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The saddle point approximation of the path integral partition functions is an important way of deriving
the thermodynamical properties of black holes. However, there are certain black hole models and some
mathematically analog mechanical models for which this method cannot be applied directly. This is due to
the fact that their action evaluated on a classical solution is not finite and its first variation does not vanish
for all consistent boundary conditions. These problems can be dealt with by adding a counterterm to the
classical action, which is a solution of the corresponding Hamilton-Jacobi equation. In this work we study
the effects of polymer quantization on a mechanical model presenting the aforementioned difficulties and
contrast it with the above counterterm method. This type of quantization for mechanical models is
motivated by the loop quantization of gravity, which is known to play a role in the thermodynamics of black
hole systems. The model we consider is a nonrelativistic particle in an inverse square potential, and we
analyze two polarizations of the polymer quantization in which either the position or the momentum is
discrete. In the former case, Thiemann’s regularization is applied to represent the inverse power potential,
but we still need to incorporate the Hamilton-Jacobi counterterm, which is now modified by polymer
corrections. In the latter, momentum discrete case, however, such regularization could not be implemented.
Yet, remarkably, owing to the fact that the position is bounded, we do not need a Hamilton-Jacobi
counterterm in order to have a well-defined saddle point approximation. Further developments and
extensions are commented upon in the discussion.
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I. INTRODUCTION

Two major open problems in theoretical physics regard
the nature of spacetime: on one hand, there is the issue of
singularities, beyond which classical general relativity can-
not be continued, and, on the other, one finds the divergent
high energy behavior of field theories. A quantum theory of
gravity is expected to have a bearing on both of these
problems. For instance, loop quantum gravity [1–5] has been
shown indeed to replace the big bang of general relativistic
homogeneous cosmological models by a bounce [6,7] and
quantum field theory in such a scenario [8] is rather different
from usual fixed background field theory. Moreover, it has
also provided a specific account for black hole entropy [9].
Now to investigate the behavior of some simple systems

under this approach it is possible to use polymer quantum
mechanics, a finite number of degrees of freedom scheme
including some of the loop quantum gravity techniques [10].
This simplified approach has been applied to some systems
to contrast their behavior with their usual Schrödinger
quantization and its relation with the latter either as a
continuum limit [11,12] or as a low energy approximation
[13]. Furthermore, for the case of fields on a fixed back-
ground this technique has been applied to each of its infinite

modes as a candidate to explore their high energy behavior
[14,15]. Even higher order derivative models have been
given consideration along these lines recently [16]. With the
exception of [17] that advanced a path integral version of
polymer quantum mechanics, most work on these lines
adopted a Hamiltonian scheme. This changed recently: a
path integral approach was considered [18–20] in order to
provide a more detailed link between loop quantum cosmol-
ogy and the covariant spin foam models [5], and a polymer
path integral in quantum field theory and its relation to
Lorentz invariance has also been studied in [21]. Also the
Feynman formula for other mechanical examples has been
worked out [22], and explicit polymer propagators have been
obtained [23]. An interesting aspect of this so-called
Feynman approach is that semiclassical approximations
can be at hand to investigate important gravitating systems
through the saddle point approximation of its path integral
description. In fact, the Euclidean path integral is specially
useful in studying the thermodynamics of systems such as
black holes since there it is interpreted as the partition
function of the system in a canonical ensemble.
Let us consider the semiclassical approximation for a

system with the Euclidean path integral
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in which ϕj are the fields of the theory and SE is its Euclidean action. Given that one can expand the action around the
classical solutions ϕjjcl as

SE½ϕjjcl þ δϕj� ¼ SE½ϕjjcl� þ δSE½ϕjjcl þ δϕj� þ
1

2
δ2SE½ϕjjcl þ δϕj� þ � � � ; ð1:2Þ

one can then substitute this into (1.1); by keeping only up to the quadratic term, one gets

Z ≈ exp

�
−
1

ℏ
SE½ϕjjcl�

�Z Y
j

Dϕj exp

�
−

1

2ℏ
δ2SE½ϕjjcl þ δϕj�

�
; ð1:3Þ

which is the saddle point approximation to the model that
gives us access to the semiclassical information about the
system.
More precisely, a saddle point approximation (1.3) of

(1.1) is possible only if the following conditions are met:
(1) The variational principle is well defined: SE must be

functionally differentiable for all the variations of the
fields and compatible with the boundary and falloff
conditions of the fields, so that any boundary term
must vanish by virtue of these conditions; thus we
can write δSE ¼ R dnx δSE

δϕj
δϕj. This is needed so that

one is able to
(a) expand SE as in (1.2) around an arbitrary con-

figuration ϕ0 using the functional derivatives,
(b) find the classical solutions by setting δSE ¼ 0,
(c) perform the expansion (1.2) specifically around

the classical solutions ϕjjcl.
(2) Given condition 1, then SE on classical solutions

must remain finite, i.e., SEjδSE¼0 < ∞.
(3) Given conditions 1 and 2, the Gaussian integralR Q

jDϕj exp ð− 1
2ℏ δ

2SE½ϕjjcl þ δϕj�Þ also must
remain finite.

(4) Since there is a minus sign in the exponent of (1.1),
we should also have δ2SE½ϕjjcl þ δϕj� > 0 so that
the classical solutions give the dominant contribu-
tion to the saddle point approximation.

The physical reason behind the above conditions is that
for a semiclassical approximation, the most important
contribution comes from the classical solutions, and thus
everything is expanded around such a trajectory. The rest of
the terms become less and less important, and thus we only
need to keep the perturbative terms up to the quadratic term,
which gives us the nonclassical contributions.
Thereare,however, some important systemsforwhich these

conditions are not met and thus access to the semiclassical
approximation via the saddle point method is not possible
[24–29]. Among these systems are a class of two-dimensional
(2D) dilatonic gravitational systems, including models like
CGHS (Callan-Giddings-Harvey-Stromingermodel) [30] and
3þ 1 spherically symmetric, which have black hole solutions
andmanyother related interestingproperties. This class can be
described by the generic action [31]

S ¼ −
1

16πG2

Z
M

d2x
ffiffiffiffiffiffi
−g

p ½ΦR − UðΦÞ∇aΦ∇aΦ − 2VðΦÞ�

−
1

8πG2

Z
∂M

dx
ffiffiffi
q

p
ΦK: ð1:4Þ

Here Φ is the dilaton field, and UðΦÞ and VðΦÞ are model-
dependent functions of the dilaton field. The latter is called
the dilaton potential. The boundary term is the equivalent of
the Gibbons-Hawking-York term [32] in this theory in
which K is the trace of the extrinsic curvature of the
boundary manifold.
To see the problem with saddle point approximation, we

consider the on-shell variation of the action [31]

