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We show that there is a classical metric satisfying the Einstein equations outside a finite spacetime region
where matter collapses into a black hole and then emerges from a white hole. We compute this metric
explicitly. We show how quantum theory determines the (long) time for the process to happen. A black hole
can thus quantum tunnel into a white hole. For this to happen, quantum gravity should affect the metric also
in a small region outside the horizon; we show that, contrary to what is commonly assumed, this is not
forbidden by causality or by the semiclassical approximation, because quantum effects can pile up over a
long time. This scenario alters radically the discussion on the black hole information puzzle.
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I. WHAT HAPPENS AT THE CENTER
OF A BLACK HOLE?

Black holes have become conventional astrophysical
objects. Yet, it is surprising how little we know about what
happens inside them. Astrophysical observations indicate
that general relativity (GR) describes well the region
surrounding the horizon (see e.g. Ref. [1]); it is plausible
that also a substantial region inside the horizon is well
described by GR. But certainly classical GR fails to
describe nature at small radii, because nothing prevents
quantum mechanics from affecting the high curvature zone
and because classical GR becomes ill defined at r ¼ 0
anyway. The current tentative quantum gravity theories,
such as loops and strings, are not sufficiently understood to
convincingly predict what happens in the small radius
region, so we are quite in the dark; what ultimately happens
to gravitationally collapsing matter? Does it emerge into a
baby universe (as in Smolin’s cosmological natural selec-
tion [2])? Does it vanish mysteriously “into a deep interior
where space and time and matter as we know them lose
their meaning?”
There is a less dramatic possibility, which we explore in

this paper: when matter reaches Planckian density, quantum
gravity generates sufficient pressure to counterbalance the
matter’s weight, the collapse ends, and matter bounces out.
A collapsing star might avoid sinking into r ¼ 0 much as a
quantum electron in a Coulomb potential does not sink all
the way into r ¼ 0. The possibility of such a Planck star
phenomenology has been considered by numerous authors
[3–15]. The picture is similar to Giddings’s remnant
scenario [16], here with a macroscopic remnant developing
into a white hole [17]. Here we study if it is compatible with

a realistic effective metric satisfying the Einstein equations
everywhere outside the quantum region.
Surprisingly, we find that such a metric exists: it is an

exact solution of the Einstein equations everywhere,
including inside the Schwarzschild radius, except for a
finite—small, as we shall see—region, surrounding the
points where the classical Einstein equations are likely to
fail. It describes in-falling and then out-coming matter.
A number of indications make this scenario plausible.

Hájček et al. [18–20] have studied the quantum dynamics
of a null spherical shell coupled to gravity and shown that
an in-falling wave packet can tunnel (“bounce”) into an
expanding one, and Ambrus and Hájček [21] have
attempted a calculation of the bounce time. Here we show
that the Hájček–Kiefer external solution can be extended to
include a classical portion of the interior of the black hole,
as well as a later portion of the interior of the white hole.
The existence of this solution of the Einstein equations
shows that it is possible to have a black hole bouncing out
into a white hole without affecting spacetime in the regions
where we expect the classical theory to be good.
A similar indication for the plausibility of this scenario

comes from loop cosmology: the wave packet representing
a collapsing universe tunnels into a wave packet represent-
ing an expanding universe [22]. Again, the quantum theory
predicts tunnelling between two classically disconnected
sets of solutions: collapsing and expanding. In this case, an
effective metric is known that describes the full process
[23] and indeed does so in a surprisingly accurate way [24];
it satisfies the classical Einstein equations everywhere
except for a small region where quantum effects dominate
and the classical theory would become singular.
The technical result of the present paper is that such a

