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To determine the frequencies of magnetic oscillations in neutron stars with highly tangled magnetic
fields, we derive the perturbation equations. We assume that the field strength of the global magnetic
structure is so small that such fields are negligible compared with tangled fields, which may still be far from
a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as
varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely
proportional to the strength of the magnetic field, whose proportionality constant depends strongly on the
stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated,
where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations
without magnetic fields. For discussing spectra, the critical field strength can play an important role, and it
is determined in such a way that the shear velocity is equivalent to the Alfvén velocity at the crust basis.
Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental
oscillations with a lower harmonic index, l. Unlike the stellar models with a pure dipole magnetic field, we
also find that the spectra with highly tangled magnetic fields become discrete, where one can expect many
of the eigenfrequencies. Maybe these frequencies could be detected after the violent phenomena breaking
the global magnetic field structure.
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I. INTRODUCTION

Through the observations of pulsars, it is known that
neutron stars generally have magnetic fields, whose typical
strength is thought to be around 1012 − 1013 Gauss, assum-
ing that their spin periods would decay by the dipole
radiations [1]. Additionally, the existence of the strongly
magnetized neutron stars, the so-called magnetars [2], is
observationally suggested. Magnetars may sometimes be
considered as a different family from the usual neutron
stars. The magnetic field strength of magnetars becomes
around 1014 − 1015 Gauss. Unfortunately, the mechanism
for how such a strong magnetic field is produced is still
unknown. The magnetic fields outside neutron stars,
including magnetars, can be dominated by dipole fields,
but the magnetic distribution inside the star is also still
unknown. The magnetic fields inside the star may even-
tually settle into dipole fields, but the magnetic configu-
ration must be quite complicated at least just after the
formation of neutron stars via supernova or merger of
neutron stars. Under such a situation, where the magnetic
fields are completely tangled inside the stars, the spectra of
oscillations could be different from those expected in the
cold neutron stars with quiet magnetic fields.
The observations of the spectra of stellar oscillations give

us a good chance to extract the interior information of the
neutron stars. Like seismology of the Earth and helio-
seismology of the Sun, asteroseismology of neutron stars is

a valuable technique to obtain the interior information via
the oscillation spectra, which could tell us the equation of
state (EOS), stellar average density, stellar compactness,
and so on [3–8]. Furthermore, via oscillation spectra from
neutron stars, it might be possible to probe the gravitational
theory itself in a strong gravitational field [9–12]. The
gravitational waves emitted from neutron stars are probably
the most suitable candidates to adopt asteroseismology
due to their strong penetration capability, although unfortu-
nately they cannot be detected yet. On the other hand,
observational evidence of the oscillations of neutron stars
already exists: the quasiperiodic oscillations radiated from
soft-gamma repeaters.
Quasiperiodic oscillations are discovered in the after-

glow of the giant flares observed in the soft-gamma
repeaters [13–15]. Since the soft-gamma repeaters are
one of the candidates of magnetars, the discovered quasi-
periodic oscillations are considered to be strongly associ-
ated with the oscillations of neutron stars. In order to
theoretically explain the frequencies of quasiperiodic oscil-
lations, many attempts have been made in terms of the
crustal torsional oscillations and/or magnetic oscillations
[16–29]. From the point of view of asteroseismology, the
possibilities for constraining the crust EOS using the
observed frequencies have also been suggested [30–34].
Meanwhile, through such attempts, the features of the
magnetar oscillations have become increasingly under-
stood. That is, the magnetic oscillations without the crust
elasticity become continuum spectra, assuming a dipole
magnetic field [18,21–23], because the propagating time*hajime.sotani@nao.ac.jp
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along the field lines inside the star is not a specific but a
continuous quantity. Additionally, the excited oscillations
inside the star with crust elasticity depend strongly on the
strength of magnetic fields. The magnetic oscillations are
only excited if the magnetic fields are strong enough, while
the oscillations in the vicinity of the stellar surface become
the crustal torsional oscillations if the magnetic fields are
weak enough [27]. In any case, the spectra of excited
magnetic oscillations should depend on the magnetic
configuration inside the star [28]. Namely, since the
magnetic fields just after the birth of a neutron star could
be highly tangled, the spectra of the stellar oscillations
might be different from those of the “clean” magnetic
configuration.
So far there have been very few examinations of the

