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Almost a century ago, Einstein used a weak field approximation around Minkowski spacetime to
calculate the energy carried away by gravitational waves emitted by a time changing mass-quadrupole.
However, by now there is strong observational evidence for a positive cosmological constant, Λ. To
incorporate this fact, Einstein’s celebrated derivation is generalized by replacing Minkowski spacetime
with de Sitter spacetime. The investigation is motivated by the fact that, because of the significant
differences between the asymptotic structures of Minkowski and de Sitter spacetimes, many of the standard
techniques, including the usual 1=r expansions, cannot be used for Λ > 0. Furthermore, since, e.g., the
energy carried by gravitational waves is always positive in Minkowski spacetime but can be arbitrarily
negative in de Sitter spacetime irrespective of how small Λ is, the limit Λ → 0 can fail to be continuous.
Therefore, a priori it is not clear that a small Λ would introduce only negligible corrections to Einstein’s
formula. We show that, while even a tiny cosmological constant does introduce qualitatively new features,
in the end, corrections to Einstein’s formula are negligible for astrophysical sources currently under
consideration by gravitational wave observatories.
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I. INTRODUCTION

One of the first predictions of general relativity came
from Einstein’s calculations that demonstrated the exist-
ence of gravitational waves in the weak field approxima-
tion. Although the idea of gravitational waves was already
explored by others including Lagrange and Poincaré
(see [1] for a review), Einstein’s 1916 paper provided a
relativistic description by linearizing field equations of
general relativity off the Minkowski background in the
presence of an external, time-changing source [2]. Two
years later, he also calculated the energy carried by these
waves far away from the source. He found that the leading-
order contribution to the emitted power is proportional to
the square of the third time derivative of the mass quadru-
pole moment [3]. However, in the ensuing decades, there
was a great deal of confusion on the question of whether
gravitational waves even exist in full general relativity,
beyond the linear approximation [4]. On the theoretical
side, this controversy was finally resolved in the early
1960s by the work of Bondi, Sachs and others [5,6]. On the
observational side, the physical reality of gravitational
waves was established by the discovery of the Hulse-
Taylor binary pulsar in 1974 and careful monitoring of its
orbit over the subsequent years [7]. These high precision
measurements allowed a direct comparison between the
loss of orbital energy and the energy emitted by

gravitational waves. Today, observational evidence yields
a confirmation of the existence of gravitational quadrupolar
radiation to an accuracy of three parts in 103 [8].
Einstein’s calculation and its subsequent refinements and

generalizations (due to Eddington [9], Landau and Lifshitz
[10], Fock [11], Blanchet and Damour [12] and others), as
well as the Bondi-Sachs framework in full general relativity
[5,6], use field equations with a vanishing cosmological
constant, Λ. On the other hand, by now there is strong
evidence from independent observations that the dominant
contribution to the energy density of the Universe is best
modeled by a positive cosmological constant Λ [13,14].
But because the value of Λ is so small, at a practical level it
seems natural to just ignore it and use the well-developed
Λ ¼ 0 framework. However, our study of isolated gravi-
tating systems in asymptotically de Sitter spacetimes in
[15] and of linear fields on a de Sitter background in [16]
showed that there are some qualitative differences between
the Λ ¼ 0 and Λ > 0 cases, making the limit Λ → 0 quite
subtle.1 In particular, the limit of observable quantities
associated with gravitational waves can be discontinuous,
whence smallness of Λ does not always translate to
smallness of corrections to the Λ ¼ 0 results. The question
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1The origin of these subtleties lies in the fact that the observed
accelerated expansion makes the asymptotic spacetime geometry
in the distant future drastically different from that of asymptoti-
cally Minkowski spacetimes. Therefore, although for concrete-
ness and simplicity we will refer to a cosmological constant, as in
[15,16], our main results will not change if instead one has an
unknown form of “dark energy.”
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then is whether one can reliably justify one’s first instinct
that Einstein’s Λ ¼ 0 quadrupole formula can receive only
negligible corrections, given the smallness of Λ.
To make this concern concrete, let us consider a few

illustrations of the qualitative differences. First, irrespective
of how small Λ is, we do not yet have the analog of the
Bondi news tensor [5,17,18] that describes gravitational
radiation in a gauge invariant and manageable fashion in
Λ ¼ 0, nonlinear general relativity [15,19]. Indeed, even
the radiation field Ψ0

4 that is heavily used in both analytical
discussions of gravitational radiation and current numerical
simulations in the Λ ¼ 0 context acquires an ambiguity in
the Λ > 0 case called the “origin dependence” by Penrose
[6,20] and “direction dependence” by Krtouš and Podolský
[21]. Also, if one assumes the standard Bondi expansion of
the physical metric, one finds that the news tensor must
vanish identically [22,23]. Second, while wavelengths of
linear fields are constant in Minkowski spacetime, they
increase as waves propagate on de Sitter spacetime, and
exceed the curvature radius in the asymptotic region of
interest. Therefore, the commonly used geometric optics
approximation fails in the asymptotic region. Also, one
cannot carry over the standard techniques to specify ‘near
and far wave zones’ from the Λ ¼ 0 case. Third, in
Minkowski spacetime one can approach Iþ—the arena
on which properties of gravitational waves can be analyzed
unambiguously—using r ¼ r0 surfaces with larger and
larger values of r0. Therefore, it is standard practice to
use 1=r expansions of fields in the analysis of gravitational
waves (see, e.g., [24–26]). By contrast, in de Sitter
spacetime, such timelike surfaces approach a past cosmo-
logical horizon across which there is no flux of energy or
momentum for retarded solutions. Iþ is now approached
by a family of spacelike surfaces (on which time is
constant) whence one cannot use the 1=r expansions that
dominate the literature on gravitational waves. Fourth,
while Iþ is null in the asymptotically flat case, it is
spacelike if Λ is positive [6]. Consequently, unfamiliar
features can arise as we move from Λ ¼ 0 to a tiny positive
value both in full general relativity and in the linearized
limit. In particular, for every Λ > 0, all asymptotic sym-
metry vector fields–including those corresponding to ‘time
translations’–are also spacelike in a neighborhood of Iþ.
As a result, while the energy carried by electromagnetic and
linearized gravitational waves is necessarily positive in the
Λ ¼ 0 case, it can be negative and of arbitrarily large
magnitude if Λ > 0 [16]. Since this holds for every Λ > 0,
however tiny, the lower bound on energy carried by these
waves has an infinite discontinuity at Λ ¼ 0. Now, if
(electromagnetic or) gravitational waves produced in real-
istic physical processes could carry negative energy, we
would be faced with a fundamental instability: the source
could gain arbitrarily high energy simply by letting
the emitted waves carry away negative energy. Thus a
positive Λ, however small, opens up an unforeseen

possibility, with potential to drastically change gravita-
tional dynamics.2 Finally, yet another difference is that in
the transverse (i.e., Lorentz) traceless gauge the linearized
4-metric field satisfies the massive Klein-Gordon equation
(where the mass is proportional to

ffiffiffiffi
Λ

p
). While the mass is

tiny, a priori it is possible that over cosmological distances
the difference from the propagation in the Λ ¼ 0 case could
accumulate, creating an Oð1Þ difference in the linearized
metric in the asymptotic region, far way from sources.
Since Einstein’s quadrupole formula is based on the form of
the metric perturbation in this ‘wave zone’, secular accu-
mulation could then lead to Oð1Þ departures from that
formula, even when Λ is tiny.
These considerations bring out the necessity of a

systematic analysis to determine whether the Einstein’s
quadrupole formula continues to be valid even though
many of the key intermediate steps cannot be repeated for
the de Sitter background. The goal of this paper is to
complete this task for linearized gravitational waves created
by time-changing (first-order) sources on de Sitter
background.
As in the Λ ¼ 0 case, the calculation involves two steps:
(i) expressing metric perturbations far away from the

source in terms of the quadrupole moments of the
source and

(ii) finding the energy radiated by this source in the form
of gravitational waves.

However, the extension of the Λ ¼ 0 analysis introduces
unforeseen issues in both steps. In step (i), since the
background spacetime is no longer flat, the meaning of
“quadrupole moment” is not immediately clear. The second
subtlety concerns both steps. Specifically, due to the
curvature of de Sitter spacetime, the gravitational waves
backscatter. This backscattering introduces a tail term in the
solutions to the linearized Einstein’s equation already in the
first post-Newtonian order. That in and of itself is not
problematic. However, if a tail term persisted in the formula
for energy loss, one would need to know the history of the
source throughout its evolution in order to determine the
flux of energy emitted at any given retarded instant of
time.3 Third, as discussed above, the energy calculated in
step (ii) could, in principle, be arbitrarily negative, in which
case self-gravitating systems would be drastically unstable
to emission of gravitational waves.

2We suggested in [16] that this possibility will not be realized
for realistic sources because the fields they induce on Iþ would
be constrained just in the right way for the waves to carry positive
energy. However, that argument was meant only as an indication,
based on properties of source-free gravitational waves. A detailed
analysis of the quadrupole formula for Λ > 0 is needed to settle
this issue in the weak field limit.

3In the Λ ¼ 0 case, backscattering occurs only at higher post-
Newtonian orders. These higher-order corrections to the quadru-
pole formula are not needed to compare theory with observations
for the Hulse-Taylor pulsar so far because the current observa-
tional accuracy is at the 10−3 level rather than 10−4.

ABHAY ASHTEKAR, BÉATRICE BONGA, AND ARUNA KESAVAN PHYSICAL REVIEW D 92, 104032 (2015)

104032-2



Thus, from a conceptual standpoint, the generalization of
the quadrupole formula to include a positive Λ is both
interesting and subtle. For example, the presence of the tail
term opens a door to a new contribution to the ‘memory
effects’ associated with gravitational waves [18,27,28]. In
addition, as in the asymptotically flat case, it offers
guidance in the development of the full, nonlinear frame-
work. Finally, as we will see, this generalization also
provides detailed control on the approximations involved
in setting Λ to zero.
The paper is organized as follows. In Sec. II, we

introduce our notation and recall the linearized Einstein’s
equation on de Sitter background as well as their retarded
solutions sourced by a (first-order) stress-energy tensor. In
Sec. III, we introduce the late time and post-Newtonian
approximations and express the leading terms of solutions
in terms of the quadrupole moments of sources. In Sec. IV,
we use these expressions to calculate the energy emitted by
the source using Hamiltonian methods on the covariant
phase-space of the linearized solutions introduced in [16],
and then discuss in some detail the novel features that arise
because of the presence of a positive Λ. We find that the
energy carried away by the gravitational waves produced
by a time changing source is necessarily positive. Detailed
expressions bear out the expectation that, for sources of
gravitational radiation currently under consideration by
gravitational wave observatories, the primary modification

to Einstein’s formula can be incorporated by taking into
account the expansion of the Universe and the resulting
gravitational redshift. Section V contains a brief summary.
Appendix A discusses the tail term in the retarded solution
which makes the limit Λ → 0 limit quite subtle.
We use the following conventions. Throughout we

assume that the underlying spacetime is four-dimensional
and set c ¼ 1. The spacetime metric has signature
−;þ;þ;þ. The curvature tensors are defined via:
2∇½a∇b�kc ¼ Rabc

dkd, Rac ¼ Rabc
b and R ¼ Rabgab.

Throughout we use Penrose’s abstract index notation
[20,29]: a; b;…will be the abstract indices labeling tensors
while indices ā; b̄;… will be numerical indices. In par-
ticular, components of a tensor field Tab (in a specified
chart) are denoted by Tā b̄. We have made an effort to ensure
that this paper is conceptually and notationally self-
contained. However, we refer the reader to our earlier
papers, [15] and [16], for more detailed discussions of the
numerous issues raised by the inclusion of a positive
cosmological constant.

