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Massive bigravity models are interesting alternatives to standard cosmology. In most cases, however,
these models have been studied for a simplified scenario in which both metrics take homogeneous and
isotropic forms [Friedmann-Lemaître-Robertson-Walker (FLRW)] with the same spatial curvatures. The
interest to consider more general geometries arises, in particular, in view of the difficulty so far encountered
in building stable cosmological solutions with homogeneous and isotropic metrics. Here we consider a
number of cases in which the two metrics take more general forms, namely FLRW with different spatial
curvatures—Lemaître, Lemaître-Tolman-Bondi (LTB), and Bianchi I—as well as cases where only one
metric is linearly perturbed. We discuss possible consistent combinations and find that only some special
cases of FLRW–Lemaître, LTB–LTB, and FLRW–Bianchi I combinations give consistent, nontrivial
solutions.

DOI: 10.1103/PhysRevD.92.104034 PACS numbers: 04.50.Kd, 98.80.-k, 95.36.+x, 95.30.Sf

I. INTRODUCTION

The standard ΛCDM model of cosmology is based on
four main assumptions: general relativity (GR) is the
correct description of gravitational interactions at energies
below the Planck scale, the Universe is homogenous and
isotropic on large scales (the cosmological principle), the
energy content of the Universe is mainly in the form of cold
dark matter (CDM) and a nondynamical cosmological
constant Λ, and all the structure that we see around us
originated from nearly Gaussian, adiabatic, and scale-
independent quantum fluctuations at early times. All these
assumptions have been tested with high precision using
various cosmological data and seem to be in excellent
agreement with all existing observations. There are,
however, various theoretical reasons why one may want
to go beyond this standard framework. In particular, the
assumption that the late-time acceleration of the Universe is
due to a cosmological constant term has been strongly
questioned from the theoretical point of view, as its small
but nonzero value preferred by observations cannot be
explained by fundamental physics [1]. It is, therefore,
important and quite natural to ask whether the cosmic
acceleration can be explained by a different mechanism
than a pure cosmological constant. One particular possibil-
ity, which has attracted remarkable attention over the last
decade, is that a modification of GR on very large scales
might be responsible for the acceleration (see Refs. [2,3] for
comprehensive reviews). One of the interesting such infra-
red modifications is to assume that gravitons are not
massless as opposed to what GR tells us. A nonzero but

sufficiently small graviton mass modifies properties of the
gravitational interactions on very large scales while leaving
them indistinguishable from the predictions of standard
gravity on small scales where GR is believed to be at work.
GR is a consistent and nonlinear theory of massless

gravity and, therefore, has given the possibility of con-
structing various cosmological models. In order to test the
implications of massive gravity for cosmology, one sim-
ilarly needs a nonlinear and consistent theory for massive
gravitons. Such a theory was, however, not available for
more than 70 years after the construction of a linear theory
of massive gravity by Fierz and Pauli in 1939 [4]. This was
mainly because any attempts at constructing a nonlinear
completion of the Fierz and Pauli theory would face a
serious obstacle; the theory would suffer from the existence
of the so-called Boulware-Deser (BD) ghost degrees of
freedom [5], a property which would be fatal to the theory.
It was only a few years ago that a ghost-free and fully
nonlinear formulation of massive gravity, and its bimetric
extension, was constructed [6–14] (see Ref. [15] for a
recent review). The key step for this success was to extend
the gravitational sector by at least one new spin-2 tensor
field with metric-like properties. In addition, in order to
avoid the BD ghost, the physical metric of the theory has to
interact with the new tensor field in a very specific way. In
the simplest version of the theory, referred to as the de
Rham-Gabadadze-Tolley (dRGT) theory of massive grav-
ity, only the physical metric, the one which interacts with
the matter sector in the standard way, is dynamical, i.e. has
an Einstein-Hilbert term in the action, while the second
metric, often called “reference” metric, does not have
dynamics. In this case gravitons posses five degrees of
freedom. In the bimetric version of the theory, referred to as
the Hassan-Rosen theory of bigravity, the reference metric
is also given dynamics and, therefore, gravitons posses
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seven degrees of freedom, corresponding to one massless
and one massive graviton.
The dRGT theory of massive gravity has been shown to

suffer from a no-go theorem forbidding flat and closed
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-
logical solutions on a flat reference metric [16]. In addition,
dRGT with an open FLRW metric or a nonflat reference
metric suffers from the so-called Higuchi instability [17] or
other types of instabilities [18–23]. One obvious way to
avoid the no-go theorem is to give up on exact FLRW
solutions, i.e. to consider inhomogeneous and/or aniso-
tropic solutions for the metrics. We, however, know that the
observable Universe on large scales is very close to being
homogenous and isotropic and, therefore, non-FLRW
solutions, if allowed, must not deviate significantly from
the FLRW case on observable scales, and must respect the
observational bounds on inhomogeneity and anisotropy.
Non-FLRWeffects should be either of very low amplitudes
or of scales much larger than our horizon so that they
cannot be observed. Interestingly, solutions which satisfy
these conditions have been shown to exist in dRGT [16].
Other scenarios with non-FLRW solutions in dRGT, either
for the physical metric or for the reference metric, can be
found in Refs. [21,23–30] (see also Ref. [15] for a thorough
review of the inhomogeneous and anisotropic solutions in
massive gravity). The other possibility to avoid the no-go
theorem and instability issues in dRGT is to extend the
theory. An example for such extensions without adding
new degrees of freedom is the recently proposed general-
ized massive gravity theory [31]. Another workaround is
through theories with extra degrees of freedom or violation
of certain symmetries; these include for example quasidi-
laton [32], varying-mass [16,33], nonlocal [34–37], and
Lorentz-violating [38,39] massive gravity. Recently,
another solution to the no-go theorem has been proposed
in Refs. [40–42]. It has been suggested that the no-go
theorem can be overcome if at least some matter couples to
a hybrid metric, composed of both the physical and
reference metrics and constructed in a specific way to
keep the theory free of the BD ghost up to a cut-off energy
scale which is believed to be above the strong coupling
scale of the theory. This makes phenomenological studies
of the theory possible below the cut-off scale (see, however,
Ref. [43] for various complications that the cosmology of
this theory would need to tackle). The revival of the BD
ghost is a general feature of the scenarios where both
metrics couple simultaneously to matter [40,41,44–48];
these include the simplest case where the two metrics
couple to matter minimally [49–52].
The Hassan-Rosen theory of massive bigravity on the

other hand is immune from the no-go theorem and
admits usual flat FLRW solutions. The cosmology of
bigravity has been extensively studied in the literature at
both the background and perturbative levels (see, e.g.,
Refs. [53–71]) and in terms of the lensing and dynamical