spectra analysis for the stellar models with highly tangled
magnetic fields. At most, the stellar oscillations have been
examined in simple toy models with constant density
[24,35], where they consider the oscillations under the
assumption of uniform magnetic fields together with the
tangled fields. In such studies, the authors point out
the possibility that the existence of magnetic fields could
modify the shear modulus inside the star, i.e., the intro-
duction of an effective shear modulus. In this paper,
deriving the perturbation equations in the realistic neutron
star models, we focus especially on the highly tangled
magnetic fields so that the global magnetic structure is
negligible as an extreme case, and we systematically
examine the magnetic oscillations in such stellar models.
We remark that, since the actual field in magnetar interiors
may have the global and tangled components, the limiting
case of a purely tangled field considered in this paper may
still be far from a realistic configuration, at least for
expressing the cold neutron stars. In this examination,
we consider the magnetic oscillations with and without
crust elasticity. This is because the crust region does not
form just after the production of neutron stars, and it could
take time to appear [36]. We adopt geometric units,
c ¼ G ¼ 1, where c and G denote the speed of light
and the gravitational constant, respectively, and the metric
signature is ð−;þ;þ;þÞ in this paper.

II. LINEARIZED EQUATIONS

In general, the magnetized neutron stars are deformed
due to nonspherical magnetic pressure. However, the
magnetic energy (EM) is much smaller than the gravita-
tional binding energy (EG) even for the magnetars, where
EM=EG ∼ 10−4ðB=1016 GÞ. Thus, in this paper we neglect
the deformation due to the existence of magnetic fields.
Additionally, the stellar deformation may become signifi-
cant only when the neutron star rotates very fast. In this
paper, for simplicity, we also neglect the rotational effect,
which leads to the consequence that the stellar configura-
tion becomes spherically symmetric. The metric describing
the spherically symmetric neutron stars is given by

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where Φ and Λ are the metric functions depending only
on the radial coordinate r. In particular, Λ is associated with
the mass function mðrÞ as e−2ΛðrÞ ¼ 1 − 2mðrÞ=r. We
remark that, from the metric form, the four-velocity of
the equilibrium stellar model is written as uμ¼ðe−Φ;0;0;0Þ.
The stellar models are constructed by integrating the well-
known Tolman-Oppenheimer-Volkoff equations together
with the EOS of neutron star matter. In this paper, we adopt
the EOS based on the Skyrme-type effective interaction,
the so-called SLy4, which was derived by Douchin and
Haensel [37]. The density at the crust basis predicted from
this EOS is 1.28 × 1014 g=cm3, while the maximum mass
of the neutron star becomes 2.05M⊙, where the stellar
radius is 10.0 km. In Fig. 1, we plot the stellar radius, R,
and the crust thickness, ΔR, as a function of the stellar
mass. In the same figure, we also plot the ratio of the core
radius, i.e., Rc ≡ R − ΔR, to the stellar radius with the
dotted line. From this figure, one can see that the curst
thickness is only less than 10% of the stellar radius for the
neutron stars with a mass greater than 1.4M⊙.
On such an equilibrium configuration, we consider the

axisymmetric axial perturbations, adopting the relativistic
Cowling approximation. That is, we neglect the metric
perturbations during the stellar oscillations. Since the axial
perturbations do not involve the density variation, one can
expect to determine the frequencies of the stellar oscil-
lations with reasonable accuracy even for the relativistic
Cowling approximation. The nonzero component of per-
turbed matter quantity in the axial perturbation is only δuϕ,
which is given by

δuϕ ¼ e−Φ∂tYðt; rÞbðθÞ; ð2Þ

where bðθÞ≡ sin−1θ∂θPlðcos θÞ; ∂t and ∂θ denote the
partial derivative with respect to t and θ, respectively;
Yðt; rÞ denotes the radial dependence of the angular

FIG. 1 (color online). The stellar radius, R, and the crust
thickness, ΔR, as a function of the stellar mass constructed with
the SLy4 EOS. In addition, the ratio of the core radius to the
stellar radius, Rc=R, is also plotted with the dotted line.
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displacement of matter element; and Pl is the Legendre
polynomial of order l.
The matter perturbations are described by the linearized

equation of motion, i.e., Eq. (35) in [17], while the
perturbations of magnetic fields are subject to the linearized
induction equation (37) in [17]. We remark that, assuming
the ideal magnetohydrodynamics, the perturbations of
magnetic fields can be written by the variable of matter
perturbations together with the background quantities, as in
Eq. (37) in [17]. Then, for a general magnetic distribution
Hμðr; θ;ϕÞ, the perturbation equation to determine the
axisymmetric axial perturbation for the magnetized neutron
stars becomes Eq. (51) in [17], where Hμ is a normalized
magnetic field given byHμ ≡ Bμ=

ffiffiffiffiffiffi

4π
p

and all perturbation
variables are assumed to have a harmonic time dependence
such as Yðt; rÞ ¼ eiωtYðrÞ.
Now, we consider the decomposition of the magnetic

fields Hμ as

Hμ ¼ Hμ
ðGÞ þHμ

ðTÞ; ð3Þ

where Hμ
ðGÞ and Hμ

ðTÞ denote the components of the global

configuration and the intricately tangled structure of the
magnetic fields inside the neutron stars, respectively. Here,
we assume that the typical length scale of the tangled
magnetic fields would be lT. That is, the small scale
structure of the tangled magnetic fields should be taken into
account, only if one focuses on the phenomena with a
length scale smaller than lT. Otherwise, it is not necessary
to care about the exact structure of the tangled magnetic
fields, where only the strength of magnetic fields averaged
in the volume l3