metric exists for a bouncing black to white hole. It solves
the Einstein equations outside a finite radius and beyond a
finite time interval. Its existence shows that it is possible to
have a black hole bouncing into a white hole without
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affecting spacetime at large radii. The metric incorporates
the standard general relativistic extensions of the black and
white hole solutions into part of the region inside r ¼ 2m.
However, Einstein’s equation should fail for the large
curvature regime inside r ¼ 2m and be replaced by a
quantum theory that resolves the central singularity. In the
metric presented below, the quantum region extends just a
bit outside r ¼ 2m and has a short duration. A distant
observer sees a dimming, frozen star that reemerges,
bouncing out after a very long time (computed below),
determined by the star’s mass and Planck’s constant.
Two natural obstacles have made finding this metric

harder. The first is its technical complication: the metric we
find is locally isometric to the Kruskal solution (outside the
quantum region), but it is not a portion of the Kruskal
solution. Rather, it is a portion of a double cover of the
Kruskal solution, in the sense that there are distinct regions
isomorphic to the sameKruskal region. This is explained in
detail below and is the technical core of the paper.
But the larger obstacle has probably been a widespread

uncritical assumption: that nature should be well approxi-
mated by one and the same solution of the classical
equations in the entire region where curvature is small.
This is a prejudice because it neglects the fact that small
effects can pile up in the long term. If a perturbation is
small, then the true dynamics is well approximated by an
unperturbed solution locally, but not necessarily globally: a
particle subject to a weak force ϵF where ϵ ≪ 1 moves as
x ¼ xo þ v0tþ 1

2
ϵFt2. For any small time interval, this is

well approximated by a motion at constant speed, namely a
solution of the unperturbed equation; but for any ϵ there is a
t ∼ 1=

ffiffiffi
ϵ

p
long enough for the discrepancy between the

unperturbed solution and the true solution to be arbitrar-
ily large.
Quantum effects can similarly pile up in the long term,

and tunneling is a prime example: with a very good
approximation, quantum effects on the stability of a single
atom of Uranium 238 in our lab are completely negligible.
Still, after 4.5 billion years, the atom is likely to have
decayed. Outside a macroscopic black hole, the curvature is
small, and quantum effects are negligible, today. But over a
long enough time, they may drive the classical solution
away from the exact global solution of the classical GR
equations. After a sufficiently long time, the hole may
tunnel from black to white. This is the key conceptual point
of this paper and is discussed in detail in Sec. II, where we
show, in particular, that there is no causality violation
involved in this effect.
Importantly, the process is very long seen from the

outside but is very short for a local observer at a small
radius. Thus, classical GR is compatible with the possibility
that a black hole is a (quantum) bouncing star seen in
extreme slow motion. The bounce could lead to observable
phenomena [13] the phenomenology of which has been
investigated in Ref. [14].

Anticipating what we find below, quantum effects can
first appear at a radius

r ∼
7

6
2m ð1Þ

after an (asymptotic) proper time of the order

τ ∼
m2

lP
; ð2Þ

where lP is the Planck length (we use units where the speed
of light and Newton’s constant are c ¼ G ¼ 1). This time is
very long for a macroscopic black hole (it is equal to the
Schwarzschild time, 2m=c, multiplied by the ratio between
the mass of the collapsing object and the Planck mass; this
is huge, about 1032 sec for a solar mass black hole) but is
shorter than the Hawking evaporation time, which is of
order m3. Therefore, the possibility of the bounce studied
here affects radically the discussion about the black hole
information puzzle.
A word about the relation between our results and the

firewall discussion [25] is thus perhaps useful. The firewall
argument indicates that under a certain number of assump-
tions “something strange” appears to have to happen at the
horizon of a macroscopic black hole. Here we point out that
indeed it does, independently from the Hawking process, but
it is a less dramatic phenomenon than expected: the spacetime
quantum tunnels out of the black hole, and this can happen
without violating causality because over a long stretch of time
quantum gravitational effects can accumulate outside the
horizon and modify the metric beyond the apparent horizon.
For this scenario to be possible, genuine quantum