properties of local sources [61] (see also Refs. [72–75] for
cosmological studies of bigravity where matter couples to
both metrics through a composite metric). It has particu-
larly been shown that the theory can explain the late-time
acceleration of the Universe in the absence of an explicit
cosmological constant and can, therefore, serve as a viable
alternative to ΛCDM [59,63] at the background level.
However, when it comes to perturbations, the Hassan-
Rosen theory of massive bigravity seems to be suffering
from various instabilities. Bigravity models can generally
be classified into two categories, finite and infinite
branches. This classification is based on the fact that the
ratio of the two scale factors for the reference and physical
metrics in FLRW solutions is either increasing (finite
branch) or decreasing (infinite branch) with time, depend-
ing on which combinations of the parameters of the theory
are nonvanishing. It has been shown that scalar perturba-
tions for all finite-branch models, including a simple
single-parameter model called minimal bigravity model
(MBM) [64], are unstable at early times on small scales
[56,64,66,68,69], although the models are viable at the
background level. The instabilities do not necessarily rule
these models out but make their comparison to observations
difficult as one can no longer employ linear perturbation
theory to study their implications for the formation of
structure. Linear scalar perturbations for the infinite-branch
bigravity (IBB), as identified in Ref. [68], are on the other
hand stable at all times, making the study of structure
formation possible for the model. This was done in
Refs. [67,68], where subhorizon scales were analyzed in
the quasistatic limit, various modified gravity parameters
were calculated, and deviations from GR predictions were
presented. It was shown that predictions of the model are
consistent with existing large-scale structure data and the
model can be tested by future experiments. IBB was,
however, shown later to suffer from two other types of
instability; it violates the Higuchi bound [69,76], which can
potentially be dangerous as the instabilities might appear at
higher-order perturbations for nonlinear structure, and
tensor perturbations have ghost instabilities at early times
[70,76–78]. Addressing the problem of instabilities in
bigravity is currently an active field of research. In principle
most of the generalizations of the dRGT theory of massive
gravity enumerated in the previous paragraph can be
applied to bigravity to investigate possible resolutions to
the instability problems and to construct viable alternatives
to ΛCDM.
Motivated by these instability problems in the standard

scenario of massive bigravity with FLRW metrics, in this
paper we take the first step in exploring one potential route
to resolve the obstacles and construct a viable and stable
model. It is not clear at this stage whether possible solutions
are necessarily in modifications of the structure of the
theory, i.e. at the level of the action. Such possibilities
should definitely be explored, but one should also consider

HENRIK NERSISYAN, YASHAR AKRAMI, AND LUCA AMENDOLA PHYSICAL REVIEW D 92, 104034 (2015)

104034-2



cases where the structure of the theory remains intact while
other classes of solutions are considered. One of these
possibilities is the class of solutions with non-FLRW
metrics for one or both metrics of the theory. As we
mentioned earlier, this has been shown to be a promising
route in the case of dRGT, and it is, therefore, worth
investigating for bigravity as well. Before studying the
cosmological implications of such cases, one needs to
check whether solutions to field equations exist and
whether they are consistent with basic constraints of the
theory, such as Bianchi constraints. This is the objective of
the present paper.
Inhomogeneous and anisotropic solutions in bigravity

have been studied in the literature. This includes Bianchi
cosmologies where both metrics are homogeneous and
anisotropic [30,79], as well as cosmologies with the
physical metric being FLRW and the reference metric
being inhomogeneous [26]. In this paper we study various
combinations of FLRW and non-FLRW metrics in a
systematic and more general way, and investigate for which
combinations consistent solutions to the equations of
motion exist. Our aim is to identify such combinations
without further exploration of their implications for cos-
mology; we leave this for future work.
The rest of this paper is organized as follows. In Sec. II

we review the Hassan-Rosen theory of singly-coupled

bigravity and present the field equations and Bianchi
constraints. In Sec. III we study various combinations of
FLRW, inhomogeneous, and anisotropic solutions for the
metrics of the theory. We start this in Sec. III A with the
case where both metrics are of the FLRW form but have
different spatial curvatures. Since, as we will see, this will
force the metrics to be of the Lemaître form, we study those
solutions in the same section. We move on in Sec. III B with
the combinations where one metric is FLRW and the other
one is of the Lemaître-Tolman-Bondi (LTB) form, and in
Sec. III C we investigate the solutions where both metrics
are LTB. Combinations of FLRW and anisotropic but
homogeneous metrics are studied in Sec. III E in the
context of Bianchi type I solutions. In all these sections
we discuss the consistency of the solutions when matter
sources respect or violate the homogeneity or anisotropy
assumptions. In Sec. IV we go beyond the background
solutions and investigare the scenarios where one metric is
perturbed while the other one is kept unperturbed. Our
discussions are based on both scalar and tensor perturba-
tions. We discuss our results and conclude in Sec. V.

II. THE THEORY OF MASSIVE BIGRAVITY

The Hassan-Rosen theory of ghost-free, massive
bigravity is characterized by the action [13]

S ¼ −
M2

g

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Rg −

M2
f

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
Rf

þm4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p X4
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Lmðg;ΦÞ; ð1Þ

whereMg andMf are Planck masses and Rg and Rf are the Ricci scalars for the metrics gμν and fμν, respectively. Here gμν is
the standard, physical metric coupled to matter fields Φ through the matter Lagrangian Lm, and fμν is the reference metric.
The action contains five interaction (mass) terms given in terms of five functions en. These are the elementary symmetric
polynomials of the eigenvalues of the matrix

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
, where

ffiffiffiffiffiffiffiffiffiffi
g−1f

p ffiffiffiffiffiffiffiffiffiffi
g−1f

p ≡ gμνfμν. The forms of these polynomials are
presented in, e.g., Ref. [13]. The quantities βn ðn ¼ 0; 1; 2; 3; 4Þ are free parameters of the theory, and m is the mass
parameter. In the following we express masses in units ofM2

g and absorbm4 into the parameters βn (m is not an independent
parameter of the theory). The action then becomes

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Rg −

M2
f

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
Rf þ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p X4
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Lmðg;ΦÞ:

ð2Þ

By varying the action (2) with respect to gμν one obtains the generalized Einstein equation for the physical metric,

Rg
μν −

1

2
gμνRg þ

X3
n¼0

ð−1ÞnβngμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ ¼ Tμν; ð3Þ

where Rg
μν is the g-metric Ricci tensor, and the matrices YðnÞðXÞ are defined as [13]
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Yð0ÞðXÞ≡ I;

Yð1ÞðXÞ≡ X − I½X�;

Yð2ÞðXÞ≡ X2 − X½X� þ 1

2
Ið½X�2 − ½X2�Þ;

Yð3ÞðXÞ≡ X3 − X2½X� þ 1

2
Xð½X�2 − ½X2�Þ

−
1

6
Ið½X�3 − 3½X�½X2� þ 2½X3�Þ;

where X ≡
� ffiffiffiffiffiffiffiffiffiffi

g−1f
p �

, I is the identity matrix, and ½…� is
the trace operator.
By varying the action (2) with respect to the reference

metric fμν we obtain

Rf
μν −

1

2
fμνRf þ

1

M2
f

X3
n¼0

ð−1Þnβ4−nfμλYλ
ðnÞν

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
¼ 0;

ð4Þ

where Rf
μν is the f-metric Ricci tensor. Under the rescaling

fμν → M−2
f fμν, the Ricci scalar Rf transforms as Rf →

M2
fRf, which results in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
Rf → M−2

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
Rf: ð5Þ

The interaction terms in the action then transform as

X4
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
→

X4
n¼0

βnen

�
M−1

f

ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
: ð6Þ

Since the elementary symmetric polynomials enðXÞ are of
order Xn, the rescaling of fμν by a constant factor M−2

f

translates into a redefinition of the coupling constants
βn → Mn

fβn, which allows us to assume Mf ¼ 1.1

In addition to the equations of motion for the metrics,
there are additional constraints on the dynamics of the
metrics coming from the Bianchi identities and the
assumption that the stress-energy-momentum tensor of
the matter components is conserved,

1

2
∇μ

g

X3
n¼0

ð−1ÞnβngμλYλ
ðnÞν

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
¼ 0; ð7Þ

where∇g is the covariant derivative operator with respect to
gμν. Any acceptable bigravity solution must satisfy the
generalized Einstein equations (3) and (4), as well as the
Bianchi constraint (7). In the rest of this paper, we
investigate various types of the physical and reference

metrics, and identify the ones which are consistent with
these conditions.