T is a relevant quantity. Moreover, in order
to examine the effects of the highly tangled magnetic fields
on the stellar oscillations, we consider the situation that
Hμ

ðGÞ ≪ Hμ
ðTÞ in this paper, i.e.,H

μ ≃Hμ
ðTÞ. These situations

might be possible when the neutron star would be formed
just after the supernovae or the merger of two neutron stars.
Hereafter, we focus only on the phenomena with a length
scale larger than lT, and we simply express Hμ

ðTÞ as H
μ.

With respect to the highly tangled magnetic fields in the
length scale larger than lT, it is natural to assume that Hi

does not have any correlations with Hj, Hj
;k for i ≠ j, and

Hi
;k, and also that Hi

;k does not have any correlations with
Hj

;m for i ≠ j. Thus, in Eq. (51) in [17] one can set that, for
i ≠ j,

HiHj ¼ HiHj
;k ¼ HiHi

;k ¼ Hi
;kHj

;m ¼ 0; ð4Þ

as in [35]. As a result, one can obtain the linearized
equation from Eq. (51) in [17], such as

− ½εþ pþHrHr þHθHθ�ω2e−2ΦY

¼ ½μþHrHr�e−2ΛY00

þ
��

4

r
þ Φ0 − Λ0

�

μþ μ0 þ
�

Φ0 þ 2

r

�

HrHr

�

e−2ΛY0

−
ðlþ 2Þðl − 1Þ

r2
½μþHθHθ�Y

þ ½Hr
;ϕHr;ϕ þHθ

;ϕHθ;ϕ�
1

r2sin2θ
Y

− cot θðHθÞ2Y ∂θb
b

; ð5Þ

where μ is the shear modulus characterizing the elasticity
of the neutron star crust, and the prime denotes the partial
derivative with respect to the radial coordinate r.
Meanwhile, since one can derive the following relation

from the Maxwell equations [Eq. (13) in [17]],

− cot θHθ ¼ Hr
;r þHθ

;θ þHϕ
;ϕ þ

�

Λ0 þ 2

r

�

Hr; ð6Þ

the last term in Eq. (5) is removed, using Eq. (4). Then, by
setting that HrHr ¼ HθHθ ¼ HϕHϕ ¼ H2=3 for consid-
ering the oscillations whose wavelength is greater than lT,
and assuming that the background magnetic field would be
axisymmetric for simplicity, the linearized equation (5)
becomes

�
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3

�

Y; ð7Þ

where H is the local magnetic field strength defined by
H ¼ ðHrHr þHθHθ þHϕHϕÞ1=2. This is the linearized
equation for axial perturbations in magnetized neutron
stars with highly tangled magnetic fields, which is more
general than the toy models adopted in [24,35]. At last,
with the appropriate boundary conditions, the problem to
solve becomes the eigenvalue problem with the eigenfre-
quencies ω.
The boundary conditions to solve the eigenvalue prob-

lem should be imposed at the stellar center (r ¼ 0) and at
the surface (r ¼ R), which are the regularity condition at
r ¼ 0 and the zero-torque condition at r ¼ R [38]. In the
vicinity of the stellar center, from Eq. (7), YðrÞ can be
expressed as Y ∼ rn with the positive constant n, which
leads to the boundary condition that rY0 ¼ nY. On the
other hand, the boundary condition at the stellar surface
becomes Y0 ¼ 0. In addition to the boundary conditions,
we also impose the junction condition at the interface
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between the stellar core and crust region, such as a zero-
traction condition [17,38]. In concrete terms, the junction
condition can be written as ð3μþH2ÞY0

ðþÞ ¼ H2Y0
ð−Þ,

where the left- and right-hand sides correspond to the
values at just outside and inside the crust basis,
respectively.
In order to integrate Eq. (7), one has to prepare the

strength distribution of H, which is still unknown. So, as
highly tangled magnetic fields, we adopt the density-
dependent strength distribution of magnetic fields proposed
in [39], i.e.,

