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We analytically calculate the influence of a plasma on the shadow of a black hole (or of another compact
object). We restrict to spherically symmetric and static situations, where the shadow is circular. The plasma
is assumed to be nonmagnetized and pressureless. We derive the general formulas for a spherically
symmetric plasma density on an unspecified spherically symmetric and static spacetime. Our main result is
an analytical formula for the angular size of the shadow. As a plasma is a dispersive medium, the radius of
the shadow depends on the photon frequency. The effect of the plasma is significant only in the radio
regime. The formalism applies not only to black holes but also, e.g., to wormholes. As examples for the
underlying spacetime model, we consider the Schwarzschild spacetime and the Ellis wormhole. In
particular, we treat the case that the plasma is in radial free fall from infinity onto a Schwarzschild black
hole. We find that for an observer far away from a Schwarzschild black hole, the plasma has a decreasing
effect on the size of the shadow. The perspectives of actually observing the influence of a plasma on the
shadows of supermassive black holes are discussed.
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I. INTRODUCTION

In the last 20 years, increasing evidence has been
found for the existence of a supermassive black hole at
the center of our Galaxy. It is expected that a distant
observer should “see” this black hole as a dark disk
in the sky which is known as the “shadow.” It is
sometimes said that the shadow is an image of the
event horizon, and the size of the shadow is estimated
by the angle under which the observer would see the
horizon according to Euclidean geometry. Actually, the
boundary of the shadow corresponds to light rays that
asymptotically approach the photon sphere (at r ¼ 3M
in the Schwarzschild case) and not the horizon (at r ¼
2M in the Schwarzschild case). Moreover, light rays do
not follow straight lines in Euclidean geometry but they
are bent. For these two reasons, the angular diameter of
the shadow is actually bigger than the naive Euclidean
estimate suggests. For the black hole at the center of our
Galaxy, it amounts to about 53 μas whereas the
Euclidean estimate gives only about 20 μas. At present,
two projects are under way to observe this shadow
which would give important information on the compact
object at the center of our Galaxy. These projects, which
are going to use (sub)millimeter, very long baseline
interferometry (VLBI) observations with radio tele-
scopes distributed over Earth, are the Event Horizon
Telescope (http://eventhorizontelescope.org) and the
BlackHoleCam (http://blackholecam.org).

On the theoretical side, the shadow is defined as the region
of the observer’s sky that is left dark if there are light sources
distributed everywhere but not between the observer and the
black hole. For a nonrotating black hole, the shadow is a
circular disk. For a Schwarzschild black hole, the angular
diameter of the shadow was calculated, as a function of the
mass of the black hole and of the radius coordinate where
the observer is situated, by Synge [1]. (Synge did not use the
word shadow. He calculated what he called the “escape
cones” of light. However, the complement of the opening
angle of the escape cone at the observer gives exactly the
diameter of the shadow.) For a rotating black hole the
shadow is no longer circular. The first to correctly calculate
the shape of the shadow of a Kerr black hole was Bardeen
[2]. More generally, the shape and the size of the shadow can
be calculated analytically for the whole class of Plebański-
Demiański spacetimes [3,4]. All these calculations are based
on the assumption that light propagates along lightlike
geodesics, without being influenced directly by matter. If
such an influence is to be taken into account, one usually
resorts to numerical calculation. In particular, Falcke et al.
[5] have numerically simulated the visual appearance of the
black hole at the center of our Galaxy, assuming that it is a
Kerr black hole, with scattering and the presence of emission
regions between the observer and the black hole taken into
account (at 0.6 and 1.3 mm wavelengths). Sophisticated ray
tracing programs have been written for producing realistic
images of a black hole surrounded by an accretion disk, e.g.,
for the movie Interstellar. The numerical techniques used for
this movie are described in detail, along with a review of
earlier work, by James et al. [6].
While the purely geometric calculation of the shadow

can be done analytically, at least for spacetimes in which
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the equation for lightlike geodesics is completely integrable,
virtually all of thework that takes the influence of matter into
account was based on numerics so far. In this paper, we want
to take the first steps towards an investigation of the shadow
in matter based on analytical calculations. It is clear that
this can be done only for highly idealized situations, but,
nonetheless, we think that it is worthwhile to do so. In
contrast to numerical simulations, which can depict the
situation only for a particular choice of the parameters
involved, analytical results demonstrate how exactly an
effect depends on these parameters, and they bring out
the general features more clearly. Also, analytical results are
useful for testing numerical codes. In this paper, we begin
with the simplest nontrivial case: We want to analytically
calculate the influence of a nonmagnetized pressureless
plasma on the size of the shadow of a nonrotating black hole.
A plasma is a dispersive medium; i.e., the light rays

