYNAMICS OF TOPOLOGICAL
BD BLACK HOLES

In this section, we are going to check the validity of the
first law of thermodynamics for the topological BD black
holes with power-Maxwell field. In order to do this, we
should calculate the conserved and thermodynamic quan-
tities. We start with temperature. The Hawking temperature
of the topological black holes on the outer horizon r, can
be calculated using the relation

r, =X Ul (36)

2 4AnJUJV’

where « is the surface gravity. One obtains

PHYSICAL REVIEW D 92, 104035 (2015)
T (1+a?) { k(n—2) Ab? P2
- 4z \b¥(1 =)™

_2Pp(2p — 1)b=2(=2)rp/(2p=1) g2p
11,27 = 20=n+1)/2p=1)

n—1

(37)

Comparing the temperature (37) with one calculated in the
case of EDPM gravity [22], one finds that temperature is
invariant under the conformal transformation (5). This
comes from the fact that the conformal parameter at the
horizon is regular.

The charge of the black hole can be calculated through
the modified Gauss law,

1
0= / (PH)" (=F)P~ FnudQ,;,  (38)

where n* and u” are the unit spacelike and timelike normals
to a sphere of radius r given as

1 1

nt = dt = dt,
vV "9 VU(r)
u’ = ! dr = \/\_/dor.

V grr

Therefore the charge can be computed as

—1,2p-1
Q _ 20 q P WDy , (39)
4z

where ®,_; denotes the volume of constant curvature
hypersurface h;;dx'dx’. In addition to temperature and
charge we need to calculate mass, entropy and electric
potential in order to check the satisfaction of the first law
of thermodynamics. We can obtain the Arnowitt-Deser-
Misner (ADM) mass M, entropy S and electric potential U
of the topological black holes by using the Euclidean action
method [26]. In this method, one should first fix the electric
potential and the temperature on the boundary with a fixed
radius r,. Then, in order to make the metric positive
definite, ¢ should be substituted by iz:

1 S
ds* = U(r)d7* + mdr2 + rPPH*(r)h;dx'dx’.  (40)
r

This is a necessary step to make the Euclidean action. Since
one encounters a conical singularity at the horizon r = r
in the Euclidean metric [26], the Euclidean time 7 is made
periodic with period S, where f is the inverse of Hawking
temperature in order to eliminate this singularity. Now,
we are ready to obtain the Euclidean action of (n + 1)-
dimensional BDPM black hole. The Euclidean action has
two parts namely bulk and surface. The Euclidean action
can be calculated analytically and continuously changing of
the action (1) to the Euclidean time 7, i.e.,
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1
I _ dn+1
BDE — —167r iy x\/§

X (CIDR - % (V)2 - V(®) + (—F)P>
—;—ﬂ/d”x\/E@(K—KO), (41)

where K| is the trace of the extrinsic curvature for the
boundary metric # when ¢ = 0 and m = 0. Ky is added in
order to normalize the Euclidean action to zero in back-
ground [27]. Using the metric (40), one can obtain

|
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R=—g2(g'?U'V/U) — (n—1)[2nVH'/(rH)
+2VH"/H + (V'/r + V'H'/H)
+(n=2)(V/r* + H*V/H? — k/(rH)?)], (42)

VV[rHU' 4 2(n —1)(UH + rUH')]
2rHU '

K=-

(43)

Inserting U(r) and V(r) from (19) and (20) with ¢ = 0 and
m = 0 in K, one obtains

r

X (b) r/2 <k(n —-2)(a® + 126721 2A(a* + 1)2192?;»2-27) 1/2
o=\~ -

(@®+n-2)(a*-1)

(n- )@= n)

x {20% (@ = 1)(ny —n+4p — 1 + (=6p + 1)y)(a® + n — 2)nAr?>(1-7)
+(n=2)(n—a*)(n = Dk[(ny —n—6py +4p = 1)(n = 1) =2(p = )a?|r?b=r}
xr ' (n—dp + 1)7'2p%7A(a? — 1)(a® + n = 2)r211) 4 12 b~2k(n — 1) (n = 2)(n — a?)]7! (44)

Substituting R and K, give by Egs. (42) and (44) in the
Euclidean action (41) and using Eqgs. (19)—(21), after a long
calculation, one can compute the Euclidean action in terms
of the model parameters as

wn—l b("—l)y(n — l)m _ (n—l)(l_ )
Iypg = — (pn=Dr %
BDE 1 {ﬁ 47201 1 @) ( ry )
27 (n—1)p*q* i
P b DY X (45)

On the other hand, we know that the thermodynamic
potential can be given by Ippg [27-30]

Igpg = pM = S = pUQ, (46)
where M is the ADM mass, S is entropy and U is electric
potential. One can easily compare Eq. (45) with Eq. (46)
and find that

bV (n = ma,_

, 47

167(a® + 1) (47)
b(n—l)}/ (n=1)(1-y)

g b (48)
—1)p?