II. PRELIMINARIES

The isolated system of interest is depicted in the left
panel of Fig. 1 (and specified in greater detail in the
beginning of Sec. III). It represents a matter source in de
Sitter spacetime whose spatial size is uniformly bounded in

FIG. 1 (color online). Left panel: A time-changing quadrupole emitting gravitational waves whose spatial size is uniformly bounded in
time. The causal future of such a source covers only the future Poincaré patchMþ

P (the upper triangle of the figure). There is no incoming
radiation across the past boundary Eþði−Þ of Mþ

P because we use retarded solutions. The shaded region represents a convenient
neighborhood of Iþ in which perturbations satisfy a homogenous equation and the approximation (3.10), discussed below, holds
everywhere. The dashed (red) lines with arrows show the integral curves of the “time translation” Killing field Ta (adapted to the rest

frame of the source). Right panel: The rate of change of the quadrupole moment at the point ð−j~xj; ~0Þ on the source creates the retarded
field at the point ð0; ~xÞ on Iþ. The figure also shows the cosmological foliation η ¼ const and the timelike surfaces r ≔ j~xj ¼ const. As
r goes to infinity, the r ¼ const surfaces approach Eþði−Þ. Therefore, in contrast with the situation in Minkowski spacetime, for
sufficiently large values of r, there is no flux of energy across the r ¼ const surfaces.
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time. Such a source intersects I� at single points i�.
Examples are provided by isolated stars and coalescing
binary systems. The causal future of such a source covers
only the future Poincaré patch, Mþ

P . No observer whose
world-line is confined to the past Poincaré patch can see the
isolated system or detect the radiation it emits. Therefore, to
study this system, it suffices to restrict oneself just to Mþ

P ,
which can be coordinatized by ðη; x; y; zÞ. On this patch, the
comoving spatial coordinates, ðx; y; zÞ, span the entire
range ð−∞;∞Þ while the conformal time coordinate η
takes values in ð−∞; 0Þ. The background de Sitter metric
ḡab takes the form

ḡab ¼ a2ðηÞg∘ab with g∘ā b̄dxādxb̄ ¼ ð−dη2 þ d~x2Þ;
ð2:1Þ

where the scale factor is aðηÞ ¼ −ðHηÞ−1, the Hubble
parameter H is related to the cosmological constant Λ by
H ≔

ffiffiffiffiffiffiffiffiffi
Λ=3

p
. As discussed in Sec. 4.3.2 of [15], there is a

seven-dimensional group of isometries that leaves this
metric invariant and that maps this patch to itself. In this
paper the primary focus will be the vector field generating
time translations as this is the relevant vector field to
calculate energy and power. This Killing vector field is
denoted by Ta and is given by4

T ¼ −H
�
η
∂
∂ηþ x

∂
∂xþ y

∂
∂yþ z

∂
∂z

�
: ð2:2Þ

We will refer to it as a “time translation” because it is
the limit of the time-translation Killing field of the
Schwarzschild-de Sitter spacetime as the Schwarzschild
mass goes to zero, and because it reduces to a time
translation of Minkowski spacetime in the limit Λ goes
to zero. The second property is not obvious from the form
of the vector field above, since Ta appears to vanish as Λ
(and consequently H) goes to zero. However, as discussed
in [16], one has to be more careful in taking the limit
Λ → 0: One cannot use ðη; ~xÞ coordinates since the metric
in (2.1) is not well defined in this limit. Rather, one needs to
use the differential structure induced on the Poincaré patch
Mþ

P by the ðt; ~xÞ coordinates, where the proper time t is
related to the conformal time η via Hη ¼ −e−Ht. In the
ðt; ~xÞ chart, when Λ → 0, we have

ḡā b̄dx
ādxb̄ ¼ −dt2 þ e2Htd~x2 → −dt2 þ d~x2 ≕ η

∘
ā b̄dx

ādxb̄

ð2:3Þ

and Ta → ta ¼ η
∘ab∇bt, a time translation Killing field of

the Minkowski metric η∘ab (which is distinct from g∘ab which
is also flat).
To study the gravitational radiation emitted by an

isolated system in the presence of positive Λ, we consider
first-order perturbations off de Sitter spacetime. The per-
turbed metric is denoted by gab,

gab ¼ ḡab þ ϵ γab ≕ a2ðηÞðg∘ab þ ϵhabÞ; ð2:4Þ

where ϵ is a smallness parameter. While γab are the physical
first-order perturbations off de Sitter spacetime, it is
convenient—as will be clear shortly—to use the confor-
mally related mathematical field hab while solving the
linearized Einstein’s equation.
In terms of the trace-reversed metric perturbation

γ̄ab ≔ γab − 1
2
ḡabγ, the linearized Einstein’s equation in

the presence of a (first-order) linearized source Tab can be
written as

□̄γ̄ab − 2∇̄ða∇̄cγ̄bÞc þ ḡab∇̄c∇̄dγ̄cd −
2

3
Λðγ̄ab − ḡabγ̄Þ

¼ −16πGTab ð2:5Þ

where ∇̄ and □̄ denote the derivative operator and the
d’Alembertian defined by the de Sitter metric ḡab.
The solutions to the linearized equation with sources on

the future Poincaré patch ðMþ
P ; ḡabÞ are discussed in detail

by de Vega et al. in [30] (see also [31] for a recent
discussion). Here we will summarize their results, comment
on the physical interpretation, and also discuss the
limit Λ → 0.
Denote by ηa the vector field normal to the cosmological

slices η ¼ const satisfying ηa∇aη ¼ 1 and let na ≔ −Hηηa

denote the future pointing unit normal to these slices. Then,
it is convenient to solve (2.5) using the following gauge
condition:

∇̄aγ̄ab ¼ 2Hnaγ̄ab: ð2:6Þ

This is a generalization of the more familiar Lorentz gauge
condition and, as with the Lorentz condition, it does not
exhaust the gauge freedom. Nonetheless, in this gauge the
linearized Einstein’s equation (2.5) simplifies significantly
when it is rewritten in terms of the field χ̄ab which is related
to the trace-reversed metric perturbations γ̄ab via χ̄ab ≔
a−2γ̄ab ¼ hab − 1

2
g∘abg

∘cdhcd. Finally, it is easiest to obtain
solutions to (2.5) by performing a decomposition of χ̄ab and
Tab, adapted to the cosmological η ¼ const slices:

~χ≔ ðηaηbþq∘ abÞχ̄ab; χa≔ ηcq∘ abχ̄bc; χab≔ q∘ amq
∘
b
nχ̄mn;

ð2:7Þ

4This time translation Ta is adapted to the rest frame of the
source in the asymptotic future. In [15] it was denoted by Da

following the terminology in the literature, where its role as the
dilation vector field with respect to g∘ab is emphasized.
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~T ≔ ðηaηbþq∘ abÞTab; T a ≔ ηcq∘ abTbc; T ab≔ q∘ amq
∘
b
nTmn;

ð2:8Þ

where q∘ ab is the (contravariant) spatial metric on a η ¼
const slice induced by the flat metric g∘ab, i.e.,
q∘ ab ¼ g∘ab þ ηaηb. (Note that unlike χ̄ab in (2.7), the
stress energy tensor Tab in (2.8) has neither been rescaled
by a−2 nor has it been trace-reversed.) In the chart ðη; ~xÞ
we will use in the main body of the paper, −ð1=4HηÞ~χ is
the perturbed lapse function and ðHηÞ−2q∘ abχb is the
perturbed shift field. Thus, as in the linearized theory
off Minkowski spacetime, the physical degrees of free-
dom associated with radiation are encoded in the totally
spatial projection χab.
It is convenient to regard the fields ~χ; χa and χab, as

living in the flat spacetime ðMþ
P ; g

∘
abÞ because: (i) the

gauge condition and field equations have a simple form
in terms of the derivative operators defined by g∘ab; and
(ii) these gauge conditions and field equations are well
defined also at Iþ because, as we will see in Sec. IV, the
metric g∘ab turns out to provide a viable conformal
rescaling of ḡab that is well defined at Iþ. The gauge
conditions (2.6) become

D
∘ a
χab ¼ ∂ηχb −

2

η
χb; and

D
∘ a
χa ¼ ∂ηð~χ − χÞ − 1

η
~χ; ð2:9Þ

where D
∘
is the derivative operator of the spatial metric

q∘ ab and χ ¼ q∘ abχab. In this gauge, the linearized
Einstein’s equation (2.5) is split into three as follows

□
∘ �1

η
~χ

�
¼ −

16πG
η

~T ; ð2:10Þ

□
∘ �1

η
χa

�
¼ −

16πG
η

T a; ð2:11Þ
�
□
∘ þ 2

η
∂η

�
χab ¼ −16πGT ab: ð2:12Þ

where □
∘
is the d’Alembertian operator of the flat metric

g∘ab. Using the conservation of the first-order stress-
energy tensor, ∇̄aTab ¼ 0, it is easy to directly verify
that the gauge conditions and the field equations are
consistent, as they must be.
Since we wish to impose the ‘no incoming radiation’

boundary conditions, we will seek retarded solutions to
these equations. The first two equations, (2.10) and (2.11),
can be solved using the scalar retarded Green’s function
of □

∘
:

GðMÞ
R ðx; x0Þ ¼ 1

4πj~x − ~x0j δðη − η0 − j~x − ~x0jÞ ð2:13Þ

to yield

~χðη; ~xÞ ¼ 4Gη
Z

d3~x0

j~x − ~x0j
1

ηRet
~TðηRet; ~x0Þ; and

χāðη; ~xÞ ¼ 4Gη
Z

d3~x0

j~x − ~x0j
1

ηRet
T āðηRet; ~x0Þ; ð2:14Þ

where ηRet is the retarded time related to η and ~x by
ηRet ≔ η − j~x − ~x0j. We could use the scalar Green’s func-

tion of□
∘
also in the second equation because χā refer to the

Cartesian components of the vector perturbation. While we
will use the solutions (2.14) in an intermediate step, the
fluxes of energy, momentum and angular momentum turn
out to depend only on χab because, as we noted above, the
other components correspond to linearized lapse and shift
fields.
One can use a scalar Green’s function also for the

Cartesian components of the spatial tensor field χab.
However, since the operator on the left-hand side of
(2.12) has the extra term, ð2=ηÞ∂η, we cannot use the

Green’s function of the flat space wave operator □
∘
.

Instead, Ref. [30] provides the retarded Green’s function
satisfying

�
□
∘ þ 2

η
∂η

�
GRðx; x0Þ ¼ −ðH2η2Þδðx; x0Þ: ð2:15Þ

In contrast to the flat space scalar Green’s function, the
solution to this equation has an additional term that
extends its support to the region in which x; x0 are
timelike related:

GRðx; x0Þ ¼
H2ηη0

4πj~x − ~x0j δðη − η0 − j~x − ~x0jÞ

þH2

4π
θðη − η0 − j~x − ~x0jÞ ð2:16Þ

where θðxÞ is the step function which is 1 when
x ≥ 0 and 0 otherwise. Therefore, the solution χab is
given by

χā b̄ðη; ~xÞ

¼ 16πG
Z

d3~x0
Z

dη0GRðx; x0Þ
�

1

H2η02

�
T ā b̄ðx0Þ:

ð2:17Þ

To simplify the solution, one uses the identity
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�
1

j~x − ~x0j
η

η0

�
δðη − η0 − j~x − ~x0Þ þ 1

η02
θðη − η0 − j~x − ~x0jÞ

¼ 1

j~x − ~x0j δðη − η0 − j~x − ~x0jÞ

−
∂
∂η0

�
1

η0
θðη − η0 − j~x − ~x0jÞ

�
; ð2:18Þ

in (2.17), integrates by parts with respect to η0, and
shows that the boundary terms do not contribute for any
given ðη; ~xÞ. Then everywhere on Mþ

P the solution is
given by

χā b̄ðη; ~xÞ ¼ 4G
Z

d3~x0

j~x− ~x0jT ā b̄ðηRet; ~x0Þ

þ 4G
Z

d3~x0
Z

ηRet

−∞
dη0

1

η0
∂η0T ā b̄ðη0; ~x0Þ ð2:19Þ

≡ ♯ā b̄ðη; ~xÞ þ ♭ā b̄ðη; ~xÞ; ð2:20Þ

where ♯ā b̄ðη; ~xÞ denotes the sharp propagation term and
♭ā b̄ðη; ~xÞ, the prolonged tail term. Note that this solution
relates the Cartesian components of χab to those of T ab.
Therefore, throughout the rest of the paper, whenever
we use this solution, we will restrict ourselves to
components in the Cartesian chart.
The retarded solution (2.19) has an interesting feature.