deviate from lightlike geodesics in a way that depends on
the frequency. The Hamiltonian for the light rays can be
derived from Maxwell’s equations where the source of
the electromagnetic field consists of two charged fluids,
one modeling the ions and the other the electrons. For a
plasma on a curved background, the transition from
Maxwell’s equations to ray optics has to be done by a
two-scale method. A rigorous derivation of the Hamiltonian
for light rays was provided by Breuer and Ehlers [7,8] who
considered a magnetized pressureless plasma. For the much
simpler case of a nonmagnetized pressureless plasma, a
similar derivation can be found in Perlick [9]. In the latter
case, the equation of light rays can be fully characterized by
a scalar, i.e., direction-independent, index of refraction
which is a function of the spacetime point and frequency.
Then the resulting equation of motion for light rays belongs
to a class that was studied in the textbook by Synge [10].
The resulting formula for the deflection angle of light in a
plasma whose density is a function of the radius coordinate
was calculated in the Schwarzschild spacetime (and more
generally in the equatorial plane of the Kerr metric) by
Perlick [9]. The same result was found and further discussed
by Bisnovatyi-Kogan and Tsupko [11–13]. Morozova et al.
[14] generalized the calculation to the Kerr metric off the
equatorial plane, assuming that the black hole is slowly
rotating. For recent suggestions of how the effects of a
plasma on light rays could actually be observed, we refer to
Er and Mao [15] and Rogers [16].
In this paper, we calculate the angular diameter of the

shadow for a nonrotating black hole that is surrounded by a
nonmagnetized pressureless plasma. Although we are
mainly interested in the Schwarzschild case, in large parts
of the paper, we work in an unspecified spherically sym-
metric and static spacetime, so the results can be applied
also, e.g., to charged black holes or to wormholes.
In our work, the plasma manifests itself as a refractive

and dispersive medium, which leads to a change of the light
rays in comparison with vacuum. As a result, the geometrical

size of the shadow is changed. We do not take into account
the processes of absorption and scattering of the photons by
plasma electrons. Also, we neglect the gravitational field of
the plasma particles.
The paper is organized as follows. In Sec. II, we work out

the equation of motion for light rays in a plasma on a
spherically symmetric and static spacetime. In Sec. III, we
determine the circular light orbits which are of crucial
relevance for the formation of the shadow. In Sec. IV, we
calculate the angular diameter of the shadow. We specify
the results in Sec. V to the case of a low-density plasma and
in Sec. VI to the case that the plasma has the particular
density profile that corresponds to spherically symmetric
accretion of a dust onto a Schwarzschild black hole. In the
same section, we also discuss the perspectives of actually
observing the influence of a plasma on the shadow of a
supermassive black hole.
We use units such that G ¼ c ¼ 1, so the Schwarzschild

radius is RS ¼ 2M. Our choice of signature is
f−;þ;þ;þg. We use Einstein’s summation convention
for latin indices which take the values i; k;… ¼ t; r;ϑ;φ.

II. EQUATIONS OF MOTION FOR LIGHT RAYS
IN A NONMAGNETIZED PLASMA

We consider a spherically symmetric and static metric

gikdxidxk ¼ −AðrÞdt2 þ BðrÞdr2
þDðrÞðdϑ2 þ sin2ϑdφ2Þ; ð1Þ

where AðrÞ, BðrÞ, and DðrÞ are positive. We are mainly
interested in the case of a Schwarzschild black hole, but for
the time being, there is no need for specifying the metric
any further.
We assume that the spacetime is filled with a non-

magnetized cold plasma whose electron plasma frequency
ωp is a function of the radius coordinate only,

ωpðrÞ2 ¼
4πe2

m
NðrÞ: ð2Þ

Here, e is the charge of the electron,m is the electron mass,
and NðrÞ is the number density of the electrons in the
plasma. The refraction index n of this plasma depends on
the radius coordinate r and on the frequency ω of the
photon as it is measured by a static observer,

nðr;ωÞ2 ¼ 1 −
ωpðrÞ2
ω2

: ð3Þ

Because of the spherical symmetry, we may restrict to the
equatorial plane ϑ ¼ π=2, pϑ ¼ 0. Then the Hamiltonian
for light rays in the plasma reads
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H ¼ 1

2
ðgikpipk þ ωpðrÞ2Þ

¼ 1

2

�
−

p2
t

AðrÞ þ
p2
r

BðrÞ þ
p2
φ

DðrÞ þ ωpðrÞ2
�
: ð4Þ

For a derivation of the Hamiltonian (4) from Maxwell’s
equations with a two-fluid source, we refer to the literature
given in the Introduction.
The light rays are the solutions to Hamilton’s equations

_pi ¼ −
∂H
∂xi ; _xi ¼ ∂H

∂pi
; ð5Þ

which, in this case, read

_pt ¼ −
∂H
∂t ¼ 0; ð6Þ

_pφ ¼ −
∂H
∂φ ¼ 0; ð7Þ

_pr ¼ −
∂H
∂r

¼ 1

2

�
−
p2
t A0ðrÞ
AðrÞ2 þ p2

rB0ðrÞ
BðrÞ2 þ p2

φD0ðrÞ
DðrÞ2 −

d
dr

ωpðrÞ2
�
;

ð8Þ

_t ¼ ∂H
∂pt

¼ −
pt

AðrÞ ; ð9Þ

_φ ¼ ∂H
∂pφ

¼ pφ

DðrÞ ; ð10Þ

_r ¼ ∂H
∂pr

¼ pr

BðrÞ ; ð11Þ

with H ¼ 0, i.e.,

0 ¼ −
p2
t

AðrÞ þ
p2
r

BðrÞ þ
p2
φ

DðrÞ þ ωpðrÞ2: ð12Þ

Here a dot means differentiation with respect to an affine
parameter λ, and a prime means differentiation with respect
to r.
From (6) and (7) it follows that pt and pφ are constants

of motion. We write ω0 ≔ −pt. If ω0 has been fixed and if
AðrÞ → 1 for r → ∞, which is the case if the spacetime is
asymptotically flat, the frequency ω measured by a static
observer becomes a function of r by the gravitational
redshift formula,