III. CONSISTENCY OF BACKGROUND
SOLUTIONS WITH DIFFERENT METRIC

COMBINATIONS

A. FLRW metrics with different spatial curvatures:
The need for a Lemaître reference metric

We begin our investigation of bigravity with nonstandard
metric forms by considering the solutions for which both
metrics gμν and fμν are FLRW with generic spatial
curvatures kg and kf, where kg; kf ¼ 0;�1. The usual
background analysis of the cosmology of bigravity assumes
kg ¼ kf. The reason is partly due to the significant
simplification of the calculations in this case, and in
addition it seems intuitively reasonable to assume that
the two metrics respect the same symmetries and geom-
etries. More complicated cases, however, cannot be
excluded a priori. Let us, therefore, leave the choices
for kg and kf completely generic and study this case in
terms of the consistency of cosmological solutions. Before
we continue we note that this case has previously been
studied in Ref. [55] and shown to be inconsistent using the
Bianchi constraint. In the following, however, we use the
implications of the Bianchi constraint in this case as a tool
to systematically construct a particular metric combination,
FLRW-Lemaître, which is consistent. Therefore, although
our results are in agreement with the findings of Ref. [55],
our approach and objectives are different.
With the assumptions made above the most general

forms for the metrics are

gμνdxμdxν ¼ −dt2 þ a2ðtÞd ~xg2; ð8Þ

fμνdxμdxν ¼ −X2ðtÞdt2 þ b2ðtÞd ~xf2; ð9Þ

where

d ~xg2 ¼
dr2

1 − kgr2
þ r2ðdθ2 þ sin2ðθÞdϕ2Þ; ð10Þ

d ~xf2 ¼
dr2

1 − kfr2
þ r2ðdθ2 þ sin2ðθÞdϕ2Þ; ð11Þ

r, θ, and ϕ are spherical coordinates, a and b are the scale
factors for gμν and fμν, respectively, and X is the lapse for
fμν. Inserting these metric forms into the Bianchi constraint
(7) yields the condition

X ¼
_b
_a

β1ð2þ κÞ þ 2β2ð1þ 2κÞ ba þ 3β3κðbaÞ2
3β1 þ 2β2ð2þ κÞ ba þ β3ð1þ 2κÞðbaÞ2

ð12Þ1See, however, Ref. [80], which appeared during the com-
pletion of this work, for caveats associated with this rescaling.
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on the f-metric lapse X, where κ ≡
ffiffiffiffiffiffiffiffiffiffiffi
1−kgr2

1−kfr2

r
, and an overdot denotes a derivative with respect to t. Since the scale factors a

and b depend only on time, it is clear from this expression that X cannot be a function of time only and is in general a
function of both t and r unless kg ¼ kf. This, therefore, shows that FLRW solutions for the two metrics with different spatial
curvatures are not allowed, already at the level of the Bianchi constraint.
Now assuming that X is a function of both t and r, Eq. (7) places a constraint on the f-metric scale factor b,

ðβ3rX0 þ 2ð1 − κÞðβ2 þ β3XÞÞb2 þ 2ðβ2rX0 þ ð1 − κÞðβ1 þ β2XÞÞabþ β1rX0a2 ¼ 0; ð13Þ

where a prime denotes a derivative with respect to r. We see from this equation that for general choices of the lapse X, the
scale factor b should also be a function of both t and r. It can be shown that the metrics (8) and (9) with both X and b being
functions of both r and t cannot be reformulated in FLRW forms by any coordinate transformations (see Appendix for a
detailed proof). We, therefore, conclude that FLRW metrics with different spatial curvatures are not consistent.
Let us now assume that X and b are both functions of r and t. Using the Bianchi constraint (7), we arrive at the

expressions

X ¼
_b
_a

β1ð2þ κÞ þ 2β2ð1þ 2κÞ ba þ 3β3κðbaÞ2
3β1 þ 2β2ð2þ κÞ ba þ β3ð1þ 2κÞðbaÞ2

; ð14Þ

b0 ¼ −
ðβ3rX0 þ 2ð1 − κÞðβ2 þ β3XÞÞb2 þ 2ðβ2rX0 þ ð1 − κÞðβ1 þ β2XÞÞabþ β1rX0a2

2rððβ1 þ β2XÞaþ ðβ2 þ β3XÞbÞ
: ð15Þ

We can, therefore, see that because of different curvatures
of reference and physical metrics, the reference metric takes
a spherically symmetric and inhomogeneous form, where
the lapse and all scale factors are functions of both r and t.
The most general metric forms corresponding to this
case are

gμνdxμdxν ¼ −dt2 þ a2ðtÞd ~xg2; ð16Þ

fμνdxμdxν ¼ −X2ðt; rÞdt2 þ Y2ðt; rÞdr2 þ Z2ðt; rÞr2dΩ2;

ð17Þ

where dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. The metric fμν in Eq. (17)
has a generic spherically symmetric and inhomogeneous
form. In the literature [81,82], this type of metric is called
Lemaître metric [83], and the cosmological model built on
this metric is called Lemaître model. In GR, the Lemaître
metric arises when we have inhomogeneous matter sources
[82,84], in particular when the pressure and density are
functions of both temporal and spatial coordinates. In the
special case of dust or homogenous pressure the Lemaître
metric reduces to the so-called Lemaître-Tolman-Bondi
(LTB) metric, where the lapse does not depend on the
spatial coordinates and can be rescaled.
All our arguments so far for the metrics to take the forms

(16) and (17) when we assume unequal curvatures were
based only on the Bianchi constraint (7). We can, however,
arrive at the same conclusions by analyzing the Einstein
equations. Assuming kg ≠ kf for the metrics with FLRW

forms, we have a nonvanishing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − kgr2Þ=ð1 − kfr2Þ

q

factor in the Einstein equations for the terms corresponding
to the interactions between the two metrics. The interaction
part in the f-metric Einstein equation plays the role of an
inhomogeneous source for fμν, which forces it to take a
Lemaître form. For the gμν metric, there is a coupling to the
matter source, and by taking an inhomogeneous matter
source one can in principle cancel the inhomogeneities
coming from the interaction terms; as a result, gμν can
maintain its homogenous FLRW form. This confirms our
finding that the metrics should have the forms (16) and (17)
where the matter source is inhomogeneous.
Let us now derive the explicit forms of the Einstein

equations for the metrics (16) and (17). As argued above,
we assume that the stress-energy-momentum tensor of the
matter source coupled to the physical metric has an
inhomogeneous perfect-fluid form,

T0
g0 ¼ −ρðt; rÞ;

T1
g1 ¼ pðt; rÞ;

T2
g2 ¼ pðt; rÞ;

T3
g3 ¼ pðt; rÞ; ð18Þ

where ρ and p are, respectively, the energy density and
pressure for the matter source. For simplicity, here we
consider only the kg ¼ 0 case. The g-metric Einstein
equations for this case read
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3
_a2

a2
þ ρ ¼ β0 þ β1

ðY þ 2ZÞ
a

þ β2
ð2Y þ ZÞZ

a2
þ β3

YZ2

a3
; ð19Þ

_a2

a2
þ 2

ä
a
þ p ¼ β0 þ β1

�
X þ 2

Z
a

�
þ β2

�
2
XZ
a

þ Z2

a2

�
þ β3

XZ2

a2
; ð20Þ

_a2

a2
þ 2

ä
a
þ p ¼ β0 þ β1

�
X þ Y þ Z

a

�
þ β2

�
XðY þ ZÞ

a
þ YZ

a2

�
þ β3

XYZ
a2

: ð21Þ

The equations of motion for fμν are too unwieldy to be
displayed here. One can find the equations for the most
general case in Ref. [53]. We see from Eqs. (19)–(21) that
with an appropriate choice of ρ and p it is in principle
possible to find a function aðtÞwhich satisfies the equations
of motion.
In conclusion, our bigravity theory does not allow two

FLRW metrics with different spatial curvatures, while it is
possible to have a combination of FLRW and Lemaître
forms for the metrics gμν and fμν, respectively, if the matter
source takes an inhomogeneous form. In the opposite case
of a Lemaître form for gμν and an FLRW form for fμν, the
equation of motion for fμν will contain a homogenous
Einstein tensor part and an inhomogeneous interaction part.
Since fμν does not couple to matter, the inhomogeneities
cannot be cancelled and, therefore, this metric combination
in general does not have consistent solutions.

