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A recent discovery in 2009 by Bañados, Silk andWest (BSW), which generated a lot of interest, involves
the arbitrary high center-of-mass (c.m.) energies for free particle collisions at the horizon of an extreme kerr
black hole when one of the free particles has a critical value of the angular momentum. In light of this we
consider the rotating Kerr-like black hole solution in Brans-Dicke theory and study the motion of scalar test
charges in the vicinity of the black hole horizon. We show that the interaction of the test scalar charges with
the background scalar field in this spacetime suppresses the c.m. energy for collisions occurring near the
event horizon, and the value of the c.m. energy there, is finite irrespective of whether the black hole is
extreme or not and its value is also independent of the angular momenta of the colliding test charges.
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I. INTRODUCTION

Recently Bañados, Silk and West (BSW) [1] showed that
when two free particles which are released from rest at
infinity in the equatorial plane of an extreme Kerr black
hole collide in the vicinity of the event horizon, the c.m
energy of the collision can be arbitrary high provided that
one of the colliding particles has a critical value of the
angular momentum. At first glance this interesting phe-
nomenon suggests that rapidly spinning black holes at the
center of most galaxies can act as Planck energy scale
particle accelerators, allowing us to explore the physics of
ultrahigh energy particle collisions that cannot be achieved
with the present day terrestrial accelerators. The calculation
of the c.m. energy for particle collisions near the horizon of
a Schwarzschild black hole was shown earlier [2] to be
finite and not significantly larger than the combined rest
mass of the colliding particles. So it immediately became
evident that rotation is an essential requirement for achiev-
ing such high energies. The infinite c.m. energy in the BSW
process for the Kerr black hole can be explained in terms of
the kinematics of the particles near the horizon (see Ref. [3]
for a detailed explanation). Basically this occurs due to the
fact that the relative velocity between the colliding particles
approaches the speed of light, meaning that the Lorentz
factor becomes unbound, when one of these particles
attains a critical value of the angular momentum.
Shortly after this discovery Berti et al. [4] and Jacobson

and Sotiriou [5] criticized its practicality in astrophysical
scenarios by pointing out a number of practical limitations
that prevent these arbitrary high energies. First the BSW

process requires very fine tuning and it takes an infinite
amount of time to access the infinite collision energy [5].
Moreover on a more practical side there is the nonexistence
of extremal black holes in nature, i.e. the spin parameter a
of an astrophysical black hole of mass m cannot exceed
a=m ¼ 0.998 [6]. In any case by the third law of black hole
thermodynamics [7] we know that the black hole spin cannot
be increased to its extreme value a ¼ m in a finite amount
of time. Added to this one should take into consideration
gravitational radiation and the backreaction effects [4] in
such a process. Despite these limitations the BSWeffect has
generated a lot of interest and in recent years it has been
studied extensively both for the Kerr black hole [8–15]
and other black hole systems [16–28], with or without a
cosmological background and in alternative theories of
gravity [28–32]. In particular the requirements of rotation
and extremality of the black hole have been reexamined for
the Kerr black hole as well as other black hole systems.
So for example, by considering the scattering of particles in
the gravitational field of a Kerr black hole, it was shown in
Ref. [10] that very large c.m. energies for particle collisions
at the horizon are still possible for nonextremal black holes.
It was also shown in Ref. [16] that in the case of the static
extreme Reissner-Nordström black hole, infinite c.m. ener-
gies can also be achieved at the horizon for collisions
between radially moving charged particles with one of the
particles having a critical value of the electric charge.
Moreover recently it was shown (see Refs. [33,34]) that
under some reasonable conditions the above mentioned
limitations due to backreaction effects do not necessarily
exclude the possibility of infinite c.m. energies for non-
geodesic particle collisions. The BSW process has also been
studied in cosmological spacetimes such as the Kerr-de Sitter
black hole [21] and the Reissner-Nordström-de Sitter black
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hole [23]. In the latter case the authors claim that infinite c.m.
energy for particle collisions at the cosmological horizons
are possible without the requirement of extremality of the
black hole. However this claim was refuted in Ref. [35],
where it was shown that the infinite c.m. energy at the
cosmological would be attained in a finite amount of time
and would therefore make the process unphysical.
A study of the BSWeffect in the presence of scalar fields