The first term ♯ab in this expression is identical to the
solution for the trace-reversed perturbations which satisfy
the linearized Einstein equation (with a first-order source
T ab) with respect to the Minkowski metric g∘ab. The second
term ♭ab, which is absent in the Minkowski case, depends
on the entire history of the behavior of the source up to time
ηRet. It results from the backscattering of the perturbation
by curvature in the de Sitter background. Thus, in contrast
to the Λ ¼ 0 case, the propagation of the metric perturba-
tion fails to be sharp already at the first post-Newtonian
order. The retarded solutions (2.14) and (2.19) satisfy the
equations of motion (2.10)–(2.12) by construction.
However, to obtain a solution to the physical problem at
hand, we need to make sure that they also satisfy the gauge
conditions (2.9). One can verify that this is the case using
conservation of the stress-energy tensor.
Finally, let us discuss the limit Λ → 0. From the solution

(2.19) it is not obvious that the tail term will disappear in
this limit. However, as stated above, to study this limit one
needs to use the differential structure given not by the ðη; ~xÞ
chart, but by the ðt; ~xÞ chart in which the de Sitter metric ḡab
of (2.3) admits a well-defined limit to the Minkowski
metric η

∘
ab as Λ → 0. Using the ðt; ~xÞ chart, it is easy to

show that the gauge condition (2.6) and the linearized
Einstein’s equation (2.5) reduce to the familiar Lorentz
gauge condition and linearized Einstein’s equation in
Minkowski spacetime, respectively,

∇∘ b
γ
∘
ab ¼ 0; and □

∘
γ
∘
ab ¼ −16πGTab; ð2:21Þ

where for notational coherence the metric perturbations off
the Minkowski spacetime metric η

∘
ab are denoted by γ

∘
ab.

Note that, while in the de Sitter case different components
of the perturbation satisfy different equations, (2.10)–
(2.12), in the Λ → 0 limit these distinct equations collapse
to a single flat space scalar wave equation for all Cartesian
components of γ

∘
ab. Consequently, the Green’s functions

(2.13) and (2.16) used to solve for various components of
the de Sitter perturbations, reduce to the scalar Green’s
function of the flat d’Alembertian operator □

∘
of η

∘
ab

(which, as we noted before, is distinct from the flat metric
g∘ab),

GðMÞ
R ðx; x0Þ ¼ 1

4πj~x − ~x0j δðt − t0 − j~x − ~x0jÞ: ð2:22Þ

Therefore, in the ðt; ~xÞ chart the retarded solutions of (2.21)
are given by

γ
∘
ā b̄ðt; ~xÞ ¼ 4G

Z
d3~x0

j~x − ~x0jTā b̄ðt − j~x − ~x0j; ~x0Þ: ð2:23Þ

This also follows directly by first expressing the final
solutions (2.14) and (2.19) in the ðt; ~xÞ chart and then
taking the Λ → 0 limit, as it must. Thus, our expectation
that tail term should disappear in the limit Λ → 0 is
explicitly borne out.

III. THE RETARDED SOLUTION
AND QUADRUPOLE MOMENTS

In full general relativity with positive Λ, spacetimes
describing isolated gravitating systems are asymptotically
de Sitter. To compute the energy emitted in the form of
gravitational waves, one would (numerically) solve
Einstein’s equations by imposing an appropriate “no-
incoming radiation” boundary condition, find the gravita-
tional fields on Iþ, and extract the energy radiated by
gravitational waves from these fields. This paper, of course,
restricts itself to a simplified version of this problem using
the first post–de Sitter approximation. We have already
incorporated the ‘no incoming radiation’ boundary con-
dition through retarded Green’s functions and our task is to
extract physical information from the emitted gravitational
waves by examining these solutions at Iþ. As explained in
Sec. I, the calculation will be performed in two steps. In the
first, carried out in this section, we use physically motivated
approximations to simplify the retarded solution (2.19) in
the asymptotic region near Iþ and relate the leading term to
the time-variation of the source quadrupole moment. The
second step will be carried out in Sec. IV.
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A. The late time and post-Newtonian approximations

To extract physical information from Eq. (2.19), we need
to examine this solution in the asymptotic region near Iþ. In
linearized gravity off Minkowski spacetime, one can

approach I
∘ þ

using a family of timelike tubes r ¼ ro, with
ever increasing values of the constant ro. Therefore, one
focuses on the form of the retarded solutions at large
distances from the source, keeping the leading-order 1=r
contribution, and ignoring terms that fall off as 1=r2. Since
the conformal factor used to completeMinkowski spacetime
in order to attach the null boundary Iþ falls-off as 1=r, this
approximation is sufficient to recover the asymptotic per-
turbation on Iþ and extract energy, momentum and angular
momentum carried by gravitational waves. In de Sitter
spacetime, by contrast, as mentioned in Sec. I, the r ¼ ro
timelike surfaces approach the cosmological horizon
Eþði−Þ, rather than Iþ (see Fig. 1). And the flux of energy
or momentum or angular momentum across Eþði−Þ van-
ishes identically for retarded solutions! Indeed, this is
precisely the ‘no incoming radiation condition’. (Thus,

Eþði−Þ is analogous to I
∘ −

rather than I
∘ þ

in Minkowski
spacetime.) Therefore, contrary to the strong intuition
derived fromMinkowski spacetime [24–26], the 1=r expan-
sions are now ill suited to study gravitational waves. (In
particular, one cannot blindly take over well-understood
notions such as the “wave zone.”All these differences occur
also for test electromagnetic fields on de Sitter spacetime.)
As explained in [15], Iþ of de Sitter spacetime is

spacelike and corresponds to the surface η ¼ 0 (see also
Sec. IVA). Therefore, it can be approached by a family of
spacelike surfaces. The first natural candidate is provided
by the cosmological slices η ¼ const used in Sec. II.
Another possibility is to use the family of spacelike
3-surfaces which lie in the shaded region of the left panel
of Fig. 1 to which Ta and the three rotational Killing fields
of ðMþ

P ; ḡabÞ are everywhere tangential. In this section we
will use the cosmological slices and in the next section, the
3-surfaces in the shaded region. To summarize, to approach
Iþ and extract the radiative part of the solution, we now
need a late time approximation in place of the
Minkowskian ‘far field’ approximation.
To introduce this approximation, we first need to sharpen

our restrictions on the spatial support of the matter source.

These conditions will capture the idea that the system under
consideration is isolated, e.g., an oscillating star or a
compact binary. First, we will assume that the physical
size DðηÞ of the system is uniformly bounded by Do on all
η ¼ const slices. A particular consequence of this require-
ment is that the source punctures Iþ at a single point iþ,
and I− at a single point i−, as depicted in Fig. 1. Physically,
this assumption will ensure that a binary, for example,
remains compact in spite of the expansion of the Universe.
We further sharpen the ‘compactness’ restriction through a
second requirement: Do ≪ lΛ, where lΛð¼ 1=HÞ is the
cosmological radius.5 Finally, for simplicity, we assume
that the system is stationary in the distant past and distant
future, i.e., LTTab ¼ 0 outside a finite η-interval. Such a
system is dynamically active only for a finite time interval
ðη1; η2Þ. This simplifying assumption can be weakened
substantially to allow LTTab to fall off at a suitable rate in
the approach to i�. We use the stronger assumption just to
ensure finiteness of various integrals without having to
consider the fall-off conditions in detail at each intermedi-
ate step. Furthermore, given that we are primarily interested
in calculating radiated power at a retarded instant of time,
the assumption is not really restrictive.
With these restrictions, we can now obtain an approxi-

mate form of the solution (2.19) which is valid near Iþ.
Consider, then, a cosmological slice, η ¼ const, and choose
the Cartesian coordinates ~x such that the center of mass of
the source lies at the origin. The right side of (2.20)
expresses χab as a sum of a sharp term and tail term. Let us
first simplify the sharp term. As in the standard linearized
theory off Minkowski spacetime [24], we first write it as

♯ā b̄ðη; ~xÞ ¼ 4G
Z

d3x0
Z

d3y0
T ā b̄ðηRet; ~y0Þ

j~x − ~x0j δð~x0; ~y0Þ;

ð3:1Þ

and Taylor-expand the j~x − ~x0j dependence of the integrand
around ~x0 ¼ 0 (recall that the integral over ~x0 is over a
compact region around the origin, the support of T ā b̄). In
the Taylor expansion, each derivative ∂=∂x0ā can be
replaced by −∂=∂xā because the ~x0 dependence of the
integrand of the last integral comes entirely from
j~x0 − ~xj. Hence,

♯ā b̄ðη; ~xÞ ¼
4G
r

�Z
d3x0

�
T ā b̄ðηret; ~x0Þ þ

x0cr̂c
r

T ā b̄ðηret; ~x0Þ þ ðx0cr̂cÞ∂ηretT ā b̄ðηret; ~x0Þ þ � � �
��

¼ 4G
r

�Z
d3x0T ā b̄ðηret; ~x0Þ þ

�
x0c1 r̂c
r

�Z
d3x0T ā b̄ðηret; ~x0Þ þ ðx0c2 r̂cÞ

Z
d3x0∂ηretT ā b̄ðηret; ~x0Þ þ � � �

�
ð3:2Þ

5Given that lΛ is about 5 Gpc, the condition is easily met by sources of physical interest, such as an isolated oscillating star or a
compact binary.
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where we have carried out the integral over ~y0 and where
the … denote higher-order terms in the Taylor expansion.
Note that we have replaced

ηRet ¼ ðη − j~x − ~x0jÞ by ηret ¼ η − r ð3:3Þ

because the coefficients of the Taylor expansion are
evaluated at ~x0 ¼ 0. In the second step we have used the
mean value theorem and ~x01 and ~x02 are the points in the
support of T ā b̄, determined by this theorem. Next, using
the fact that each of jx0c1 r̂c=rj and jx0c2 r̂c=rj is bounded by
the coordinate radius of the source at η ¼ ηret,

dðηretÞ ≔ DðηretÞ=aðηretÞ; ð3:4Þ

we conclude

♯ā b̄ðη; ~xÞ ¼
4G
r

Z
d3x0T ā b̄ðηret; ~x0Þ

×

�
1þOðdðηretÞÞ

r
þOðdðηretÞÞ

Δηret

�
; ð3:5Þ

where Δηret is the dynamical time scale (measured in the η
coordinate) in which the change in the source is of Oð1Þ. It
will be clear from Sec. III B that this is the time scale in
which the change in the quadrupole moments of the source
is Oð1Þ.
Up to this point, the mathematical manipulations are

essentially the same as those in the linear theory off
Minkowski spacetime [24]. The difference lies in the
underlying assumptions and the physical meaning of the
approximation scheme. A straightforward calculation
relates the second and third terms in the square brackets
in (3.5) to physical properties of the source. First, we have

dðηretÞ
r

¼ DðηretÞ
lΛ

ð−ηretÞ
r

≤
Do

lΛ

�
1 −

η

r

�
: ð3:6Þ

Note that to study the asymptotic form of the solution
on Iþ, unlike in the calculation off Minkowski spacetime,
we cannot use a large r approximation. Indeed, in the
calculation of the radiated energy in IV, we will need to
integrate over a finite range of r.6 While ð1 − η=rÞ can be
large, given any ro ≠ 0, we can choose a cosmological slice
η ¼ const sufficiently close to Iþ such that for all r > ro,
ð1 − η=rÞ is arbitrarily close to 1, whence dðηretÞ=r is
negligible. This is the late-time approximation. In particu-
lar, on Iþ (where η ¼ 0) we can ignore the second term in
the square bracket in (3.5) for all r > 0. The third term can
be re-expressed as

dðηretÞ
Δηret

¼ DðηretÞ
Δtret

≈ v ð3:7Þ

where D is the physical length scale of the source and Δt
the interval in proper time in which the source changes
by Oð1Þ, and where we have used the standard reasoning
from Minkowski spacetime to conclude that the ratio
DðηretÞ=Δtret can be identified with the velocity v of the
source. We now use the slow motion approximation in
which v ≪ 1 (in our c ¼ 1 units). Thus, within our
assumptions the sharp term is given by

♯ā b̄ðη; ~xÞ ¼
4G
r

Z
d3x0T ā b̄ðηret; ~x0Þ: ð3:8Þ

For the tail term ♭ā b̄ðη; ~xÞ in (2.20), this procedure only
replaces ηRet by ηret.
By adding the two contributions ♯ā b̄ and ♭ā b̄, we can

express χab as follows:

χā b̄ðη; ~xÞ ¼
4G
r

Z
d3~x0T ā b̄ðηret; ~x0Þ

×

�
1þO

�
Do

lΛ

�
1 −

η

r

��
þOðvÞ

�

þ 4G
Z

ηret

−∞
dη0

1

η0
∂η0

Z
d3~x0T ā b̄ðη0; ~x0Þ: ð3:9Þ

(The error term arising from ηRet → ηret in the tail term is
included in the square bracket in the first term.) On any
η ¼ ηo slice, the second term in the square bracket can be
neglected, in particular, for all r > −ηo, i.e., beyond the
intersection of that slice with the cosmological horizon
E−ðiþÞ. On Iþ, it can be neglected for all r > 0.
Let us conclude by summarizing all the approximations

that were made. First, in Sec. II, we presented the retarded
solution to Einstein’s equations in the first post–de Sitter
approximation. We then assumed that the source is compact
in the sense that the physical sizeDðηÞ of the support of the
stress-energy tensor Tab is uniformly bounded by Do, with
Do ≪ lΛ. Finally, we used the first post-Newtonian
approximation to set v ≪ 1 in our c ¼ 1 units. (If one
were to restore c, then the overall factor 4G would be
replaced by 4G=c4 in the first term and the OðvÞ term
would be of 1.5 post-Newtonian order.) Note that to obtain
(3.10), we did not have to make any assumption relating the
dynamical time scale Δtret of the system with the Hubble
time tH ¼ 1=H. Astrophysical sources of greatest interest
to the current gravitational wave observatories satisfy
Δtret ≪ tH. We will simplify the final results using this
approximation in Sec. IV B.
To avoid proliferation of symbols, from now on χabðη; ~xÞ

will stand for the approximate solution obtained by ignor-
ing the OððDo=lΛÞð1 − η=rÞÞ and OðvÞ terms relative to
the Oð1Þ terms in (3.9). Thus, we will set

6On Iþ the energy flux will be nonzero in the interval
−η2 < r < −η1, where ðη1; η2Þ is the interval where the source
is dynamical, i.e., LTT ab ≠ 0.
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χā b̄ðη; ~xÞ ¼
4G
r

Z
d3~x0T ā b̄ðηret; ~x0Þ

þ 4G
Z

ηret

−∞
dη0

1

η0
∂η0

Z
d3~x0T ā b̄ðη0; ~x0Þ:

ð3:10Þ
and again denote the sharp and the tail terms by ♯ab and ♭ab
respectively.