Hðε=εsÞ ¼ Hsurf þH0½1 − exp f−βðε=εsÞγg�; ð8Þ

where εs denotes the saturation density, i.e., εs ¼
2.68 × 1014 g=cm3, while Hsurf and H0 correspond to
the magnetic field strength at the stellar surface and that
for large density region. In this paper, we consider Hsurf as
a free parameter, while H0 is chosen to be H0 ¼ 5 ×Hsurf ,
which is a typical field strength at the stellar center for a
dipole magnetic field [40]. The remaining parameters, β
and γ, determine the magnetic structure inside the star. We
especially examine the stellar oscillations with ðβ; γÞ ¼
ð0.02; 3Þ and (0.05, 2), as in [41]. In Fig. 2, we show the
strength distribution of magnetic fields given by Eq. (8)
with Hsurf ¼ 1013 Gauss, where the solid and broken lines
correspond to the cases of ðβ; γÞ ¼ ð0.02; 3Þ and (0.05, 2),
respectively. With such a strength distribution of magnetic
fields, i.e.,Hsurf ¼ 1013 Gauss, one can get the relationship
between the expected strength at the stellar center, Hc, and
the stellar mass, as shown in Fig. 3.
Furthermore, we adopt the often-used shear modulus μ in

the zero temperature limit, which is derived in [42,43], i.e.,

μ ¼ 0.1194
niðZeÞ2

a
: ð9Þ

In the formula, ni, Z, and a denote the ion number
density, the charge number of the ion, and the radius of

a Wigner-Seitz cell, respectively. We remark that the shear
modulus [Eq. (9)] is derived on the assumption that the
nuclei form a body center cubic lattice due to the Coulomb
interaction in the uniform distribution of electrons, which is
averaged over all directions.

III. MAGNETIC OSCILLATIONS
WITHOUT CRUST ELASTICITY

First, we consider the stellar oscillations without the
effect of crust elasticity by setting μ ¼ 0. The newly born
neutron star, just after the supernova explosion or the
merger of binary neutron stars, may not have a crust region,
because the temperature is too high to form the crystal-
lization of crust. In this case, the restoring force of the
torsional oscillations inside the neutron stars is only the
magnetic tension, which excites the magnetic oscillations.
Thus, one can expect that the frequencies would be
proportional to the strength of the magnetic fields.
In Fig. 4, the calculated frequencies of the l ¼ 2

oscillations are shown as a function of the strength of
the magnetic fields at the stellar surface, Hsurf , for the
stellar model withM ¼ 1.4M⊙, where the solid and broken
lines correspond to the results for the strength distribution
of the magnetic fields with ðβ; γÞ ¼ ð0.02; 3Þ and (0.05, 2),
respectively. In the figure, we show the lowest five
frequencies, i.e., the fundamental oscillations and the first,
second, third, and fourth overtones, while the right panel
corresponds to the magnified figure of the left panel. In
Fig. 5, we also show the frequencies of the fundamental
oscillations, a0, in the left panel and the first overtones, a1,
in the right panel for the l ¼ 2, 3, 4, 5, and 6 oscillations
in the stellar model with M ¼ 1.4M⊙, as a function of
Hsurf , where the strength distribution of magnetic fields is
assumed to be ðβ; γÞ ¼ ð0.02; 3Þ. From both Figs. 4
and 5, as expected, one can observe that the frequencies
of the magnetic oscillations inside the neutron stars are
proportional to the strength of the magnetic fields, such as

FIG. 2 (color online). Strength distribution of magnetic fields
given by Eq. (8) with Hsurf ¼ 1013 Gauss. The solid and broken
lines correspond to the cases with ðβ; γÞ ¼ ð0.02; 3Þ and (0.05, 2),
respectively.

FIG. 3 (color online). With the strength distribution shown in
Fig. 2, the strength of magnetic fields at the stellar center, Hc, is
plotted as a function of the stellar mass, where the solid and
broken lines correspond to the cases with ðβ; γÞ ¼ ð0.02; 3Þ and
(0.05, 2), respectively.
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lan ¼ lcn ×
Hsurf

1013 Gauss
; ð10Þ

where lan denotes the frequencies of the lth magnetic
oscillations with the number of radial nodes, n, while lcn is
a proportionality constant depending on the stellar model
and the strength distribution of the magnetic fields.
We remark that, among many axial type oscillations,

the l ¼ 2 fundamental oscillation, i.e., 2a0, is the lowest
frequency theoretically expected. Thus, there are many
eigenfrequencies above the line for 2a0 in Fig. 4, depending
on the values of l and n, but one cannot expect the
existence of the eigenfrequencies below the line for 2a0.
The coefficient in Eq. (10) for the fundamental oscil-

lations, lc0, the first overtones, lc1, and the second
overtones, lc2 with respect to the l ¼ 2, 3, 4, 5, and 6
oscillations are shown in Fig. 6 as a function of the stellar
mass, where the strength distribution of magnetic fields is
assumed to be ðβ; γÞ ¼ ð0.02; 3Þ. Figure 7 is the same as
Fig. 6, but for ðβ; γÞ ¼ ð0.05; 2Þ. We remark that the
values of lcn in Figs. 6 and 7 are equivalent to the
corresponding frequencies, lan, for the stellar model with
Hsurf ¼ 1013 Gauss, as seen in Eq. (10).