was first carried out by Patil and Joshi [30] who obtained
infinite c.m. energies for free particle collisions in the
vicinity of the naked singularity of the static spherically
symmetric Janis-Newman-Winicour (JNW) spacetime [36]
which contains a massless minimally coupled scalar field
that is also singular at the position of the naked singularity.
This led them to conclude that instead of spinning up a
black hole or charging it [as in the case of the Reissner-
Nordtröm (RN) solution], one can also crank up the c.m.
energy of the collision by “charging” the black hole with a
static massless scalar field. However in our earlier study
[32] we showed that the presence of a scalar field does
not always lead to infinite c.m. energy in other black hole
systems containing scalar fields. Examples of these systems
include the static spherically symmetric asymptotically flat
black hole solution with a conformally coupled massless
scalar field found by Bocharova, Bronnikov and Melnikov
[37] and independently by Bekenstein [38] (also called the
BBMB solution) and its generalization to the case of a
positive cosmological constant that was found by Martinez,
Troncoso and Zanelli (MTZ) [39] which has a massless
conformally coupled scalar field with a quadratic potential
that depends on the cosmological constant. Unlike the JNW
spacetime both of these solutions represent genuine black
holes without naked singularities and in the former case the
scalar field is again singular on the event horizon. In each
case it was shown that the c.m. energy for free particle
collisions in the vicinity of the event horizon is finite, and is
given by the same expression obtained by Baushev [2] for
the Schwarzschild solution. Moreover the c.m. energy for
collisions involving scalar test charges that interact with the
background scalar field in these spacetimes, was shown to
be even smaller than in the case of free particle collisions,
and therefore the presence of a scalar field (or better its
interaction with the test scalar charges) suppresses the c.m.
energy rather than enhancing it as had originally been
claimed by Patil and Joshi [30]. This suggests that the
infinite energy for free particle collisions seen in the JNW
spacetime does not arise from the presence of the massless
scalar field, but may be instead related to the naked
singularity. In fact in our earlier study we had also
considered a particular case in the class of Einstein-scalar
solutions obtained by Anabalón and Cisterna [40] which
also contains a naked singularity and showed that the c.m.
energy for free particle collisions there, is also infinite.
Since so far the black hole Einstein-scalar solutions used

to study the BSW process were all static, in this paper we

consider a Kerr-like solution in Brans-Dicke theory having
a scalar field which is singular on the event horizon (which
from now on will be referred to as the Brans-Dicke-Kerr
(BDK) black hole [41,42]), and we will obtain the c.m.
energy for collisions between test scalar charges in the
vicinity of the event horizon. We show that unlike the Kerr
black hole the c.m. energy for collisions between test scalar
charges in the vicinity of the event horizon is finite for
−5=2 ≤ ω ≤ −3=2, where ω is the Brans-Dicke parameter,
and its value is equal to the sum of the particles’ rest
masses, irrespective of whether the black hole is extreme or
not. For other values of ω the BDK spacetime has a naked
singularity and in this case the c.m. energy becomes infinite
in the vicinity of the singularity as in the JNW spacetime.
If instead of test scalar charges, one uses free particles that
do not interact with the background scalar field, then the
situation is no different than the Kerr case, i.e. the c.m.
energy near the horizon is again infinite. Therefore as we
have seen in our previous study which was limited to static
examples, the presence of the scalar field in rotating black
hole spacetimes also suppresses the c.m. energy for test
scalar charge collisions, such that its value on the horizon is
reduced to the sum of the particles’ rest masses. Hence in
some sense the BSW process can distinguish between black
hole solutions with and without scalar fields.
This paper is organized as follows. In Sec. II we present

the BDK solution and discuss the cases corresponding to
different values of ω. Then in Sec. III we consider the
trajectories of test scalar charges coupled to the background
scalar field and obtain the corresponding c.m. energy.
Results are summarized and discussed in the Conclusion.
Unless otherwise noted, in this paper we use geometric
units, G ¼ c ¼ 1.