δSjcl ¼
Z
∂M

dx
ffiffiffi
q

p ðΞabδqab þϒΦδΦÞ: ð1:5Þ

It can be shown that this variation does not vanish in some
of the models of this generic class. This is basically due to
the fact that in these models, the coefficients of the
variations of the spatial metric qab and the dilaton Φ in
the above expression diverge more rapidly than the varia-
tions themselves fall off. This might look odd since the
presence of the Gibbons-Hawking-York (GHY) term is
supposed to guarantee the well-posedness of the variational
principle in these kinds of theories. Notice, however, that
the presence of the GHY terms is to let us avoid prescribing
Neumann boundary conditions for the metric, i.e., it
cancels all the variations δð∂agbcÞ that come from the bulk
term. It does not guarantee that the Dirichlet boundary
conditions on the dilaton field lead to a well-posed
variational principle. Also it may not be helpful in dealing
with issues emanating from falloff conditions of the dilaton
field. It is these types of boundary and falloff conditions
that contribute to the problem here.
In some of the submodels of this class, even if the

variational principle is well defined, the on-shell value of
the action diverges, especially due to the falloff conditions
on the dilaton field and its value on the boundary. So the
saddle point approximation collapses for these types of
models.
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Since, as mentioned above, one important use of saddle
point approximation is to study the thermodynamics of
black holes, not being able to make such an approximation
for this class of 2D models is a significant shortcoming.
Luckily there is a common and rather generic method of
fixing this problem that consists of the addition of a
boundary counterterm to SE, which not only makes the
action functionally differentiable for all boundary and
falloff conditions but also renders the on-shell value of
the action finite. It turns out that this boundary counterterm
is a solution to the Hamilton-Jacobi equation of the system
[31]. The action that is the sum of (1.4) and the Hamilton-
Jacobi boundary term is called the improved action. An
interesting observation is that the improved action actually
gives the correct thermodynamics for the system [31].
In this paper, we investigate the behavior of the polymer

path integral quantization of a mechanical model that in the
usual path integral quantization suffers from the aforemen-
tioned ill-defined semiclassical approximation. Whether
this fixes the problem, and whether we need a Hamilton-
Jacobi counterterm, it is relevant to know how the polymer
approach changes the partition function for such systems
and, perhaps, the thermodynamics of some of the 2D black
holes. The present work is a first step in this direction, and
we study a simpler analog model of the aforementioned 2D
class, namely, a particle in an inverse square potential, that
has the same technical problems within the usual non-
polymer path integral quantization. Let us notice that the
Hamiltonian polymer quantizations of a particle subject to a
Coulomb [33] and an inverse squared [34] potential,
respectively, have been considered previously. Hence,
our work complements these studies.
The paper is organized as follows. In Sec. II, we

introduce the analog model and describe the saddle point
issue for this case. Then we recall its solution through the
application of the Hamilton-Jacobi method. In Sec. III, we
polymerize this analog model in a polarization where the
position q is discrete. We will see that in this polarization,
one still needs to add a counterterm to the action to get a
new well-defined action suitable for saddle point approxi-
mation. However, we show that this counterterm and the
bulk action are both modified by polymer quantization. In
Sec. IV we propose an effective potential for the semi-
classical version of the analog model in a polarization with
discrete momentum p. We then describe how this effective
potential does not require the addition of any counterterm
to the action. Finally we summarize and make our con-
cluding remarks in Sec. V. Details of the calculations are
given in the appendixes at the end of the paper.

II. ANALOG MECHANICAL MODEL
AND ITS IMPROVED ACTION

There are several types of simpler analog models that
exhibit the aforementioned ill-defined semiclassical
approximation. One such class of models corresponds to

single particle systems in half-binding potentials W [35].
We choose a simple system in this class with an inverse
square potential with the Newtonian action (the subscripts
N and E stand for Newtonian and Euclidean, respectively)

SN ¼
Z

tf¼∞

ti¼0

dtLN ¼
Z

tf¼∞

ti¼0

dt

�
m
2

�
dq
dt

�
2

−WðqÞ
�
;

WðqÞ ¼ k
q2

; ð2:1Þ

and corresponding Euclidean action (by a Wick rotation
t → τ ¼ it), SN ¼ iSE,

SE ¼
Z

τf¼i∞

τi¼i0
dτLE ¼

Z
τf¼i∞

τi¼i0
dτ

�
m
2

�
dq
dτ

�
2

þWðqÞ
�
:

ð2:2Þ

The Newtonian equation of motion is

m
d2

dt2
q ¼ −

∂W
∂q
�
¼ 2k

q3

�
; ð2:3Þ

which under a Wick rotation becomes

m
d2

dτ2
q ¼ ∂W

∂q
�
¼ −

2k
q3

�
: ð2:4Þ

Let us see the problems of the saddle point approximation
for this analog model. First, we consider the variation of the
Euclidean action

δSE ¼
� ∂LE

∂ d
dτ q

δq

�
∞

0

þ
Z

∞

0

dτ

�
−

d
dτ

∂LE

∂ d
dτ q

þ ∂LE

∂q
�
δq:

ð2:5Þ

If the boundary term does not vanish for all the variations of
δq compatible with the boundary and falloff conditions,
then the action is not functionally differentiable. It turns out
that this is the case. At τ ¼ iti ¼ i0, since the value of q is
finite, we have δq ¼ 0. However, at τ ¼ itf ¼ i∞, since
q → ∞, the condition δqj∞ ≠ 0 is also allowed; i.e., any
two trajectories do not necessarily coincide at infinity, and
yet they both tend to infinite values. Thus the action is not
functionally differentiable with this boundary condition.
The common way to overcome this issue is to add a

boundary term −B to the action that cancels out the
boundary term present in (2.5). Clearly the variation of
the boundary term should obey δB ¼ ∂L

∂ d
dτq

δq ¼ pδq. It just

happens that Hamilton’s principal function G has exactly
this property. This is because we have

δGðq; tÞ ¼ ∂G
∂q δq ¼ pδq ¼ ∂L

∂ d
dτ q

δq: ð2:6Þ
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Hence, we conclude that by adding

−B ¼ −G ð2:7Þ

to the action, it becomes functionally differentiable. Such
an action is called the “improved” action,

Γ½q� ¼ SE −Gðq; tÞjtf0 ¼
Z

tf

0

dt

�
m _q2

2
þ k
q2

�
−Gðq; tÞjtf0 :

ð2:8Þ

Clearly, the variation of (2.8) yields

δSE ¼
Z

∞

0

dτ

�
−

d
dτ

∂LE

∂ d
dτ q

þ ∂LE

∂q
�
δq

þ
�� ∂LE

∂ d
dτ q

−
∂G
∂q
�
δq

�
∞

0

¼
Z

∞

0

dτ

�
−

d
dτ

∂LE

∂ d
dτ q

þ ∂LE

∂q
�
δq: ð2:9Þ

Next, we consider the Euclidean action itself. We would
like to show that even if the action is functionally differ-
entiable, the value of the Euclidean action on classical
solutions is not finite, and that the addition of G to the
action makes it finite. Assuming for the moment that SE is
functionally differentiable, using the Leibniz rule on the
kinetic term, and then computing the action on the classical
solutions, we can write

SEjqcl ¼
�
m
2
qcl

dq
dτ

����
cl

�
τ¼i∞

τ¼i0

þ
Z

i∞

i0
dτ

�
−
m
2
qcl

d2q
dτ2

����
cl
þ k
q2cl

�
: ð2:10Þ

Using (2.4) and the form of the classical solution qclðτÞ, the
integral turns out to be finite and of order π. On the other
hand, it can clearly be seen that the boundary term above
(or its Newtonian counterpart) diverges, since at τ → ∞ (or
t → ∞) the system behaves as a free particle, dqdτ jcl (or dqdt jcl)
is constant, and qcl → ∞. Thus the action evaluated on
classical solutions is not finite,