gravitational effects should appear outside the horizon.
These are suppressed in the approximation provided by
local quantum field theory on a curved geometry. Their
possibility, however, cannot be ruled out in a nonperturba-
tive quantum theory of gravity and is increasingly consid-
ered plausible by a number of authors, on the basis of
diverse considerations [26–29]. These converge in sug-
gesting that local quantum field theory might fail to account
for quantum gravity phenomena. In the following, we give
further arguments in this direction, we construct the metric
describing this physics explicitly, and then we discuss how
quantum mechanics can describe the bounce across the
nonclassical region. We also estimate the radius at which
these effects are stronger (which could be relevant for
Ref. [26]) and the order of magnitude of the bounce time,
obtaining a result more realistic than the one in Ref. [21].
For a contrasting perspective on this geometry, see the
recent works of Barceló et al. [30,31], which will be
discussed briefly at the end of Sec. V.
One consideration that we do not treat in the present

paper is the instability of the white hole solution. Eardley
[32] first pointed out this instability, and much has been
learned about it since [33–36]. While it is quite interesting,
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we would like to separate the study of this eventual
instability from the possibility of a transition.
In the next section, Sec. II, we give a preliminary

discussion of the quantities in play by studying a simple
situation where no actual horizon develops but a parameter
can be tuned to approach a situation with horizon. This
allows us to discuss the timing and the location of the
appearance of quantum effects outside the horizon. In
Sec. III we define precisely the problem we want to solve,
namely the characteristic of the metric we are seeking. This
metric is constructed in Sec. IV. In Sec. V we show that the
process has short duration seen from the inside and long
duration seen from the outside. In Sec. VI we determine all
the constants left free in the definition of the metric.
Section VII summarizes our results and discusses how it
could be connected to a full-fledged theory of quantum
gravity.

II. PRELIMINARY DISCUSSION:
THE CRYSTAL BALL

Consider a ball of radius a with perfectly reflective
surface, a mass negligible for the present discussion, at rest
in flat space. Consider an incoming shell of light, with total
energy m centered on the center of the crystal ball, coming
in from infinity. What happens next?
The answer depends on the relation between m and a.

Suppose first that a ≫ 2m. Then we are in a nonrelativistic
regime. Outside the collapsing shell, the metric is just the
(large-radius part of the) Schwarzschild metric of mass m.
The shell moves in until r ¼ a then bounces out. In a two-
dimensional conformal diagram, the situation is illustrated
in Fig. 1.
Consider an observer sitting at a reference radius R. He

will measure a proper time 2τR between the moment the

shell passes him incoming and the moment it passes him
outgoing. We call τR the “bounce time,” seen by the
observer at R. Let us study how it depends on a and R.
As long as a ≫ 2m, we can neglect relativistic effects, and
we have trivially τR ¼ R − a, the time it takes light to reach
the mirror. If we decrease the radius a of the ball, the time τ
increases. When a becomes of the order of 2m (but still
a > 2m), we enter a general relativistic regime, and we
must take this into account; the dependence of τ on a and R
becomes more interesting. The metric outside the shell is
Schwarzschild (the region to the right in the conformal
diagram). In null Kruskal coordinates, this is

ds2 ¼ −
32m3

r
e−

r
2mdudvþ r2dΩ2; ð3Þ

where dΩ2 is the metric of the unit sphere and rðu; vÞ is
determined by �

1 −
r
2m

�
e

r
2m ¼ uv: ð4Þ

If we place the bounce at ðuþ vÞ ¼ 0, which corresponds
with t ¼ 0, the trajectory of the incoming shell, an
incoming null ray, is v ¼ vo, where vo is determined by
the position of the bounce, which in turn can be found
inserting u ¼ −v and r ¼ a in the last equation. That is�

1 −
a
2m

�
e

a
2m ¼ −v2o: ð5Þ

The bounce time τ along the r ¼ Rworldline is (minus) the
Schwarzschild time t of the intersection point multiplied by
the redshift factor