In both figures, the dependence of the coefficient in
Eq. (10) on the stellar mass is qualitatively very similar,
because we adopt the specific strength distribution of
magnetic fields such as Eq. (8). Nevertheless, the frequen-
cies depend a little on the parameters of the magnetic
distribution. That is, from Fig. 6, one observes that the
coefficient in Eq. (10) for the strength distribution with
ðβ; γÞ ¼ ð0.02; 3Þ becomes almost constant in the wide
range of the stellar mass. On the other hand, from Fig. 7,
one observes that the coefficient in Eq. (10) for ðβ; γÞ ¼
ð0.05; 2Þ decreases gradually as the stellar mass increases,
compared with Fig. 6. This difference must come from the
difference in the strength distribution of magnetic fields.
Since the EOS of neutron star matter is still unknown, it is
quite difficult to extract the information about the magnetic
distributions inside the neutron star via the oscillation
spectra. However, after one constrained the EOS for
neutron stars via various future observations, it may be
possible to get an imprint of the strength distribution of
magnetic fields by the observations of the oscillation
spectra, with the help of the observation of the stellar mass.
Furthermore, we find a qualitative difference in the

spectra of magnetic oscillations inside neutron stars with

FIG. 4 (color online). The lowest five frequencies of the l ¼ 2 torsional oscillations in the neutron star with highly tangled magnetic
fields for the stellar model withM ¼ 1.4M⊙, as a function of the strength of magnetic fields at the stellar surface,Hsurf . In the figure, the
solid and broken lines correspond to the frequencies obtained from the strength distribution of magnetic fields with ðβ; γÞ ¼ ð0.02; 3Þ
and (0.05, 2), respectively. The right panel is the magnified figure of the left panel.

FIG. 5 (color online). The frequencies of the fundamental oscillations, a0, in the left panel and the first overtones, a1, in the right panel
for the l ¼ 2, 3, 4, 5, and 6 oscillations in the stellar model with M ¼ 1.4M⊙, as a function of Hsurf , where the strength distribution of
magnetic fields is assumed to be ðβ; γÞ ¼ ð0.02; 3Þ.
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highly tangled magnetic fields compared to the situation
with purely dipole magnetic fields. That is, the spectra in
the case of purely dipole magnetic fields become continu-
ous due to the differences of the lengths of magnetic field
lines inside the star [18,21–23], while those with highly
tanged magnetic fields become discrete.

IV. MAGNETIC OSCILLATIONS
WITH CRUST ELASTICITY

Now, we consider the magnetic oscillations with the
effect of crust elasticity. In Fig. 8, we show the lowest three
frequencies of the l ¼ 2 oscillations with the solid lines for
the stellar model with M ¼ 1.4M⊙ and ðβ; γÞ ¼ ð0.02; 3Þ,
as a function of Hsurf , where the results without the crust
elasticity are also shown with the dotted lines for reference.
From this figure, one can observe that the effect of crust
elasticity on the frequencies would disappear for the stellar
model with stronger magnetic fields. This behavior is the
same as in the case with the pure dipole magnetic fields
[25,27]. This is why the Alfvén velocity, defined as
vA ≡H=

ffiffiffi

ε
p

, dominates inside a star with a magnetic field
stronger than a critical strength, where the shear velocity
characterized by the crust elasticity, vs ≡ ðμ=εÞ1=2,
becomes relatively negligible. The typical value of the
critical strength of the magnetic fields is considered so that
the Alfvén velocity becomes equivalent to the shear
velocity at the crust basis (r ¼ Rc) [17]. With the shear
modulus given by Eq. (9) and the SLy4 EOS adopted in this

paper, one can determine the typical value of the critical
strength at the crust basis to be H ¼ 1.52 × 1015 Gauss,
which leads to the strength at the stellar surface Hsurf ¼
1.50 × 1015 and 1.44 × 1015 Gauss for ðβ; γÞ ¼ ð0.02; 3Þ
and (0.05, 2), respectively. In fact, the difference between
the frequencies with and without crust elasticity can
disappear for the magnetic fields stronger than Hsurf ≃
1.50 × 1015 in Fig. 8. Here, we show only the case with

FIG. 6 (color online). The coefficient in Eq. (10) for the fundamental oscillations, lc0, in the left panel, the first overtones, lc1, in the
middle panel, and the second overtones, lc2, in the right panel for the l ¼ 2, 3, 4, 5, and 6 oscillations as a function of the stellar mass,
where the strength distribution of magnetic fields is assumed to be ðβ; γÞ ¼ ð0.02; 3Þ.