II. BRANS-DICKE-KERR (BDK) SOLUTION

The first well-known scalar tensor extension to
Einstein’s general relativity is Brans-Dicke (BD) theory
[43] which was developed to accommodate both Mach’s
principle [44] and Dirac’s large number hypothesis [45],
and in which Newton’s gravitational constant G ¼ 1=ψ is a
variable written in terms of a scalar field ψ . The action of
BD-theory in the so-called Jordan frame is given by

SðBDÞ ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi−gp �
ψR − ω

ψ
gcd∇cψ∇dψ − VðψÞ

�

þ SðMÞ; ð1Þ
where

SðMÞ ¼
Z

d4x
ffiffiffiffiffiffi−gp

LM ð2Þ

is the matter action and ω is the dimensionless Brans-Dicke
parameter. In our case we take the scalar field potential
VðψÞ to be zero. Varying the action with respect to the
metric tensor gab gives
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Gab ¼
8π

ψ
TðMÞ
ab þ ω

ψ2

�
∇aψ∇bψ − 1

2
gab∇cψ∇cψ

�

þ 1

ψ
ð∇a∇bψ − gab□ψÞ; ð3Þ

where

TðMÞ
ab ¼ −2ffiffiffiffiffiffi−gp δ

δgab
ð ffiffiffiffiffiffi−gp

LðMÞÞ: ð4Þ

Varying the action with respect to the scalar field gives

□ψ ¼ 8π

2ωþ 3
TðMÞ; ð5Þ

where T ¼ Tμ
μ is the trace of the matter energy momentum

tensor. The first exact static and spherically symmetric
solution to (3) with a massless scalar field was obtained by
Brans and Dicke [43] themselves. In the Einstein frame,
which is obtained by taking the conformal transformation

gab → ~gab ¼ Ω2gab ð6Þ
with Ω ¼ ffiffiffiffiffiffiffi

Gψ
p

and the scalar field redefinition given by

~ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

16πG

r
ln

�
ψ

ψ0

�
; ð7Þ

where ψ0 is the current value of the gravitational constant,
the solution obtained by Brans and Dicke reduces to the
JNW spacetime that was used by Patil and Joshi [30] in
their earlier study of the BSW process in this spacetime.
Obtaining stationary axisymmetric solutions of BD

theory is not such a straightforward job, and in most cases
algorithms generating exact solutions from already known
simpler solutions in BD theory or even Einstein’s theory are
used. One such algorithm that allows the generation of a
stationary axisymmetric solution in vacuum BD theory
from the known Kerr solution in vacuum Einstein’s theory,
was presented by Tiwari and Nayak [41]. In this case the
metric which is a solution of (3) and which we will refer to
as the BDKmetric is given by (see also Refs. [42] and [46])

ds2 ¼ Δ−2=ð2ωþ3Þsin−4=ð2ωþ3Þθ
�
−
�
Δ − a2sin2θ

Σ

�
dt2

− 2asin2θðr2 þ a2 − ΔÞ
Σ

dtdϕ

þ
�ðr2 þ a2Þ2 − Δa2sin2θ

Σ

�
sin2θdϕ2

�

þ Δ2=ð2ωþ3Þsin4=ð2ωþ3Þθ
�
Σ
Δ
dr2 þ Σdθ2

�
; ð8Þ

where Σ ¼ r2 þ a2 cos2 θ and Δ ¼ r2 − 2mrþ a2, with m
and a denoting the Arnowitt-Deser-Misner (ADM) mass

and angular momentum per units mass, respectively. The
associated scalar field ψ which satisfies (5) is given by

ψðr; θÞ ¼ Δ2=ð2ωþ3Þ sin4=ð2ωþ3Þ θ: ð9Þ

As expected the above metric reduces to the Kerr solution
when ω → ∞. The spacetime has the same ring shaped
curvature singularity Σ ¼ 0 present in the Kerr metric.
Moreover, the Killing field χμ ¼ ξμ þΩHη