τR ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
R

r
t: ð6Þ

The Schwarzschild time in terms of the Kruskal coordinates
is given by

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2m

− 1

r
e
rþt
4m : ð7Þ

Inserting r ¼ R and v ¼ vo from the previous equation, we
finally get

τR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
R

r �
R − a − 2m ln

a − 2m
R − 2m

�
: ð8Þ

This is a key quantity for our discussion: the bounce time
(half the time to the reencounter with the emerging shell),
measured by an observer at R, given the mass m and the
bouncing radius a. To study it, let us first take our observer
at large radius R ≫ 2m. Then the above expression
simplifies to

FIG. 1 (color online). The crystal ball is in gray, and the thick
lines represent the bouncing shell of light. The dotted line is the
observer, and the bounce time τ is indicated in blue.
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τR ∼ ðR − aÞ − 2m ln
a − 2m

R
: ð9Þ

The term (R − aÞ is the nonrelativistic value of the
bouncing time. The logarithmic term is the relativistic
correction. Something interesting happens when a → 2m.
The argument of the ln becomes arbitrarily small, and
therefore the bouncing time becomes arbitrarily large:

τR →
a→2m

þ∞: ð10Þ

Remarkably, this divergence is achievable for any fixed
value of the position of the observer R > 2m. Hence, as the
mirror’s extent a approaches the Schwarzschild radius, all
observers agree that it takes a long time for the process to
happen.
Let us discuss the physics of this bouncing time τR in

detail, since it is crucial for the following. From the point of
view of the observer at the (finite) radius R, there is a shell
incoming at some time and then a shell coming out an
enormous amount of time later. How so?
The simple interpretation is in terms of standard time

dilation: let us unfreeze the observer’s position R. Near the
bounce, R ∼ a, the bouncing proper time is of course short;
the shell reaches the crystal ball and bounces out always
moving at the speed of light. So the bouncing process is
fast, seen locally. But since the bounce happens in a region
close to r ¼ 2m, the slowing down of the local time with
respect to an observer far away is huge (as large as a is
close to 2m). Locally, everything happens fast, but for the
observer at R ≫ 2m, everything happens in slow motion: in
terms of his proper time, he sees the shell slowing down
(and dimming) while approaching the crystal ball, then
lingering a huge amount of time near the mirror, and
eventually very slowly the light comes out. All this, we
stress, is standard general relativity.
The classical theory predicts that when a reaches 2m the

bounce time becomes infinite: the light remains trapped
forever, and a singularity forms. But this picture disregards
quantum theory. When and how does quantum theory enter
the game, as a approaches 2m?
We can get a better insight by asking when do we expect

the classical theory to fail. To answer, say that a − 2m is
small, and consider an observer at a radiusR not much larger
than a. For this observer we cannot utilize the approximation
(9), and we must use the complete expression (8) for the
bounce time. During the bounce, the curvature at the
observer position is constant in time and is of the order
of R ∼m=R3. (For instance, the Kretschmann invariant is
R2 ¼ RabcdRabcd ¼ 48m2

r6
.) Since R > 2m, curvature is small

if m is large. We expect local quantum gravity effects to be
small in a small curvature region.
But consider the possibility of a cumulative quantum

effect, like in quantum tunnelling or the decay of a radiative
atom: the decay probability is small, but if we wait long

enough, the atom will decay. Then there is one additional
parameter affecting the validity of the classical theory:
the duration of the event. So, the relevant parameter for
classicality is, on dimensional grounds,

q ¼ l2−bP Rτb; ð11Þ

with b reasonably taken in the range b ∈ ½1
2
; 2�. A good

guess is b ¼ 1, for the following reason. A quantum
correction of first order in ℏ to the vacuum Einstein
equations Ricci ¼ 0 must have the form

Ricciþ l2pR2 ¼ 0: ð12Þ

Therefore, the force of quantum origin that drives the field
away from the classical solution is ϵF ∼ l2pR2. Integrating
this in time can give a cumulative effect of the order l2pR2t2,
as for the particle example in the Introduction. Therefore, we
remain in the classical region only as long as q ≪ 1, with

q ¼ lPRτ; ð13Þ

which corresponds to b ¼ 1. Since this heuristic argument is
not very strong, we leave b undetermined below, to show
that our point does not strongly depend on it.
Note that q may become of order unity for a close

enough to 2m or, equivalently, after a sufficiently long
elapsed time. In other words, there is no reason to trust the
classical theory outside the horizon for arbitrarily long
times and sufficiently close to r ¼ 2m. This is the key
conceptual point on which this paper is based.
Let us see where and when the classical theory can fail.