B. Expressing the approximate solutions in terms
of quadrupole moments

To make the relation between the energy carried by the
gravitational perturbations and the behavior of the source
transparent, we will now express the approximate solution
in terms of multipole moments of the source. Both terms on
the right side of (3.10) involve the integral

R
d3~x0T ā b̄ of

spatial components of the stress energy tensor of the source.
We can rewrite this integral in terms of time derivatives of
other components, using the conservation of Tab. Recall
that this strategy is used in the Λ ¼ 0 case to express the
integral entirely in terms of the second time derivative of
the time-time component of Tab, i.e., the energy density.
Consequently, for perturbations off flat space, only the
mass quadrupole moment is relevant in the far-field
approximation. As we will now show, the situation is more
complicated in the Λ > 0 case because the conservation
equation, ∇̄aTab ¼ 0, has additional terms due to the
expansion of the scale factor of the de Sitter background.
In the ðt; ~xÞ coordinates, projection of the conservation

equation along ta (where, as usual, ta∂a ≔ ∂=∂t) and q∘ ba
yield, respectively,

∂tρ − e−3HtD
∘ a
T a þHð3ρþ p1 þ p2 þ p3Þ ¼ 0; ð3:11Þ

∂tT a − e−HtD
∘ b
T ab þ 2HT a ¼ 0; ð3:12Þ

where the matter density and pressure are defined as
usual via

ρ ¼ Tabnanb ≡H2η2Tabη
aηb; and pī ¼ Tab∂axī∂bxī;

ð3:13Þ

and whereD
∘
a is the derivative operator compatible with the

flat spatial metric q∘ ab. (In the last equation, there is no sum
over ī.) In this ðt; ~xÞ chart it is manifest that when Λ → 0
(i.e., H → 0), these equations reduce to the time and space
projections of the conservation equation with respect to the
Minkowski metric η∘ab. Extra terms proportional to H arise
in de Sitter spacetime due to the expansion of the scale
factor. These, in particular, include all the pressure terms
which appear more generally in any spatially homogeneous
and isotropic spacetime. Consequently, it will turn out thatR
d3~xT ā b̄ is related not just to the second time derivative of

the mass quadrupole moment of the source as in flat
spacetime, but also to the analogous pressure quadrupole
moment. The exact dependence on the pressure terms will
be derived below. But because they are multiplied by H, it
is already clear that these terms will have fewer time
derivatives than the corresponding terms involving density.
To recast

R
d3~xT ā b̄ in the desired form, our first task is to

introduce the notion of mass and pressure quadrupole
moments on the de Sitter background. Being a physical
attribute of the source, the quadrupole moment at any instant
of time should only depend on the physical geometry and
coordinate invariant properties of the source. Therefore, we
define the mass quadrupole moment as follows:

QðρÞ
ā b̄
ðηÞ ≔

Z
Σ
d3VρðηÞx̄āx̄b̄; ð3:14Þ

where Σ denotes any η ¼ const surface with proper volume
element d3V and x̄ā ≔ aðηÞxā is the physical separation of
the point ~x from the origin. The pressure quadrupole moment
is defined similarly:

QðpÞ
ā b̄

ðηÞ ≔
Z
Σ
d3Vðp1ðηÞ þ p2ðηÞ þ p3ðηÞÞx̄āx̄b̄: ð3:15Þ

We can now use the conservation of stress-energy equa-
tions (3.11) and (3.12) to relate the integral

R
d3~x0T ā b̄ to

these quadrupole moments and their time derivatives.
This derivation follows the same steps as in the standard

calculation in Minkowski spacetime. We begin by noting

that
R
d3~x0T ā b̄ðt0; ~x0Þ ¼ −

R
d3~x0ðD∘ m̄

T m̄ðāÞxb̄Þ because the
boundary term that arises in the integration by parts
vanishes since the stress-energy tensor has compact spatial
support. Using the spatial projection (3.12) of the con-
servation equation, we can rewrite the integral as follows:Z

d3~x0T ā b̄ðt0; ~x0Þ

¼ −
Z

d3~x0eHt0 ð∂t0 þ 2HÞT ðāðt0; ~x0Þxb̄Þ

¼ 1

2

Z
d3~x0eHt0 ð∂t0 þ 2HÞðD∘ m̄

T m̄ðt0; ~x0ÞÞxāxb̄:

ð3:16Þ
Next, we use (3.11), the projection of the conservation
equation along ta, to eliminate T a in favor of the energy
density and pressure:
Z

d3~x0T ā b̄ðt0; ~x0Þ

¼ 1

2

Z
d3~x0e4Ht0

�∂2ρ

∂t02 þH
∂
∂t0 ð8ρþ p1 þ p2 þ p3Þ

þ 5H2ð3ρþ p1 þ p2 þ p3Þ
�
xāxb̄: ð3:17Þ
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The last step in this derivation is to express the right side
of (3.17) in terms of the quadrupole moments defined in
(3.14) and (3.15). A simple calculation yields:

e∘ āae
∘ b̄
b

Z
d3~x0T ā b̄ðt0; ~x0Þ

¼ 1

2aðt0Þ ½∂
2
t0Q

ðρÞ
ab − 2H∂t0Q

ðρÞ
ab þH∂t0Q

ðpÞ
ab �ðt0Þ; ð3:18Þ

where e∘ āa are the basis co-vectors in the ~x-chart. Finally,
using the fact that Lie derivative of any tensor field Qab
with respect to the time translation Killing vector field

is given by LTQab ¼ Tc∇∘ cQab − 2HQab, it is straightfor-
ward to show that

e∘ āae
∘ b̄
b

Z
d3~x0T ā b̄ðt0; ~x0Þ ¼

1

2aðt0Þ ½LTLTQ
ðρÞ
ab þ 2HLTQ

ðρÞ
ab

þHLTQ
ðpÞ
ab þ 2H2QðpÞ

ab �ðt0Þ;
ð3:19Þ

Since one can readily take the limit Λ → 0 in the ðt; ~xÞ
chart, we see immediately that in this limit one recovers the
familiar expression

e∘ āae
∘ b̄
b

Z
d3~x0T ā b̄ðt0; ~x0Þ →

1

2
½LtLtQ

ðρÞ
ab � ð3:20Þ

from the discussion of the quadrupole formula in
Minkowski spacetime.

Let us return to Eq. (3.19). Note that it is an exact
equality within the post–de Sitter approximation; in
Sec. III B we have not used the assumption Do ≪ lΛ on
the size of the source, nor the post-Newtonian assumption
v ≪ 1. If we invoke, e.g., kinetic theory, then the pressure
goes as p ∼ ρv2 and can then be ignored compared to the
density ρ. Then (3.19) simplifies to

e∘ āae
∘ b̄
b

Z
d3~x0T ā b̄ðt0; ~x0Þ

≈
1

2aðt0Þ ½LTLTQ
ðρÞ
ab þ 2HLTQ

ðρÞ
ab þ 2H2QðpÞ

ab �ðt0Þ;

ð3:21Þ

where we have retained the last term because so far we
have not made any assumption on relative magnitudes of
the dynamical time scale of the system and Hubble
time 1=H. Now, in the post-Minkowski analysis, one does
not have to make the assumption p ≪ ρ because the
continuity equations (3.11) do not involve pressure terms
in that case. Furthermore, in the Λ > 0 case, it turns out that
dropping the pressure term from the exact expression (3.19)
obscures certain conceptually important features (see foot-
note 9). Therefore, we will retain the full expression
for now.
Finally we can express the solution (3.10) on ðMþ

P ; ḡabÞ
in terms of the source quadrupole moments (after a simple
transformation to the ðη; ~xÞ chart). Denoting by an “over-
dot” the Lie derivative with respect to Ta, we obtain

χabðη; ~xÞ ¼
2G

raðηretÞ
½Q̈ðρÞ

ab þ 2H _QðρÞ
ab þH _QðpÞ

ab þ 2H2QðpÞ
ab �ðηretÞ

þ 2G
Z

ηret

−∞

dη0

η0
∂η0

1

aðη0Þ ½Q̈
ρ
ab þ 2H _QðρÞ

ab þH _QðpÞ
ab þ 2H2QðpÞ

ab �ðη0Þ ≕ ♯abðη; ~xÞ þ ♭abðη; ~xÞ: ð3:22Þ

This expression is a good approximation to the exact
solution (2.19) everywhere on I (except at r ¼ 0).

IV. TIME-VARYING QUADRUPOLE MOMENT
AND ENERGY FLUX

In this section, we will carry out the second main step
spelled out in Sec. I: We will use the approximate solution
(3.22) to generalize Einstein’s quadrupole formula for the
energy ET carried away by gravitational waves across Iþ.
Since linearized gravitational fields do not have a gauge
invariant, local stress-energy tensor, we employ the covar-
iant Hamiltonian framework used in [16] to compute this
energy.
This section is divided into three parts. In the first, we

will discuss the asymptotic behavior of the fields that enter
the expression of energy ET, in the second, we will derive

the quadrupole formula, and in the third, we will discuss its
properties.

A. Iþ and the perturbed electric part Eab
of Weyl curvature

As in the Λ ¼ 0 case, it is simplest to obtain manifestly
gauge invariant expressions of fluxes of energy-momentum
and angular momentum carried away by gravitational
waves using fields defined on Iþ. Therefore, we need to
carry out a future conformal completion of the background
spacetime ðMþ

P ; ḡabÞ. It is natural to seek a completion that
makes ðMþ

P ; ḡabÞ asymptotically de Sitter in a Poincaré
patch in the sense of [15]. Because the physical metric ḡab
has the form,

ḡab ¼ a2g∘ab ≡ ðHηÞ−2g∘ab; ð4:1Þ
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it is easy to verify that such a conformal completion can be
obtained by setting the conformal factor Ω ¼ −Hη, so that
the conformally rescaled 4-metric, which is smooth at Iþ,
is simply the flat metric g∘ab. We will use this completion
because all our equations in the Cartesian chart of g∘ab and
the solution χab will then automatically hold on the
conformally completed spacetime, including Iþ. The final
results, of course, will be conformally invariant as
in [15,16].
The formulas for fluxes of energy-momentum and

angular momentum–spelled out in Secs. IV B and V–
involve the so-called perturbed electric part of the Weyl
tensor, Eab, at Iþ [16]. Therefore, we will first express Eab
in terms of the metric perturbations—for which we already
have the explicit expression (3.22) in terms of the quadru-
pole moments—and then discuss its properties needed in
the subsequent discussion.
Recall that the local conditions included in the definition

of weakly asymptotically de Sitter spacetimes—and there-
fore satisfied by spacetimes that are asymptotically Sitter in
a Poincaré patch—imply that the Weyl curvature of the
conformally rescaled metric must vanish at I and therefore
Ω−1Cabc

d admits a smooth limit there [6,15]. Our con-
formally rescaled metric g∘ab is flat, whence the limit of

