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Starting in 2007, a string of papers argue about if the weak cosmic censorship conjecture (WCCC) can be
violated by classically forbidden interactions between particles and slightly subextremal black holes,
occurring via the quantum nature of the particles; and where backreaction and/or superradiance are pointed
out as effects working in the direction of preserving the WCCC. We correct/modify a backreaction
argument, point out that transmission/reflection coefficients for relativistic wave equations are not the
respective probabilities, and conclude that superradiance does not prevent single particles from being
captured by the black hole; even if this capture would lead to WCCC violation. Then we consider the
spontaneous emission (which we call the Zel’dovich-Unruh “ZU” effect) of particles by the black hole, and
point out that it completely invalidates the mentioned single- or few-particle thought experiments. We find
that at least for scalars, the ZU effect can be understood without second quantization; and reevaluate our
previous work on scalar fields interacting with black holes in view of this new understanding, finding that
it becomes inconclusive.
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I. INTRODUCTION: CHALLENGING THE WEAK
COSMIC CENSORSHIP CONJECTURE

The deterministic nature of a spacetime in general
relativity relies on the validity of the cosmic censorship
conjecture which in its weak form (WCCC) states that
gravitational collapse of a body always ends up in a black
hole rather than a naked singularity [1], i.e., “naked
singularities” cannot evolve starting from nonsingular
initial data. Conjecturing singularities to be hidden behind
event horizons without any access to distant observers,
enables the specification of a well-defined initial value
problem. The formation of singularities is inevitable once
certain conditions become satisfied [2]; and if one were
naked, it would prevent the existence of a Cauchy surface
for the spacetime.
Not much progress has been made toward a concrete

proof of the CCC, weak or strong [3]. Therefore one way to
test the validity of the conjecture has been to challenge its
seemingly weak spots by constructing gedanken experi-
ments. In these experiments one envisages a black hole
absorbing some particles or fields coming from infinity.
The no-hair theorem [4] in classical general relativity,
which states that stationary, asymptotically flat spacetimes
are uniquely parametrized by three1 parameters (Mass M,
charge Q, and angular momentum per unit mass a),
guarantees that once the particles/fields are absorbed/
reflected, the spacetime will settle to another spacetime

with new parameters M0, Q0, and a0. The existence of the
event horizon, which discriminates black holes and naked
singularities, depends on an inequality involving these
parameters

M2 ≥ Q2 þ a2 ð1Þ
in appropriate units [5]. In other words, a spacetime
described by the Kerr-Newman metric corresponds to a
black hole, if (1) is satisfied; but to a naked singularity if it
is violated; in the borderline case, i.e., when (1) is saturated,
the spacetime is said to describe an extremal, or a critical
black hole. The thought experiments are constructed to
check if we can push the initially nonsingular spacetime
satisfying (1) beyond the extremal limit, so that the final
spacetime violates (1), and describes a naked singularity.
To simplify the equation of motion of the incoming
particle/field, they are taken as test particles/fields. Then,
the changes they cause in the Kerr-Newman parameters are
infinitesimal, therefore one should start the thought experi-
ment from conditions infinitesimally close to where we
would like to push the system, i.e., the extremal black hole.
The first thought experiment in this vein was constructed
by Wald in 1974 [6]. He showed that particles with enough
charge and/or angular momentum to overcharge/overspin a
black hole either miss, or are repelled by, the black hole.
This result was generalized to the case of dyonic black
holes for spinless test particles [7] and scalar test fields
[8,9]. These results suggest that the WCCC cannot be
violated quasistatically.
In 1999, Hubeny [10] had the idea of starting from a

nearly extremal Reissner-Nordström, (i.e., nonrotating) black
hole instead of an extremal one, and argued that the black
hole can be overcharged by using tailored test particles.
Pursuing this avenue of thought requires careful gauging of
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1If magnetic charge (Qm) exist in nature, that will also be one

of the parameters, bringing the total to four. It will enter the
metric via Q2 ¼ Q2

e þQ2
m.
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the incoming particles/fields to be infinitesimal enough to be
amenable to calculation, but not so infinitesimal as to rule out
WCCC violation by the Wald-Hiscock-Semiz line of argu-
ments; and it is hard to say that agreed-upon criteria for this
fine-tuning exist. Nevertheless, this argument was adapted
to Kerr (i.e., uncharged, rotating) [11], and extended to Kerr-
Newman (i.e., fully general) black holes [12]. Later work
[13–16] considered backreaction, radiative and self-force
effects neglected above, and concluded that these effects may
prevent the particle from being captured. We analyzed the
same question for test fields instead of particles for the Kerr
black hole, and found similar results for fields of integer spin
[17], and somewhat more drastic ones for spin-1=2 [18]
(more on this in Sec. III A below). There are also works
challenging WCCC with spherical shells [19] and claiming
WCCC violation even for extremal black holes and test
particles, due to higher order terms [20].