SEjqcl → ∞: ð2:11Þ

These results show that the direct saddle point approxi-
mation cannot be performed for this system.
Now let us see what is the form of G and how it makes

the action, evaluated on classical solutions, finite. The
variable t is used from now on, both as Euclidean or
Newtonian time, depending on the context. SinceG in (2.8)
is a solution of the Hamilton-Jacobi equation, we have

H

�
q;
∂G
∂q
�
þ ∂G

∂t ¼ 0: ð2:12Þ

To find the explicit form of G we need to solve (2.12).
Considering the Euclidean Hamiltonian

H ¼ p2

2m
−

k
q2

; ð2:13Þ

and noting that p ¼ ∂G
∂q, Eq. (2.12) becomes

1

2m

�∂G
∂q
�

2

−
k
q2

þ ∂G
∂t ¼ 0: ð2:14Þ

Since the Hamiltonian does not depend explicitly on t,
Eq. (2.12) implies that the derivative ∂G=∂t must be a
constant in time and is actually the negative of the energy of
the system H ¼ E. So one can make an additive separation
of the variables in G as

Gðq; E; tÞ ¼ Ωðq; EÞ − Et; ð2:15Þ
which turns (2.14) into

1

2m

�∂Ω
∂q
�

2

−
k
q2

¼ E ð2:16Þ

or �∂Ω
∂q
�

¼
ffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

p
q

: ð2:17Þ

This can be integrated to yield Ω, which together with
(2.15) leads to

ðq; tÞ ¼ c0 − Etþ
ffiffiffi
2

p ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

q
−

ffiffiffi
2

p ffiffiffiffiffiffiffi
mk

p
tan−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

Eq2 þ k

s !
: ð2:18Þ

Since at q → ∞ the potential is zero, the energy takes the

form E ¼ 1
2
mq2

t2 of a free particle (which is equal to p
2=2m

asymptotically), and thus Hamilton’s principal function
behaves asymptotically like

G ≈
m
2

q2

t
: ð2:19Þ

Noticing that asymptotically _q ¼ q=t and henceG → m
2
q _q,

the boundary term in the improved action using (2.10) and
(2.8) vanishes, �

m
2
qcl _qjcl −G

�
∞

0

¼ 0; ð2:20Þ
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thus making Γ½qcl� finite. It is also worth noting that (2.18)
leads to

∂G
∂q ¼

ffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

p
q2

; ð2:21Þ

and since asymptotically Ejtf→∞ ¼ p2

2m, one gets

∂G
∂q
����
q→∞

≈ p; ð2:22Þ

which is an explicit way of seeing δΓ½qcl� ¼ 0.
Next we analyze how the polymer quantization affects

the above argument. For this we consider two polarizations
of the polymer representation for the analogue model in the
following sections.

III. THE POLYMER MODEL WITH
DISCRETE POSITION

Polymer quantum mechanics is based on the idea of
using the polymer representation of the Weyl algebra, a
singular representation that does not obey the Stone–von
Neumann theorem and hence is not equivalent to
Schrödinger representation [12]. As is well known, the
Weyl algebra is based on the Weyl relations

Ûμ1Ûμ1 ¼ Ûμ1þμ2 ; ð3:1Þ

V̂λ1 V̂λ2 ¼ V̂λ1þλ2 ; ð3:2Þ

ÛμV̂λ ¼ e−
i
ℏλμV̂λÛμ; ð3:3Þ

with the reality conditions Û†
μ ¼ Û−μ and V̂

†
λ ¼ V̂−λ. In the

polymer representation of this algebra, the corresponding
Hilbert space,Hpoly, possesses an uncountable orthonormal
basis such that

hμjνi ¼ δμ;ν; μ; ν ∈ R; ð3:4Þ

where δμ;ν is a Kronecker delta.
One can consider two polarizations of this polymer

representation in which either the representation of Ûμ or
V̂λ on Hpoly is not weakly continuous in its corresponding
parameter, μ or λ. More precisely, by saying, e.g., the
representation of V̂λ is not weakly continuous with respect
to λ, we mean limλ→0hμjV̂λjμi ≠ hμjV̂λ¼0jμi. A similar
criterion applies for a polarization in which the represen-
tation of Ûμ is not weakly continuous with respect to μ.
Now, in a polarization where the representation of V̂λ is not
weakly continuous, the basic operators Ûμ; V̂λ act on the
basis vectors jqi as

Ûμjqi ¼ e
i
ℏμqjqi; ð3:5Þ

V̂λjqi ¼jq − λi: ð3:6Þ

Since Ûμ is weakly continuous in μ in this polarization, one

can write Ûμ ¼ e
i
ℏμq̂. However, this is not the case for V̂λ.

Namely, since the representation of Vλ is not weakly
continuous with respect to λ, the momentum p cannot
be represented on the Hilbert space Hpoly in a well-defined
manner as the generator of V̂λ. Thus, although classically
one may write Vλ ¼ e

i
ℏλp, this is not the case quantum

mechanically and V̂λ should be seen as an operator on its
own and not as the exponentiation of the generator p̂.
Furthermore, since we cannot take the limit λ → 0 due to

the singularity of the representation, and once we consider λ
as a fixed free parameter of the theory, one can see from
(3.6) that by starting from a certain q ¼ q0, states get
restricted to a (one-dimensional) lattice in q space where
the wave functions ΨðqÞ ¼ hqjΨi have nonvanishing
values only on the lattice points fqnjqn ¼ q0 þ nλ; n ∈
Zg for that q0; here we choose q0 ¼ 0. Thus we say q is
discrete in this polarization and write the basis jqni as a
countable one, labeled with n, and the value of the
momentum is restricted to − πℏ

λ ≤ p < πℏ
λ . We call this

polarization with q discrete, q polarization. The corre-
sponding Hilbert spaceHq0 is only a superselected sector of
Hpoly, such that Hpoly ¼ ⨁

0≤q0<λ
Hq0 .

In another polarization, one in which Ûμ is not weakly
continuous, things are the other way around: while we can
write V̂λ ¼ e

i
ℏλp̂ (and also classically Uμ ¼ e

i
ℏμq), we may

not write Ûμ as an exponentiation of q̂, since q̂ cannot be
represented on the Hilbert space Hpoly in a well-defined
manner as the generator of Ûμ due to the criterion
limμ→0hλjÛμjλi ≠ hλjÛμ¼0jλi. In this case the basic oper-
ators Ûμ; V̂λ act on the basis vectors jpi as

Ûμjpi ¼jp − μi; ð3:7Þ

V̂λjpi ¼ e
i
ℏλpjpi: ð3:8Þ

Here, one can see from (3.7) that by starting from a certain
p ¼ p0, the states are again restricted to a (one-dimen-
sional) lattice in p space where the wave functions ΨðpÞ ¼
hpjΨi have nonvanishing values only on the lattice points
fpnjpn ¼ p0 þ nμ; n ∈ Zg for that p0; here also we set
p0 ¼ 0. So we see that p is discrete in this polarization and
write the basis jpni as a countable one, labeled with n,
whereas the value of position is restricted to − πℏ

μ ≤ q < πℏ
μ .