B. FLRW–LTB and LTB–FLRW combinations

The next possibility we wish to explore is the case where
one of the metrics is FLRW and the other one is LTB. For
the case where gμν is FLRWand fμν is LTB (we denote this
as FLRW–LTB), the line elements have the forms

gμνdxμdxν ¼ −dt2 þ a2ðtÞd ~xg2; ð22Þ

fμνdxμdxν ¼ −X2ðtÞdt2 þ Y2ðt; rÞdr2 þ Z2ðt; rÞr2dΩ2;

ð23Þ

where again dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. Here we assume
that gμν has a curvature kg. In addition we follow the
standard recipe for LTB metrics and assume that the
physical metric is coupled to a homogeneous perfect-fluid
source. In this case the (0,0) and (1,1) components of the
gμν equation of motion become

− 3a _a2 þ a3ðβ0 þ ρÞ þ a2β1
�
2Z þ Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2kg

q �

þ a
�
−3kg þ β2Z2 þ 2β2YZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kgr2

q �

þ β3YZ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kgr2

q
¼ 0; ð24Þ

_a2 þ a2ðp − β0 − β1XÞ − 2aððβ1 þ β2XÞZ − äÞ
þ kg − β2Z2 − β3XZ2 ¼ 0: ð25Þ

Here we have assumed the stress-energy-momentum tensor
for the isotropic and homogeneous perfect fluid to be of the
standard form

Tμ
gν ¼ ðρþ pÞuμ0u0ν þ pδμν ; ð26Þ

where ρ ¼ ρðtÞ is the rest energy density of the fluid, p ¼
pðtÞ is its pressure, and uμ0 is its isotropic four-velocity. It is
clear from Eq. (25) that in general Z cannot be a function of
r since all the other quantities in the equation, including the
f-metric lapse X, are functions only of t. If Z is a function
of t only, in order to satisfy Eq. (24) Y should be of the form

Yðt; rÞ ¼ AðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kgr2

q
, where AðtÞ is an arbitrary

function of t. This then implies that the reference metric
should also be of an FLRW typewith the same curvature kg.
In the opposite case, where the physical metric is

LTB and the reference metric is FRLW (we denote this
as LTB–FLRW), we have

gμνdxμdxν ¼ −dt2 þ Y2ðt; rÞdr2 þ Z2ðt; rÞr2dΩ2; ð27Þ

fμνdxμdxν ¼ −X2ðtÞdt2 þ b2ðtÞd ~xf2: ð28Þ

The (0,0) and (1,1) components of the fμν equation of
motion then read

X2Yðβ1Z2 þ 2β2Zbþ β3b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfr2

q
þ bðβ2X2Z2 þ 2β3X2Zbþ β4X2b2 − 3kfX2 − 3_b2Þ ¼ 0; ð29Þ

β4b2X3 − kfX3 þ ðβ1 þ β2XÞX2Z2 þ β3X2b2 − X _b2 þ 2 _Xb _bþ 2bX2ðβ2 þ β3XÞZ − 2Xbb̈ ¼ 0: ð30Þ
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Similarly to the case for gμν, here we again see from
Eq. (30) that Z in general cannot depend on r. Equa-
tion (29), therefore, implies that Y should have the form

Yðt; rÞ ¼ BðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kfr2

q
, where BðtÞ is again an arbitrary

function of t. This form for Y then brings the physical
metric into an FLRW type, again with the same curvature as
the reference metric.
It is important to note that in both metric combinations

discussed above the Bianchi constraint is not satisfied, and
since we get the Bianchi constraint using the covariant
conservation of the stress-energy-momentum tensor, we
can therefore state that in general neither FLRW–LTB nor
LTB–FLRW can occur for any choices of covariantly
conserved Tg

μν.

C. LTB–LTB combination

Let us now study the case where both metrics gμν and fμν
are of LTB forms (we denote this as LTB–LTB),

gμνdxμdxν ¼ −dt2 þ A2ðt; rÞdr2 þ B2ðt; rÞdΩ2; ð31Þ

fμνdxμdxν ¼ −X2ðtÞdt2 þ Y2ðt; rÞdr2 þ Z2ðt; rÞdΩ2:

ð32Þ

In this case the 0 component of the Bianchi constraint (7)
enforces the f-metric lapse XðtÞ to satisfy the equation

X ¼ 2U _Z þ V _Y

2U _Bþ V _A
; ð33Þ

where

Uðt; rÞ≡ Bðt; rÞðβ1Aðt; rÞ þ β2Yðt; rÞÞ
þ Zðt; rÞðβ2Aðt; rÞ þ β3Yðt; rÞÞ; ð34Þ

Vðt; rÞ≡ β1B2ðt; rÞ þ 2β2Bðt; rÞZðt; rÞ
þ β3Z2ðt; rÞ: ð35Þ

The constraint (33) holds when

Bðt; rÞ ¼ ~BðtÞsðrÞ; ð36Þ

Zðt; rÞ ¼ ~ZðtÞsðrÞ; ð37Þ

Aðt; rÞ ¼ ~AðtÞqðrÞ; ð38Þ

Yðt; rÞ ¼ ~YðtÞqðrÞ; ð39Þ

where s and q are functions of r only, obtained through
solving Einstein equations. In addition, the (1,2) compo-
nent of the equation of motion for gμν becomes

B0 _A ¼ A _B0: ð40Þ

For fμν the corresponding equation is

Z0 _Y ¼ Y _Z0: ð41Þ

From these equations we obtain the following relations
between ~BðtÞ, ~AðtÞ, ~ZðtÞ, and ~YðtÞ:

~BðtÞ _~AðtÞ ¼ ~AðtÞ _~BðtÞ; ð42Þ

~ZðtÞ _~YðtÞ ¼ ~YðtÞ _~ZðtÞ: ð43Þ

We, therefore, find that ~AðtÞ ¼ C1
~BðtÞ and ~YðtÞ ¼ C2

~ZðtÞ,
where C1 and C2 are some arbitrary constants. We obtain
another useful constraint on our functions from the (2,2)
component of the gμν equation of motion,

− 2Bððβ1 þ β2XÞZ − B̈Þ þ _B2 − B2ðβ0 þ β1X − pÞ

− ðβ2 þ β3XÞZ2 ¼ B02

A2
− 1: ð44Þ

It is easy to see that the r-dependent part of the left-hand
side of Eq. (44) is s2ðrÞ. The right-hand side of Eq. (44)
should also have the same dependence on r in order for the
r dependence of both sides of the equation to cancel out.
Therefore, in this case we have

B02

A2
− 1 ¼ s02

q2
− 1 ¼ C3s2; ð45Þ

where C3 is another arbitrary constant. From the (3,3)
component of the equation of motion for gμν we find

s0q0 − qs00 ¼ C4sq3: ð46Þ

Equations (45) and (46) are the conditions which should be
fulfilled by s and q for the consistency of the Einstein
equations for both gμν and fμν. In summary, we find that the
LTB–LTB combination is consistent only for particular
subclasses of LTB metrics which satisfy all the conditions
stated above.