II. THE QUANTUM CONNECTION

The generally accepted result of above works is that at
least extreme black holes cannot be turned into naked
singularities by absorbing classical test particles or fields.
The particles are prevented from entering the black hole by
a combination of the centrifugal and electric potentials and
magnetic effects.
However, it is well-known that matter has ultimately a

quantum nature; and quantum mechanics allows, for exam-
ple, particles to go where they are classically forbidden to; a
phenomenon known as tunneling. Therefore it is natural to
wonder if the same phenomenon could allow test particles to
tunnel through the barriers of the above-mentioned poten-
tials. These considerations motivated Matsas & da Silva [21]
to construct a gedanken experiment where neutral massless
scalar quantum particles tunnel into a nearly extreme
Reissner-Nordström (RN) black hole. Obviously, to violate
Eq. (1), the angular momentum/energy ratio should be large
for the incoming particle. The authors investigate the
Klein-Gordon equation on the RN metric to calculate the
“absorption probability” in the low frequency (therefore low
particle energy) limit, find that it is nonzero for all nonzero
frequencies, hence conclude that Eq. (1) can be violated if a
low-energy particle with

lðlþ 1Þ > M2ðM2 −Q2Þ ð2Þ

is absorbed by (tunnels into) the black hole where l is the
angular momentum quantum number of the particle, and M
and Q are the initial mass and charge of the black hole.
Hod in [22] considers backreaction for the same process.

He points out that the black hole will acquire angular
momentum through the process, and argues that precisely
those frequencies that would lead to a violation of
WCCC are prevented from entering the black hole by
the phenomenon of superradiance [23,24]: For

ω < ωsl ¼ mΩ ¼ m
a

r2þ þ a2
¼ ma

2Mrþ
; ð3Þ

the “reflection coefficient” is greater than unity. Here, Ω is
the angular velocity of the event horizon, and rþ ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ a2

p
its radius. The author calculates the value of

M2 −Q2 − a2 [cf. Eq. (1)] after the process, with the
minimum energy (i.e., frequency) given by Eq. (3), where
the a is the value acquired during the process. He finds that
Eq. (1), therefore the WCCC cannot be violated.2

On the other hand, fermions do not exhibit superradiance
[25]. This fact led Richartz and Saa [26] to suggest
replacing the scalar particles of the above thought experi-
ments by fermions (still massles, hence they can be thought
of as neutrinos), and trying to overspin a nearly extremal
Kerr black hole. They consider a black hole one unit short
(in Planck units, that is, in units determined by angular
momentum quantization) from extremality, show that
absorption of a low-energy particle with angular quantum
numbers l ¼ m ¼ 3=2 can lead to violation of WCCC,
calculate the frequency interval needed for the violation;
and since the “transmission coefficient” is positive for
positive frequencies (which is another way of saying that
there is no superradiance), they conclude that the particle
will be absorbed, i.e., WCCC will be violated and the
horizon destroyed. Alternatively they suggest that using a
minimally charged black hole (still rotating almost
extremely) will allow the use of an l ¼ m ¼ 1=2 particle.
They also argue that using a large enough black hole, the
backreaction issues mentioned above can be avoided.
Hod in [27] argues that vacuum polarization in the

ergosphere of a rotating black hole will give rise to
spontaneous emission of neutrinos; and this emission will
both keep pushing the black hole away from extremality,
and also suppress the absorption of incoming neutrinos due
to the Pauli exclusion principle; thereby protecting WCCC.
Parallel to the discussion about fermions, Matsas et al. in

[28] counter the backreaction argument of Hod [22] by
pointing out that in the thought experiment of [21], the total
angular momentum transferred to (the originally nonrotat-
ing) black hole will be determined not bym, but by l; hence
by preparing the incoming particle in an m ¼ 0 state, the
backreaction can be avoided and WCCC violated.3

A more recent work by Richartz and Saa [29] repeats the
tunneling argument for almost extremal Reissner-Nordström
black holes and charged quantum particles, both scalars and
spin-1=2 fermions; reaching similar conclusions. They also

2Hod in this work also reconsiders the Hubeny thought
experiment, and argues that the gravitationally induced self-force
on the particles prevents the capture of those particles that would
have led to violation of the WCCC.