The bounce time τR diverges for any R as a → 2m. The
divergence is weak and logarithmic, so for a large mass, we
need a very close to 2m to get q of order unity. Using (8)
and the form of the curvature, we have, explicitly,

q ¼ ml2−bP

R3

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
R

r �
R − a − 2m ln

a − 2m
R − 2m

�!b

: ð14Þ

Let us start by inquiring where quantum effects are first
likely to appear. This is given by the maximum of q in R, in
a regime of a near to 2m. To find the radius Rq where
quantum effects first appear, let us therefore take the
derivative of q with respect to R and equate it to zero.
After a little algebra, this can be written as

bR2
q þ ½3Rq − ð6þ bÞm�

�
aþ Rq − 2m ln

a − 2m
Rq − 2m

�
¼ 0:

ð15Þ

For small a − 2m, the logarithmic term dominates, and
therefore the lhs can only vanish if the term in square
brackets nearly vanishes. This gives easily the maximum
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Rq ¼ 2m

�
1þ b

6

�
þO

�
1

lnða − 2mÞ
�
; ð16Þ

which is a finite distance, but not much, outside the
Schwarzschild radius. This is where quantum effects can
first appear. Notice the nice separation of scales; the result
Rq becomes independent of a in the a → 2m limit. The
quantum effects appear right where they most reasonably
should appear: at a macroscopic distance from the
Schwarzschild radius, which is necessary for the long
bounce time, but close to it, so that the curvature is still
reasonably large.
Let us now compute when quantum effects are first likely

to appear, at this radius. Inserting the value of the radius we
have found in q, we have

q ¼ 27ð4bÞb2lP2−b
ðbþ 6Þ3þb

2m2−b

�
1þ b

6
þ a
2m

− ln
3a − 6m

bm

�
b
:

ð17Þ

In the limit where a is near 2m, again it is the ln that
dominates, and this reduces to

q ¼ kmb−2lP2−bð− ln ða − 2mÞÞb; ð18Þ

where k is just a number: k ¼ 27ð4bÞb2=ðbþ 6Þ3þb
2. We can

have significant quantum effects if q ∼ 1 namely if

− ln ða − 2mÞ ¼ l1−2=bP
m2=b−1:

k1=b
ð19Þ

Inserting this determination of a into the bounce time, we
have

τ ≈ ð2lp1−2
bkbÞm2

b: ð20Þ

In the likely case b ¼ 1, the quantum effects appear at a
distance

R ¼ 7

6
2m; ð21Þ

namely a small macroscopic distance outside the
Schwarzschild radius, after an asymptotic time

τ ¼ 2k
m2

lP
: ð22Þ

That is, it is possible that quantum gravity affects the
exterior of the Schwarzschild radius already at a time of
order m2.
Notice that this effect has nothing to do with the r ¼ 0

singularity; there is no singularity nor a horizon in the
physics considered in this section.

This is why the argument according to which there
cannot be quantum gravity effects outside the horizon,
since this region is causally disconnected from the interior
of the horizon, is wrong. In fact, as we have seen, there is
room for quantum gravity effects even if there is no interior
of the horizon at all.
Finally, by analogy with conventional quantum tunnel-

ling, one may be tempted to guess an exponential depend-
ence of the bouncing time τ on m2=ℏ as the onset of
quantum phenomena. This possibility cannot be ruled out,
but there are arguments to the contrary: The exponential
weight comes from a saddle point approximation, where,
however, it is balanced by a measure factor. In the case of
black holes, this is the same factor that measures the
entropy, which is exponential in the mass squared as well.
As argued by S. Mathur [28], we expect these two
exponential scalings to cancel.
We now leave the example and address the main question

of the paper: the construction of the metric of a bounc-
ing hole.