ωðrÞ ¼ ω0ffiffiffiffiffiffiffiffiffi
AðrÞp : ð13Þ

By (12), a light ray with constant of motion ω0 is restricted
to the region where

ω2
0

AðrÞ > ωpðrÞ2: ð14Þ

The restriction (14) physically means that the photon
frequency at a given point ωðrÞ must be bigger than the
plasma frequency ωpðrÞ at the same point. This is always
true for light propagation in a plasma.
To derive the orbit equation, we use (10) and (11) to find

dr
dφ

¼ _r
_φ
¼ DðrÞpr

BðrÞpφ
: ð15Þ

Upon substituting for pr from (12), this results in

dr
dφ

¼ �
ffiffiffiffiffiffiffiffiffiffi
DðrÞp
ffiffiffiffiffiffiffiffiffi
BðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0

p2
φ
hðrÞ2 − 1

s
; ð16Þ

where we have defined the function

hðrÞ2 ¼ DðrÞ
AðrÞ

�
1 − AðrÞωpðrÞ2

ω2
0

�
: ð17Þ

In general, the orbit has to be decomposed into sections
where r is increasing as a function of φ and sections where
it is decreasing, and the sign in (16) has to be chosen
appropriately. For a light ray that comes in from infinity,
reaches a minimum at a radius R, and goes out to infinity
again, integration over the orbit gives the formula for the
bending angle δ,

π þ δ ¼ 2

Z
∞

R

ffiffiffiffiffiffiffiffiffi
BðrÞp
ffiffiffiffiffiffiffiffiffiffi
DðrÞp

�
ω2
0

p2
φ
hðrÞ2 − 1

�−1=2
dr: ð18Þ

As R corresponds to the turning point of the trajectory, the
condition dr=dφjR ¼ 0 has to hold. This equation relates R
to the constant of motion pφ=ω0,

hðRÞ2 ¼ p2
φ

ω2
0

: ð19Þ

Then the deflection angle can be rewritten as a function of
only R and ω0 (for a given plasma distribution) as

π þ δ ¼ 2

Z
∞

R

ffiffiffiffiffiffiffiffiffi
BðrÞp
ffiffiffiffiffiffiffiffiffiffi
DðrÞp

�
hðrÞ2
hðRÞ2 − 1

�−1=2
dr: ð20Þ

A. Example 1: Schwarzschild spacetime

For the Schwarzschild spacetime,

AðrÞ ¼ BðrÞ−1 ¼ 1 −
2M
r

; DðrÞ ¼ r2; ð21Þ

INFLUENCE OF A PLASMA ON THE SHADOW OF A … PHYSICAL REVIEW D 92, 104031 (2015)

104031-3



the function hðrÞ specifies to

hðrÞ2 ¼ r2
�

r
r − 2M

−
ωpðrÞ2
ω2
0

�
: ð22Þ

Then the bending angle reads

πþ δ¼ 2

Z
∞

R

0
B@ r2

�
r

r−2M− ωpðrÞ2
ω2
0

�

R2
�

R
R−2M− ωpðRÞ2

ω2
0

�− 1

1
CA

−1=2

drffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r− 2M

p :

ð23Þ

This formula for the bending angle in a plasma on
Schwarzschild spacetime was derived in [9]. In [13] it was
rederived using Synge’s approach and rewritten in terms of an
elliptic integral for a homogeneous plasma; there also the
strong deflection limit (δ ≫ 1) was investigated.

B. Example 2: Ellis wormhole

As a second example, we choose the Ellis wormhole [17]
which is a traversable wormhole of the Morris-Thorne class
[18]. It is true that the existence of such wormholes is
questionable because they need exotic matter [18], and, at
least for a certain kind of perturbation, it has been shown
that the Ellis wormhole is unstable [19–21]. On the other
hand, wormholes have met with great interest because they
make time travel possible, and the Ellis wormhole is an
instructive example for illustrating the applicability of our
results. In this case, the metric coefficients are

AðrÞ ¼ BðrÞ ¼ 1; DðrÞ ¼ r2 þ a2; ð24Þ

where the coordinate r ranges from −∞ to ∞, and a is a
constant that determines the radius of the “neck” of the
wormhole. Note that this is an example of a spherically
symmetric and static spacetime where we cannot make a
transformation of the radius coordinate, r → ~r, such that
~Dð~rÞ ¼ ~r2. The reason is that the function DðrÞ has
vanishing derivative at r ¼ 0 (i.e., at the neck), so the
desired transformation fails to be a good coordinate trans-
formation on any radius interval that contains the point
r ¼ 0. For the Ellis wormhole, the function hðrÞ reads

hðrÞ2 ¼ ðr2 þ a2Þ
�
1 −

ωpðrÞ2
ω2
0

�
; ð25Þ

and the bending angle is given by

π þ δ ¼ 2

Z
∞

R

� ðr2 þ a2Þðω2
0 − ωpðrÞ2Þ

ðR2 þ a2Þðω2
0 − ωpðRÞ2Þ

− 1

�−1=2

×
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p : ð26Þ

III. CIRCULAR LIGHT ORBITS

We now derive the condition for circular light orbits
which will be crucial for determining the shadow. Along a
circular light orbit, we must have _r ¼ 0 and ̈r ¼ 0. The first
condition by (11) implies pr ¼ 0; from (12) we get the
equation