3They also conjecture that a naked singularity revealed or
allowed by quantum effects might decay into elementary par-
ticles, whose entropy could preserve the generalized second law
of thermodynamics.
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argue that the particles suitable for WCCC violation can be
captured since the probabilities for such capture, as calcu-
lated thermodynamically [30] or by quantum field theory
(QFT) [31] allow them to.
We believe that the disagreements in these works partly

stem from applying concepts relevant only for fields to
cases involving particles. These concepts are the trans-
mission and reflection coefficients, and superradiance. We
turn to the discussion of these concepts, and their contexts
of relevance in the next section.

III. CLASSICAL VS. QUANTUM, FIELDS VS.
PARTICLES ON BLACK HOLE

SPACETIMES

Let us define/clarify our terms: By a classical field, we
mean an entity obeying one of the well-known equations, it
and physical quantities associated with it—such as energy
and momentum densities—being distributed over the
spacetime in a continuous fashion. When we say that we
use a quantum field, however, we mean that particles are
actually moving in spacetime, their behavior being “guided
by” the field in a probabilistic way; allowing for calculation
of expectation values of physical quantities of interest.
This formalism is sometimes called first quantization. By
the nature of the probabilistic description, these expectation
values become better predictors of measurement results
with increasing number of particles. When we deal with
small number of particles, however, we will talk about
using quantum particles. In this case, we should be thinking
in terms of the second quantization formalism; that is, Fock
spaces populated by states labeled by particle numbers and
acted on by creation and annihilation operators. In either
case we consider test fields or particles, i.e., the effect of
the fields/particles on the geometry is negligible, or can be
estimated as a first order perturbation.
Of course, classical and quantum fields obey the same

equations. On black hole spacetimes, some of these equa-
tions have been shown to be separable in Boyer-Lindquist
coordinates [5], which facilitates treatments of these fields.
The most important such work is Teukolsky’s separation
[32] of massless scalar, spin-1=2, spin-1, and spin-2 fields on
the Kerr spacetime; the most general (complex, massive) free
scalar [33] and spin-1=2 [34] fields have also been separated
on the most general classical (dyonic Kerr-Newman) black
hole. In the scalar or massless cases, the angular equations
are Sturm-Liouville eigenvalue problems, therefore the
eigenfunctions are both complete, so that the totality of
the eigenmodes can represent the general solutions, and
orthogonal, so that the modes can do so independently, one
by one.

A. Classical fields, superradiance and WCCC

To set the stage, and establish some notation; we briefly
review the simplest field, but in its full generality: A mode

of the massive complex scalar field can be written as
Ψðr; θ;ϕ; tÞ ¼ RðrÞΘðθÞeimϕe−iωt where each factor sat-
isfies its own equation.
As discussed in some of the references above, the ΘðθÞ

functions can be orthonormalized, and the radial equation is
transformed into

d2

dr2�
Uðr�Þ þ Veffðr�ÞUðr�Þ ¼ 0; ð4Þ

where r� is the well-known “tortoise” coordinate,
Uðr�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
RðrÞ, and Veffðr�Þ a complicated

rational function of r (see e.g., [8] for its form) that reduces
to two constants at the two ends, that is, to ω̄2 near the
horizon (r → rþ, r� → −∞), and to ðω2 − μ2Þ near infinity
(as r� → r → ∞). Here we have

ω̄≡ ω −
eQerþ þ am

r2þ þ a2
≡ω − ωsl; ð5Þ

where e is the charge and μ the mass of the field quantum.
The boundary condition that nothing should come out of

the (future) horizon of the black hole is usually adopted,
restricting us to the solution

lim
r→rþ

Ulmðω; r�Þ ¼ BlmðωÞe−iω̄r� ð6Þ

and for the same mode,

lim
r→∞

Ulmðω; r�Þ ¼ e−ikr� þ AlmðωÞeikr� ; ð7Þ

where k2 ¼ ω2 − μ2 > 0 for scattering states, and the
solution has been normalized such that it corresponds to a
wave of unit amplitude coming in from infinity, being
transmitted into the black hole with amplitude B and
reflected back to infinity with amplitude A. The two
amplitudes are related by the constancy of the Wronskian
of the solution and its complex conjugate, since Eq. (4) is
real, giving

lim
r→rþ

W ¼ lim
r→∞

W ⇒ ω̄BB� ¼ kð1 − AA�Þ; ð8Þ

where the labels ωlm are implied for A and B. If ω̄ < 0, that
is, ω < ωsl [defined in (5)], AA� will be bigger than unity,
meaning that a stronger wave will come back than sent into
the black hole, i.e., superradiance.
The phenomenon of superradiance plays a role in

gedanken experiments attempting to violate WCCC using
bosonic fields impinging on a slightly subextremal black
hole [17]. Violation is not possible at frequencies higher
than ω0 ¼ m=2M (m being the azimuthal wave number),
and at lower frequencies superradiance works against it.
Hence, violation can be achieved in a narrow range
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ωsl < ω < ω1, where ω1 < ω0, the range shrinking to zero
as extremality is approached.
On the other hand, for fermion fields, superradiance does