Ω−1C
∘
abc

d
also vanishes. Therefore, not only is the first-

order perturbation ð1ÞCabcd such that Ω−1ðð1ÞCabcdÞ admits a
limit to Iþ but, furthermore, the limit is gauge invariant.
The field of interest is the limit to Iþ of its electric part,

Eab ≔ Ω−1ðð1ÞCamb
nηmηnÞ ¼ −ðHηÞ−1ðð1ÞCamb

nηmηnÞ;
ð4:2Þ

where, as before, ηa is the unit normal to the cosmological
slices (η ¼ const) with respect to the conformal metric g∘ab
and the indices are raised and lowered also using g∘ab. We
need to express Eab in terms of the (trace-reversed,
rescaled) metric perturbation χ̄ab produced by the source.
This can be accomplished using the expression of ð1ÞCabcd

in terms of the metric perturbation γ̄ab, and the equation of
motion (2.12). The final result is

Eab ¼
1

2Hη

�
q∘ acq

∘
b
d −

1

3
q∘ abq

∘ cd
��

1

2
D
∘
cD
∘
d ~χ −D

∘
ðcD

∘ m
χdÞm

−D
∘
ðc∂ηχdÞ þ

�
∂2
η −

1

η
∂η

�
χcd

�
: ð4:3Þ

Let us discuss the limit of each term to Iþ. Although we
already know from general considerations that the left side
of (4.3) admits a smooth limit to Iþ, some care is needed to
evaluate the right-hand side because there is a ð1=ηÞ pre-
factor, and η ¼ 0 at Iþ. However, because the explicit
retarded solutions (2.14) decay as η, one can show that the
terms involving ~χ and χā admit a smooth limit to I . A more

detailed calculation using (3.10) shows that the fourth term,
ð1=ηÞð∂2

η − 1
η ∂ηÞχab, also has a smooth limit to Iþ:

1

η

�
∂2
η −

1

η
∂η

�
χā b̄ ¼

4G
r

�
1

ηret
∂2
η

Z
d3~x0T ā b̄ðηret; ~x0Þ

−
1

η2ret
∂η

Z
d3~x0T ā b̄ðηret; ~x0Þ

�
:

ð4:4Þ

Thus, we have expressed Eab at Iþ in terms of the
perturbed metric, as required. In particular, in spite of
the presence of a ð1=ηÞ-pre-factor in (4.3), each of the four
terms in that formula for Eab has well-defined limits to Iþ.
Note, incidentally, that in this calculation not only does the
tail term ♭ab in χab contribute but the result would diverge at
η ¼ 0without it. However, the process of taking derivatives
has made the integral over η0 in ♭ab disappear, showing that
the propagation of the left side of (4.4) is sharp. These
features and Eq. (4.4) in particular will play an important
role in Sec. IV B.
We will now discuss the properties of Eab that will be

needed in subsequent calculations. First, the field equations
satisfied by the first-order perturbation ð1ÞCabcd are con-
formally invariant. Since they are completely equivalent to
the field equations satisfied by the first-order Weyl tensor in
the flat spacetime ðMþ

P ; g
∘
abÞ, we know that the propagation

of ð1ÞCabcd is sharp along the null cones of g∘ab (which are
the same as the null cones of the de Sitter metric ḡab).
Therefore, the expression of the field Eab at Iþ in terms of
source quadrupole moments is also sharp. Indeed, one can
verify this explicitly using the expression (4.3) and the
exact solutions (2.14) and (2.19). Second, in any neighbor-
hood of Iþ where there are no matter sources, the field Eab
is divergence-free

D
∘ a
Eab ¼ 0: ð4:5Þ

Thus, Eab is transverse, traceless on Iþ. This property will
make the gauge invariance of our expression of energy flux
transparent.
Finally, as one would expect from the fact that Eab is

gauge invariant, only the transverse-traceless (TT) compo-
nents of χab (in its decomposition into irreducible parts)
contribute to Eab. Let us begin with a standard decom-
position of the ten components of the (rescaled, trace-
reversed) metric perturbation χ̄ab:

~χ ≔ ðηaηb þ q∘ abÞχ̄ab; χ ≔ q∘ abχab; χa ≕ D
∘
aAþ AT

a ;

χab ≕
1

3
q∘ abq

∘ cdχcd þ
�
D
∘
aD
∘
b −

1

3
q∘ abD

∘ 2
�
B

þ 2D
∘
ðaBT

bÞ þ χTTab ; ð4:6Þ

ASYMPTOTICS WITH A …. III. THE QUADRUPOLE … PHYSICAL REVIEW D 92, 104032 (2015)

104032-11



where AT
a and BT

a are transverse and χTTab is transverse,
trace-less,

D
∘ a
AT
a ¼ 0 D

∘ a
BT
a ¼ 0 D

∘ a
χTTab ¼ 0 q∘ abχTTab ¼ 0;

ð4:7Þ
and ~χ, χ, B, D

∘
aA are the longitudinal modes. Using the

gauge condition (2.6), one can show that, in the expression
(4.3) of Eab, all contributions from the longitudinal and
trace parts of χ̄ab cancel out and Eab depends only on χTTab :

Eab ¼
1

2Hη

�
∂2
η −

1

η
∂η

�
χTTab . ð4:8Þ

Since Eab and χTTab are both gauge invariant, the final
relation (4.8) holds in any gauge. The limit to Iþ of this
equality will play an important role in the next two
subsections.
Remark: In the literature on gravitational perturbations

off Minkowski spacetime, there is often confusion regard-
ing the decomposition of spatial, symmetric tensors such as
χab into its irreducible parts. While studying vacuum
solutions to linearized Einstein’s equations, one generally
uses the notion spelled out in Eq. (4.6) (see e.g., Box 5.7 in
[24], or Sec. 4.3 in [25], or Sec. 35.4 of [26]). In particular,
by χTTab one means the trace-free and divergence-free part of
(the spatial tensor) χab as in (4.6). This usage is standard in
cosmology, e.g., in the presentation of results by BICEP
and Planck collaborations. It is also used heavily in the
(perturbative) quantum gravity literature; for example, the
conclusion that the graviton has spin 2 is arrived at by
calculating the Casimir operators of the Poincaré group
on the 1-graviton Hilbert space constructed from the
Minkowski spacetime analog of χTTab .
But then in the study of retarded fields produced by

compact sources, one uses an entirely different decom-
position: Here, the 1=r-part of χab (i.e., the far field
approximation) of the full retarded solution is projected
into radial and the orthogonal spherical directions in
physical space. Unfortunately, these projections are also
referred to as the trace, longitudinal and transverse-
traceless parts of χab. For concreteness, let us denote by
Pa

c the projection operator in to the 2-sphere orthogonal
to the radial direction in the physical space and set
χttab ¼ ðPa

cPb
d − ð1=2ÞPabPcdÞχcd. In the literature, in

place of tt, the symbol TT is used also for this projection
(see, e.g., chapter 11 of [24], or Sec. 4.5.1 in [25], or
Sec. 36.10 in [26]). This is confusing because the two
notions of transverse traceless parts are distinct and
inequivalent. The first notion is local in momentum space
and the resulting χTTab is exactly gauge invariant everywhere
in spacetime. The second notion, which we will continue
to denote by χttab, is local in the physical space and χttab is
gauge invariant only in a weaker sense involving 1=r
falloffs. Nonetheless, it is χttab that is well tailored to the

Bondi-Sachs formalism at null infinity of asymptotically
flat spacetimes.
As we have seen in Sec. III A, the 1=r expansion is not

very useful at Iþ of de Sitter spacetime. Therefore, in the
Λ > 0 discussion we only use the first decomposition,
spelled out explicitly in (4.6). We will refer to the second
notion only in the discussion of the Λ → 0 limit.

B. Fluxes across Iþ

Let us calculate the flux of energy associated with the
time translation Ta across Iþ. Since Ta is a Killing field of
the background spacetime ðMþ

P ; ḡabÞ we know that, for any
choice of admissible conformal completion, Ta admits a
smooth extension which is tangential to Iþ. For the choice
Ω ¼ −Hη of the conformal factor we made above, Ta also
serves as the dilation with respect to the intrinsic 3-metric
q∘ ab on Iþ:

T¼̂ −H

�
x
∂
∂xþ y

∂
∂yþ z

∂
∂z

�
: ð4:9Þ

From the detailed analysis of the covariant phase space
ΓCov carried out in [16], the total energy flux ET across Iþ
is given by the Hamiltonian generating the time translation
Ta on ΓCov. The result can be expressed most simply in
terms of Eab and the Lie derivative of the metric perturba-
tion with respect to Ta at Iþ:

ET¼̂
1

16πGH

Z
Iþ

d3x EcdðLTχab þ 2HχabÞq∘acq∘ bd:
ð4:10Þ

Note that because Eab is transverse-traceless (TT), the
integral automatically extracts the TT part of the term in the
bracket and we have

ET¼̂
1

16πGH

Z
Iþ

d3x EcdðLTχab þ 2HχabÞTTq∘ acq∘ bd

¼̂ 1

16πGH

Z
Iþ

d3x EcdðTm∇∘ mχabÞTTq∘ acq∘ bd; ð4:11Þ

where in the second step we have used the fact that

ðLTχab þ 2HχabÞ ¼ Tm∇∘ mχab. We note on the side that,

because the derivative Tm∇∘ m commutes with the operation
of taking the TT part on Iþ, the integral can be rewritten as

ET¼̂
1

16πGH

Z
Iþ

d3x EcdðTm∇∘ mχ
TT
ab Þq∘ acq∘ bd ð4:12Þ

which is manifestly gauge invariant.
Next, we return to (4.11) and use (4.8) to express Eab in

terms of the TT-part of χab. Using that fact that the operator
ð1=ηÞ½∂2

η − 1
η ∂η� commutes with the operation of taking the

TT part, we have:
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ET ¼̂ lim
→I

1

32πGH2

Z
d3x

�
1

η

�
∂2
η −

1

η
∂η

�
χab

�
TT
½Tm∇∘ mχcd�TTq∘ acq∘ bd

¼̂ lim
→I

1

32πGH2

Z
d3x

�
1

η

�
∂2
η −

1

η
∂η

�
χab

�
½Tm∇∘ mχcd�TTq∘ acq∘ bd ð4:13Þ

where in thesecondstepwe removed theTT on the first square
bracket because the second square bracket is already TT and,
therefore, the integral automatically extracts only the TT part
of the first square bracket. These expressions hold for any
solution χab that is source free in a neighborhood of Iþ (e.g.,
within the shaded region in the left panel of Fig. 1).
We now use the approximations Do=lΛ ≪ 1 and v ≪ 1

spelled out in Sec. III A and insert in (4.13) the convenient
expression of χab given in (3.10). For the first square bracket
we use (4.4) and∂ηfðη − rÞ ¼ −∂rfðη − rÞ and evaluate the
expression at Iþ by setting η ¼ 0. The result is:

1

η

��
∂2
η −

1

η
∂η

�
χā b̄

�
ð~xÞ

¼̂ −
4G
r

∂r

�
1

r
∂r

Z
d3x0T ā b̄ðηret; ~x0Þ

�
: ð4:14Þ

As we noted after (4.4), although the tail term ♭ab in the
expression (2.20) of χab does contribute to the result, the

process of taking derivatives has made the integral over η in
♭ab disappear and the result depends only onwhat the source
does at time η ¼ ηret.
Next, consider the second square bracket in the integrand

of (4.13). Since the term multiplying this bracket has a
well-defined limit to Iþ, we can replace Tm by its limiting
value −Hrr̂m at Iþ. Using (3.10) we again find that,
although the tail term ♭ab does contribute to the result, the
integration over η disappears because of the directional
derivative along Ta and we obtain

½Tm∇∘ mχā b̄�ð~xÞ ¼
4GH
r

Z
d3x0T ā b̄ðηret; ~x0Þ: ð4:15Þ

Substituting (4.14) and (4.15) in (4.13), performing an
integration by parts, and using Eq. (3.19) to express the
integral over the stress-energy tensor in terms of quadru-
pole moments, we obtain

ET ¼̂
G

8πH

Z
dr
r
d2S½ð∂rHrðQ̈ðρÞ

ab þ 2H _QðρÞ
ab þH _QðpÞ

ab þ 2H2QðpÞ
ab ÞÞ

× ð∂rHrðQ̈ðρÞ
cd þ 2H _QðρÞ

cd þH _QðpÞ
cd þ 2H2QðpÞ

cd ÞTTÞ�q∘ acq∘ bd; ð4:16Þ

where d2S is the unit 2-sphere volume element of the flat
metric q∘ ab at Iþ, and, as before an ‘overdot’ denotes the Lie
derivative with respect to Ta. Finally, using the fact that the
operation r∂r commutes with the operation of extracting the
TT part and that the affine parameter T along the integral
curves of Ta satisfies dT ¼ dr=ðrHÞ at Iþ, we obtain