FIG. 7 (color online). Same as Fig. 6, but for the strength distribution of magnetic fields with ðβ; γÞ ¼ ð0.05; 2Þ.

FIG. 8 (color online). The lowest three frequencies of the l ¼ 2
oscillations in the stellar model withM ¼ 1.4M⊙ for the strength
distribution with ðβ; γÞ ¼ ð0.02; 3Þ, shown as a function of Hsurf ,
where the solid and dotted lines correspond to the results with and
without crust elasticity. The horizontal dot-dashed lines denote
the frequencies of the l ¼ 2 crustal torsional oscillations without
magnetic fields.
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ðβ; γÞ ¼ ð0.02; 3Þ, but the results with ðβ; γÞ ¼ ð0.05; 2Þ are
quite similar to Fig. 8.
On the other hand, we find that the frequencies for the

stellar model with weak magnetic fields, which deviate
from those without crust elasticity, become completely
different from the frequencies of the crustal torsional
oscillations without magnetic fields. In Fig. 8, the hori-
zontal dot-dashed lines correspond to the frequencies of the
l ¼ 2 crustal torsional oscillations without magnetic fields,
which are denoted by ltn for the frequencies of the lth
oscillations with the number of the radial nodes, n. That is,

2t0 and 2t1 are the frequencies of the fundamental oscil-
lations and first overtone for l ¼ 2 torsional oscillations,
which become 2t0 ¼ 25.5 Hz and 2t1 ¼ 820.8 Hz for the
stellar model with M ¼ 1.4M⊙. Such behavior of the
frequencies with respect to the strength of the magnetic
fields must be a feature owing to the highly tangled
magnetic fields inside the star. Actually, it was shown that,
for the stellar models with purely dipole magnetic fields,
the oscillations excited in the vicinity of the stellar surface
become the crustal torsional oscillations, if the strength of
the magnetic fields is weak [27].
In order to clearly see the difference in the frequencies

due to the existence of the crust elasticity, we also calculate
the relative deviation between the l ¼ 2 frequencies
with and without crust elasticity, which is shown in
Fig. 9 as a function of Hsurf . Here, the relative deviation
is calculated by

lΔn ¼ la
w
n − la

wo
n

la
wo
n

; ð11Þ

where la
w
n and la

wo
n denote the frequencies with and

without crust elasticity, respectively, for the lth magnetic
oscillations with the number of radial nodes, n. In this
figure, the solid, broken, and dotted lines correspond to the
relative deviation for the fundamental oscillations (n ¼ 0),
the first overtones (n ¼ 1), and the second overtones

(n ¼ 2), respectively. From this figure, we find that the
effect of the crust elasticity appears stronger in the
oscillations with smaller radial nodes. Additionally, we
observe that the relative deviation from the frequencies
without crust elasticity seems to be almost constant if the
strength of the magnetic fields is significantly weak. In
other words, the relative deviation, 2Δn, depends on the
magnetic field strength in the range between ∼ ~H=10 and
∼ ~H, where ~H denotes the typical critical field strength at
the stellar surface so that the shear velocity becomes
equivalent to the Alfvén velocity at the crust basis, i.e.,
~H ¼ 1.50 × 1015 Gauss for the stellar model constructed
with the SLy4 EOS and ðβ; γÞ ¼ ð0.02; 3Þ, as mentioned
before.
In the left panel of Fig. 10, we show the frequencies of

the l ¼ 2, 3, and 4 fundamental magnetic oscillations, 2a0,

3a0, and 4a0, as a function ofHsurf for the stellar model with
M ¼ 1.4M⊙ and ðβ; γÞ ¼ ð0.02; 3Þ, while in the right panel
of Fig. 10 we show the relative deviation between the
frequencies with and without crust elasticity as a function
of Hsurf . As with the frequencies of l ¼ 2 magnetic
oscillations shown in Fig. 8, the effect of the crust elasticity
can disappear for the stellar model with strong magnetic
fields. For reference, we also show the l ¼ 2, 3, and 4
fundamental torsional oscillations, 2t0, 3t0, and 4t0, in the
left panel of Fig. 10, from which one observes that the
frequencies of the lth magnetic oscillations for the stellar
model with weak magnetic fields are completely different
from those of the torsional oscillations. Meanwhile, from
the right panel, we find that the effect of crust elasticity
becomes stronger for the magnetic oscillations with lower l
for the stellar model with weak magnetic fields, and also
that lΔ0 depends strongly on the magnetic field strength in
the range between ∼ ~H=10 and ∼ ~H again as in Fig. 9.
Moreover, in order to see how the frequencies of