D. Bianchi I–FLRW combination

We would also like to investigate the cases where one of
the two metrics is homogeneous but anisotropic while the
other one is both homogeneous and isotropic (i.e. has an
FLRW form). Here we consider only Bianchi type I
models, which are the simplest anisotropic models and
capture most of the interesting anisotropic effects. The
general properties of the cases where both metrics are
anisotropic, simultaneously diagonal, and of the same
Bianchi types within the Bianchi class A, which includes
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types I, II, VI0, VII0, VIII, and IX, are discussed in
Ref. [79]; we, therefore, do not consider those cases in
this paper. As discussed in Sec. I, our main motivation for
studying non-FLRW solutions in bigravity is the potential
resolution of the problems with the standard scenario, in
particular the instability issues, in this framework.
However, there are also theoretical and observational
arguments [85] in support of an anisotropic phase in the
early Universe which approached isotropy at later times. It
is, therefore, interesting also from this perspective to see
whether such solutions are allowed in bigravity (see
Ref. [79] for other motivations for studying anisotropies
in bigravity, including a potentially interesting connection
to dark matter).
Bianchi type I, or simply Bianchi I, models are spatially

homogenous and flat but the expansion rate is direction-
dependent. In GR, these models have been studied for
different sources with the equation of state p ¼ ωρ. It has
been shown in Ref. [86] that for cases with ω < 1 the
anisotropic models evolve towards an FLRW universe,
while for ω ¼ 1 the process of isotropization does not take
place. In the present study of Bianchi metrics we do not
consider the question of isotropization and only investigate

the consistency of such solutions in terms of the field
equations and Bianchi constraint for both isotropic and
anisotropic perfect-fluid sources.
In this section we focus on the case where the physical

metric is assumed to be of an anisotropic Bianchi I form
while the reference metric is FLRW and flat; we call this
case Bianchi I–FLRW. We show that for any choices of the
matter source, isotropic or anisotropic, the Bianchi
I–FLRW combination does not satisfy the conditions of
the theory and is, therefore, not a consistent solution.
The metrics for this particular case have the forms

gμνdxμdxν ¼ −dt2 þ a21ðtÞdx2 þ a22ðtÞdy2 þ a23ðtÞdz2;
ð47Þ

fμνdxμdxν ¼ −X2ðtÞdt2 þ b2ðtÞd~x2; ð48Þ

where d~x2 ¼ dx2 þ dy2 þ dz2, and x, y, and z are
Cartesian coordinates. Here, a1, a2, and a3 are the g-metric
scale factors along different directions, and b is the
f-metric scale factor. The equation of motion for fμν gives,
independently of the matter source for the g metric,

X2ðβ1a1a2a3 þ β2ða1a3 þ a1a2 þ a2a3Þbþ β3ða1 þ a2 þ a3Þb2 þ β4b3Þ − 3b _b2 ¼ 0; ð49Þ

X2ða3ða2ðβ1 þ β2XÞ þ bðβ2 þ β3XÞÞ þ bða2ðβ2 þ β3XÞ þ bðβ3 þ β4XÞÞÞ − Xð2bb̈þ _b2Þ þ 2b _X _b ¼ 0; ð50Þ

X2ða3ða1ðβ1 þ β2XÞ þ bðβ2 þ β3XÞÞ þ bða1ðβ2 þ β3XÞ þ bðβ3 þ β4XÞÞÞ − Xð2bb̈þ _b2Þ þ 2b _X _b ¼ 0; ð51Þ

X2ða2ða1ðβ1 þ β2XÞ þ bðβ2 þ β3XÞÞ þ bða1ðβ2 þ β3XÞ þ bðβ3 þ β4XÞÞÞ − Xð2bb̈þ _b2Þ þ 2b _X _b ¼ 0: ð52Þ

From Eqs. (50) and (51) we see that a1 ¼ a2, while
Eqs. (51) and (52) imply that a2 ¼ a3; therefore,
a1 ¼ a2 ¼ a3. This means that the physical metric is forced
to become isotropic. Therefore, using only the f-metric
equation of motion and no other equations or conditions of
the theory, we can conclude that one cannot have a Bianchi
I physical metric while the reference metric maintains its
FLRW form. Since fμν is not sourced by matter, our
conclusion is general and independent of what form the
matter source takes.

E. FLRW–Bianchi I combination

1. Isotropic source

Let us now assume that the reference metric takes the
Bianchi-I anisotropic form while the physical metric is
FLRW and flat; we call this case FLRW–Bianchi I.
This means that each direction has a different scale

factor in the f metric. The metrics, therefore, possess
the forms

gμνdxμdxν ¼ −dt2 þ a2ðtÞd~x2; ð53Þ

fμνdxμdxν ¼ −X2ðtÞdt2 þ b21ðtÞdx2 þ b22ðtÞdy2 þ b23ðtÞdz2;
ð54Þ

where again d~x2 ¼ dx2 þ dy2 þ dz2. Here, a is the scale
factor for gμν, and b1, b2, and b3 are the f-metric scale
factors along different directions. In addition, let us assume
that the matter source, which couples to the physical metric
gμν, is a homogeneous and isotropic perfect fluid. The
stress-energy-momentum tensor has, therefore, the form
given in Eq. (26).
For the metric forms (53) and (54), the g-metric Einstein

equation (3) reads
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3
_a2

a2
− ρ ¼ β0 þ β1

b1 þ b2 þ b3
a

þ β2
b1b2 þ b1b3 þ b2b3

a2
þ β3

b1b2b3
a3

; ð55Þ

_a2

a2
þ 2

ä
a
þ p ¼ β0 þ β1

�
X þ b2 þ b3

a

�
þ β2

�
Xðb2 þ b3Þ

a
þ b2b3

a2

�
þ β3

Xb2b3
a2

; ð56Þ

_a2

a2
þ 2

ä
a
þ p ¼ β0 þ β1

�
X þ b1 þ b3

a

�
þ β2

�
Xðb1 þ b3Þ

a
þ b1b3

a2

�
þ β3

Xb1b3
a2

; ð57Þ

_a2

a2
þ 2

ä
a
þ p ¼ β0 þ β1

�
X þ b1 þ b2

a

�
þ β2

�
Xðb1 þ b2Þ

a
þ b1b2

a2

�
þ β3

Xb1b2
a2

: ð58Þ

It is straightforward to see from these equations that b1, b2,
and b3 are equal. This means that if we initially assume an
anisotropic form for the reference metric while the physical
metric and the matter source are both assumed to be
isotropic, the structure of the Einstein equations automati-
cally forces the reference metric to also be isotropic.