μ, where ξμ ¼
ð∂=∂tÞμ and ημ ¼ ð∂=∂ϕÞμ with ΩH being the angular
velocity of the horizon, becomes null on the surface
Δð2ωþ1Þ=ð2ωþ3Þ ¼ 0, meaning that for ω < −3=2 or ω >
−1=2 the spacetime has also the same Killing horizons
r� ¼ m� ðm2 − a2Þ1=2 of the Kerr solution. A computa-
tion of the Kretschmann scalar κ ¼ RαβμνRαβμν reveals that
for −5=2 ≤ ω < −3=2 this is finite and vanishes on the
Killing horizons r� and the scalar field ψðr�; θÞ → ∞
there, so that the effective Newtonian constant tends to
zero on rþ. For −1=2 < ω < ∞ and ω < −5=2 the
Kretschmann scalar becomes infinite on rþ so in these
cases the spacetime has a second curvature singularity at
the horizon, while for −3=2 < ω ≤ 1=2 the spacetime has
no Killing horizons and so the curvature singularity Σ ¼ 0
is naked. In other words for the range −5=2 ≤ ω < −3=2,
the BDK metric in (8) represents a nontrivial black hole
in BD theory and has the same Killing horizons and ring
singularity found in the Kerr spacetime. It should be noted
that if we let a ¼ 0 in the above metric, then we get a static
axisymmetric metric which can be called the Brans-Dicke-
Schwarzschild (BDS) that is not spherically symmetric and
therefore different than the solution obtained by Brans and
Dicke in Ref. [43].
At this point we should point out that the stationary

axisymmetric vacuum solution of BD theory is not unique.
So in the literature one can find other generating techniques
for obtaining such solutions from known ones. For example
Krori and Bhattacharjee [47] applied the method of
Newman and Janis [48] which was originally used to
derive the Kerr metric from the Schwarzschild metric via a
complex coordinate transformation, and they obtained a
Kerr-like metric in BD theory from the Brans and Dicke’s
metric obtained in Ref. [43]. However although this type of
metric has been used in a number of later articles (see for
example Refs. [49–51]) mainly in its Einstein frame form
(where it can be interpreted as a rotating generalization of
the JNW metric), one can check that the original metric
derived by Krori and Bhattacharjee does not satisfy the
field equations in (3). Other generating techniques for Kerr-
like solutions associated with either minimally or confor-
mally coupled scalar fields can be found in Refs. [52,53].
In most cases the generated solutions have naked curvature
singularities and/or violate energy conditions in parts of
the spacetime, and the closest Kerr-like metric in BD theory
that resembles the Kerr solution is that given by (8) above,
which we will therefore use in the next section to compute
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the c.m. energy for particle collisions in the vicinity of the
event horizon.
In the Einstein frame, obtained by using the conformal

transformation in (6), the metric reduces to

ds2 ¼ −
�
Δ − a2sin2θ

Σ

�
dt2 − 2asin2θðr2 þ a2 − ΔÞ

Σ
dtdϕ

þ
�ðr2 þ a2Þ2 − Δa2sin2θ

Σ

�
sin2θdϕ2

þ Δ4=ð2ωþ3Þsin8=ð2ωþ3Þθ
�
Σ
Δ
dr2 þ Σdθ2

�
ð10Þ

while the scalar field becomes

~ψ ¼ 1

2
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p lnðΔ sin2 θÞ; ð11Þ

and the field equations satisfied by this metric take the
simple form

Rab ¼ 8π ~ψa ~ψb

□ ~ψ ¼ 0:

However for the range −5=2 ≤ ω < −3=2 for which the
metric represents a black hole as discussed above, the
transformed scalar field ~ψ is imaginary, and therefore in
the next section we use the Jordan frame form of the metric
as given by (8).

III. SCALAR CHARGES AND THE C.M. ENERGY

In order to study the effect of the massless scalar field on
the c.m. energy for collisions near the event horizon in the
BDK spacetime, it is necessary to consider the motion of
test scalar charges which can interact with the background
scalar field instead of taking simply the motion of free
particles as has been done in earlier studies of the BSW
effect, where most of the spacetimes used had no associated
scalar fields. Assuming a simple linear coupling between
the background scalar field ψ and the test scalar charges
having mass μ, as we did in our earlier study [32] (see also
Ref. [54]) the action takes the form

S ¼ −
Z

ðμþ fψÞ
�
−gab dx

a

dλ
dxb

dλ

�
1=2

dλ; ð12Þ

where f > 0 is a constant representing the coupling
strength between the scalar field and the test scalar charges
and λ is the parameter along the particle trajectory xaðλÞ.
Taking λ to be the proper time τ and varying S with respect
to xa we get the equation of motion in the form