We call this polarization the p polarization, in which p is
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discrete. The Hilbert space Hp0
now is a superselected

sector of Hpoly, such that Hpoly ¼ ⨁
0≤p0<μ

Hp0
.

At this point a remark on notation is in order. In the rest
of this work, whenever we use the q polarization, we adopt
the notation jqni for the discrete position basis and jpi for
the continuous “momentum” basis. On the other hand,
for the case of the p polarization, the discrete momentum
basis is written as jpni and the continuous position basis as
jqi. Additionally we emphasize that from now on we are
going to work in the separable superselected Hilbert spaces
Hq0 or Hp0

, and not in the full polymer Hilbert space.
Let us first consider the q polarization in which

q̂jqni ¼ qnjqni; ð3:9Þ

V̂λjqni ¼jqn − λi; ð3:10Þ

q̂jpi ¼ ℏ
i
∂pjpi; ð3:11Þ

V̂λjpi ¼ e
i
ℏλpjpi: ð3:12Þ

Notice that hqnjpi ¼
ffiffiffiffiffiffi
λ

2πℏ

q
e−iqnpℏ,

R πℏ
λ

−πℏ
λ
dpjpihpj ¼ 1, andP

n∈Zjqnihqnj ¼ 1 (see Appendix A).
Now, classically the Euclidean action can be written as

SE ¼
Z

τf

τi

dτ

�
p

�
dq
dτ

�
−HEðq; pÞ

�
ð3:13Þ

with

HE ¼ p2

2m
−WðqÞ: ð3:14Þ

Using (3.10), the kinetic term in this Hamiltonian can be
represented as (see Appendix B)

p2 →cp2
λ ¼

ℏ2

λ2
ð2 − V̂λ − V̂−λÞ: ð3:15Þ

The potential 1
q2 in this case can be represented using a

regularization following Thiemann [36]

1ffiffiffiffiffiffijqjp ¼ 2

iλ
V−λ

n ffiffiffiffiffiffi
jqj

p
; Vλ

o
¼ V−λ

iλ

n ffiffiffiffiffiffi
jqj

p
; Vλ

o
þ
n ffiffiffiffiffiffi

jqj
p

; Vλ

oV−λ

iλ
; ð3:16Þ

where in the second line, we have chosen a specific
symmetrization. It is obvious that other types of orderings
are also possible. The full Euclidean Hamiltonian (3.14)
can be represented as (using the Dirac prescription
f·; ·g → −i=ℏ½·; ·�; see Appendix D)

ĤE ¼ ℏ2

2mλ2
ð2 − V̂λ − V̂−λÞ

− k

�
V̂−λ

λ
ℏ
h dffiffiffiffiffiffijqj
p

; V̂λ

i
þ
h dffiffiffiffiffiffijqj
p

; V̂λ

i
ℏ
V̂−λ

λ

�
4

:

ð3:17Þ

One can use the above Hamiltonian on basis vectors jqni to
get (Appendix D)

ĤEjqni ¼
ℏ2

2mλ2
ð2jqni − jqn − λi − jqn þ λiÞ

−
kℏ4

λ4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn þ λj

p 	
4jqni: ð3:18Þ

Now the potential is not singular anymore at q ¼ 0 as can
be seen from (3.18) above, and it is illustrated in Fig. 1.
Also if the energy of the system is smaller than the peak of
the potential and the particle’s initial position is such that
0 ≤ q0 < qðWmaxÞ where qðWmaxÞ is the position corre-
sponding to the potential peak, the semiclassical issue
mentioned above is solved: since q remains finite at all
times, then action is functionally differentiable (boundary
terms vanish) and S½qcl� < ∞. Therefore, there is no need
to add a counterterm to the action to be able to do a saddle
point approximation. However, in a more general case,
when the energy of the system is greater than the peak of
the potential, we have

qcljt→∞ → ∞; ð3:19Þ

and due to (2.10), we will still have the problem that the
action will not necessarily be functionally differentiable
and that even so, SE½qcl� will not be finite.

1 2 3 4 5 6 7
q

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 W T

k 4

FIG. 1 (color online). The form of potential after polymeriza-
tion with λ ¼ 1 in q polarization. Note that for simplicity we have

plotted WT

ðkℏ4=λ4Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffijq − 1jp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijqþ 1jp 	

4
, a continuous graph,

while it actually should be a discrete one. The maximum is finite
and here is equal to 4.

MORALES-TÉCOTL, OROZCO-BORUNDA, AND RASTGOO PHYSICAL REVIEW D 92, 104029 (2015)

104029-6



This analysis shows that this kind of polymerization,
which does not bound the position but discretizes it, removes
the singularity of the potential at the origin. However, it does
not solve the problems with the saddle point approximation,
and we still need to add a Hamilton-Jacobi counterterm to
get a well-defined action for this kind of approximation.
One solution to both of the above problems (both

functional differentiability of the action and/or its finiteness
on classical solutions) comes from modifying the potential
at infinity such that qt→∞ < ∞ and consequently δq ¼ 0 at
the (time) boundary. This is the subject of the next section.
In the remaining part of this section, we investigate the
effects of polymerization on the Hamilton-Jacobi counter-
term in q polarization. To do this, we first derive the
effective Euclidean Hamiltonian in q polarization using the
path integral method. This turns out to be (see Appendix C)

Heff ¼
2ℏ2

mλ2
sin2
�
λp
2ℏ

�
−WT

¼ 2ℏ2

mλ2
sin2
�
λp
2ℏ

�
−
kℏ4

λ4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
jq − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ λj

p 	
4
;

ð3:20Þ

where WT is the continuous counterpart of the potential
derived using Thiemann’s regularization. A note about
some subtleties is in order here: we could not directly argue
that the form of the effective Hamiltonian will be (3.20)
based on the form of the potential in (3.18). This is so
because if one computes the action of the full quantum
Hamiltonian on jqni states, one gets the above effective
potential but with discrete qn, and also the kinetic term will
not be 2ℏ2

mλ2
sin2ðλp

2ℏÞ anymore since this is the form of the
kinetic term when it acts on jpi states and not the jqni ones.
On the other hand, if we use the jpi basis for the action of
the full quantum Hamiltonian, we would not get the
effective potential in (3.20). In the first case (acting Ĥ
on jqni), one will get an additional

R
dp in the kinetic term

(and also the potential will be discrete), while in the second
case (acting Ĥ on jpi), there will be aPn in the potential
term. The way to overcome these problems and get the

effective action (3.20) is to use the path integral formulation
and not something like Heff ¼ hqnjHjqni. What makes the
path integral method useful is that one can bring the extraP

n out of the exponential of the action and turn it into an
integral that appears in the measure of the path integral (see
Appendix C for more details).
To find the explicit form of the polymer Gpoly for this

effective Hamiltonian, we need to solve (2.12). Considering

the above Hamiltonian and noting that p ¼ ∂Gpoly

∂q , Eq. (2.12)
becomes

2ℏ2

mλ2
sin2

�
λ

2ℏ

∂Gpoly

∂q
�
−
kℏ4

λ4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
jq − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ λj

p 	
4

þ ∂Gpoly

∂t ¼ 0: ð3:21Þ

Again since the Hamiltonian does not depend explicitly on
t, Eq. (2.12) implies that the derivative ∂Gpoly=∂tmust be a
constant H ¼ E, and an additive separation of variables in
Gpoly can be performed,