ET¼̂
G
8π

Z
Iþ

dTd2S½Rabð~xÞRTT
cd ð~xÞq∘ acq∘ bd�; ð4:17Þ

where the “radiation field” Rabð~xÞ on Iþ is given by

Rabð~xÞ¼̂ ½ ⃛QðρÞ
ab þ 3HQ̈ðρÞ

ab þ 2H2 _QðρÞ
ab þHQ̈ðpÞ

ab

þ 3H2 _QðpÞ
ab þ 2H3QðpÞ

ab �ðηretÞ; ð4:18Þ

where, as before, ηret ¼ η − r¼̂ − r. Note that Rab is a field
on Iþ because, given a point ~x on Iþ, the quadrupole
moments QðρÞ

ab and QðpÞ
ab are obtained by performing an

integral over the source along the 3-surface η ¼ ηret and
these 3-surfaces change as we change ~x on Iþ (see Fig. 1).
This occurs also in the standard quadrupole formula in flat

space. There is, however one difference from the standard
formula: (4.17) uses the TT decomposition rather than the tt
decomposition. (Indeed, since the tt decomposition used in
the flat space analysis is tied to the 1=r expansion, it is not
very useful in the de Sitter context.) One consequence is that
the TT label appears only on theRcd term in (4.17); the term
Rab is not automatically TT because the volume element in
(4.17) is not d3x. Finally, while components of individual
terms such as ⃛QðρÞ

ā b̄ð0; ~xÞ depend only on r≡ j~xj at Iþ and
not on angles, an angular dependence is introduced while
taking the TT part. Therefore, the total integrand of (4.17)
has a genuine angular dependence; otherwise, one could
have trivially performed the angular integral and replaced it
just by a 4π factor. Again, conceptually, this situation is the
same as for the standard quadrupole formula in flat space-
time–the tt operation also introduces angular dependence.
Finally, as in the Λ ¼ 0 calculation, let us extract power

PT radiated by the system at any “instant of time” T0 at Iþ

(i.e., a 2-sphere cross section of Iþ, orthogonal to the orbits
of the “time translation” Ta)
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PTðT0Þ¼̂
G
8π

Z
T¼T0

d2S ½Rabð~xÞRTT
ab ð~xÞ�: ð4:19Þ

While the expression (4.10) of radiated energy is com-
pletely local in χab a degree of nonlocality enters while
casting it in terms of sources: (4.19) involves only the TT
part of one of the “radiation fields.” However, because the
TT part is taken only for one of the two ‘radiation fields’,
one can show that if LTTab ¼ 0 at an instant ηo, then the
power at Iþ vanishes at the cross section T ¼ T0 repre-
senting the intersection of Iþ with the null cone with

vertex ðηo; ~x ¼ ~0Þ.
The expression (4.17) of radiated energy is the main

result of this section. As in Einstein’s quadrupole formula,
it has been derived using the first post-Newtonian approxi-
mation under the assumption that we have an externally
specified, first-order stress-energy tensor Tab satisfying the
conservation equation with respect to the background
metric.
Remark: The covariant phase space ΓCov constructed and

used in [16] to obtain flux formulas at Iþ consists of
homogeneous solutions to linearized Einstein’s equations.
In this paper, we are considering retarded solutions with a
first-order source Tab. However, in the shaded neighbor-
hood of Iþ shown in the left panel of Fig. 1, all (trace-
reversed) metric perturbations γ̄ab satisfy the homogeneous
equation and there is a family of Cauchy surfaces for this
neighborhood that approach Iþ. Therefore, one can use the
covariant phase space framework in this neighborhood to
calculate fluxes of energy, momentum and angular momen-
tum carried by the perturbations γ̄ab across Iþ. In this
calculation, we used the leading-order terms in the expres-
sion (3.22) of χab, ignoring terms of order OððDo=lΛÞð1 −
η=rÞÞ andOðvÞ compared to terms of orderOð1Þ. However,
as noted above, the simplified formula (3.10) for χab is
valid in an entire neighborhood of Iþ (the shaded region in
the left panel of Fig. 1). Finally note that, since the flux
formula is gauge invariant, the calculation can be carried
out in any gauge.

C. Properties of fluxes across Iþ

Our formula of the energy carried by gravitational waves
across Iþ have several interesting features which we now
discuss in some detail.
(1) First, the cosmological constant term does survive

(through H ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
) even at Iþ. Nonetheless, we

explicitly see that, in this first post-Newtonian
approximation, the radiated energy is still quad-
rupolar.

(2) As we discussed in Sec. IVA, because of its
conformal properties, it is clear that Eab has sharp
propagation. However, the fundamental for-
mula (4.10) for the energy flux, we started out with
depends also on χab whose expression does contain

an integral over all η0 that extends all the way back to
η0 ¼ −∞. So, why is there no such integral in the
final expressions of radiated energy? The reason is
that what features in (4.10) is not χab itself but rather,
its derivative, ðLT þ 2HÞχab¼̂ −Hr∂rχab. The in-
tegral over η0 disappears while taking this derivative,
as we saw in (4.15). This is why our quadrupole
formula (4.17) does not contain an explicit tail term
in spite of backscattering due to the background de
Sitter curvature. As in the asymptotically flat case, of
course, tail terms will arise in higher post-Newtonian
orders.

(3) In contrast to the Einstein formula, there is a
contribution from the time variation of the pressure
quadrupole and, furthermore, from the pressure
quadrupole itself. It is well known from the Ray-
chaudhuri equation in cosmology that pressure
contributes to gravitational attraction in any Fried-
mann, Lemaître, Robertson, Walker universe. Equa-
tion (4.17) shows that, if Λ > 0, it also sources
gravitational waves already in the leading-order
post-Newtonian approximation. If p ≪ ρ (in the c ¼
1 units) as for Newtonian fluids, then the pressure

terms HQ̈ðpÞ
ab þ 3H2 _QðpÞ

ab can be neglected compared

to the density terms 3HQ̈ðρÞ
ab þ 2H2 _QðρÞ

ab and the
expression (4.18) of Rab simplifies to

Rabð~xÞ ¼ ½ ⃛QðρÞ
ab þ 3HQ̈ðρÞ

ab þ 2H2 _QðρÞ
ab

þ 2H3QðpÞ
ab �ðηretÞ: ð4:20Þ

For compact binaries of immediate interest to the
gravitational wave detectors, we also have
ðΔtretÞ=tH ≪ 1 where Δtret is the dynamical time
scale in which the mass and pressure quadrupole
change by factors ofOð1Þ and tH, the Hubble scale.7
Then the formula further simplifies and acquires a
form similar to that of the Λ ¼ 0 Einstein formula:

Rabð~xÞ ¼ ⃛QðρÞ
ab ðηretÞ ð4:21Þ

When Λ is as tiny as the observations imply, the de
Sitter quadrupole and its “overdots” are extremely
well approximated by those in Minkowski spacetime
and the Λ > 0 first post-Newtonian approximation is
extremely well approximated by the standard one.
The full expression (4.18) provides a precise control
over the errors one makes while using the Einstein
formula in presence of Λ.

(4) Positivity of energy flux is not transparent because
the integrand of (4.17) is not manifestly positive, as
it is in Einstein’s formula for flat space. However,

7This need not be the case for the very long wave length
emission due to the coalescence of supermassive black holes.
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one can establish positivity as follows. First, proper-
ties of the retarded Green’s function imply that the
χTTab ðη; ~xÞ can be expressed using the TT part T TT 0

ab of
T abðη; ~x0Þ, where the prime in TT 0 emphasizes that
the transverse traceless part refers to the argument ~x0:

χTT
ā b̄
ðη; ~xÞ ¼ 4G

Z
d3~x0

j~x − ~x0j T
TT 0
ā b̄

ðηRet; ~x0Þ

þ 4G
Z

d3~x0
Z

ηRet

−∞
dη0

1

η0
∂η0T TT 0

ā b̄
ðη0; ~x0Þ:
ð4:22Þ

(The TT in χTT
ā b̄
ðη; ~xÞ on the left side refers to ~x.)

Next, let us rewrite the expression (4.13) in terms
of χTTab

ET¼̂ lim
→I

1

32πGH2

Z
d3x

�
1

η

�
∂2
η −

1

η
∂η

�
χTTab

�

× ½Tm∇∘ mχ
TT
cd �q∘ acq∘ bd ð4:23Þ

where we have used the fact that ∂η and Tm∇∘ m
commute with the operation of taking the TT part.
Finally, let us substitute (4.22) in (4.23) and simplify
following the procedure of Sec. III A and steps used
to pass from (4.13) and (4.15).8 We obtain:

ET¼̂
G
2π

Z
Iþ

dTd2S

�
∂r

Z
d3x0T TT 0

ab ðηret; ~x0Þ
�

×
�
∂r

Z
d3x0T TT 0

cd ðηret; ~x0Þ
�
q∘ acq∘ cd; ð4:24Þ

which is manifestly positive.
As we discussed in Sec. I, de Sitter spacetime

admits gravitational waves whose energy can be
arbitrarily negative in the linearized approximation
because the time translation Killing field Ta is
spacelike in a neighborhood of Iþ. Indeed, for
systems under consideration, gravitational waves
satisfy the homogeneous, linearized Einstein’s equa-
tions in a neighborhood of Iþ and there is an infinite
dimensional subspace of these solutions for which
the total energy is negative [16]. What, then, is the
physical reason behind the positivity of our ET?
Consider the shaded triangular region in the left panel
of Fig. 1. It is bounded by Iþ, upper half of Eþði−Þ
and E−ðiþÞ. The time translation vector field Ta is
tangential to all these three boundaries, being space-
like on Iþ, null and past directed on the upper half of
Eþði−Þ, and null and future directed on E−ðiþÞ. As a

result, for any solution, the energy flux across the
upper half ofEþði−Þ is negative, that acrossE−ðiþÞ is
positive, and that across Iþ is the sum of the two,
which can have either sign and arbitrary magnitude.
Thus, the potentially negative energy contribution at
Iþ can be traced directly to the incoming gravita-
tional waves across the upper half ofEþði−Þ. Now, in
the present calculation, physical considerations led us
to the retarded metric perturbation created by the
time varying quadrupoles. Therefore, there is no flux
of energy across the cosmological horizon Eþði−Þ;
the potential negative energy flux across Iþ is simply
absent. The entire energy flux across Iþ equals the
energy flux across E−ðiþÞ which is always positive
because Ta is future directed there. To summarize
then, while in general the energy flux across Iþ can
have either sign, the metric perturbation χ̄ab at Iþ
created by physically reasonable sources are so
constrained that the energy carried by gravitational
waves across Iþ is necessarily positive.

(5) The fifth feature concerns time dependence of the
source. Equations satisfied by the full (trace-re-
versed, rescaled) metric perturbation χ̄ab refer only
to the background metric ḡab and Ta is a Killing field
of ḡab which is timelike in the region in which the
source Tab resides. Therefore, it follows that if the
source is static, i.e., if LTTab ¼ 0, then the retarded
solution χ̄ab must satisfy LT χ̄ab ¼ 0. Physically, one
would expect there to be no flux of energy across
Iþ. But this is not manifest in Eq. (4.17) since it

contains a term QðpÞ
ab that does not involve a time

derivative. Let us, therefore, examine the fields that
enter the definitions (3.14) and (3.15) of quadrupole
moments. A simple calculation shows that, if
LTTab ¼ 0, the fields that enter the definitions of
quadrupole moments satisfy

LTρ ¼ 0; LTp ¼ 0;

LTaðηÞxb̄ ¼ 0; LTe
∘ ā
a ¼ −He∘ āa; ð4:25Þ

and the three-dimensional volume element dV is
preserved under the isometry generated by Ta.
Therefore, we have

LTQ
ðρÞ
ab ¼ −2HQðρÞ

ab and LTQ
ðpÞ
ab ¼ −2HQðpÞ

ab :

ð4:26Þ

Thus, in contrast to what happens in the Minkowski
spacetime calculation, because of the expansion of
the de Sitter scale factor, now LTTab ¼ 0 does not
imply that quadrupoles are left invariant by the flow
generated by Ta. However, using (3.22), (4.17),
(4.19) and (4.26), it immediately follows that

8We assume that integrals involving T TT 0
ab are all well defined.