not occur [25], which was the motivation for [26]. In this
case, the WCCC-violating range is not bounded from below
any more by superradiance [18]. Hence, unlike the bosonic
case, this range does not shrink to zero as extremality is
approached, therefore, contrary to implication of [26] (and
its follow-up, [29]), the violation will also work for extremal
black holes. As far as we know, this is the only context where
a thought experiment can result in destruction of an extremal
black hole without fine-tuning. Claims of destruction of
extremal black holes with finely tuned particles/fields, e.g.
[20], may be challenged by backreaction or self-force effects,
for example; but these thought experiments seem to be more
robust (unless classical or first-quantized fermion fields are
meaningless [35]).

B. The meaning of transmission and
reflection coefficients

Because Eq. (4) looks like a one-dimensional Schrödinger
scattering problem with two (different) constant potentials at
two ends and a complicated potential well in the middle, one
can define so-called transmission and reflection coefficients
in analogy with that nonrelativistic problem. Since k and ω̄
are the “wave numbers” in the r� coordinate, AA� would be
the reflection coefficient, and ω̄BB�=k would be the trans-
mission coefficient.4 Occasionally, these are interpreted as
transmission and reflection probabilities [22,26–28] for a
particle that is sent toward the black hole from infinity. Such
an interpretation is not tenable, because for superradiant
frequencies, the “transmission coefficient” becomes negative.5

The confusion seems to stem from the fact that despite
the apparent analogy with the Schrödinger equation, which
is suitable for describing single particles, we deal here with
relativistic (Klein-Gordon or Dirac) equations, which do
not describe single particles, they must allow particle
creation/destruction.
If we consider the scattering of classical waves, the

meanings of the coefficients are clear; they do represent
ratios of energies coming back from the black hole and going
into it, respectively, as can be verified by writing down the
integrals for energy fluxes at infinity and the horizon,
respectively, by using the stress-energy-momentum tensor
of the field. The sum of the coefficients is unity by virtue of
Eq. (8); a manifestation of conservation of energy due to the
stationary nature of the spacetime. For superradiant frequen-
cies, the negativity of the transmission coefficient means that
wave carries energy out of the black hole, hence the black
hole’s mass decreases, and the wave is seen coming back
amplified by an observer at infinity.

If we consider quantum waves, AA�, the “reflection
coefficient," represents the expected value of the ratio of the
fluxes coming back from the black hole and going into it,
respectively, at infinity. Since the wave mode has a given
frequency, hence particles have a given energy (can be
interpreted so at infinity), this coefficient is proportional to
the outgoing particle current. The fact that it can be larger
than unity (i.e., superradiance) is a tip-off that particle
creation is occurring, i.e., particle number is not conserved.
Energy is conserved, however, so that the black hole picks
up the balance, even if it is negative. In this case
presumably, a majority of particles going in through the
horizon will have negative energies, which is possible
inside the ergosphere. After all, superradiance only occurs
for rotating black holes.
Because the reflection coefficient AA� represents the

expected value of the relative ratio of the flux coming back,
it can be written as

R ¼ AA� ¼ 1

ni

X∞
n¼0

nPðnÞ; ð9Þ

where ni is the number of incident particles, and PðnÞ is the
probability that n particles will come back. Here we have
assumed that the states representing different numbers of
outgoing particles are orthogonal, and suppressed the
dependence of the probabilities on ni. The terminology
“reflection” is misleading in this context, because even if
we send in one particle and get one back, we do not know
if the particle we catch is the same one that we sent in, or if
that one entered the black hole and we caught the outgoing
member of a produced pair. This terminology also con-
ditions the mind into thinking in terms of particle number
conservation.
On the other hand, if we consider a single quantum

particle, or a few ones, the PðnÞ’s are relevant instead of A.
In other words, the reflection coefficient AA� cannot
determine if a single particle will be absorbed or not; it
cannot even determine the probability for this. Note that A
and B can be found by solving Eq. (4) exactly. One can even
find for which frequency range we have superradiance, if
any, by only solving the equation in the asymptotic regions;
but the PðnÞ cannot be found by solution of Eq. (4). For this,
one needs to do a QFT calculation (e.g., [31] or [36]).

C. Quantum particles and WCCC

Now, let us consider the case of small numbers of
particles (per mode) more closely. Of course, we have

X∞
n¼0

PðnÞ ¼ 1; ð10Þ

since some number of particles must come out, including
possibly zero. Comparing Eqs. (9) and (10), and consid-
ering ni ¼ 1, we can see even without the QFT calculation

4Note that all of [21,22,26–29] consider massless cases, for
which k becomes ω.