0 ¼ −
ω2
0

AðrÞ þ
p2
φ

DðrÞ þ ωpðrÞ2: ð27Þ

On the other hand, (11) implies

_pr ¼
d
dλ

ðBðrÞ_rÞ ¼ ̈rBðrÞ þ _r2B0ðrÞ: ð28Þ

From this equation, we read that _r ¼ 0 together with ̈r ¼ 0
leads to _pr ¼ 0, and from (8) we get the second equation
for circular light orbits,

0 ¼ −
ω2
0A

0ðrÞ
AðrÞ2 þ p2

φD0ðrÞ
DðrÞ2 −

d
dr

ωpðrÞ2: ð29Þ

We solve each of these two equations (27) and (29) for p2
φ,

p2
φ ¼ DðrÞ

�
ω2
0

AðrÞ − ωpðrÞ2
�
; ð30Þ

p2
φ ¼ DðrÞ2

D0ðrÞ
�
ω2
0A

0ðrÞ
AðrÞ2 þ d

dr
ωpðrÞ2

�
: ð31Þ

Subtracting these two equations from each other yields,
after some elementary rearrangements, the equation for the
radius of a circular light orbit in the form

0 ¼ d
dr

hðrÞ2 ð32Þ

with the function hðrÞ2 from (17). Any solution r ¼ rph of
(32) determines the radius of a photon sphere. If a light ray
starts tangentially to such a sphere, it will stay on a circular
path with radius rph forever. If the spacetime is asymp-
totically flat, and if ωpðrÞ → 0 for r → ∞, the outermost
photon sphere is always unstable with respect to radial
perturbations. This means that the circular photon orbits in
this photon sphere can serve as limit curves for light rays
that approach them asymptotically. The radius rph of the
outermost photon sphere is the critical value of the minimal
radius R mentioned above. If a light ray comes in from
infinity and reaches a minimum radius R bigger than rph, it
will go out to infinity again. The case R ¼ rph corresponds
to a light ray that spirals asymptotically towards a circular
photon orbit in the sphere of radius rph. All other rays cross
the photon sphere, and we exclude the case that they can
come back. The latter case can occur only if there is a
second photon sphere.
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In the vacuum case, ωpðrÞ ¼ 0, the condition for a
circular light orbit in an unspecified spherically symmetric
and static spacetime was first given by Atkinson [22]. It is
easy to check that our condition (32) reduces, indeed, to
Atkinson’s if ωpðrÞ ¼ 0.

A. Example 1: Schwarzschild spacetime

For the Schwarzschild spacetime, where hðrÞ is given
by (22), condition (32) for a photon sphere reads

0 ¼ rðr − 3MÞ
ðr − 2MÞ2 −

ωpðrÞ2
ω2
0

− r
ωpðrÞω0

pðrÞ
ω2
0

: ð33Þ

For the special case that ωp depends on r via a power law,
this condition was already derived by Rogers [16]. If there
is no plasma, ωpðrÞ ¼ 0, (33) gives the well-known result
rph ¼ 3M. For the sake of curiosity, notice that (33) is
identically satisfied if

hðrÞ2 ¼ r2
�

r
r − 2M

−
ωpðrÞ2
ω2
0

�
¼ C; ð34Þ

i:e:; ωpðrÞ2 ¼ ω2
0

�
r

r − 2M
−
C
r2

�
ð35Þ

with a positive constant C. For this particular density
profile of the plasma, there is a circular photon orbit with
constant of motion ω0 at any radius r for which

r3

r − 2M
> C: ð36Þ

B. Example 2: Ellis wormhole

For the Ellis wormhole, hðrÞ is given by (25), and
condition (32) for a photon sphere reads

0 ¼ r

�
1 −

ωpðrÞ2
ω2
0

�
− ðr2 þ a2ÞωpðrÞω0

pðrÞ
ω2
0

: ð37Þ

Without a plasma, ωpðrÞ ¼ 0, there is a unique photon
sphere at the neck of the wormhole, rph ¼ 0. The same is
true for a homogeneous plasma, ωpðrÞ ¼ constant.
However, in an inhomogeneous plasma there may be
arbitrarily many photon spheres. For an observer at a large
positive r coordinate, the outermost photon sphere is
relevant for the formation of the shadow which will be
discussed in the next section.