Gpolyðq; E; tÞ ¼ Ωðq; EÞ − Et: ð3:22Þ

This turns (3.21) into

2ℏ2

mλ2
sin2

�
λ

2ℏ
∂Ω
∂q
�
−
kℏ4

λ4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
jq− λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ λj

p 	
4
−E¼ 0

ð3:23Þ

or

∂Ω
∂q ¼ 2

λ
sin−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mλ2

2ℏ2
Eþmkℏ2

2λ2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jq− λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ λj

p
Þ4

s !
:

ð3:24Þ
As clearly seen from this, finding Ω in this case is much
more involved due to the presence of sin−1

ffiffiffiffiffiffi� � �p
. A way

around this difficulty is to use a perturbative expansion of the
right hand side of the above, around λ=q ¼ 0. This yields

∂Ω
∂q ¼

ffiffiffi
2

p ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

p
q

þ λ2

12ℏ2q3

� ffiffiffi
2

p
m3=2ðEq2 þ kÞ3=2 þ 3kℏ2

ffiffiffi
2

p ffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

p �
þO

�
λ4

ℏ4

�
: ð3:25Þ

The leading continuum order in (3.25), in which λ ¼ 0, matches exactly the corresponding classical counterpart in (2.17).
Integrating (3.25) and then substituting the result into (3.22) yields

Gpoly ¼ −Etþ
ffiffiffi
2

p ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

q
þ

ffiffiffi
2

p ffiffiffiffiffiffiffi
mk

p
tan−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

Eq2 þ k

s !
ð3:26Þ

þ λ2

ℏ2

" ffiffiffi
2

p ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2 þ k

p
24q2

ðmð2Eq2 − kÞ − 3ℏ2Þ þ
ffiffiffi
2

p ffiffiffiffi
m

p

8
ffiffiffi
k

p Eðþmkþ ℏ2Þtan−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
Eq2 þ k

s !#
þO

�
λ4

ℏ4

�
: ð3:27Þ
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Again we see that the purely classical term with λ ¼ 0
matches exactly to the classical Hamilton’s principal
function (2.18) while there are also several types of
corrections due to polymer quantization.
Since the classical part of the polymerizedGpoly in (3.27)

is exactly the same as the classical nonpolymerized case,
and since we have seen that with purely classical G, the
action is functionally differentiable and its value on
classical solutions is finite, we conclude that the polym-
erized improved action Γpoly½qcl� with the above counter-
term has also the same nice properties and thus makes it
possible to proceed with the saddle point approximation if
desired. But in addition to that, the counterterm (3.27) has
additional terms proportional to the powers of “quantum
lattice parameter” λ. So, it is reasonable to expect that this,
together with the change of the form of the bulk action due
to polymer quantization, will change the thermodynamical
properties of the system in case of, e.g., a black hole, and
therefore it is interesting to see what are the implications of
such semiclassical polymer modifications. Next we con-
sider the other polymer polarization.

IV. THE POLYMER MODEL WITH
DISCRETE MOMENTUM

In this section we consider the p polarization in which

Ûμjpni ¼jpn − μi; ð4:1Þ

p̂jpni ¼ pnjpni; ð4:2Þ

Ûμjqi ¼ e
i
ℏμqjqi; ð4:3Þ

p̂jqi ¼ −
ℏ
i
∂qjqi: ð4:4Þ

The representation of the kinetic term in (3.14) in this

polarization is very simple; in fact, it is just p̂
2

2m. The problem
here is how to represent the potential. It is not clear how
Thiemann’s regularization can be used in this case. The
reason is that generally this regularization is used to
represent a variable that is discrete and not bounded. In
the present case though we have to define a replacement for
the inverse of q̂; a problematic task since even q̂ is not well
defined on Hp0

but only Ûμ. Even more, we may consider
finding functions FðUμÞ and GðpÞ such that classically

1

qn
¼ fFðUμÞ; GðpÞgm; n;m > 0; ð4:5Þ

so that FðUμÞ and GðpÞ admit a simple representation on
Hilbert space. The first part, i.e., finding classical functions
FðUμÞ and GðpÞ fulfilling (4.5) may not be very hard, and
several options may be available such as

2ffiffiffi
μ

p
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j − i lnðUμÞj
q

; p
o
¼ 2ffiffiffi

μ
p
n ffiffiffi

μ
p ffiffiffiffiffiffi

jqj
p

; p
o
¼ 1ffiffiffiffiffiffijqjp :

ð4:6Þ

However, the second part, the ability to represent the
functions FðUμÞ and GðpÞ on Hilbert space, is the hard
part as can be seen from the above example. Presently we
have not found satisfactory functions that can be repre-
sented onHpoly for which Thiemann’s regularization can be
done. In spite of this difficulty it is still possible to
introduce a formal inverse squared position operator in
this polarization and hence its semiclassical approximation.
We saw in the previous subsection that a solution to both

issues of functional differentiability and finiteness of the
action is likely to come from bounding q to finite values,
and this may result from modifying the potential term in
HE. Considering this, we can argue that since in this
polarization q is bounded, a representation ŴðÛμÞ is
expected to lead to a bounded potential and thus would
eliminate the need to add a Hamilton-Jacobi boundary
counterterm to the action to enable one to make a well-
defined saddle point approximation. Now we provide a
scheme that shows how the polymer quantization will
change the action in such a way that no counterterm is
needed to have a well-defined saddle point approximation.
Our proposed scheme for the effective potential is based

on the observation that q2 in this polarization gets replaced
by an operator that is represented as (see Appendix B)

q2 → q̂2μ ¼
ℏ2

μ2
ð2 − Ûμ − Û−μÞ: ð4:7Þ

Its action on a jqi basis is

ℏ2

μ2
ð2 − Ûμ − Û−μÞjqi ¼

4ℏ2

μ2
sin2
�
μq
2ℏ

�
jqi: ð4:8Þ

This is computed using (4.3) (see Appendix B). Based on
this, our proposed replacement of the inverse squared
operator is

1̂

q2μ
jqi ¼ μ2

4ℏ2
csc2

�
μq
2ℏ

�
jqi: ð4:9Þ

Using path integral formulation, the effective action turns
out to be (Appendix C)

Seff ¼
Z

dt

�
p _q −

�
p2

2m
−
μ2k
4ℏ2

csc2
�
μq
2ℏ

���
: ð4:10Þ

Equation (4.10) suggests that the effective form of the
classical potential WðqÞ ¼ k

q2 in this scheme has an effec-

tive form
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Wh ¼ μ2k
4ℏ2

csc2
�
μq
2ℏ

�
: ð4:11Þ

Note that here also there are subtleties similar to those
explained in the previous section related to the important
role of the path integral method to derive (4.10). For
example, acting quantum Hamiltonian on jqi yields the
above effective potential while the kinetic term will not
be p2=2m anymore since this is the form of the kinetic
term when it acts on jpi not on jqi. Furthermore, since in
this polarization our momentum states are actually dis-
crete, i.e., jpni, pn ¼ nμ; n ∈ Z, even if we use the
kinetic term on them instead of jqi, we will get a discrete
result and not a continuous one. Thus again the path
integral method saves the day and makes it possible to
get rid of the additional

P
n and the discreteness of the

momentum in the effective action. Details are explained
in Appendix C.
The plot of the potential (4.11) is shown in Fig. 2.