5In fact, [22,27] use the phrase “negative probability.”
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that when R < 1, e.g. for fermions, Pð0Þ must be positive.
By continuity, we can expect Pð0Þ to be positive also for
part of the R > 1 (i.e., superradiant) range, if it exists.
Without showing that Pð0Þ ¼ 0, it cannot be claimed, as

[22] does, that ω < ωsl will mean that a scalar particle will
not be absorbed. Therefore, the conclusion of that work,
that backreaction-induced6 superradiance will save WCCC
in the thought experiment of [21] is incorrect as well, in
some sense making, e.g., [28] unnecessary.
The fallacious notion of reflection/transmission coeffi-

cients as the respective probabilities, hence the incorrect
claim of nonabsorption of scalar particles with energy/
frequency in the superradiant range is accepted or propa-
gated (at least partially) in [26–29]. The paper [27] is the
first one in the string to mention particle creation and
absorption probability of single particles, yet also mentions
transmission probability derived from solution of the field
equation. Ref. [28] discusses behavior of an ensemble of
particles vs. a single particle, yet still mentions the same
probability. Even [29], which clearly states that “super-
radiant modes have a nonzero probability of being
absorbed,” states also the opposite earlier in the paper. It
seems that the multiparticle nature of the relativistic field
equations and the limitations of the Schrödinger analogy
have not been completely appreciated, although hints exist.
So what is the problem with the Schrödinger analogy?

Should same equations not have same solutions? The
problem is, Eq. (4) is not an eigenvalue problem for
the energy (ω), like a standard Schrödinger problem; the
potential depends on it.

D. Intermediate conclusion: Possible WCCC violation

When the confusion about the absorption probabilities is
cleared, the superradiance objections to the original
Matsas-da Silva thought experiment [21] evaporate; and
the fermionic analog [26] is equally valid. Therefore,
sending tailored particles or waves into slightly subextre-
mal black holes would seem to violate cosmic censorship, if
backreaction and self-force effects are neglected. For single
or few particles, quantum tunneling effects aid even when
no violation would result for corresponding waves or
classical test particles. Although self-force effects or a full
treatment of backreaction could change the results, claims

that backreaction via induced superradiance will prevent
the violation appear to be not valid.
However, the claims that “vacuum polarization” will

damp the absorption of tailored neutrinos by the black hole
so that the best WCCC violation efforts will be undone by
the effect, deserves closer scrutiny, which we undertake in
the next section.

IV. THE ZEL’DOVICH-UNRUH EFFECT AS
A COSMIC CENSOR

The creation of particles discussed above is the analog of
stimulated emission familiar from some other contexts, e.g.
lasers. However, it turns out that an analog of spontaneous
emission, which we will call the Zel’dovich-Unruh (ZU)
effect,7 also exists [23,24,37].
This phenomenon emerges when one performs second

quantization in the stationary—i.e., eternal—Kerr space-
time [37]. The rates at which the black hole loses mass and
angular momentum due to this effect, i.e., the relevant
fluxes at infinity, are given [38] by

dM
dt

¼ lim
r→∞

Z
dθdϕhTrtivac ∼ −

e−ζ

4π
Ω2; ð11Þ

dJ
dt

¼ − lim
r→∞

Z
dθdϕhTrϕivac ∼ −

e−ζ

2π
Ω; ð12Þ

where ζ is a number of the order of unity, and absolute units
are used, i.e., G ¼ c ¼ ℏ ¼ 1. It can be seen now that a
higher fraction of angular momentum is emitted than mass/
energy; more precisely,

δ

�
a
M

�
∼
e−ζ

4π

J
2M4rþ

�
J2

M3rþ
− 2

�
ð13Þ

is negative for all possible black hole parameters. So the
Zel’dovich-Unruh effect always works toward preserving
(the weak) cosmic censorship.
The question we ask at this point is if the WCCC-

preserving effect of this quantum radiation is strong
enough to invalidate the thought experiments [21,26,29]
discussed above.6Incidentally, the backreaction argument of [22] is slightly

puzzling: Instead of calculating in the initial, nonrotating space-
time, we are invited to calculate in the final spacetime, when the
black hole has acquired the full angular momentum of the
incoming particle. However, obviously both the initial and final
spacetimes are equally representative or unrepresentative of the
process, therefore it is hard to see why we should prefer one over
the other. It sounds reasonable that calculating in the average
spacetime would be a better way of taking backreaction into
account. In fact, the paper’s argument mathematically works out
also for ω ¼ m2=2M3, although in the main text we argued that
the argument is fundamentally flawed.