ðμþ fψÞD
2xa

dτ2
¼ −f

�
gabψ ;b þ ψ ;b

dxb

dτ
dxa

dτ

�
; ð13Þ

where

D2xa

dτ2
¼ ub∇bua ¼

d2xa

dτ2
þ Γa

bc
dxb

dτ
dxc

dτ
; ð14Þ

and ua ¼ dxa
dτ represents the four velocity of the test charges,

that satisfies the normalization condition uaua ¼ −1.
Therefore it is clear from (13) that the motion of test
scalar charges is not a geodesic, as in the case of a free
particle for which f ¼ 0. For the BDKmetric Eq. (13) leads
to the following constants of the motion [corresponding to
a ¼ t and a ¼ ϕ in (13), respectively]

E ¼ −ð1þ fψ=μÞgabua
� ∂
∂t
�

b

¼ −ð1þ fψ=μÞðgttut þ gtϕuϕÞ

L ¼ ð1þ fψ=μÞgabua
� ∂
∂ϕ

�
b

¼ ð1þ fψ=μÞðgtϕut þ gϕϕuϕÞ. ð15Þ

Moreover from (13) (for a ¼ θ) one can easily check that if
the test scalar charges are initially moving in the equatorial
plane θ ¼ π=2, then the ensuing trajectories will remain on
this plane, and therefore for simplicity we can take
equatorial orbits such that uθ ¼ 0. Solving (15) and using
the normalization condition we get the following compo-
nents for the four velocity

ut ¼ μ½Erða2 þ r2Þ þ 2amðaE − LÞ�
rðr2 − 2mrþ a2Þðf þ μ

ðr2−2mrþa2Þ2=ð3þ2ωÞÞ
; ð16Þ

uϕ ¼ μ½2mðaE − LÞ þ Lr�
rðr2 − 2mrþ a2Þðf þ μ

ðr2−2mrþa2Þ2=ð3þ2ωÞÞ
; ð17Þ

while the radial component is given by

ur ¼
�
1

r3

�
1=2

�
−rðr2 − 2mrþ a2Þ1−2=ð3þ2ωÞ

þ μ2ðE2r3 þ ða2E2 − L2Þrþ 2mðL − aEÞ2Þ
ðμþ fðr2 − 2mrþ a2Þ2=ð3þ2ωÞÞ2

�
1=2

:

ð18Þ

As expected these four velocity components reduce to
those obtained by BSW for the Kerr solution in the limits
f → 0 and ω → ∞. Also in the vicinity of the horizon,
where Δ ¼ r2 − 2mrþ a2 ¼ ðr − r−Þðr − rþÞ → 0, the
radial component of the velocity becomes
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ur ¼
�ðr2 − 2mrþ a2Þ−2=ð3þ2ωÞ

r3=2

�

× ½E2r3 þ ða2E2 − L2Þrþ 2mðL − aEÞ2�1=2

×

�
f
μ
þ ðr2 − 2mrþ a2Þ−2=ð3þ2ωÞ

�−1
; ð19Þ

so that for −5=2 ≤ ω < −3=2 the radial velocity vanishes
at the horizon r ¼ rþ irrespective of the values of the
parameters a, m, E, and L, and therefore the test scalar
charges fall on a trajectory that spirals asymptotically into
an unstable circular orbit at the horizon radius, taking an
infinite amount of proper time to do so. We know that this
also happens for free particles released from rest at infinity
in the Kerr solution as shown by BSW in Fig. 3 in Ref. [1].
However in the latter case this requires fine tuning with the
black hole being extremal ða ¼ mÞ and with the particles
having a critical value of the angular momentum. This is
also shown in Fig. 1 where we take the two cases f=μ ¼ 0,
ω ¼ ∞ representing the Kerr solution and f=μ ¼ 0.005,
ω ¼ −2 for the BDK solution. For simplicity in both cases
we take a ¼ m ¼ 1, E ¼ 1 and consider two different
values of L. As shown in Fig. 1 in the BDK case the radial
velocity goes to zero on the horizon rþ ¼ 1 for both values
of L. Note also that for the chosen values of the parameters,
in this case the motion of the test charges is restricted to
finite values of the radial coordinate r, unlike the Kerr case
where the free particles are released from rest at infinity;
hence the value E ¼ 1.
Now the four momenta of two particles of equal mass μ

moving along timelike orbits can be expressed in terms of
their four-velocities uai , ði ¼ 1; 2Þ by pa

i ¼ μuai , such that
the cm energy of their collision is given in terms of the total
momentum pa

t ¼ pa
1 þ pa

2 by

E2
cm ¼ −pa

t pta ¼ −μ2ðua1 þ ua2Þðu1a þ u2aÞ; ð20Þ

or as given in most cases [1] by

E2
cm

2μ2
¼ ð1 − gabua1u

b
2Þ: ð21Þ

So substituting (16)–(18) in the above expression and
assuming that the test scalar charges have the same mass
μ but different values of the constants Ei and Li ði ¼ 1; 2Þ,
we get