Obviously the potential is still singular at the origin, q ¼ 0.
But the good news is that the position is bounded at the time
boundary, i.e., qclðt → ∞Þ < ∞. This means that since
now q is finite at the boundary, δq ¼ 0 on the boundary,
and thus the action is well defined for a saddle point
approximation without the need to add any other terms,
such as the Hamilton-Jacobi counterterm. This polariza-
tion, like the previous one, will also most probably lead to
modifications to the thermodynamics of the system due to
the modification of the bulk action due to polymer
quantization as well as the absence of any counterterm.
This is particularly interesting if the system under study is a
black hole.

V. DISCUSSION

In this work we have studied the issue of ill-defined
saddle point semiclassical approximation that occurs for
some systems including dilatonic black holes and some

mathematically analog mechanical models. This problem
arises due to the fact that the action is not functionally
differentiable for all the variations of the fields, compat-
ible with the boundary and falloff conditions, and even if
so, the value of the action on classical solutions does not
remain finite for all of these conditions. This issue is
rather important since one of the main methods of
deriving thermodynamical properties of such models is
through the saddle point approximation to the path
integral that can also be interpreted as the partition
function of the system. The common solution to this
problem is to add a boundary counterterm to the action,
which is a solution to the corresponding Hamilton-Jacobi
equation. A very interesting observation is that only with
this term can one get the correct thermodynamics for
certain black holes.
We undertake to seek an alternative method to attack

this issue which is through polymer quantization of the
model. The effects of polymerization may lead to two
outcomes: either it will spare us altogether from adding
any additional term to the action and the action is already
well defined for saddle point approximation after polymer
modifications or it may not remove the necessity of
adding a counterterm, but it will modify it. In both cases,
it is very likely that the process of polymer quantization
will change the thermodynamics, either due to the fact
that the counterterm is not necessary or because it will be
modified.
In this work we restrict our study to a simpler analog

model featuring the aforementioned issues. This helps us
see the effects, problems, and results of this method more
clearly and provides interesting insights about the pro-
cedure. The analog model we study is a single particle in an
inverse square potential.
We first show how this system is modified under

different polarizations of polymer quantization. It turns
out that in the polarization where q is discrete, we still will
need to add the Hamilton-Jacobi counterterm to the action,
but the advantage is that the potential can be rather easily
represented on a Hilbert space using Thiemann’s regulari-
zation [36]. This is the case in which the Hamilton-Jacobi
counterterm is modified by polymerization. We then
proceed to compute the effective action and thus derive
the effective Hamiltonian using path integral formulation.
Then we derive the associated Hamilton-Jacobi counter-
term and show that the classical terms of the polymerized
case match exactly the nonpolymerized case while there are
corrections to this counterterm that come from the polymer
quantization. This supports our claim that polymer quan-
tization will change the thermodynamics of the system due
to the polymer modifications of the bulk action and the
Hamilton-Jacobi counterterm.
On the other hand, in the polarization where p is discrete,

we argue that in general there should be no need to add a
counterterm to the action since the variable q is bounded

1 2 3 4 5 6
q

2

4

6

8

10

W h

FIG. 2 (color online). The form of potential Wh for our model
with μ ¼ 1.
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due to polymer effects; thus the action remains functionally
differentiable and finite on classical solutions in accordance
with all the allowed variations. However, since the repre-
sentation of the potential in this case is not so straightfor-
ward and could not be done here, in order to get concrete
results and calculations, we proposed an effective form that
replaces the classical potential W ¼ 1

q2 based on the

analysis of the polymer operator q̂2μ. Using this, we show
that the effective action is indeed finite evaluated on the
effective solution and is functionally differentiable without
the need to add a counterterm. This means that due to the
effects of polymer quantization in p polarization, the
system is already well defined for saddle point
approximation.
Further developments along the lines of the present

work include the following. It is pretty evident that a
similar analysis for the case of polymer black hole
systems may lead to the change of thermodynamics
due to polymer modifications of the bulk action. It will
be interesting to check whether any counterterm is
required in such a case. Also, recently, much work
has been done to unveil singularity avoidance in loop
quantum cosmology [19] as well as in black holes
[37–39] by alluding to effective models like the ones
we have studied in the present work; hence it would be
interesting to explore possible physical consequences for
a semiclassical approximation of these systems using the
path integral framework.
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APPENDIX A: PROOF OF (3.12) AND (4.3)

Let us consider the polarization ðq̂; V̂λÞ where eigenval-
ues of the operator q̂ are discrete. We would like to derive
(3.12) from (3.9) and (3.10). Using the completeness
relation

1 ¼ λ

2πℏ

Z
πℏ=λ

−πℏ=λ
dpjpihpj ðA1Þ

and the form of

hqnjpi ¼
ffiffiffiffiffiffiffiffi
λ

2πℏ

r
e
ipnq
ℏ ; ðA2Þ

one can write

V̂λjpi ¼
X∞
n¼−∞

V̂λjqnihqnjpi

¼ λ

2π

Z
π=λ

−π=λ
dp0 X∞

n¼−∞
jp0ihp0jqn − λi

ffiffiffiffiffiffiffiffi
λ

2πℏ

r
e

i
ℏpqn

¼ λ

2π

Z
π=λ

−π=λ
dp0 X∞

n¼−∞
jp0ie− i

ℏp
0qne

i
ℏp

0λe
i
ℏpqn

¼ λ

Z
π=λ

−π=λ
dp0 lim

j→∞

�
1

2π

Xj
n¼−j

e
i
ℏqnðp−p0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δnðp−p0Þ

e
i
ℏp

0λjp0i;

ðA3Þ

where δnðp − p0Þ is a Dirac delta sequence and the limit
will make it into a formal Dirac delta series representation
δðp − p0Þ. Using the above and the fact that for a function
fðpÞ with a period 2π=λ one can writeZ

π=λ

−π=λ
dp0δðp − p0Þfðp0Þ ¼ 1

λ
fðpÞ; ðA4Þ

we finally arrive at

V̂λjpi ¼ e
i
ℏpλjpi: ðA5Þ

Using the same lines of argument but now in the polari-
zation ðÛμ; p̂Þ where eigenvalues of the operator p̂ are
discrete, one can derive (4.3) from (4.1) and (4.2).