IV. RADIUS OF THE SHADOW

The shadow of a spherically symmetric and static black
hole is defined in the following way; see Fig. 1. Consider
light rays sent from an observer at radius coordinate rO into
the past. As we want to take the influence of a plasma into

account, by a light ray we mean a solution to the equations of
motion discussed in Sec. II. These light rays can be divided
into two classes: Light rays of the first class go to infinity
after being deflected by the black hole. Light rays of the
second class go towards the horizon of the black hole. If we
assume that there are no light sources between the observer
and the black hole, initial directions of the second class
correspond to darkness on the observer’s sky. This dark
circular disk on the observer’s sky is called the shadow of the
black hole. The boundary of the shadow is determined by the
initial directions of light rays that asymptotically spiral
towards the outermost photon sphere. Here it is crucial that
the light rays in the photon sphere are unstable with respect
to radial perturbations because, otherwise, they could not
serve as limit curves. For this reason, the construction of the
shadow works for any spherically symmetric and static
spacetime that admits an unstable photon sphere. This
includes not only black holes but also, e.g., wormholes.
We have already mentioned that in a spherically symmetric
and static spacetime that is asymptotically flat, the outermost
photon sphere is always unstable, provided that the plasma
density tends to zero for r → ∞. We will now calculate, for
this situation, the angular radius αsh of the shadow. The
observer is assumed to be static somewhere between the
outermost photon sphere and infinity.
We consider a light ray that is sent from the observer’s

position at rO into the past under an angle α with respect to
the radial direction. From Fig. 1, we read that α is given by

cot α ¼
ffiffiffiffiffiffi
grr

p
ffiffiffiffiffiffiffigφφ

p dr
dφ

����
r¼rO

¼
ffiffiffiffiffiffiffiffiffi
BðrÞp
ffiffiffiffiffiffiffiffiffiffi
DðrÞp dr

dφ

����
r¼rO

: ð38Þ

If the light ray goes out again after reaching a minimum
radius R, the orbit equation (16) can be rewritten, with the
help of (19), as

dr
dφ

¼ �
ffiffiffiffiffiffiffiffiffiffi
DðrÞp
ffiffiffiffiffiffiffiffiffi
BðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðrÞ
h2ðRÞ − 1

s
: ð39Þ

For the angle α, we obtain

cot2α ¼ h2ðrOÞ
h2ðRÞ − 1: ð40Þ

FIG. 1. For R → rph, the angle α approaches the angular radius
αsh of the shadow.
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Using

1þ cot2α ¼ 1

sin2α
; ð41Þ

we get

sin2α ¼ hðRÞ2
hðrOÞ2

: ð42Þ

The boundary of the shadow αsh is determined by light rays
that spiral asymptotically towards a circular light orbit at
radius rph. Therefore, the angular radius of the shadow is
given by sending R → rph in (42),

sin2αsh ¼
hðrphÞ2
hðrOÞ2

; ð43Þ

where hðrÞ is given by the formula (17).
For many applications, we may assume that the observer

is in a region where the plasma density is negligibly small.
Then (17) implies

hðrOÞ2 ¼
DðrOÞ
AðrOÞ

; ð44Þ

and (43) reduces to

sin2αsh ¼
DðrphÞAðrOÞ
AðrphÞDðrOÞ

�
1 −

AðrphÞωpðrphÞ2
ω2
0

�
;

NðrOÞ ≪ NðrphÞ: ð45Þ

This demonstrates that, under the assumptions stated, the
plasma always has a decreasing effect on the size of the
shadow.
We emphasize that the preceding calculation applies

not only to black holes but also to other spherically
symmetric and static spacetimes with an unstable photon
sphere, e.g., to ultracompact stars and to wormholes. As
long as there is no light coming from the direction of the
central object to the observer (which means, in particular,
that the central object must not have a bright surface),
these objects would cast a shadow in the same way as a
black hole.
Let us summarize the results of this section. To find

αsh for a given metric of the form (1), a given plasma
concentration NðrÞ, a given photon frequency at infinity
ω0, and a given observer position rO, we have to
calculate rph using Eq. (32) and substitute the result
into formula (43). Note that the photon frequency at the
observer position is ωðrOÞ according to (13).

A. Example 1: Schwarzschild spacetime

For the Schwarzschild case, (43) specifies to

sin2αsh ¼
r2phð rph

rph−2M
− ωpðrphÞ2

ω2
0

Þ
r2Oð rO

rO−2M
− ωpðrOÞ2

ω2
0

Þ
; ð46Þ

where rph has to be determined from (33). In Sec. VI below,
we will evaluate this equation for a particular plasma
density profile. For vacuum ωpðrÞ ¼ 0, our consideration
gives

hðrÞ2 ¼ r2

1 − 2M=r
; rph ¼ 3M;

sin2αsh ¼
27M2ð1 − 2M=rOÞ

r2O
: ð47Þ

This is Synge’s [1] formula for the radius of the shadow of a
Schwarzschild black hole which was mentioned already in
the Introduction.

B. Example 2: Ellis wormhole

We now calculate the radius of the shadow for the Ellis
wormhole. In this case, our assumption of no light coming
towards the observer from the direction of the central object
means, in particular, that there are no light sources in the
region r < 0. For the Ellis wormhole, the function hðrÞ is
given by (25), so Eq. (43) for the angular radius of the
shadow specifies to

sin2αsh ¼
ðr2ph þ a2Þ
ðr2O þ a2Þ

ðω2
0 − ωpðrphÞ2Þ

ðω2
0 − ωpðrOÞ2Þ

: ð48Þ

For a homogeneous plasma ωpðrÞ ¼ constant, we have
rph ¼ 0 and, thus,

sin2αsh ¼
a2

r2O þ a2
; ð49Þ

so a homogeneous plasma has no influence on the size of
the shadow.