E2
cm

2μ2
¼ 1þ μ2ða2E1E2 −L1L2Þðr2 − 2mrþ a2Þ−1þ 2

3þ2ω

ðμþ fðr2 − 2mrþ a2Þ 2
3þ2ωÞ2

þ ½ðr2 − 2mrþ a2Þ−1þ 2
3þ2ωð2ðaE1 −L1Þ

× ðaE2 −L2Þmμ2 − r3ð−E1E2μ
2

þ ðμþ fðr2 − 2mrþ a2Þ 2
3þ2ωÞ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðrÞP2ðrÞ

p
ÞÞ�=ðrðμþ fðr2 − 2mrþ a2Þ 2

3þ2ωÞ2Þ;
ð22Þ

____ f 0 .005

------ f 0

____ L 0.5
____ L 2

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

r

dr
d

FIG. 1 (color online). The radial component of the velocity
dr=dτ for free particles (dashed curves with f=μ ¼ 0, ω ¼ ∞)
and coupled scalar test charges (solid curves with f=μ ¼ 0.005,
ω ¼ −2) for angular momenta L ¼ 2 (red curves) and L ¼ 0.5
(blue curves). We take m ¼ a ¼ 1 and E ¼ 1 in both cases. Note
that in the coupled case there is a turning point at the event
horizon for both values of L.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

50

100

150

200

250

r

Ecm
2

2 2

FIG. 2. Variation of E2
cm

2μ2
with radius for the BDK metric with

f ¼ 0.005, ω ¼ −2 (solid curve) and f ¼ 0, ω ¼ −2 (dashed
curve). The situation in the Kerr case f ¼ 0, ω ¼ ∞ (dotted
curve) is shown for comparison. We take E1 ¼ 2, E2 ¼ 1,
a ¼ m ¼ 1, L1 ¼ 2, L2 ¼ −2ð1þ ffiffiffi

2
p Þ such that the horizon

in all three cases occurs at r ¼ rþ ¼ 1.
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FIG. 3. Variation of E2
cm

2μ2
with radius for the BDK metric with

f ¼ 0.005 (dashed curve) and f ¼ 0.001 (solid curve). In both
cases we take ω ¼ −2, E1 ¼ 2, E2 ¼ 1, a ¼ m ¼ 1, L1 ¼ 2, and
L2 ¼ −2ð1þ ffiffiffi

2
p Þ such that rþ ¼ 1.
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where

PiðrÞ ¼
1

r3

�
−rðr2 − 2mrþ a2Þ1− 2

3þ2ω

þ μ2ð2mðLi − aEiÞ2 þ ða2E2
i − L2

i Þrþ E2
i r

3Þ
ðμþ fðr2 − 2mrþ a2Þ 2

3þ2ωÞ2
�

ð23Þ

and i ¼ 1, 2. If one takes the assumptions used by BSW in
their original study, i.e. m ¼ a ¼ 1 and E1 ¼ E2 ¼ 1, then
as expected for f ¼ 0 and ω → ∞ the above expression
reduces to the much more simple expression obtained by
BSW for free particles as given in Eq. (14) in their paper.
Although the expression for the c.m. energy for test scalar
charge collisions looks quite complicated, one can easily
show that when −5=2 ≤ ω − 3=2, for which the solution
in (8) represents a genuine black hole, we get

lim
r→rþ

Ecm ¼ 2μ; ð24Þ

such that the energy takes its minimum value, i.e. the rest
mass of the test scalar charges and is therefore independent
of the free parameters Ei; Li;m, and a. The same thing was
observed in our earlier study [32] for the static BBMB
black hole, in which the scalar field is also infinite on the
event horizon, and the c.m. energy also attains its minimum
value there. On the other hand letting f ¼ 0 we get
limr→∞Ecm ¼ ∞, as in the case of the Kerr black hole,
although in the latter case this only happens when the
particle has a critical value of the angular momentum L and
when the black hole is extremal. This is shown in Fig. 2
below, which shows the variation of the c.m. energy with
radius for the two cases f ¼ 0 and f > 0 for a fixed value
of the Brans-Dicke parameter ω. The Kerr case f ¼ 0;
ω ¼ ∞ is included for comparison. We have taken L1 ¼ 2
and L2 ¼ −2ð1þ ffiffiffi