7There seems to be no consensus in the literature on what to
call this phenomenon. We think it is too specific to be called
“vacuum polarization”. Sometimes it is also called “quantum
superradiance,” sometimes it is associated with one or more of the
names of Zel’dovich, Starobisnky (Starobinskii), and Unruh.
Given the well-known Unruh effect, one cannot call it that. Some
works, including Ref. [36] call it the Unruh-Starobinskii effect,
but the Starobinskii papers refer for this prediction to Zel’do-
vich’s, which are earlier. Unruh brings a second quantization
argument.
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A. The Zel’dovich-Unruh effect and quantum
tunneling arguments

For the quantum tunneling thought experiments men-
tioned above, nearly extremal Kerr black holes are relevant,
for which J ∼M2, and (11) and (12) become

ΔJ ∼ −
e−ζ

4π
M−1Δt; ΔM ∼ −

e−ζ

16π
M−2Δt: ð14Þ

Strictly speaking, (11), (12), and (14) give the loss of
mass and angular momentum due to emission of scalar field
only; neutrinos are produced at a similar rate [37] and
photons and gravitons are produced more copiously [39].
Therefore the rate of emission is about two orders of
magnitude higher than these values [38].
In the units adopted, even a (nearly extremal) super-

massive black hole of 107 solar masses has an angular
momentum emission of the order of unity in a single second
(Δt ¼ 2 × 1044 in absolute units). That is 20 orders of
magnitude higher than the mass of the proton. The effect
becomes stronger with decreasing mass, for example, the
emission rate for a nearly extremal black hole of solar mass
ΔJ ∼ 2 × 107 in a second. This corresponds to a mass
energy of ∼100 g. Therefore the Zel’dovich-Unruh effect
makes thought experiments involving the tunneling of
single or few particles with the purpose of WCCC violation
completely meaningless.
Similar arguments apply to gedanken-efforts to over-

charge nearly extremal Reissner-Nordstrom black holes. As
studied by Gibbons [40], charged black holes ðM;QÞ emit
particles (mass m, charge e) in the electrical superradiant
region ω < eQ=rþ to neutralize themselves. The charge
loss is given by

dQ
dt

∼
1

exp½2πκ ðω − eQ=rþÞ� − 1
: ð15Þ

For large black holes (M ≳ 1015 g) the rate of charge loss
agrees with Schwinger’s formula [41] for the rate of
particles created by a uniform electric field,

dQ
dt

∼
e4Q3

rþ
exp

�
−π

m2

e2
r2þ
Q

�
; ð16Þ

where m and e are mass and charge of the electron. For a
nearly extremal black hole, r2þ=Q ∼M. Using m2=e2 ∼
10−42 the argument of the exponential in (16) is of the order
of unity for back hole of ∼103Ms. That leads to a charge
loss proportional to M2 which is much faster than angular
momentum loss.
For smaller black holes the charge flux is analogous to

thermal process described by Hawking [42]. In both regimes
black holes rapidly discharge themselves, the process acting
as a cosmic censor and completely invalidating the efforts to
overcharge them by absorption of a single or a few particles.

B. Zel’dovich-Unruh effect for scalar fields,
without second quantization

Since single- or few-particle thought experiments are
shown to be irrelevant for WCCC violation studies, we
have turn to the case of many, many particles. But then, we
have to think in terms of ensembles and expected values,
i.e., first-quantized fields, which in many respects should
give the same answers as classical fields, which we have
studied [8,17,18]. However, the Zel’dovich-Unruh effect,
or at least a spontaneous emission, is not apparent in the
usually used formalism: For example, the change in energy
of a dyonic Kerr-Newman black hole as a result of
interaction with a test scalar field is given as [8,17]

δM ¼ 1

2

Z
dω

X
l;m

flmðωÞf�lmðωÞω̄ωBlmðωÞB�
lmðωÞ ð17Þ

if one uses the standard normalization (7); and where
flmðωÞ is the coefficient showing a mode’s contribution to
the wave packet. Spontaneous emission is the case of no
incoming wave, which here can only be realized by setting
all flmðωÞ to zero; in which case δM vanishes.
The problem is that the standard normalization (7), by

setting the coefficient of the incoming part of the wave to
one, hides the possibility of the incoming component of a
mode to vanish while keeping other components nonzero. In
other words, the normalization divides the wave by the
amplitude of the incoming part before multiplying it with the
(thought-) experimenter-configurable flmðωÞ; and the first
step is a division by zero when there is no incoming wave.
Let us instead leave the amplitude free:

lim
r→∞

Ulmðω; r�Þ ¼ IlmðωÞe−ikr� þ AlmðωÞeikr� ; ð18Þ

where we think of the IlmðωÞ as user-configurable now.
Then (8) becomes

ω̄BB� ¼ kðI�I − A�AÞ; ð19Þ

and now for given I and ω, in principle the differential
equation (4) can be solved to find A and B. With this
convention, the change in energy is written as