III. TIME-REVERSAL, HAWKING RADIATION
AND WHITE HOLES

General relativity is invariant under the inversion of the
direction of time. This suggests that we can search for the
metric of a bouncing star by gluing a collapsing region with
its time reversal, where the star is expanding [37]. This is
what we shall do. In doing so, we are going to disregard all
dissipative effects, which are not time symmetric. For
instance, the trajectory of a ball that falls down to the
ground and then bounces up is time reversion symmetric if
we disregard friction, or the inelasticity of the bounce. In a
first approximation, disregarding friction and inelasticity,
the ball moves up after the bounce precisely in the same
manner it fell down. In the same vein, we disregard all
dissipative phenomena as a first approximation to the
bounce of the star.
In particular, we disregard Hawking radiation. This

requires a comment. A widespread assumption is that the
energy of a collapsed star is going to be entirely carried
away by Hawking radiation. While the theoretical evidence
for Hawking radiation is strong, we do not think that the
theoretical evidence for the assumption that the energy of a
collapsed star is going to be entirely carried away by
Hawking radiation is equally strong. After all, what other
physical system do we know where a dissipative phenome-
non carries away all of the energy of the system?
Hawking radiation regards the horizon and its exterior; it

has no major effect on what happens inside the black hole.
Here we are interested in the fate of the star after it reaches
(rapidly) r ¼ 0. We think that it is also possible to study
this physics first, and consider the dissipative Hawking
radiation only as a correction, in the same vein one can
study the bounce of a ball on the floor first and then correct

QUANTUM-GRAVITY EFFECTS OUTSIDE THE HORIZON … PHYSICAL REVIEW D 92, 104020 (2015)

104020-5



for friction and other dissipative phenomena. This is what
we are going to do here.
Dissipative effects, and in particular the backreaction of

the Hawking radiation, can then be computed starting from
the metric we construct below. The form given below
should be particularly suitable for an analysis of the
Hawking radiation using the methods developed by
Bianchi and Smerlak [38,39], since the map between future
and past null infinity needed for this method is entirely
coded in the junction functions between spacetime patches.
What should we expect for the metric of the second part

of the process, describing the exit of the matter? The answer
is given by our assumption about the time reversal
symmetry of the process: since the first part of the process
describes the in-fall of the matter to form a black hole, the
second part should describe the time reversed process, a
white hole streaming out-going matter.
At first this seems surprising. What does a white hole

have to do with the real universe? But further reflection
shows that this is reasonable; if quantum gravity corrects
the singularity yielding a region where the classical
Einstein equations and the standard energy conditions do
not hold, then the process of formation of a black hole does
not end in a singularity but continues into the future.
Whatever emerges from such a region is then something
that, if continued from the future backward, would equally
end in a past singularity. Therefore, it must be a white hole.
A white hole solution does not describe something com-
pletely unphysical as often declared; instead it is possible
that it simply describes the portion of spacetime that
emerges from quantum regions, in the same manner in
which a black hole solution describes the portion of
spacetime that evolves into a quantum region.
Thus, our main hypothesis is that there is a time

symmetric process where a star collapses gravitationally
and then bounces out. This is impossible in classical
general relativity, because once collapsed a star can never
exit its horizon. The last is not so if we allow for quantum
gravitational corrections.
We make the following assumptions:
(i) Spherical symmetry.
(ii) A spherical shell of null matter: We disregard the

thickness of this shell. We use this model for matter
because it is simple; we expect our results to
generalize to massive matter. In the solution the
shell moves in from past null infinity, enters its own
Schwarzschild radius, keeps ingoing, enters the
quantum region, bounces, and then exits its
Schwarzschild radius and moves outward to infinity.

(iii) Time reversal symmetry: We assume the process is
invariant under time reversal.

(iv) Classicality at large radii: We assume that the metric
of the process is a solution of the classical Einstein
equations for a portion of spacetime that includes the
entire region outside a certain radius, defined below.