2. Anisotropic source

Let us now relax the isotropy condition on the matter
source and study the FLRW–Bianchi I scenario when the
physical metric is coupled to a source which is anisotropic
and of a Bianchi I type. The stress-energy-momentum
tensor in this case takes the form

T0
g0 ¼ −ρðtÞ; ð59Þ

T1
g1 ¼ p1ðtÞ; ð60Þ

T2
g2 ¼ p2ðtÞ; ð61Þ

T3
g3 ¼ p3ðtÞ; ð62Þ

where the components of the fluid pressure, p1, p2, and p2,
are allowed to be different along different directions and
therefore create anisotropy in the fluid.
It follows from the Bianchi constraint (7) that in this case

the f-metric lapse XðtÞ is given by (here all the variables
depend only on t)

X ¼ 1

_a
β1a2ðb1 þ b2 þ b3Þ_þ β2aðb1b2 þ b1b3 þ b2b3Þ_þ β3ðb1b2b3Þ_

3β1a2 þ 2β2aðb1 þ b2 þ b3Þ þ β3ðb1b2 þ b1b3 þ b2b3Þ
: ð63Þ

The Einstein equation for gμν gives

3
_a2

a2
− ρ ¼ β0 þ β1

b1 þ b2 þ b3
a

þ β2
b1b3 þ b1b2 þ b2b3

a2
þ β3

b1b2b3
a3

; ð64Þ

_a2

a2
þ 2

ä
a
þ p1 ¼ β0 þ β1X þ ðβ2 þ β3XÞ

b2b3
a2

þ ðβ1 þ β2XÞ
b2 þ b3

a
; ð65Þ

_a2

a2
þ 2

ä
a
þ p2 ¼ β0 þ β1X þ ðβ2 þ β3XÞ

b1b3
a2

þ ðβ1 þ β2XÞ
b3 þ b1

a
; ð66Þ

_a2

a2
þ 2

ä
a
þ p3 ¼ β0 þ β1X þ ðβ2 þ β3XÞ

b1b2
a2

þ ðβ1 þ β2XÞ
b2 þ b1

a
; ð67Þ

and the f-metric Einstein equation gives
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β1a3X2 þ β2a2X2ðb1 þ b2 þ b3Þ þ β3aX2ðb1b2 þ b1b3 þ b2b3Þ þ β4b1b2b3X2 − b3 _b1 _b2 −b1 _b2 _b3 −b2 _b1 _b3 ¼ 0;

a2X2ðβ1 þ β2XÞ þ aX2ðβ2 þ β3XÞðb2 þ b3Þ þ b3ð _X _b2þX2ðβ3 þ β4XÞb2Þ þ b2 _X _b3 −Xð _b2 _b3þb3b̈2 þ b2b̈3Þ ¼ 0;

a2X2ðβ1 þ β2XÞ þ aX2ðβ2 þ β3XÞðb1 þ b3Þ þ b3ð _X _b1þX2ðβ3 þ β4XÞb1Þ þ b1 _X _b3 −Xð _b1 _b3þb3b̈1 þ b1b̈3Þ ¼ 0;

a2X2ðβ1 þ β2XÞ þ aX2ðβ2 þ β3XÞðb1 þ b2Þ þ b2ð _X _b1þX2ðβ3 þ β4XÞb1Þ þ b1 _X _b2 −Xð _b1 _b2þb2b̈1 þ b1b̈2Þ ¼ 0:

ð68Þ

FromEqs. (64)–(67) we see that because of the anisotropic
matter source, b1, b2, and b3 satisfy different algebraic
equations and can, therefore, be different from each other.
Equations (68) form a set of second-order differential equa-
tions with respect to b1, b2, and b3. Each equation has two
independent solutions and, therefore, in spite of the fact that
b1,b2, andb3 satisfy the samedifferential equation, in general
they can be different. We can, therefore, conclude that the
combination FRLW–Bianchi I in the presence of an aniso-
tropic matter source is in principle possible.

IV. CONSISTENCY OF SOLUTIONS WITH ONLY
ONE PERTURBED METRIC

In the previous sections we explored various combina-
tions of cosmologically interesting metric types for the two
metrics of the theory of massive bigravity. Our investiga-
tion was, however, only at the level of the background
dynamics of the Universe. In this section we study some
other interesting cases where perturbations around the
background metrics are considered.
Perturbations are clearly crucial for cosmology and it is,

therefore, interesting to ask whether there are any consistent,
nonstandard ways to perturb the metrics. In all the previous
works on the perturbative analysis of bigravity a standard
recipe has been followed: the background metrics have been

assumed to be FLRW and both the physical and reference
metrics have then been perturbed around the FLRW sol-
utions. As stated in Sec. I, our main motivation in this paper
has been to try alternative solutions which might be free of
various instabilities which appear in bigravity models at the
level of perturbations. It would, therefore, be interesting if
one could avoid the instabilities by finding alternative ways
of perturbing the metrics. In addition, the usual perturbation
equations are very complicated and it would be very helpful
if one could find a way to simplify the equations. One of
such approaches could be towork with solutions which leave
the reference metric unperturbed while the physical metric is
perturbed as usual. This scenario is physically justified
because the reference metric does not couple to the matter
components and cannot be measured directly from obser-
vations; the reference metric affects our observables only
through its interactions with the physical metric. In what
follows we analyze the consistency of this possibility using
both scalar and tensor perturbations.
Let us start with scalar perturbations up to linear order

for both metrics. For simplicity we assume both metrics to
be of the flat FLRW type. Including only scalar perturba-
tions and using the notations of Ref. [68], the line elements
for the perturbed physical and reference metrics gμν and fμν
have the forms

ds2g ¼ a2ðηÞ½−ð1þ 2ΨgÞdη2 þ 2∂iBgdxidηþ ½ð1 − 2ΦgÞδij þ 2∂i∂jEg�dxidxj�; ð69Þ

ds2f ¼ b2ðηÞ½−ð1þ 2ΨfÞX2dη2 þ 2∂iBfXdxidηþ ½ð1 − 2ΦfÞδij þ 2∂i∂jEf�dxidxj�: ð70Þ

Here a and b are the scale factors corresponding to gμν and
fμν, respectively, X is the lapse for fμν, and the perturbation
quantities fΨg;f; Bg;f;Φg;f; Eg;fg are allowed to depend on
both conformal time η and space. Spatial indices are
raised and lowered by the Kronecker delta. In this section
a dot denotes a derivative with respect to the conformal
time η.
In order to write down the expression for the perturbed

matter stress-energy-momentum tensor, we assume a
perfect fluid with an equation of state p ¼ wρ. In addition,
we describe the matter perturbations with only one scalar
field χ. This procedure has been proposed in Ref. [87].
With these assumptions and conventions we have

δT0
0 ¼ −ðρþ pÞð3Φg − Eg;ll − χ;llÞ;

δTi
0 ¼ −ðρþ pÞ_χ;i;

δT0
i ¼ ðρþ pÞðBg;i þ _χ;iÞ;

δTi
j ¼ wðρþ pÞð3Φg − Eg;ll − χ;llÞδij; ð71Þ

where we sum over indices l. Following Ref. [69] and after
some useful gauge fixing and transformations developed in
Ref. [88], we set Φf ¼ χ ¼ 0 and arrive at the first-order
perturbation equations
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2Hð3 _Φg þ k2 _EgÞ þ a2ðð1þ wÞρð3Φg þ k2EgÞ þ rZð3Φg þ k2ðEg − EfÞÞÞ
þ 2ðk2Φg þHð3HΨg − k2BgÞÞ ¼ 0; ð72Þ

2ðX þ 1Þ _Φg þ 2HðX þ 1ÞΨg − ZrðXBf − BgÞ þ ð1þ wÞρð1þ XÞBg ¼ 0; ð73Þ

2ðk2Ëg þ 3Φ̈gÞ þ 2Hð3 _Ψg þ 6 _Φg þ 2k2 _EgÞ − 2k2 _Bg þ 3Za2rXðΨf þΨgÞ
þ a2ð−3ð1þ wÞρð2Ψg þ wð3Φg þ k2EgÞÞ þ 2rð−3ZΨg þ ~Zð3Φg þ k2ðEg − EfÞÞÞÞ
þ 2ð9H2 − k2ÞΨg þ 2k2ðΦg − 2HBgÞ ¼ 0; ð74Þ