U= — (n=1)pq (49)

b (2p—n+1)r/(2p—1>HTr$'

Here, it is worthwhile to give some remarks. First, it is
notable that the quantities obtained in this section, either
conserved or thermodynamic ones, coincide with those

[

calculated in [22]. This fact shows that these quantities are
invariant under the conformal transformation (5). It is also
worth to note that although entropy is invariant under
conformal transformations, it does not follow the area law
[31] in contrast with the case of dilaton black holes in the
presence of power-law Maxwell field [22]. This is due to
the fact that, in the Euclidean action formalism the entropy
comes from the boundary term. Now, we turn back to the
main purpose of this section which is seeking for satis-
faction of first law of thermodynamics for topological BD
black holes. It is a matter of calculations to check that the
conserved and thermodynamic quantities calculated in this
section satisfy the first law of black hole thermodynamics

dM = TdS + UdQ. (50)

It is also worth mentioning that since the thermodynamic
quantities of our topological solutions in BDPM gravity
coincide with the ones in EDPM gravity, thermal stability
discussions are the same. The stability of the topological
black hole under thermal perturbations in EDPM gravity
has been discussed extensively in [22].

V. CLOSING REMARKS

In this paper, we constructed a new class of topological
black hole solutions of BD theory in the presence of a
power-law Maxwell field with the Lagrangian. For this
purpose, we introduced the conformal transformation (5)
that transforms the EDPM Lagrangian to the BDPM one.
Then, by using this conformal transformation, we obtained
BD solutions from Einstein-dilaton solutions presented in
[22]. This fact that the BD scalar field is a localized
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function accompanied with the fact that the effects of
mass and charge should disappear at infinity restrict the
allowed ranges of the power of electromagnetic source
Lagrangian, p, and the BD coupling constant, .
Consequently, we showed that the permitted ranges of p
and w are 1/2<p<(n+1)/4 and w > —n/(n—1)+
(n—4p +1)(n+1)/4p*(n—1)(n — 2). In these allowed
ranges, our BD solutions are always well defined, except
for o= ((n—4p+1)> —4np?)/4p*(n — 1) in the cases
of spherical (k = 1) and hyperbolic (k = —1) horizons.
Also, self-interacting potential V(®) is bounded from
below for suitable choices of the model parameters which
guarantees the stability of the system. It is worth mention-
ing that in the above ranges of p and w, the charge term is
always dominant in the vicinity of » = 0 and positive in
metric functions and, therefore, there are no Schwarzschild-
like solutions. Next, we studied the conditions under which
we have black holes with and without cosmological
horizon. Interestingly enough, we showed that our solu-
tions have cosmological horizon even in the presence of
negative cosmological constant.

In order to check the satisfaction of the first law of black
holes thermodynamics, we first computed temperature and
charge. Then, by calculating the Euclidean action, we

PHYSICAL REVIEW D 92, 104035 (2015)

obtained the black hole’s mass, entropy and electromag-
netic potential energy. Using these thermodynamic and
conserved quantities, we showed that the first law of
thermodynamics is satisfied. We found that the entropy
does not obey the so-called area law and the conserved and
thermodynamic quantities are invariant under conformal
transformation (5). All our results recover the results of [15]
for linear Maxwell field in the limiting case where p = 1.

Finally, we would like to mention that in this paper we
obtained static topological black hole solutions of BD
gravity in the presence of power-law Maxwell nonlinear
electrodynamics. For future studies, one can extend the
studies to the rotating black holes/branes in BD gravity
with power-law Maxwell source. One may also consider
other nonlinear electromagnetic sources such as Born-
Infeld, logarithmic and exponential Lagrangian and obtain
the black hole solutions of these theories in the framework
of BD gravity.
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