V. THE SHADOW IN A LOW-DENSITY PLASMA

If the plasma frequency is much smaller than the photon
frequency, the equations for the photon sphere and for the
radius of the shadow can be linearized about the corre-
sponding values for vacuum light rays. To work this out, we
rewrite (17) as

hðrÞ2 ¼ QðrÞð1 − εβðrÞÞ; ð50Þ

where
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QðrÞ ¼ DðrÞ
AðrÞ ; βðrÞ ¼ AðrÞωpðrÞ2

ω2
0

¼ ωpðrÞ2
ωðrÞ2 : ð51Þ

Here we have introduced a bookkeeping parameter ε which
will be set equal to unity after all equations have been
linearized with respect to ε.
The equation for a photon sphere (32) now reads

0 ¼ Q0ðrÞð1 − εβðrÞÞ − εQðrÞβ0ðrÞ: ð52Þ

We write the solution to this equation in the form

rph ¼ r0ph þ εr1ph þ � � � ; ð53Þ

where r0ph is a solution in the case without plasma, i.e.,

Q0ðr0phÞ ¼ 0: ð54Þ

After inserting these expressions into (52) and comparing
coefficients of ε we find

r1ph ¼
Qðr0phÞβ0ðr0phÞ

Q00ðr0phÞ
: ð55Þ

Depending on the signs of β0ðrphÞ and Q00ðr0phÞ, this
expression can be positive or negative; i.e., the plasma
can shift the photon sphere inwards or outwards.
We now insert the expansion (53) into the equation for

the shadow (43). If we neglect all terms of quadratic and
higher order in ε, and set ε equal to unity again, we find

sin2αsh ¼
Qðr0phÞ
QðrOÞ

ð1 − βðr0phÞ þ βðrOÞÞ;

ωpðrÞ ≪ ωðrÞ:
ð56Þ

Note that r1ph has dropped out from the equation for αsh to
within this order. According to (56), the plasma has a
decreasing effect on the shadow as long as βðrOÞ < βðr0phÞ.
Let us summarize the results of this section. To find the

radius of the photon sphere rph for a given metric (1), a
given photon frequency at infinity ω0, and a given plasma
frequency that satisfies the condition ωpðrÞ ≪ ωðrÞ, one
has to proceed in the following way: Write down the
functions QðrÞ and βðrÞ [see (51)]; calculate r0ph from (54)
and r1ph from (55); then calculate rph according to (53) with
ε ¼ 1. To find the angular radius αsh of the shadow for a
given observer position rO in this case, we have to insert r0ph
into (56).

A. Example 1: Schwarzschild spacetime

As an example of the approximation formalism devel-
oped in this section, we consider the Schwarzschild
spacetime for the case that the plasma electron density is
given by a power law,

ωpðrÞ2
ω2
0

¼ β0
Mk

rk
; ð57Þ

where β0 and k are positive dimensionless constants.
Then, r0ph ¼ 3M and

r1ph ¼
β0M
3kþ1

�
1 −

k
2

�
; ð58Þ

i.e., depending on the density profile, the radius of the
photon sphere may become smaller (k > 2) or bigger
(k < 2) than 3M. In the case that k ¼ 2, we obtain
r1ph ¼ 0. Note that in this case, the equation for the photon
sphere can be solved exactly and gives the same result,
rph ¼ 3M. The first-order equation for the radius of the
shadow (56) yields

sin2αph ¼
27M2

r2O

�
1 −

2M
rO

�

×

�
1 −

β0
3kþ1

þ
�
1 −

2M
rO

�
β0Mk

rkO

�
: ð59Þ

If the observer is far away from the black hole, rO ≫ M,
this can be simplified to

sin2αph ¼
27M2

r2O

�
1 −

β0
3kþ1

�
: ð60Þ

B. Example 2: Ellis wormhole

For the Ellis wormhole,

QðrÞ ¼ r2 þ a2; βðrÞ ¼ ωpðrÞ2
ω2
0

: ð61Þ

With r0ph ¼ 0, the first-order approximation yields

r1ph ¼
a2ωpð0Þω0

pð0Þ
ω2
0

;

sin2αsh ¼
a2

ðr20 þ a2Þ
�
1 −

ωpð0Þ2
ω2
0

þ ωpðrOÞ2
ω2
0

�
: ð62Þ

VI. SPHERICALLY SYMMETRIC ACCRETION
OF A PLASMA ONTO A SCHWARZSCHILD

BLACK HOLE

In this section, we consider in greater detail the special
case that the underlying spacetime is the Schwarzschild
spacetime and that the plasma electron density corresponds
to spherically symmetric accretion of dust. As usual, we use
the word “dust” as a synonym for a pressureless perfect
fluid. Vanishing pressure implies that the flow lines are
geodesics, i.e., that the fluid particles are freely falling.
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Note that for our plasma model, the Hamiltonian and, thus,
the equations of motion for light rays do not depend on the
velocity of the plasma. This is, of course, different for other
types of media; see Synge’s book [10]. In the case of an
infalling plasma, we have to determine the plasma density
which is the only quantity that enters into the equation for
the plasma frequency.
We start out from the continuity equation