δM ¼ 1

2

Z
dω

X
l;m

ω̄ ωBlmðωÞB�
lmðωÞ: ð20Þ

We can now contemplate doing nothing to the black hole,
i.e., having all I ¼ 0. Then in the range where both ω̄ and k
are positive (the nonsuperradiant range), both A and B have
to vanish: nothing happens. But in the superradiant range, ω̄
is negative, and ω̄ and k determine the ratio jA=Bj. The
expression (20) is obviously negative when all IlmðωÞ are
zero, although we cannot determine allBlmðωÞ from Eq. (19)
only. This situation represents spontaneous creation of scalar
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particles, flowing both to infinity and into the black hole;
a faraway observer will see the black hole as emitting
particles.
Therefore it can be said that the Zel’dovich-Unruh effect

for scalars can actually be understood without second
quantization. The fact that it occurs also for scalars suggest
that the Zel’dovich-Unruh effect by itself is not related to
the neutrino having only one helicity, as claimed in [27], it
is a more general phenomenon. However, this (semi)
classical version is a hitherto neglected aspect of super-
radiance, therefore understanding spontaneous emission of
fermions may in fact require second quantization.

C. WCCC violation via waves?

Coming back to the question of WCCC violation by
sending many particles into black holes, we argue that the
scalar Zel’dovich-Unruh effect can be accounted for, at
least classically, in the new normalization convention,
since (18) can represent the Zel’dovich-Unruh case,
whereas (7) cannot. Let us consider the changes in
black hole parameters in the new normalization. First,
notice that the expression (20) is simpler than the
corresponding expression (17). Similarly, the change in
the electric charge8 is

δQe ¼
e
2

Z
dω

X
l;m

ω̄BlmðωÞB�
lmðωÞ; ð21Þ

and the change in angular momentum

δJ ¼ 1

2

Z
dω

X
l;m

ω̄mBlmðωÞB�
lmðωÞ: ð22Þ

Like the integrand of δM, both of these integrands are
negative in the superradiant region, including when no
incoming wave is present, i.e., all IlmðωÞ are zero. Then,
(20) represents the Zel’dovich-Unruh effect, as discussed
above, and (21) is the (semi)classical version of the
spontaneous discharge discussed by Gibbons, mentioned
before. While it may seem that there is no Qe dependence
in δQe [cf. Eqs. (15) and (16)], one should remember that
the BlmðωÞ will depend on Qe, moreover, for vanishing
IlmðωÞ, the BlmðωÞ will only be nonzero in the super-
radiant range, i.e., the limit of integration will also depend
on Qe.

Combining these changes to find the change in the
cosmic censorship indicator CCC ¼ M2 − ðQ2 þ a2Þ, we
find for scalar waves

δðCCCÞ ¼ M2 þ a2

M

Z
dω

X
l;m

�
ω −

eQeM þ am
M2 þ a2

�

×

�
ω −

eQerþ þ am
r2þ þ a2

�
BlmðωÞB�

lmðωÞ: ð23Þ

Comparing this expression to the corresponding (cor-
rected) one in Ref. [17], the first impression is that the
argument of that work about WCCC violation by sending
scalar waves onto a nearly extremal (dyonic) Kerr-Newman
black hole carries through: There exist ranges of frequen-
cies (between ωsl defined in (5) and ω3, the rþ → M limit
of ωsl) for each m, for which the integrand/summand of
Eq. (18) of [17] is negative, and by choosing such
frequencies and appropriate flmðωÞ, an initial small pos-
itive value of CCC can be turned negative; and (23) is the
same equation in a new normalization.
However, we cannot make the BlmðωÞ vanish outside this

range by not sending in waves at those frequencies. The
experimenter at infinity can make IlmðωÞ ¼ 0 for any range
of ω desired, but for ω < ωsl, this does not make BlmðωÞ
zero. One cannot even classically fine-tune IlmðωÞ to cancel
the Zel’dovich-Unruh effect, since vanishing BlmðωÞ,
together with the constraint of the vanishing of the
coefficient of eþiω̄r� at the horizon and the linear homo-
geneous nature of the differential equation (4) allow only
the trivial solution, that is, Ψðr; θ;ϕ; tÞ ¼ 0. The impos-
sibility of canceling the ZU effect would be more evident in
a semiclassical picture, since the (spontaneously) emitted
scalar quanta would not be coherent. All these effects were
hidden by the standard normalization.
We can very roughly estimate the Zel’dovich-Unruh

contribution to δðCCCÞ:

δðCCCÞZU ∼
M2 þ a2

M
ωsl

�
ωsl

2
− ω3

��
ωsl

2
− ωsl

�
jBZUj2

≈
M2 þ a2

4M
ω3
sljBZUj2; ð24Þ

where jBZUj2 is representative of BB� in the superradiant
frequency interval, the sum over l and m was ignored, and
the black hole was assumed to be close to extremal
(ω2 close to ωsl). The contribution from the cosmic-
censorsip-violating interval can be similarly estimated as

δðCCCÞCCV ∼
M2 þ a2

M
ðω3 − ωslÞ

�
ω3 þ ωsl

2
− ω3

�

×

�
ω3 þ ωsl

2
− ωsl

�
jBCCVj2

≈ −
M2 þ a2

4M
ðω3 − ωslÞ3jBCCVj2: ð25Þ

8The sign of the electromagnetic coupling term in ∂μ → ∂μ −
ieAμ depends on the signature of the metric. Unfortunately, the
wrong sign was chosen in [8,17]; hence the relevant equations in
these works must be corrected with e → −e. Particularly im-
portant is the correction of the sign of the eQe-term in ω̄ and
hence in ωsl; and the ieψ�∂μψ-term of the current density, e.g.,
(13) of [8], picks up a minus sign. With this convention, the
charge density is positive when e and ω are.
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Hence, to violate WCCC, we need

ðω3 − ωslÞ3jBCCVj2 ≳ ω3
sljBZUj2 ð26Þ

even without taking into account the initial (positive) value
of CCC.
Since for a slightly subextremal black hole we have

ðω3 − ωslÞ ≪ ωsl, the question arises if the field sent in
still satisfies the test field approximation. We can estimate
as in (25)

δMZU ∼ −
ω2
sl

8
jBZUj2;

δMCCV ∼
1

4
ðω3 − ωslÞ2ωsljBCCVj2

hence δMCCV ≳ 2ωsl

ðω3 − ωslÞ
δMZU: ð27Þ

Now, ðω3 − ωslÞ is first order [17] in ϵ in a parametrization
similar to JS [11]; and while we have been implicitly
assuming the validity of the test field approximation for the
Zel’dovich-Unruh effect, it can be seen that (27) does not
necessarily imply the same for the field sent in with the aim
of violating WCCC. This happens because the wave must
be stronger than in part IVof [17], since in that work, waves
outside the frequency interval (ω3 − ωsl) were assumed to
be experimenter-adjustable to zero, but when the mislead-
ing normalization is corrected, it is seen that the waves sent
in by the experimenter must also compensate for the ZU
effect, that is, spontaneous contribution from the super-
radiant frequency interval. Because the wave is so strong
that we cannot show that it obeys the test field approxi-
mation, the attempt remains inconclusive.

V. CONCLUSIONS

In this work, we discuss several thought experiments
trying to violate WCCC, involving quantum tunneling of
single particles; first bosons, then fermions, carrying large
angular momentum, into slightly subextremal black holes;
and objections to them, namely that superradiance, or that

failing for fermions, “vacuum polarization” or “sponta-
neous emission of particles” will uphold the WCCC.
We conclude that the superradiance objections are not

valid, because the concepts of reflection/transmission coef-
ficients do not represent probabililities for single particles to
be reflected/absorbed; for the simple reason that the relevant
equations are relativistic, hence allow particle creation.
But, the spontaneous emission objections are valid: This

phenomenon, which we call the “Zel’dovich-Unruh effect,”
completely dominates any single particles that may be sent
into the black holes, and furthermore, acts as a cosmic
censor. We also find that at least for scalars, the effect can
be understood (semi)classically, i.e., without second quan-
tization; this was hidden by the standard normalization
convention. However, the result of the thought experiment
attempting to violate WCCC by starting from a slightly
subextremal black hole and sending in (many) tailored
(scalar) particles, becomes inconclusive due to the neces-
sity of compensating for the Zel’dovich-Unruh effect.
The spontaneous emission of fermions, on the other

hand, cannot be predicted (semi)classically. However,
arguments that this emission will, by the exclusion prin-
ciple, prevent absorption of incoming particles is not
convincing, since it is not clear that the emission fills
the phase space, especially considering that the incoming
and outgoing momenta are oppositely directed. Therefore it
would seem that sending fermion fields (many fermions)
into a black hole [18] the Zeldovich-Unruh effect might be
beaten (at least neutralized) and WCCC violated. However,
the Pauli principle may bring an upper limit to the fermion
flux that can be sent in; the consideration of fermions will
have to await further work.
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