In other words, the quantum process is local; it is
confined in a finite region of space.

(v) Classicality at early and late times: We assume that
the metric of the process is a solution of the classical
Einstein equations for a portion of spacetime that
includes all of space before a (proper) time ϵ
preceding the bounce of the shell and all of space
after a (proper) time ϵ after the bounce of the shell. In
other words, the quantum process is local in time; it
lasts only for a finite time interval.

(vi) No event horizons: We assume the causal structure
of spacetime is that of Minkowski spacetime.

This is quite sufficient to our purposes.

IV. CONSTRUCTION OF THE
BOUNCING METRIC

Because of spherical symmetry, we can use coordinates
(u, v, θ, ϕ) with u and v null coordinates in the r-t plane,
and the metric is entirely determined by two functions of u
and v:

ds2 ¼ −Fðu; vÞdudvþ r2ðu; vÞðdθ2 þ sin2 θdϕ2Þ: ð23Þ
In the following we will use different coordinate patches,
but generally all of this form. Because of the assumption vi,
the conformal diagram of spacetime is trivial, just the
Minkowski one; see Fig. 2. From assumption iii there must
be a “t ¼ 0” hyperplane which is the surface of reflection of
the time reversal symmetry. It is convenient to represent it
in the conformal diagram by an horizontal line as in Fig. 2.
Now consider the incoming and outgoing null shells. By
symmetry, the bounce must be at t ¼ 0. For simplicity we
assume (this is not crucial) that it is also at r ¼ 0. These are
represented by the two thick lines at 45° in Fig. 2. In the
figure there are two significant points, Δ and E, that lie on

FIG. 2 (color online). The spacetime of a bouncing star.
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the boundary of the quantum region. The point Δ has t ¼ 0
and is the maximal extension in space of the region where
the Einstein equations are violated. Point E is the first
moment in time where this happens. We discuss later the
geometry of the line joining E and Δ.
Because the metric is invariant under time reversal, it is

sufficient for us to construct it for the region below t ¼ 0
(and make sure it glues well with its future). The upper
region will simply be the time reflection of the lower. The
in-falling shell splits spacetime into a region interior to the
shell, indicated as I in the figure, and an exterior part.
The latter, in turn, is split into two regions, which we call II
and III, by the line joining E and Δ. Let us examine the
metric of these three regions separately:

(I) The first region, inside the shell, must be flat by
Birkhoff’s theorem. We denote null Minkowski
coordinates in this region (uI , vI , θ, ϕ).

(II) The second region, again by Birkhoff’s theorem,
must be a portion of the metric of a mass m; namely
it must be a portion of the (maximal extension of the)
Schwarzschild metric. We denote null Kruskal
coordinates in this region (u, v, θ, ϕ) and the related
radial coordinate r.

(III) Finally, the third region is where quantum gravity
becomes non-negligible. We know nothing about the
metric of this region, except for the fact that it must
join the rest of the spacetime. We denote null
coordinates for this quantum region (uq, vq, θ, ϕ)
and the related radial coordinate rq.

We can now start building the metric. Region I is
easy: we have the Minkoswki metric in null coordinates
determined by

FðuI; vIÞ ¼ 1; rIðuI; vIÞ ¼
vI − uI

2
: ð24Þ

It is bounded by the past light cone of the origin, that is, by

vI ¼ 0: ð25Þ

In the coordinates of this patch, the ingoing shell is
therefore given by vI ¼ 0.
Let us now consider region II. This must be a portion of

the Kruskal spacetime. Which portion? Put an ingoing null
shell in Kruskal spacetime, as in Fig. 3. The point Δ is a
generic point in the region outside the horizon, which we
take on the t ¼ 0 surface, so that the gluing with the future
is immediate. More crucial is the position of the point E.
Remember that E is the point where the in-falling shell
reaches the quantum region. Clearly this must be inside the
horizon, because when the shell enters the horizon the
physics is still classical. Therefore, the region that corre-
sponds to region II in our metric is the shaded region of
Kruskal spacetime depicted in Fig. 3.
In null Kruskal–Szekeres coordinates, the metric of the