magnetic oscillations could be shifted for the different
stellar models, we focus on the relative deviation of the
frequencies from those for the stellar model with
M ¼ 1.4M⊙. So, the relative deviation is evaluated by

lδn ¼ la
14
n − la

M
n

la
14
n

; ð12Þ

where la
14
n and la

M
n denote the frequencies of the lth

magnetic oscillations with the number of the radial nodes,
n, for the neutron star models with M ¼ 1.4M⊙ and with
the stellar mass,M, respectively. Then, using the calculated
frequencies of magnetic oscillations for the various stellar
models, we show the values of 2δn for n ¼ 0, 1, and 2 in
Fig. 11, and lδ0 for l ¼ 3, 4, and 5 in Fig. 12 as a function
of Hsurf . From the both figures, one can observe that the
relative deviation, lδn, depends strongly on the magnetic
field strength in the range of Hsurf ∼ ~H=10 − ~H, while lδn
becomes almost constant in the other region of the field

FIG. 9 (color online). Relative deviation between the l ¼ 2
frequencies with and without crust elasticity as a function of
Hsurf , where n ¼ 0, 1, and 2 correspond to the fundamental
oscillations, first and second overtones, respectively. The relative
deviation is defined by Eq. (11).
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strength. The behaviors of the relative deviation for the lth
fundamental magnetic oscillations, lδ0, are very similar to
each other at least up to l ¼ 5. In particular, we find
that the frequencies of the lth fundamental oscillations for
the weak field strength are less dependent on the stellar
mass, which is less than a few percent difference from the
frequency expected for the stellar model withM ¼ 1.4M⊙.
In addition, the frequencies of the lth fundamental mag-
netic oscillations depend on the stellar mass for the strong
magnetic fields, whose dependence should be similar to
Fig. 6 for the magnetic oscillations without the effect of
crust elasticity, because the magnetic oscillations under the

strong magnetic fields are almost independent of the
existence of the crust elasticity. On the other hand, the
frequencies of the overtones of magnetic oscillations
depend on the stellar mass not only in the strong field
regime but also in the weak field regime, as shown
in Fig. 11.
Due to such a complex dependence of the frequencies on

the stellar mass, the spectra from the neutron stars with
highly tangled magnetic fields also become complex
especially in the range of Hsurf ∼ ~H=10 − ~H. As an
example, we show the frequencies, lan, for l ¼ 2, 3, 4,
and 5, and n ¼ 0, 1, 2, 3, and 4 expected in the neutron stars

FIG. 10 (color online). In the left panel, the frequencies of the l ¼ 2, 3, and 4 fundamental magnetic oscillations, 2a0, 3a0, and 4a0, are
shown as a function of Hsurf for the stellar model with M ¼ 1.4M⊙ and ðβ; γÞ ¼ ð0.02; 3Þ, with the frequencies of the l ¼ 2, 3, and 4
fundamental torsional oscillations, 2t0, 3t0, and 4t0 for reference. In the right panel, the relative deviation between the frequencies with
and without crust elasticity is shown as a function of Hsurf .

FIG. 11 (color online). Relative deviation of the frequencies of 2an with n ¼ 0, 1, and 2 for the various stellar models as a
function of Hsurf , where the relative deviation is defined by Eq. (12) and the parameters in the strength distribution of magnetic
fields are ðβ; γÞ ¼ ð0.02; 3Þ.

FIG. 12 (color online). Same as Fig. 11, but for the fundamental oscillations with l ¼ 3, 4, and 5.
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with M ¼ 1.4M⊙ in Fig. 13, and with M ¼ 2.0M⊙ in
Fig. 14, as a function of Hsurf in the range of
Hsurf ¼ ð3 − 7Þ × 1014 Gauss. Comparing both figures,
one can observe that the order of the eigenfrequencies
depends on the stellar mass. That is, focusing on the field
strength of Hsurf ¼ 7 × 1014 Gauss, the frequencies for the
stellar model withM ¼ 1.4M⊙ correspond to 2a0, 3a0, 4a0,