APPENDIX B: ACTION OF bq2μjqi AND bp2λjpi
Let us choose one of the polarizations, say the one in

which p is discrete. Since, as mentioned before, the q̂
operator does not exist in this polarization, we first need to

construct an analog of the q2 operator that we call bq2μ and
then find its action on the desired basis. To do this, we note
that since classically Uμ ¼ eiμq=ℏ, then one can write

e
iμq
ℏ þ e−

iμq
ℏ ≈ 2 −

μ2q2

ℏ2
; q ≪

ℏ
μ
: ðB1Þ

Using this, one can isolate q2 and represent its singular

counterpart bq2μ (singular here means the limit μ → 0 does
not exist) on the Hilbert space as

bq2μ ¼ ℏ2

μ2
ð2 − Ûμ − Û−μÞ; ðB2Þ

and using the results of Appendix A or equivalently using
(4.3), one can write
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ℏ2

μ2
ð2 − Ûμ − Û−μÞjqi ¼

ℏ2

μ2
ð2 − e

i
ℏμq − e−

i
ℏμqÞjqi ðB3Þ

¼ ℏ2

μ2

�
2 − 2 cos

�
μq
ℏ

��
jqi ðB4Þ

¼ 4ℏ2

μ2

�
sin2
�
μq
2ℏ

��
jqi: ðB5Þ

So we conclude that

bq2μjqi ¼ 4ℏ2

μ2

�
sin2
�
μq
2ℏ

��
jqi: ðB6Þ

On the other hand, if we choose to work in the polarizations

in which q is discrete, the operator cp2
λ can be defined and

represented using the same method, i.e.,

cp2
λ ¼

ℏ2

λ2
ð2 − bVλ − V̂−λÞ: ðB7Þ

Its action on the jpi basis can then be computed in the same

manner as above for bq2μ, and by applying the results of
Appendix A or equivalently Eq. (3.12) one gets

cp2
λ jpi ¼

4ℏ2

λ2

�
sin2
�
λp
2ℏ

��
jpi: ðB8Þ

APPENDIX C: EFFECTIVE
POLYMERIZED ACTIONS

In this section we show how to obtain the effective action
of the models described in Secs. III and IV. The calculations
are done in Newtonian form but changing to the Euclidean
form is straightforward. In steps that are different for each
polarization, we will make comments and make clear what
equation corresponds to which polarization. The transition
amplitude in each case is given by

hqf; tfjqi; tii ¼ lim
N→∞

�YN−1

n¼1

X
n

��YN
n¼1

hqn; tnjqn−1; tn−1i
�

ðDiscrete qÞ; ðC1Þ

hqf; tfjqi; tii ¼ lim
N→∞

�YN−1

n¼1

Z πℏ
μ

−πℏ
μ

dqn

��YN
n¼1

hqn; tnjqn−1; tn−1i
�

ðDiscretepÞ; ðC2Þ

where in the first equation, we have a sum over polymer lattice q points due to discreteness of q, and in the second equation,
the limits of the integral reflect the bounds on the continuous variable q. Note that in the first equation, the subscript is due to
the genuine polymer lattice discreteness of q, while in the second one, it is due to partitioning of the path integral. The
amplitude above is then divided into partitions for which we have

hqn; tnjqn−1; tn−1i ¼hqnje−iϵ
ℏĤpoly jqn−1i

≈hqnj1 −
iϵ
ℏ
Ĥpolyjqn−1i

¼hqnjqn−1i −
iϵ
ℏ
hqnj

ℏ2

2m

�
2 − V̂λ − V̂−λ

λ2

�
jqn−1i −

iϵ
ℏ
hqnjŴjqn−1i; ðC3Þ

where Ĥpoly is the polymer quantum Hamiltonian operator and we have used (B7) for the representation of the kinetic term.
Ŵ is the potential operator that can be represented by Thiemann’s regularization as in (3.17) in case q is discrete or can be
the potential proposed in Sec. IV when p is discrete. We then insert one of the following identities:

1 ¼
X
n

jpnihpnj; ðDiscretepÞ; ðC4Þ

1 ¼ λ

2πℏ

Z πℏ
λ

−πℏ
λ

dpnjpnihpnj; ðDiscrete qÞ; ðC5Þ

in front of the kinetic and potential terms in (C3), corresponding to the polarization we are working in, to obtain either
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hqn; tnjqn−1; tn−1i ≈
λ

2πℏ

Z πℏ
λ

−πℏ
λ

dpnhqnjpnihpnjqn−1i
�
1 −

iϵ
ℏ

�
2ℏ2

mλ2
sin2
�
λp
2ℏ

�
þWT

n

��
ðDiscrete qÞ ðC6Þ

or

hqn; tnjqn−1; tn−1i ≈
X
n

hqnjpnihpnjqn−1i
�
1 −

iϵ
ℏ

�
p2
n

2m
þWh

n

��
ðDiscretepÞ: ðC7Þ

Here

WT
n ¼ kℏ4

λ4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn þ λj

p 	
4
; ðC8Þ

Wh
n ¼

μ2k
4ℏ2

csc2
�
μqn
2ℏ

�
ðC9Þ

are Thiemann-regularized and heuristic polymer potentials,
respectively. Note that again there are two types of sub-
scripts associated with two types of discreteness. One is
related to partitioning the full transition amplitude [as in

(C9)], and the other is related to the genuine polymer lattice
discretization [as in (C8)]. Using

hpjqni ¼
ffiffiffiffiffiffiffiffi
λ

2πℏ

r
e−

ipqn
ℏ ðDiscrete qÞ; ðC10Þ

hpnjqi ¼
ffiffiffiffiffiffiffiffi
μ

2πℏ

r
e−

ipnq
ℏ ðDiscretepÞ; ðC11Þ

and also the full expansion of the exponential, one gets for
the above partition transition amplitudes

hqn; tnjqn−1; tn−1i ¼
�

λ

2πℏ

�
2
Z πℏ

λ

−πℏ
λ

dpne
iϵ
ℏ½pn

ðqn−qn−1Þ
ϵ −ð2ℏ2

mλ2
sin2ðλp

2ℏÞþWT
n Þ� ðDiscrete qÞ; ðC12Þ

hqn; tnjqn−1; tn−1i ¼
μ

2πℏ

X
n

e
iϵ
ℏ½pn

qn−qn−1
ϵ −ðp

2
n

2mþWh
nÞ� ðDiscretepÞ: ðC13Þ

Using these in corresponding full transition amplitudes (C1) and (C2) yields

hqf; tfjqi; tii ¼ lim
N→∞;ϵ→0

�YN−1

n¼1

X
n

���
λ

2πℏ

�
2YN
n¼1

Z πℏ
λ

−πℏ
λ

dpn

�
e
P

N
n¼1

iϵ
ℏ½pn

ðqn−qn−1Þ
ϵ −ð2ℏ2

mλ2
sin2ðλp

2ℏÞþWT
n Þ� ðDiscrete qÞ; ðC14Þ

hqf; tfjqi; tii ¼ lim
N→∞;ϵ→0

�YN−1

n¼1

Z πℏ
μ

−πℏ
μ

dqn

��
μ

2πℏ

YN
n¼1

X
n

�
e
P

N
n¼1

iϵ
ℏ½pn

qn−qn−1
ϵ −ðp

2
n

2mþWh
nÞ� ðDiscretepÞ: ðC15Þ

In both cases above, we have a
P

n in front of the exponential while we should have an integral instead. In other words, if we
wish to have a normal path integral, we need to pass from a discrete variable, say qn, to the continuous one q (and the same
for pn). To achieve this we use the identity [19]