Ëg − _Bg þ 2H _Eg þ ~Za2rðEg − EfÞ −Ψg − 2HBg þ Φg ¼ 0; ð75Þ

2rHfk2 _Ef − a2ZX2ðk2Eg − k2Ef þ 3ΦgÞ − 2rXHfk2Bf þ 6H2
frΨf ¼ 0; ð76Þ

2HfrðX þ 1ÞΨf þ Xa2ZðXBf − BgÞ ¼ 0; ð77Þ

rXËf − rð−2XHf þ _XÞ _Ef − X2ð _Bfrþ rXΨf þ 2rHfBf þ a2 ~ZðEg − EfÞÞ ¼ 0; ð78Þ

where we have defined

Z≡ β1 þ 2β2rþ β3r2 ð79Þ

~Z≡ β1 þ β2rð1þ XÞ þ β3r2X; ð80Þ

r≡ b
a
;H≡ _a

a
Hf ≡

_b
b
: ð81Þ

Note that r in this section is not the radial coordinate. Let us
now assume that only the physical metric gμν is perturbed;
i.e., all the perturbative quantities for fμν, fΨf; Bf;Φf; Efg,
are vanishing. Looking at Eqs. (76)–(78) we find

X2a2Zðk2Eg þ 3ΦgÞ ¼ 0; ð82Þ

Xa2ZBg ¼ 0; ð83Þ

X2a2 ~ZEg ¼ 0: ð84Þ

From Eqs. (82)–(84) it is clear that the g-metric scalar
perturbations, Bg, Φg and Eg, should vanish (which in turn
implies, using Eq. (75), that Ψg should also be vanishing)
unless the quantities ~Z and Z are both vanishing. In order to
prove that the latter cannot be the case let us now assume
~Z ¼ 0. In this case we have

β1 þ β2rð1þ XÞ þ β3r2X ¼ 0: ð85Þ

On the other hand, we know from the Bianchi constraint (7)
that at the background level X satisfies the condition

X ¼ a
_a

_b
b
: ð86Þ

If we now insert the value of X from Eq. (86) into Eq. (85),
we obtain

β1a _aþ β2ða _bþ b _aÞ þ β3b _b ¼ 0

⇒
β1
2
ða2Þ_þ β2ðabÞ_þ

β3
2
ðb2Þ_¼ 0: ð87Þ

Finally, by integrating Eq. (87) over conformal time, we get

β1a2 þ 2β2abþ β3b2 ¼ C ⇒ β1 þ 2β2rþ β3r2 ¼
C
a2

;

ð88Þ

where C is an arbitrary constant. We, however, need to
assume Z ¼ 0 in this case, which then implies C ¼ 0. The
condition (88) with C ¼ 0 requires r to be a constant and
given by a particular combination of the parameters β1, β2
and β3. From the background equations of bimetric gravity
[68] one realizes immediately that this condition implies
that the Universe is in a de Sitter state (or, trivially, that
a ¼ b ¼ 0).
Let us now study the opposite scenario, i.e. where only

the reference metric fμν is perturbed and the physical metric
remains unperturbed. In this case the g-metric perturbations
fΨg; Bg;Φg; Egg are vanishing. Now Eqs. (72)–(75) imply

Zra2k2Ef ¼ 0; ð89Þ

ZrXBf ¼ 0; ð90Þ

3Za2rXΨf − 2 ~Za2rk2Ef ¼ 0 ð91Þ

~Za2rEf ¼ 0: ð92Þ

CONSISTENT METRIC COMBINATIONS IN COSMOLOGY … PHYSICAL REVIEW D 92, 104034 (2015)

104034-11



From Eqs. (89)–(92) we can again conclude that the f-
metric scalar perturbations should also vanish in this case
(note that Φf is already vanishing due to our gauge choice),
unless both ~Z and Z are vanishing. The latter case again
corresponds to a de Sitter universe where r ¼ const. We
can, therefore, conclude, based on both cases studied here,
that for any cosmological configurations different from a
pure de Sitter universe, the possibility that only one of the
two metrics is perturbed is excluded at the scalar level.
A similar analysis can be done using tensor perturba-

tions. The line elements for the physical and reference
metrics in this case take the forms

ds2g ¼ a2ðηÞ½−dη2 þ ðδij þ hgijÞdxidxj�; ð93Þ

ds2f ¼ b2ðηÞ½−X2dη2 þ ðδij þ hfijÞdxidxj�; ð94Þ

where hg;fij are the tensor perturbation quantities and are in
general functions of space and conformal time η. These
quantities satisfy the relations

hii ¼ 0; h;iij ¼ 0; ð95Þ

for both hg and hf; here we again use the Kronecker delta to
raise or lower spatial indices.

In a perfect-fluid model there are no tensor perturbation
modes in the stress-energy-momentum tensor, and as a
result, the right-hand side of the perturbed Einstein equa-
tion for gμν vanishes. Because of the conditions (95) we
have only two degrees of freedom for each hij which are
fully decoupled and satisfy the following first-order per-
turbation equations in Fourier space:

ḧg þ 2H _hg þ k2hg þ a2r ~Zðhg − hfÞ ¼ 0; ð96Þ

ḧf þ
�
2Hf −

_X
X

�
_hf þ k2X2hf þ a2X

r
~Zðhf − hgÞ ¼ 0:

ð97Þ

As in the scalar case discussed above, we now assume
that only the g metric is perturbed while the f metric is
unperturbed (the argument is identical if we assume instead
that only fμν is perturbed); this means that hf ¼ 0. From
Eq. (97) it is straightforward to see that the g-metric tensor
perturbation hg should also vanish, unless the quantity ~Z is
vanishing. This corresponds to the condition (88), but
contrary to the scalar case, here C is an arbitrary constant
and is not required to vanish in order for the g and f tensor
perturbations to decouple. One obvious solution is, how-
ever, again the case where C ¼ 0, i.e. a purely de Sitter
universe which does not correspond to the real universe.

TABLE I. List of all metric combinations studied in the present work, as well as a few other interesting combinations studied in the
literature. ✓ and × denote consistent and inconsistent cases, respectively. Here, “PF,” “Inhom.” and “Aniso.” stand, respectively, for
isotropic and homogeneous (perfect fluid), isotropic but inhomogeneous, and homogeneous but anisotropic matter sources. “Any”
stands for a matter source of any type. k is the spatial curvature of an FLRW metric; in cases with explicit indices g and f for k the two
metrics are assumed to have different spatial curvatures.