2
p Þ so that the Kerr case matches the

situation shown in Fig. 3(b) of BSW in Ref. [1]. Hence we
see that it is the interaction of the test scalar charges with
the background scalar field which is what suppresses the
energy of the collision rather than the mere presence of the

background scalar field. In fact for higher values of the
interaction parameter f, the suppression effect of the back-
ground scalar field on the c.m. energy of the collision is more
pronounced at all radii as shown in Fig. 3. For other values of
the Brans-Dicke parameter ω for which the spacetime has a
curvature singularity at r ¼ rþ the value of the c.m. energy is
arbitrarily high on rþ as in the Kerr solution, irrespective of
whether f is zero or not. This is seen in Fig. 4 which shows
the behavior of the c.m. energy for three different values of
ω, two of which lie outside the range −5=2 ≤ ω < −3=2,
and therefore represent naked singularities.

IV. CONCLUSION

In light of the recent discovery by BSW that Kerr black
holes can act, at least theoretically, as particle accelerators
with arbitrary high energy, we examine the case of a Kerr-
like black hole surrounded by a scalar field that becomes
singular on the event horizon, and study the motion of test
scalar charges in the vicinity of the horizon. When the
Brans-Dicke parameter ω takes values, −5=2 ≤ ω < −3=2
for which the metric in (8) represents a black hole, we have
seen from Eq. (19) and Fig. 1 that the radial velocity of the
test charges vanishes at the event horizon r ¼ rþ such that
their trajectories spiral asymptotically to unstable circular
orbits on r ¼ rþ taking an infinite amount of time to do so.
The same thing happens in the Kerr solution, although in
our case as seen in Fig. 1 no fine tuning of the particles’
angular momentum is required. Moreover, as shown in
Fig. 2 the c.m. energy for collisions between scalar test
charges remains finite in the vicinity of the horizon and
decreases to its minimum possible value there, i.e.
EcmðrþÞ ¼ 2μ. For free particles which are uncoupled
(f ¼ 0) to the background scalar field the energy becomes
arbitrary high at the horizon, just like the case of the Kerr
solution. Therefore it is clear that the decrease in the value
of Ecm is due to the interaction between the test scalar
charges and the background scalar field and as we can see
from Fig. 3, this effect occurs at all radii and increases
with the value of the coupling strength f. This behavior has
also been observed in our earlier study [32] for a static
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Schwarzschild-like black hole surrounded by a scalar field,
although in that case when f ¼ 0, EcmðrþÞ > 2μ is still
finite as in the case of the Schwarzschild solution.
As mentioned above, for∞ > ω > −1=2 and ω < −5=2

the metric still attains Killing horizons at r ¼ r�, but the
Kretschmann scalar becomes infinite there, so that the
surfaces r ¼ r� are singular and therefore the metric cannot
describe a black hole spacetime. In this case it was shown
(see Fig. 4) that limr→rþEcm ¼ ∞ irrespective of the value
of the interaction parameter f. This conforms well with
the result obtained by Patil and Joshi [30] for the JNW
spacetime which also has a naked singularity at the Killing
horizon. However in that case the authors incorrectly
attributed the arbitrary high energy at the horizon to the

presence of the scalar field rather than the presence of a
curvature singularity there. They had even claimed that the
presence of a scalar field in the static JNW spacetime plays
the role of rotation in the Kerr spacetime in the sense that it
can be used to crank up the c.m. energy of the collision to
arbitrary high values, just like the role played by the electric
field in the extreme Reissner-Nordström black hole, which
leads to arbitrary high c.m. energies for collisions between
radially moving charges close to the event horizon [16].
However contrary to this claim we have now seen again
here as we have already observed for the static case in
our previous study, that even when rotation is involved, the
interaction with the background scalar field suppresses the
c.m. energy in the vicinity of the black hole horizon.
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