X
n

Z
2π

0

dqfðq; pnÞeipnq ¼
Z

∞

−∞
dq
Z

∞

−∞
dpfðp; qÞeiqp; ðC16Þ

valid for fðq; pÞ which are periodic in q, and a similar expression also holds for the case with discrete pn. Let us consider
first the expression (C15). Using the above identity, one gets for (C15)

hqf; tfjqi; tii ¼ lim
N→∞;ϵ→0

�YN−1

n¼1

Z
∞

−∞
dqn

��
μ

2πℏ

YN
n¼1

Z
∞

−∞
dp

�
e
iϵ
ℏ

P
N
n¼1

½pn
qn−qn−1

ϵ −ðp
2
n

2mþWh
nÞ� ðDiscretepÞ; ðC17Þ

which is the polymer Feynman formula. Taking the limits in (C17) above yields
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hqf; tfjqi; tii ¼
μ

2πℏ

�Y
n

Z
∞

−∞
dqn

��Y
n

Z
∞

−∞
dp

�
e

i
ℏ

R
dt½p _q−ðp2

2mþWhÞ� ðDiscretepÞ; ðC18Þ

where the effective action can be read off to be

Seff ¼
Z

dt½p _q −Heff � ¼
Z

dt

�
p _q −

�
p2

2m
þ μ2k
4ℏ2

csc2
�
μqn
2ℏ

���
ðDiscretepÞ: ðC19Þ

The case with discrete q is a bit more delicate because of the inherent discreteness that precludes the limit

lim
ϵ→0

�
pn

qn − qn−1
ϵ

�
→ p _q: ðC20Þ

To deal with this, one uses a method similar to Leibniz rule for discrete variables. One can rewrite the sum that appears in the
kinetic term as

XN
n¼1

pn
qn − qn−1

ϵ
¼ 1

ϵ

�XN
n¼1

pnqn −
XN
n¼1

pnqn−1

�

¼ 1

ϵ

�XN
n¼1

pnqn −
XN−1

m¼0

pmþ1qm

�

¼ 1

ϵ

�XN−1

n¼1

pnqn −
XN−1

n¼1

pnþ1qn þ pNqN − p1q0

�

¼ 1

ϵ

�
−
XN−1

n¼1

½ðpnþ1 − pnÞqn� þ pNqN − p1q0

�
; ðC21Þ

which is similar to expressing p _q ¼ −q _pþ _ðpqÞ where 1
ϵ ðpNqN − p1q0Þ plays the rule of the “boundary term” ðpqÞ_ in a

discrete sense. Using this, expression (C14) becomes

hqf; tfjqi; tii ¼ lim
N→∞;ϵ→0

�YN−1

n¼1

X
n

���
λ

2πℏ

�
2YN
n¼1

Z πℏ
λ

−πℏ
λ

dpn

�
× e

iϵ
ℏ½
P

N−1
n¼1

½−ðpnþ1−pnÞqnþpNqN−p1q0
ϵ �−

P
N
n¼1

ð2ℏ2
mλ2

sin2ðλp
2ℏÞþWT

n Þ� ðDiscrete qÞ: ðC22Þ

Now, we can take the limit such that the term limϵ→0
−ðpnþ1−pnÞqnþpNqN−p1q0

ϵ becomes −q _pþ _ðpqÞ, which in the continuous
limit can be rewritten as p _q. Before taking this limit, we use an identity similar to (C16) but for discrete q,X

n

Z
2π

0

dpfðqn; pÞeiqnp ¼
Z

∞

−∞
dq
Z

∞

−∞
dpfðp; qÞeiqp; ðC23Þ

to turn
P

n into an integral. Then by taking the limits, one gets

hqf; tfjqi; tii ¼
�

λ

2πℏ

�
2
�Y

n

Z
∞

−∞
dqn

��Y
n

Z
∞

−∞
dpn

�
e
iϵ
ℏ½p _q−ð2ℏ

2

mλ2
sin2ðλp

2ℏÞþWT Þ� ðDiscrete qÞ: ðC24Þ

Note that the potential does not have a discrete subscript anymore since we turned qn into a continuous variable q by using
(C23). Thus the effective action can be read off to be

Seff ¼
Z

dt½p _q −Heff � ¼
Z

dt

�
p _q −

�
2ℏ2

mλ2
sin2
�
λp
2ℏ

�
þ kℏ4

λ4
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jq − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqþ λj

p
Þ4
��

ðDiscrete qÞ: ðC25Þ
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APPENDIX D: ACTION OF ĤE IN ðq̂;V̂λÞ
POLARIZATION

1. In jqni basis
The action of the Hamiltonian (3.17) on the basis jqni in

the polarization (3.9)–(3.12) can be computed as follows.
The kinetic term acts like

cp2
λ

2m
jqni ¼

ℏ2

2m

�
2 − V̂λ − V̂−λ

λ2

�
jqni

¼ ℏ2

2mλ2
ð2jqni − jqn − λi − jqn þ λiÞ; ðD1Þ

where the operatorcp2
λ is defined in (B7). The potential Ŵ in

(3.17) has two terms for each of which we have

V̂−λ

λ

h dffiffiffiffiffiffijqj
p

; V̂λ

i
jqni ¼

1

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn − λj

p
jqni −

1

λ

ffiffiffiffiffiffiffiffi
jqnj

p
jqni
ðD2Þ

and

½ dffiffiffiffiffiffijqj
p

; V̂λ�
V̂−λ

λ
jqni ¼

1

λ

ffiffiffiffiffiffiffiffi
jqnj

p
jqni −

1

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn þ λj

p
jqni:
ðD3Þ

Thus the full expression for the action of the potential in
this basis becomes

Ŵjqi ¼ kℏ4

�
V̂−λ

λ

h dffiffiffiffiffiffijqj
p

; V̂λ

i
þ
h dffiffiffiffiffiffijqj
p

; V̂λ

i V̂−λ

λ

�
4

jqni

¼ kℏ4

λ4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn þ λj

p 	
4jqni: ðD4Þ

2. In jpi basis
One can use the Hamiltonian (3.17) on basis jpi where

V̂λjpi ¼ e
i
ℏλpjpi: ðD5Þ

Then the kinetic term in (3.17) turns out to be

cp2
λ

2m
jpi ¼ ℏ2

2m

�
2 − V̂λ − V̂−λ

λ2

�
jpi ¼ 2ℏ2

mλ2
sin2
�
λp
2ℏ

�
jpi;

ðD6Þ

where we have used (B7) and (B8). To find the action of the
potential term, we first note that

ℏ4

�
V̂−λ

λ

h dffiffiffiffiffiffijqj
p

; V̂λ

i
þ
h dffiffiffiffiffiffijqj
p

; V̂λ

i V̂−λ

λ

�
4

jpi ¼ kℏ4

�
V̂−λ

λ

h dffiffiffiffiffiffijqj
p

; V̂λ

i
þ
h dffiffiffiffiffiffijqj
p

; V̂λ

i V̂−λ

λ

�
4X

n

jqnihqnjpi: ðD7Þ

Then using the results of the previous subsection, we get for the action of the potential in this case

kℏ4

�
V̂−λ

λ

h dffiffiffiffiffiffijqj
p

; V̂λ

i
þ
h dffiffiffiffiffiffijqj
p

; V̂λ

i V̂−λ

λ

�
4

jpi ¼ kℏ4

λ4
X
n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn − λj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqn þ λj

p 	
4jqnihqnjpi: ðD8Þ
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