Metric combinations

gμν (physical metric) fμν (reference metric) Tg
μν Possibility Reference

FLRW (k) FLRW (k) PF ✓ Standard
FLRW (kg) FLRW (kf) PF × Present work and Ref. [55]
FLRW Lemaître PF × Present work
FLRW Lemaître Inhom. ✓ Present work and Ref. [26]
Lemaître FLRW Any × Present work
FLRW LTB Any × Present work
LTB FLRW Any × Present work
LTB LTB PF ✓

a Present work
Bianchi I FLRW Any × Present work
FLRW Bianchi I PF × Present work
FLRW Bianchi I Aniso. ✓ Present work
Bianchi Class A Bianchi Class A PF ✓ Refs. [30,79]
Perturbed FLRW Perturbed FLRW Perturbed PF ✓ Standard
Perturbed FLRW (scalars) Unperturbed FLRW (scalars) Perturbed PF ×b Present work
Unperturbed FLRW (scalars) Perturbed FLRW (scalars) Perturbed PF ×b Present work
Perturbed FLRW (tensors) Unperturbed FLRW (tensors) Perturbed PF ×c Present work
Unperturbed FLRW (tensors) Perturbed FLRW (tensors) Perturbed PF ×c Present work

aThere are conditions which must be satisfied; see the text for details.
bUnless the metrics are de Sitter; see the text for details.
cUnless the metrics are de Sitter or satisfy a specific condition; see the text for details.
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The only nontrivial class of solutions for which the tensor
modes decouple while the scalar modes are still coupled is
the case where C is nonvanishing. Whether or not these
solutions are cosmologically interesting remains to be
investigated; we leave this for future work.2

V. CONCLUSIONS

One of the problems of contemporary cosmology is that
there are very few, if any, well-studied, and well-motivated
alternatives to the standard model that are viable and
distinguishable from ΛCDM. Massive bigravity models
(e.g. the particular model discussed in [68]) could be one of
such rare cases if the problem of perturbation instability
([69,70]) could be overcome. However, most studies of
bigravity models confined themselves to homogeneous and
isotropic metrics with no or identical spatial curvatures.
Before ruling out bigravity cosmology one should, there-
fore, see if the problems could be solved or alleviated when
a different geometry is chosen. This paper was devoted to
addressing this question by scanning several relatively
simple possible metric combinations in search for consis-
tent cases. Future work will be necessary to actually solve
the equations for some of such cases and identify cosmo-
logically viable ones.
We, however, found that there are only a few metric

combinations that survive our analysis. In most cases, two
different metrics are impossible unless a suitable modifi-
cation is made to the matter source beyond the standard
perfect-fluid assumption. Our results are summarized in
Table I. In particular we find that the only alternative
combination with standard matter source is an LTB–LTB
model (in addition to the Bianchi-Bianchi models previ-
ously studied in Refs. [30,79]), subject to some constraints.
Combinations like FLRW–Lemaître and FLRW–Bianchi I
all require either inhomogeneous or anisotropic sources.
We also investigated the question of whether having linear
perturbations in just one metric is theoretically consistent.
We found, not unexpectedly, that there are no consistent
cases except for purely de Sitter backgrounds.
Whether any of the surviving combinations give rise to

viable cosmological models at both the background and
perturbative levels is, however, entirely to be seen.
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APPENDIX: IMPOSSIBILITY OF MAPPING
LEMAÎTRE TO FLRW IN BIGRAVITY

In this appendix we prove that it is impossible to map the
case where the physical metric gμν is FLRW and the
reference metric fμν has a lapse and scale factor depending
on both r and t to a combination where both metrics are of
an FRLW form.
We start with the metrics in terms of the coordinates r

and t,

gμνdxμdxν ¼ −dt2 þ a2ðtÞd ~xg2; ðA1Þ

fμνdxμdxν ¼ −X2ðt; rÞdt2 þ b2ðt; rÞd ~xf2; ðA2Þ

where

d ~xg2 ¼
dr2

1 − kgr2
þ r2dΩ2; ðA3Þ

d ~xf2 ¼
dr2

1 − kfr2
þ r2dΩ2; ðA4Þ

and dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. We now want to see if it is
possible under any conditions to rewrite the metrics in an
FLRW form when we transform the coordinates r and t to
some new coordinates ~r and ~t. We assume the new and old
coordinates to be related as

t ¼ Tð~t; ~rÞ; ðA5Þ

r ¼ Rð~t; ~rÞ: ðA6Þ

Under these transformations the g-metric scale factor a
and the f-metric scale factor and lapse b and X should
transform as

aðtÞ → ~að~t; ~rÞ; ðA7Þ

Xðt; rÞ → ~Xð~t; ~rÞ; ðA8Þ

bðt; rÞ → ~bð~t; ~rÞ: ðA9Þ

In order to know how the line elements (A3) and (A4) look
under the coordinate transformations, we should first see
how dt2 and dr2 transform. We have

dt2 ¼ _T2d~t2 þ 2T 0 _Td~td~rþ T 02d~r2; ðA10Þ

dr2 ¼ _R2d~t2 þ 2R0 _Rd~td~rþ R02d~r2; ðA11Þ

where an overdot denotes a derivative with respect to ~t and
a prime denotes a derivative with respect to ~r. Using all
these relations, the transformed line elements for the
metrics read

2The case for vector perturbations is not of interest to us here,
but looking at the corresponding perturbative equations presented
in Ref. [88] it seems to us that the case where vector perturbations
are nonvanishing only for the physical metric while the reference
metric remains unperturbed is possible.
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d~s2g ¼ −
�
_T2 −

~a2

1 − kgR2
_R2

�
d~t2 þ 2

�
~a2

1 − kRR2
R0 _R − T 0 _T

�
d~td~rþ

�
~a2

1 − kgR2
R02 − R02

�
d~r2 þ ~a2R2dΩ2; ðA12Þ

d~s2f ¼ −
�
~X2 _T2 −

~b2

1 − kfR2
_R2

�
d~t2 þ 2

�
~b2

1 − kfR2
R0 _R − ~X2T 0 _T

�
d~td~rþ

�
~b2

1 − kfR2
R02 − ~X2T 02

�
d~r2 þ ~b2R2dΩ2:

ðA13Þ

Now in order to have both metrics in an FLRW form, we
need to set the following constraints on our transformed
metric components. From Eq. (A12) we obtain

_T2 −
~a2

1 − kgR2
_R2 ¼ A2ð~tÞ; ðA14Þ

~a2

1 − kgR2
R0 _R − T 0 _T ¼ 0; ðA15Þ

~a2

1 − kgR2
R02 − T 02 ¼ B2ð~tÞ

1 − ~kg ~r2
; ðA16Þ

~a2R2 ¼ B2ð~tÞ~r2; ðA17Þ

and from Eq. (A13) we find

~X2 _T2 −
~b2

1 − kfR2
_R2 ¼ C2ð~tÞ; ðA18Þ

~b2

1 − kfR2
R0 _R − ~X2T 0 _T ¼ 0; ðA19Þ

~b2

1 − kfR2
R02 − ~X2T 02 ¼ D2ð~tÞ

1 − ~kf ~r2
; ðA20Þ

~b2R2 ¼ D2ð~tÞ~r2; ðA21Þ

where A, B, C, andD are arbitrary functions of only ~t. Now
from Eqs. (A17) and (A21), we get

~a2

~b2
¼ B2ð~tÞ

D2ð~tÞ ; ðA22Þ

and from Eqs. (A15) and (A19), we get

~b2

ð1 − kfR2Þ ~X2
¼ ~a2

1 − kgR2
: ðA23Þ

Now using the condition (A23) and Eqs. (A14) and (A18),
we find

A2ð~tÞ ¼ C2ð~tÞ
~X2

: ðA24Þ

This tells us that ~X must be a function only of ~t. Combining
this with Eqs. (A22) and (A23), we immediately see that R
must also be a function only of ~t, and as a result R0 ¼ 0.
Taking this into account, Eq. (A19) implies that

T 0 _T ¼ 0: ðA25Þ

Let us first discuss the option where _T ¼ 0. In this case
Eq. (A14) tells us that ~a must be a function only of ~t. Given
that ~a and ~R are both functions only of ~t, Eq. (A17)
immediately gives us a contradiction since the left-hand
side is a function only of ~t; while the right-hand side is a
function of both ~t and ~r. For the second option where
we assume T 0 ¼ 0, Eqs. (A16) and (A20) imply that
Dð~tÞ ¼ Bð~tÞ ¼ 0, which of course means that we cannot
have FRLW metrics under any coordinate transformations.
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