∂ið
ffiffiffiffiffiffi
−g

p
ρuiÞ ¼ 0: ð63Þ

Here, ρ is the rest-mass density of the plasma, ui is the 4-
velocity, and g is the determinant of the metric. For the sake
of simplicity, we consider a neutral hydrogen plasma, and
we assume that the electrons have the same 4-velocity as
the protons. As the electron mass is negligibly small in
comparison to the proton mass, ρ can be written as ρ ¼
mpN wheremp is the proton rest mass and N is the number
density of the protons (which, as the plasma is assumed to
be neutral, coincides with the number density of the
electrons).
For spherically symmetric and stationary accretion in

the Schwarzschild spacetime, the continuity equation
reduces to

d
dr

ðr2ρðrÞurðrÞÞ ¼ 0: ð64Þ

Integration gives

4πr2ρðrÞurðrÞ ¼ − _MA ¼ const; ð65Þ

where _MA is a stationary mass flux.
We assume that the particles are dropped in radial free

fall from rest at infinity, i.e., that our plasma is so “cold”
that the pressure can be neglected. Then the integral curves
of uμ are radial geodesics, so the radial component of the
4-velocity is [23]

urðrÞ ¼ dr
dτ

¼ −
ffiffiffiffiffiffiffi
2M
r

r
: ð66Þ

Thereupon, Eq. (65) gives us the rest-mass density,

ρðrÞ ¼
_MA

4π
ffiffiffiffiffiffiffi
2M

p 1

r3=2
: ð67Þ

Equations (66) and (67) also follow from Michel’s [24]
pioneering paper on fully relativistic spherically symmetric
accretion where we have to specify Michel’s equations (9)
and (10) to the case of a dust.
The rest-mass density ρðrÞ gives us the ratio of

frequencies

ωpðrÞ2
ω2
0

¼ 4πe2NðrÞ
meω

2
0

¼ 4πe2ρðrÞ
mempω

2
0

¼ β0
M3=2

r3=2
; ð68Þ

where

β0 ¼
e2 _MA

mempω
2
0

ffiffiffiffiffiffiffi
2M

p
M3=2

: ð69Þ

For this function ωpðrÞ, the angular radius (46) of the
shadow is plotted as a function of β0 for different observer
positions in Fig. 2.
Assuming that the approximation of a low-density

plasma is justified, we can use formula (59) and find

sin2αsh ¼
27M2

r2O

�
1 −

2M
rO

�

×

�
1 −

β0
35=2

þ
�
1 −

2M
rO

�
β0M3=2

r3=2O

�
: ð70Þ

In this case, the function −βðr0phÞ þ βðrOÞwhich enters into
(56) is equal to zero when rO ≃ 3.768M, and it takes its
maximum when rO ¼ 3.333M. When rO > 3.768M, the
function is negative. Therefore, if the approximation of a
low-density plasma is justified, the shadow becomes bigger
if rO < 3.768M and it becomes smaller if rO > 3.768M.
As an aside, we mention that the 4-velocity component

ur directly gives the velocity of the infalling particles as
measured by a static observer. To demonstrate this, follow-
ing [23] (see, also, [25]), we first observe that (66) together
with the normalization condition gijuiuj ¼ −1 implies that

(a)

(b)

(c)

(d)

(e)

FIG. 2. Dependence of the radius of the shadow on β0 for
different observer positions rO∶ rO=M ¼ 3.333 (a), 3.768 (b), 5
(c), 10 (d), 50 (e). The dependence is calculated using the exact
formulas. It is shown that for a distant observer, the radius of the
shadow becomes smaller.
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u0 ¼ dt
dτ

¼
�
1 −

2M
r

�
−1
; ð71Þ

hence,

dr
dt

¼ dr
dτ

dτ
dt

¼ −
ffiffiffiffiffiffiffi
2M
r

r �
1 −

2M
r

�
: ð72Þ

For a static observer at radius coordinate r, a coordinate
time interval dt corresponds to a proper time interval

dt0 ¼
�
1 −

2M
r

�
1=2

dt: ð73Þ

On the other hand, a radial coordinate separation dr
corresponds to a proper radial distance equal to

dr0 ¼
�
1 −

2M
r

�
−1=2

dr: ð74Þ

As a consequence, the velocity of the radially infalling
particle, as measured by a static observer at r, is given by

dr0

dt0
¼

�
1 −

2M
r

�
−1 dr

dt
¼ −

ffiffiffiffiffiffiffi
2M
r

r
¼ ur: ð75Þ

Wewill now use the results of this section for estimating the
numerical values of the plasma effects on the shadow of
the supermassive black holes at the center of our Galaxy
and of M87.
For these applications, we can always use the formulas

with rO ≫ RS, so the angular radius of the shadow (60) can
be written as

sin2αsh ¼
27R2

S

4r2O
ð1 − ZÞ; Z ¼ β0

35=2
: ð76Þ

β0 was defined in (69). For estimating the plasma correction
numerically, we reexpress all quantities in Gaussian cgs
units; i.e., we restore the factors of c and G. Then β0 reads

β0 ¼
e2 _MAc3

mempω
2
0

ffiffiffiffiffiffiffiffiffiffiffi
2GM

p ðGMÞ3=2 : ð77Þ

The mass accretion rate _MA can be estimated via the
observed luminosity of the Galactic center. We write

L≃ η _MAc2; ð78Þ

where η is a nondimensional coefficient characterizing the
accretion efficiency. We obtain for the correction due to the
presence of the plasma:

Z ¼ 23=2

35=2
e2

mempc
L
ηc2

1

R2
Sω

2
0

: ð79Þ

Note that the circular frequency ω0 is connected with the
ordinary frequency ν0 by the usual relation, ω0 ¼ 2πν0, and
that in the expression for Z, we can assume, as a valid
approximation, that ω0 is related to the wavelength λ0 by
the vacuum relation ω0 ¼ 2πc=λ0.
The value of η depends on the specific model of

accretion. For estimations, we consider η1 ¼ 10−4 (see
[26,27]) and η2 ¼ 0.1 (see [28]).
Let us consider the Galactic center source Sgr A*. For

estimations, we put M ¼ 4.3 × 106M⊙, rO ¼ 8.3 kpc (see
[29,30]). Then Synge’s formula (47) gives for the angular
radius of the shadow in vacuum a value of αsh ≃ 27 μas,
i.e., a diameter of about 53 μas which is expected to be
resolvable with VLBI soon [31,32]. By contrast, a naive
Euclidean estimate of the horizon size α ≈ tan α ¼ RS=rO
yields α ≈ 10 μas; i.e., a diameter of about 20 μas, as was
already mentioned in the Introduction. For a rotating (Kerr)
black hole, the shadow is flattened on one side, but its
vertical diameter is still given by Synge’s formula if
rO ≫ RS; see [4].
For estimating the correction Z, we use L ¼ 106L⊙ (see,

for example, [33]). For λ0 ¼ 1 mm, we obtain

Z ¼ 0.8 × 10−5 for η1; Z ¼ 0.8 × 10−8 for η2:

ð80Þ
Note that observations of the shadow are planned in the
(sub)millimeter regime because at wavelengths of more
than about 1.3 mm, it is expected that the shadow is washed
out by scattering [5]. We see that in this regime, the effect of
a plasma is rather small for the chosen values of η.
However, for bigger radio wavelengths, the effect can be
significant. For λ0 ¼ 10 cm, we obtain

Z ¼ 0.8 × 10−1 for η1; Z ¼ 0.8 × 10−4 for η2:

ð81Þ

We now turn to the Galactic center source M87. For
estimations, we put M ¼ 3 × 109M⊙, rO ¼ 18 Mpc, L ¼
7 × 1040 ergs s−1 (see, for example, [34]). Then Synge’s
formula leads to an angular radius of the shadow in vacuum
of αsh ≃ 9 μas.
For λ0 ¼ 1 mm, we obtain

Z ¼ 0.3 × 10−9 for η1; Z ¼ 0.3 × 10−12 for η2:

ð82Þ

For λ0 ¼ 100 cm we obtain

Z ¼ 0.3 × 10−3 for η1; Z ¼ 0.3 × 10−6 for η2:

ð83Þ

INFLUENCE OF A PLASMA ON THE SHADOW OF A … PHYSICAL REVIEW D 92, 104031 (2015)

104031-9



VII. CONCLUSIONS

In this paper, the first steps towards an investigation of the
shadow in the presence of matter based on analytical
calculations have been taken. We have analytically calcu-
lated the influence of a nonmagnetized pressureless plasma
on the angular size of the shadow. It was our goal to derive
all relevant formulas for an unspecified spherically sym-
metric and static spacetime before specializing to the case of
a Schwarzschild black hole. The gravitational field was not
supposed to be weak. We have worked in the framework of
geometrical optics; in this approximation, the presence of the
plasma leads to a change of the geometrical size of the
shadow via a change of the light rays in this medium.
The equation of motion for light rays in a plasma with a

spherically symmetric density distribution on a spherically
symmetric and static spacetime (1) has been derived; see
(16). In particular, the formula for the photon deflection
angle has been shown for unbound orbits; see (20). We
have also found the radii of the circular light orbits (radii of
the photon spheres); see (32). The central result of our
paper is an analytical formula for the angular size of the
shadow; see (43).1

Special attention has been given to the realistic case
when the plasma frequency is much smaller than the photon
frequency; see Sec. V. We have shown that, in this case, the

plasma has a decreasing effect on the size of the shadow
provided that the plasma density is higher at the photon
sphere than at the observer position; see (56). In particular,
a simple formula for the size of the shadow has been
presented for the case of a power-law density distribution
and an observer at a large distance; see (60).
In the presence of a plasma, the size of the shadow

depends on the wavelength at which the observation is
made, in contrast to the vacuum case where it is the same
for all wavelengths. For the underlying spacetime, we have
treated two examples, the Schwarzschild black hole and the
Ellis wormhole. In particular, the case of spherically
symmetric accretion of plasma onto a Schwarzschild black
hole has been considered in detail; see Sec. VI. We have
found that for an observer far away from the Schwarzschild
black hole, the plasma makes the shadow smaller. As
examples, we have considered Sgr A* and M87. For the
specific accretion model used here, we have found that the
effect of the presence of a plasma on the size of the shadow
can be significant only for wavelengths of at least a few
centimeters. At such wavelengths, the observation of the
shadow is made difficult because of scattering.
Apart from considering more complicated plasma mod-

els, an obvious next step would be to generalize the analysis
to the case of axially symmetric and stationary situations to
include rotating black holes. Then the shadow is no longer
circular, and the plasma has an effect not only on its size but
also on its shape. We are planning to work out the details in
future work.
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