This is a plausible assumption since T ab is smooth and of
compact support whence its Fourier transform is in Schwartz
space.
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if LTTab ¼ 0 everywhere; then

ET¼̂0; and PTðT0Þ¼̂0 ð4:27Þ

for all T0. (In fact, it follows from Eq. (4.19)
that an “instantaneous” result also holds: if
LTTabjη¼ηret

¼ 0, then PTðT0Þ¼̂0 where ηret ¼ η −
r0¼̂ − r0 and T0 ¼ lnðr0HÞ.) Thus, the presence of
the term without a time derivative of the pressure

quadrupole QðpÞ
ab is in fact essential to ensure that if

LTTab ¼ 0 then ET and PTðT0Þ vanish on Iþ.9

(6) Next, let us consider the limit Λ → 0. As discussed
in [16], the limit is subtle and has to be taken in the
ðt; ~xÞ (rather than the ðη; ~xÞ) chart. Since the ðt; ~xÞ
chart breaks down at Iþ (where η ¼ 0 but t ¼ ∞),
we cannot directly take the limit of our final
expression of the energy flux at Iþ of de Sitter
spacetime. Rather, we have to ‘pass through’ the
physical spacetime as in [16] and use results from
the covariant phase space framework relating ex-
pressions involving the TT and tt decompositions in
Minkowski spacetime. As a result, the procedure is
rather long and we will only summarize the main
steps here.
Consider the one-parameter family of de Sitter

backgrounds ḡðΛÞab , parametrized by Λ, with a one-

parameter family TðΛÞ
ab of stress-energy tensors, each

satisfying the conservation law with respect to the

respective ḡðΛÞab and the conditionLTT
ðΛÞ
ab ¼ 0 outside

a compact time interval. Let χðΛÞab ðt; ~xÞ denote the
retarded solutions (3.10) to the field equations and
gauge conditions. For each Λ, one can express this
solution in terms of the source quadrupoles as in
(3.22). The question is whether as Λ → 0 this one-
parameter family of solutions has a well-defined
limit χ∘abðt; ~xÞ. If so, the analysis in Sec. IV.B.2 of
[16] shows that (i) χ∘abðt; ~xÞ satisfies the dynamical
equation and gauge conditions with respect to the
Minkowski metric η∘ab, and (ii) the expression (4.17)
of energy in the gravitational waves has a well-
defined limit, which is, furthermore, precisely the
energy in the solution χ

∘
abðt; ~xÞ, calculated in Min-

kowski spacetime.
We have already shown in Sec. II that the exact

retarded solutions do tend to the exact retarded
solution in Minkowski spacetime. We will now
show that this is also the case for the approximate

solutions (3.22). In the ðt; ~xÞ chart, one can perform
the integral in the tail term ♭abðt; ~xÞ in the solutions
(3.22) to find that ♭abðt; ~xÞ has an explicit overall
factor of H whence, as one would expect, the limit
Λ → 0 of this term vanishes (see Appendix A). Next
consider the sharp term ♯abðt; ~xÞ in (3.22). In the
Λ → 0 limit, we have Ta → ta, a time translation in
Minkowski metric η

∘
ab; LT → Lt; aðtÞ → 1 and

QðρÞ
ab → Q

∘ ðρÞ
ab , the mass quadrupole moment con-

structed from the limiting stress-energy tensor T
∘
ab

using the Minkowski metric η
∘
ab. Therefore, the

limiting solution is given by

lim
Λ→0

χðΛÞab ðt; ~xÞ ¼
2G
r

LtLtQ
∘ ðρÞ
ab ðtretÞ ≕ χ

∘
abðt; ~xÞ

ð4:28Þ

for all r ≫ dðtÞ, where d is the physical size of the
source with respect to the Minkowski metric η

∘
ab.

Now, since by assumption the source is active
for a finite time interval, on a t ¼ const surface
sufficiently in the future, the support of the initial
data of χ

∘
abðt; ~xÞ is entirely in a region where the

approximation holds. Let us consider only the
future of this slice. In that spacetime region we

have a one-parameter family of solutions χðΛÞab ðt; ~xÞ
to the source-free equations whose total energy is
given by (4.17) for each Λ > 0. The limit χ∘abðt; ~xÞ is
well defined, as required. Therefore, in the Λ → 0
limit the energy expression (4.17) goes over to the
energy in χ

∘
abðt; ~xÞ with respect to ta in Minkowski

space (see Eq. (4.24) of [16]). And we know that
this energy is given by the Einstein formula. Thus, in
the limit Λ → 0 one recovers the standard quadru-
pole formula in Minkowski spacetime.
To summarize, our energy expression (4.17)

arises as the Hamiltonian on the covariant phase
space of linearized solutions on de Sitter spacetime,
and using results from [16] we can conclude that it
tends to the expression of the Hamiltonian in
Minkowski space in the Λ → 0 limit, which in turn

reduces to the Einstein flux formula at I
∘ þ

. The
argument is indirect mainly because in linearized
gravity off Minkowski spacetime we do not know
the relation between the TT and tt decompositions.
What we know is only the equality between the two
expressions of energy, the first evaluated on space-
like planes in terms of the TT decomposition
and the second, evaluated at Iþ in terms of tt.
(For definitions of TT and tt fields see the end of
Sec. IV B).

9This consistency would have been obscured if we had ignored
the pressure terms relative to the density terms in (3.19), and used
the resulting approximation (3.21) to arrive at the expression of
χab. That is why we kept all the pressure quadrupole terms even
though they can be ignored relative to the analogous density
quadrupole terms for Newtonian fluids.
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(7) So far we have focussed on the energy carried by
gravitational waves. Let us now discuss the flux of
3-momentum across Iþ. The component of the
3-momentum along a space translation Saī is given
by [16]

Pī¼̂
1

16πGH

Z
Iþ

d3x EcdðLSīχabÞq
∘ acq∘ bd ð4:29Þ

We can again use (4.8) to express Ecd in terms of χcd:
Eab ¼ ½1η ð∂2

η − 1
η ∂ηÞχab�TT . Now, it is clear from the

expression (3.10) of χab that its dependence on ~x
comes entirely from ηret. Therefore, χab is invariant
under the parity operation Π∶ ~x → −~x, whence
1
η ð∂2

η − 1
η ∂ηÞχab is also invariant. Since the operation

of taking the TT part refers only to the 3-metric q∘ ab,
it also commutes with Π. Hence, Eab is even under

Π. The second term SmīD
∘
mχab is manifestly odd

under Π since Sa is odd but χab is even. Therefore,
the integral on the right side of (4.29) vanishes.
Thus, as in the Λ ¼ 0 case, the gravitational waves
sourced by a time-changing quadrupole do not carry
3-momentum in the post–de Sitter, first post-
Newtonian approximation so long as Do ≪ lΛ.

(8) Finally, let us consider angular momentum. The flux
of angular momentum in the ī direction is given
by [16]

Jī¼̂
1

16πGH

Z
Iþ

d3x EcdðLRī
χabÞq∘ acq∘ bd; ð4:30Þ

where Rm
ī is the rotational Killing field in the īth

spatial direction. Now, since the ~x dependence in χab
is derived entirely through ηret, we have

LRī
χab ¼ χmbD

∘
aRm

ī þ χamD
∘
bRm

ī

¼ −2χmðbϵ
∘
aÞn

me∘nī: ð4:31Þ

Hence,

Jī¼̂ −
1

8πGH

Z
Iþ

d3x Ecdðϵ∘amne∘mīχnbÞq∘ acq∘ bd:
ð4:32Þ

Since χcd now appears without a derivative in (4.32),
there is a major difference from the calculations of
energy and 3-momentum fluxes across Iþ: Now the
integral over η0 in the tail term ♭ab in the expression
(3.22) of χab persists. To evaluate the right side of
(4.32), for χab we simplify the tail term ♭ab in (3.10)
by carrying out the integral over η0 (see Appendix),
and for Eab we use Eqs. (4.8) and (4.14) as in the

calculation of the energy flux. These simplifications
lead to

Jī¼̂
G
4π

Z
Iþ

dTd2S ½Rab�½ϵ∘amne∘mīðQ̈ðρÞ
nb þH _QðρÞ

nb

þH _QðpÞ
nb þH2QðpÞ

nb Þ�TT; ð4:33Þ

where, as before T is the affine parameter along the
integral curves of the ‘time translation’ Killing field
Ta and Rab is defined in (4.18). Note that if the
stress-energy satisfies LTTab ¼ 0 at some time η ¼
ηo then the “radiation field” Rab vanishes on the
cross section r ¼ −η0 on Iþ, whence the flux of
(energy and) angular momentum vanish on that
cross section. Similarly if LRī

Tab vanishes at
η ¼ ηo, then the flux of angular momentum vanishes
on the cross section r ¼ −η0. Finally, in the limit
Λ → 0, using the same argument as that used for
energy, one can show that (4.32) reduces to the
standard formula in Minkowski spacetime. Again
the argument is indirect because the expression of
the Hamiltonian generating rotations on the covar-
iant phase space in Minkowski spacetime involves
the TT part of the solution while the standard
expression of angular momentum at null infinity
involves the tt part and the explicit relation between
the two is not yet known.

V. DISCUSSION

Einstein’s quadrupole formula has played a seminal role
in the study of gravitational waves emitted by astrophysical
sources. His analysis was carried out only to the leading
post-Newtonian order, assuming that the time-changing
quadrupole is a first-order, external source in Minkowski
spacetime. In spite of these restrictions, his quadrupole
formula sufficed to bring to forefront the extreme difficulty
of detecting these waves. However, thanks to the richness
of our physical Universe and ingenuity of observers,
impressive advances have occurred over the last four
decades. First, the careful monitoring of the Hulse-
Taylor pulsar has provided clear evidence for the validity
of the quadrupole formula to a 10−3 level accuracy.
Furthermore, gravitational wave observatories, equipped
with detectors with unprecedented sensitivity, have led us
to the threshold of the era of gravitational wave astronomy.
Therefore, it is now all the more important that our
theoretical understanding of gravitational waves be suffi-
ciently deep to do full justice to the impressive status of the
field on the observational front. The goal of this series of
papers is to fill a key conceptual gap that still remains:
incorporation of the positive cosmological constant in our
understanding of the properties of gravitational waves and
dynamics of their sources.
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Since the observed value of the cosmological constant is
so small, one’s first reaction is just to ignore its presence.
However, as we discussed in Sec. I, even a tiny cosmo-
logical constant can cast a long shadow because it abruptly
changes the conceptual setup that is used to analyze
gravitational waves. As a result, the limit Λ → 0 is not
necessarily continuous; indeed, some physical quantities–
such as the lower bound of the energy carried by gravi-
tational waves–can be infinitely discontinuous. Therefore,
without a systematic analysis, one cannot be confident that
the quadrupole formula would continue to be valid in
presence of a positive cosmological constant.
Indeed, our analysis revealed that the presence of a

cosmological constant does modify Einstein’s analysis in
the following unforeseen ways:

(i) The propagation equation for metric perturbations in
the transverse-traceless gauge is not the wave equa-
tion as in Minkowski spacetime, but has an effective
mass term (see (2.5)). Although this mass is tiny,
there is potential for the differences from Minkow-
skian propagation to accumulate over cosmological
distances to produce Oð1Þ departures in the value of
the metric perturbation in the asymptotic region.

(ii) The retarded field does not propagate sharply along
the null cone of the de Sitter metric. Although the de
Sitter metric is conformally flat, since the equation
satisfied by the metric perturbation is not confor-
mally invariant, its expression acquires a tail term
due to the backscattering by de Sitter curvature.10 As
shown in the Appendix, even in the asymptotic
region, the cumulative effects make the tail term
comparable to the sharp term (which has the same
form as in Minkowski spacetime).

(iii) Since the radial r coordinate goes to infinity at I
∘ þ

of
Minkowski spacetime, the analysis of waves makes
heavy use of 1=r expansions. These can no longer be
used in de Sitter spacetime because r ranges over the
entire positive real axis on de Sitter Iþ. In particular,
the tt decomposition, that is local in space being
tailored to the 1=r expansions in Minkowski space-
time, is no longer meaningful near de Sitter Iþ.

(iv) The retarded, first-order metric perturbation depends
not only on the mass quadrupole as in Einstein’s
calculation but also on the pressure quadrupole.
Also, while only the third time derivative of the mass
quadrupole features in Einstein’s calculation, now

we also have a contribution from lower time deriv-
atives of the two quadrupoles, as well as the pressure
quadrupole itself.