2a1, 5a0, 3a1, 4a1, 2a2, 5a1, 3a2, 4a2, 2a3, 5a2, 3a3, 4a3, 2a4,

5a3, 3a4, 4a4, and 5a4 in order from bottom to top, while
those withM ¼ 2.0M⊙ are 2a0, 3a0, 4a0, 2a1, 5a0, 3a1, 2a2,

4a1, 3a2, 5a1, 2a3, 4a2, 3a3, 2a4, 5a2, 4a3, 3a4, 5a3, 4a4, and

5a4 in order from bottom to top. In any case, there is the
forbidden region in the spectra, which corresponds to the
region below the line of 2a0. We also emphasize that, unlike
the pure crust torsional oscillations, one can expect many of
the eigenfrequencies in the magnetic oscillations. This is
because the overtone frequencies of the crustal torsional

oscillations become much higher than the frequencies of
the fundamental oscillations, while those of the magnetic
oscillations become in the same order as for the funda-
mental oscillations.

V. CONCLUSION

In this paper, we systematically examine the frequencies
of the magnetic oscillations in neutron stars with highly
tangled magnetic fields, focusing on the axial type oscil-
lations. For this purpose, we derive the perturbation
equations describing such oscillations by combining the
linearized equation of motion and induction equation. To
derive this perturbation equation, we assume that the
strength of the global magnetic structure is much smaller
than the tangled field strength, and that the magnetic fields
are tangled with a length scale smaller than the wavelength
of the magnetic oscillations considered in this paper. Then,
we calculate the frequencies of magnetic oscillations with
and without crust elasticity, adopting the phenomenological
strength distribution of magnetic fields.
We confirm that the frequencies of magnetic oscillations

without crust elasticity are exactly proportional to the field
strength, as expected. The frequencies decrease as the
stellar mass increases, where the frequencies also depend
on the strength distribution of magnetic fields. On the other
hand, the spectra of the magnetic oscillations with crust
elasticity become more complicated, where we could not
observe the pure crustal torsional oscillations even for the
weak magnetic fields. For discussing the spectra, we show
the importance of the critical field strength at the stellar
surface, ~H, determined in such a way that the shear velocity
is equivalent to the Alfvén velocity at the crust basis. In
fact, we find that, independently of the stellar mass, the
frequencies are almost proportional to the strength of
magnetic fields except for the range from ∼ ~H=10 up to
∼ ~H. The effect of the crust elasticity can be seen more
strongly in the fundamental oscillations with lower har-
monics index l. Additionally, we show that the funda-
mental oscillations are less dependent on the stellar mass
for the weak magnetic fields, while the overtones are more
sensitive to the stellar mass not only in the weak but also the
strong field regimes. Furthermore, we find that the spectra
of the magnetic oscillations in the neutron stars with highly
tangled magnetic fields are discrete. This is a completely
different spectrum property from the case for the stellar
model with pure dipole magnetic fields, which leads to the
continuous spectra.
In this paper, we do not take into account the contribu-

tions from the global magnetic structure, which should play
an important role for considering the cold neutron stars. On
the other hand, Link and van Eysden studied the full range
between a purely ordered field and a purely tangled field,
even though their stellar models are quite simple [35],
which could give a more reliable qualitative picture than the
limiting case of a purely tangled field, at least for the cold

FIG. 13 (color online). Various eigenfrequencies, lan for the
stellar model withM ¼ 1.4M⊙ and ðβ; γÞ ¼ ð0.02; 3Þ in the short
range of Hsurf , where we show the frequencies for l ¼ 2, 3, 4,
and 5 and n ¼ 0, 1, 2, 3, and 4. That is, the frequencies for
Hsurf ¼ 7 × 1014 Gauss correspond to 2a0, 3a0, 4a0, 2a1, 5a0,

3a1, 4a1, 2a2, 5a1, 3a2, 4a2, 2a3, 5a2, 3a3, 4a3, 2a4, 5a3, 3a4, 4a4,
and 5a4 in order from bottom to top.

FIG. 14 (color online). Same as Fig. 13, but for the stellar
model with M ¼ 2.0M⊙, where the frequencies for Hsurf ¼
7 × 1014 Gauss correspond to 2a0, 3a0, 4a0, 2a1, 5a0, 3a1, 2a2,

4a1, 3a2, 5a1, 2a3, 4a2, 3a3, 2a4, 5a2, 4a3, 3a4, 5a3, 4a4, and 5a4 in
order from bottom to top.
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neutron stars. At some point, we will examine the oscil-
lation spectra on the stellar models, including the contri-
bution of the global magnetic structure. In any event, we
have figured out that, unlike the crustal torsional oscil-
lations, one can observe many magnetic oscillations in the
spectra, which may be detected after the violent phenomena
breaking the global magnetic structure.
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