(v) The physical wavelengths λphys of perturbations
grow exponentially as the wave propagates and
vastly exceed the curvature radius lΛ ¼ H−1≡ffiffiffiffiffiffiffiffiffi
3=Λ

p
in the asymptotic region near Iþ. Therefore,

the geometric optics approximation often used to
study the effect of background curvature on propa-
gation of gravitational waves [32] fails even for
waves produced by ‘tame sources’ such as a compact
binary. Since waves “experience” the curvature, their
propagation is quite different from that in flat space.
Also, since the expression (4.13) involves the metric
perturbation evaluated in the zone where λphys > lΛ,
a priori the effect of Λ on radiated energy could be
non-negligible.

(vi) Iþ, the arena used to analyze properties of gravi-
tational waves unambiguously changes its character
from being a null future boundary of spacetime to a
spacelike one. As a result, all Killing fields of the
background de Sitter spacetime—including the
‘time translation’ used to define energy—are space-
like in a neighborhood of Iþ. Consequently, while
linearized gravitational waves carry positive energy
in Minkowski spacetime, de Sitter spacetime admits
gravitational waves carrying arbitrarily large neg-
ative energy.

These differences are sufficiently striking to cast a doubt
on one’s initial intuition that the cosmological constant will
have no role in the study of compact binaries. For example,
they open up the possibility that Einstein’s quadrupole
formula could receive significant corrections—e.g., of the
order OðHλphyÞ—even though the observed value of H is
so small. Interestingly, the final expression (4.19) of
radiated power shows that this does not happen for
astrophysical processes such as the Hulse-Taylor binary
pulsar, or the compact binary mergers that are of greatest
interest to the current ground based gravitational wave
observatories. How does this come about? Why do the
qualitative differences noted in the last paragraph not
matter in the final result for these systems? The physical
reasons can be summarized as follows:
(a) First, while the propagation of χab is indeed not sharp,

what matters for radiated energy are certain derivatives
of χab and these do have sharp propagation.

(b) Second, while the final expressions (4.17) and (4.33) of
radiated energy and angular momentum are evaluated
at Iþ, the integrand refers to the time derivatives of
quadrupole moments evaluated at retarded instants of
time. In our c ¼ 1 units, even though (4.17) and (4.33)
involve fields at late times, the time scales in the “dots”
in these expressions are determined by λsourcephy , the
wave length evaluated at the source and not by the
exponentially larger physical wavelengths λasymphy in

10Since the propagation of the linearized Weyl curvature is
sharp, one might wonder if the tail term in the retarded solution
(2.19) is a gauge artifact. It is not. Since the gauge invariant part

χTTab of the metric perturbation satisfies ð□∘ þ ð2=ηÞ∂ηÞχTTab ¼
16πGT TT

ab—i.e., the same equation as χab but with Tab on the
right-hand side replaced by its TT part—it follows that χTTab is
given by replacing T ab with T TT

ab in (2.19). Therefore, it also has
a nontrivial tail term.
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the asymptotic region. Therefore, for the sources on
which gravitationalwave observatorieswill focus in the

foreseeable future, HQ̈ðρÞ
ab , for example, is suppressed

relative to ⃛QðρÞ
ab by the factor Hλsourcephy (rather than

enhanced by the factor Hλasymphy ) and ⃛QðρÞ
ab completely

dominates over the remaining five terms (which have
H;H2 or H3 as coefficient). In particular, the pressure
quadrupole can be neglected for these sources. Had our
expression of power referred to time scales associated
with the asymptotic values of λphy, effects discussed in
the previous paragraph would have completely altered
the picture. Then the terms with the highest powers of

H—in particular the pressure quadrupole QðpÞ
ab term—

would have dominated and the contribution due to ⃛QðρÞ
ab

would have been completely negligible!
(c) Third, while a neighborhood of Iþ in the Poincaré

patch ðMþ
P ; ḡabÞ does admit gravitational waves carry-

ing arbitrarily large negative energies, our calculation
showed that such waves cannot result from time-
changing quadrupoles. The reason is simplest to
explain using the shaded region in the left panel of
Fig. 1. Negative contribution to the energy at Iþ can
come only from the waves that arrive from the upper
half of Eþði−Þ. But the physics of the problem led us
to consider retarded solutions with the given Tab as
source and for these solutions there is no energy flux at
all across Eþði−Þ. This is why our energy flux (4.17)
across Iþ is necessarily positive.

Because of these reasons, for binary coalescences that
are of greatest interest to the current gravitational wave
observatories, energy and power are determined essentially
by the third time derivative of the mass quadrupole, as in
Einstein’s formula. This quadrupole moment (3.14) is
calculated using the physical de Sitter geometry and the
time derivative “overdot” refers to the Lie derivative with
respect to the de Sitter time translation Ta specified in (2.2).
However, in the limit Λ → 0, it goes over to the mass
quadrupole used in Einstein’s formula. Therefore, for
compact binaries of interest to the current gravitational
wave observatories, the difference is again negligible.
However, there are some circumstances in which the

differences between the Λ ¼ 0 and Λ > 0 could be sig-
nificant. First, consider the tail term in the expression (3.22)
of χab. Since it arises because of backscattering due to de
Sitter curvature, it is proportional to H. However, it
involves an integral over a cosmologically large time
interval which could compensate the smallness of H and
make the tail term comparable to the one that arises from
sharp propagation. The tail term could then yield a
significant new contribution to the memory effect
[18,27,28] for detectors placed near Iþ. A second example
is provided by mergers of supermassive black holes at the
centers of two different galaxies, such as Milky way and

Andromeda. Since the time scales associated with such
galactic coalescences are cosmological, the various effects
discussed above will come into play. Gravitational waves
created in this process will have extremely long wavelength
already at inception, making the departures from Einstein’s
quadrupole formula significant. While these waves will not
be detected directly in any foreseeable future, they provide
a background which could have indirect influences. An
illustration of this general mechanism is provided by
inflationary cosmology, where super-horizon modes can
induce non-Gaussiantities in observable modes due to
mode-mode coupling resulting from nonlinearities of gen-
eral relativity (see, e.g., [33,34]).
To conclude, we note that this analysis also provides

some hints for the gravitational radiation theory in full,
nonlinear general relativity with a positive Λ which would
be of interest to geometric analysis, because of issues such
as the positivity of total energy. First, to describe an isolated
gravitating systems such as an oscillating star, or one
collapsing to form a black hole, or a compact binary, it
would be appropriate to consider only the portion of full
spacetime that is bounded in the future by Iþ and in the
past by the future cosmological event horizon Eþði−Þ,
where the point i− represents the past timelike infinity
defined by the source. This is because the isolated system
and the radiation it emits would be invisible to the rest of
the spacetime. Second, the ‘no-incoming radiation’ boun-
dary condition will have to be imposed on the past
boundary, Eþði−Þ. Since this is an event horizon, a natural
strategy would be to demand that it be a weakly isolated
horizon [35–37]. It would be interesting to analyze if this
condition would suffice to ensure that the flux of energy
across Iþ is positive, as in the weak field limit discussed
here. If so, one would have the desired generalization of the
celebrated result due to Bondi and Sachs that gravitational
waves carry away positive energy, in spite of the fact that
the corresponding asymptotic ‘time translation’ on Iþ
would now be spacelike for Λ > 0. Third, results of [15]
and [16] suggest that there will be a 2-sphere ‘charge
integral’–representing the generalization of the notion of
Bondi-Sachs energy to the Λ > 0 case–and the difference
between charges associated with two different 2-spheres
will equal the energy flux across the region bounded by the
two 2-spheres. A natural question is whether this charge is
also positive.11 Fourth, the form (3.22) of the solution χab at
Iþ implies that the recently proposed [23] generalization of
Bondi-type expansions for full general relativity can
describe at most half the desired set of asymptotically de
Sitter spacetimes. A further generalization is necessary to

11These Bondi-type charge integrals will also refer to an
asymptotic ‘time-translation’. They will be distinct from the
ADM-type charge-integral associated with a conformal—rather
than time-translation—symmetry discussed in [38], and the
intriguing 2-sphere integral recently discovered [39], both of
which are known to be positive.
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capture both polarizations at Iþ. Finally, in the linear
approximation considered in this paper, the past cosmo-
logical event horizon E−ðiþÞ of the point at future timelike
infinity could be taken to lie in the “far zone.” Furthermore,
since there is no incoming radiation across Eþði−Þ from
(the shaded portion of the left panel of) Fig. 1, it follows
that the flux of energy across E−ðiþÞ equals that across Iþ
and is, in particular, positive. In full, nonlinear general
relativity, then, E−ðiþÞ may well serve as an approximate
Iþ to analyze gravitational waves. Because this surface is
null, it may be easier to compare results in the Λ > 0 case
with those in the Λ ¼ 0 case in full general relativity.
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APPENDIX: THE TAIL TERM

A qualitative difference between the Λ > 0 and Λ ¼ 0
cases is the presence of the tail term in the retarded solution.
In this appendixwewill discuss some properties of this term.
The first natural question is whether it disappears in theΛ →
0 limit, i.e., whether the limit is continuous. The second
conceptually important question is whether ♭ab is negligible
compared to the sharp term ♯ab ifΛ ≠ 0but tiny.Wewill now
show that the answer to the first question is in the affirmative
but that to the second question is in the negative. This is
another illustration of the subtlety of the limit Λ → 0.
To answer these questions, it is most convenient to work

in the ðt; ~xÞ chart. Now the tail term assumes the form

♭abðt; ~xÞ ¼ −2GH
Z

tret

−∞
dt0½Q⃛

ðρÞ
ab þ 3HQ̈ρ

ab þ 2H2 _QðρÞ
ab

þHQ̈ðpÞ
ab þ 3H2 _QðpÞ

ab þ 2H3QðpÞ
ab �ðt0Þ: ðA1Þ

In the Λ → 0 limit, the “overdot” tends to the well-defined
Lie derivative with respect to a time translation Killing
vector field in Minkowski spacetime. Therefore, the overall
multiplicative factorH in (A1) makes it transparent that ♭ab
does vanish in the Λ → 0 limit.
To answer the second question, let us use the fact that

_Qab ¼ ∂tQab − 2HQab to carry out the integral over t in
(A1). Then, we have

♭abðt; ~xÞ ¼ −2GH½Q̈ðρÞ
ab þH _QðρÞ

ab þH _QðpÞ
ab þH2QðpÞ

ab �tret−∞:

ðA2Þ

As shown in Sec. IV C, the assumption LTTab ¼ 0 in the
distant past implies _QðρÞ

ab ¼ −2HQðρÞ
ab there (and similarly

for the pressure quadrupole). Therefore, we have

♭abðt; ~xÞ ¼ −2GH½Q̈ðρÞ
ab þH _QðρÞ

ab þH _QðpÞ
ab

þH2QðpÞ
ab �ðtretÞ þ 2GH3Cab; ðA3Þ

where Cab is just a constant term. It does not play any role
in the calculation of energy flux because in the expression
(4.13) only derivatives of χab appear. In the expression
(4.30) of the flux of angular momentum, χab does appear
without a derivative but the constant term does not
contribute because it is integrated against Eab which is
of compact support and divergence-free on Iþ. Finally,
since it is constant, it will not feature in the analysis of the
memory effect as well.
With this simplification of the tail term, we can return to

(3.22) and, for r > −η, write χab as

χabðη; ~xÞ ¼
2G

RðηretÞ
��

1 −
r

r − η

�
Q̈ðρÞ

ab

�
þOðHÞ; ðA4Þ

where RðηretÞ ¼ raðηretÞ is the physical distance between
the source and the point ~x at time η ¼ ηret (and termsOðHÞ
vanish in the limit Λ → 0). The factor 1 in the square
bracket comes from the sharp term while the factor r=ðr −
ηÞ comes from the tail term. At late times the two
contributions are comparable, and at Iþ they are in fact
equal in magnitude but opposite in sign. This occurs no
matter how small Λ is! The remainder—i.e., the OðHÞ
term—at Iþ has contributions from both the sharp and the
tail terms:

χabð~xÞ¼̂2GH2½ _QðρÞ
ab þHQðpÞ

ab � þ 2H3Cab: ðA5Þ

This analysis provides the precise sense in which the
backscattering effects encoded in the tail term—which can
also be thought of as arising from the addition of a mass
term to the propagation equation of γ̄ab—provide an Oð1Þ
contribution to the metric perturbation χab near Iþ. This is
a concrete realization of the nontrivial outcome of the
secular accumulation of small effects we referred to in
Sec. I. Finally, as mentioned after Eq. (4.4), the tail term is
essential to make the field Eab finite at Iþ. As a result, it
contributes on an equal footing as the sharp term to the
expression of energy and angular momentum radiated
across Iþ.
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