Kruskal spacetime is given by

Fðu; vÞ ¼ 32m3

r
e−

r
2m ð26Þ

with r the function of (u, v) defined by Eq. (4). The region
of interest is bounded by a constant v ¼ vo null line. The
constant vo cannot vanish, because v ¼ 0 is a horizon,
which is not the case for the in-falling shell. Therefore, vo is
a constant that will enter in our metric.
The matching between the regions I and II is not

difficult, but it is delicate and crucial for the following.
The v coordinates match simply by identifying vI ¼ 0 with
v ¼ vo. The matching of the u coordinate is determined by
the obvious requirement that the radius must be equal
across the matching, that is, by

rIðuI; vIÞ ¼ rðu; vÞ: ð27Þ

This gives

�
1 −

vI − uI
4m

�
e
vI−uI
4m ¼ uv ð28Þ

which on the shell becomes

�
1þ uI

4m

�
e−

uI
4m ¼ uvo: ð29Þ

Thus, the matching condition is

uðuIÞ ¼
1

vo

�
1þ uI

4m

�
e−

uI
4m: ð30Þ

Thus far we have glued the two intrinsic metrics along
the boundaries. To truly define the metric over the whole
region, one would also need to specify how tangent vectors
are identified along these boundaries, thus ensuring that the
extrinsic geometries also matched. However, and perhaps
surprisingly, if the induced 3-metrics on the boundaries
agree, it turns out that it is not necessary to impose further
conditions [40–42]. These works show that the prescription
for gluing the tangent spaces is, in that case, uniquely
determined.

FIG. 3 (color online). Classical black hole spacetime and the
region II.
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The matching condition between the region II and its
symmetric, time reversed part along the t ¼ 0 surface is
immediate. Notice, however, that the ensemble of these two
regions is not truly a portion of Kruskal space, but rather a
portion of a double cover of it, as in Fig. 4: the bouncing
metric is obtained by “opening up” the two overlapping
flaps in the figure and inserting a quantum region in
between.
It remains to fix the points E and Δ, the line connecting

them, and the metric of the quantum region. We take E to be
the point that has (uI, vI) coordinates (−2ϵ, 0) and Δ the
point that has Schwarzschild radius r ¼ 2mþ δ and lies on
the time reversal symmetry line uþ v ¼ 0. Here ϵ and δ are
two constants with dimensions of length that determine the
metric. Lacking a better understanding of the quantum
region, we take the line connecting E and Δ to be the
(spacelike) geodesic between the two. Finally, we fix the
metric in region III as follows. We once again glue such
that r ¼ rq on the boundary and choose simply

Fðuq; vqÞ ¼
32m3

rq
e−

rq
2m; ð31Þ

where rq is the function of ðuq; vqÞ implicitly determined by

�
1 −

rq
2m

�
e

rq
2m ¼ uqvq: ð32Þ

This is only a simple first ansatz, to be ameliorated as
understanding of this region and of quantum gravity
improves. What is important is that the rq ¼ const. surfaces
are again timelike in region III. Therefore, region III is
outside the trapped region. The trapped region is bounded by
the incoming shell trajectory, the null r ¼ 2m horizon in the
region II, and the boundary between region II and region
III. The two trapped regions are depicted in Fig. 5.
This concludes the construction of the metric, which is

now completely defined. It satisfies all the requirements
with which we began. It describes, in a first approximation

and disregarding dissipative effects, the full process of
gravitational collapse, quantum bounce, and explosion of a
star of massm. It depends on four constants:m, vo, δ, ϵ, the
physical meaning of which will be discussed below. In the
following sections, we study some of its properties.

V. EXTERIOR TIME, INTERIOR TIME

Consider two observers, one at the center of the system,
namely at r ¼ 0, and one that remains at radius
r ¼ R > 2m. In the distant past, both observers are in
the same Minkowski space. Notice that the entire process
chooses a Lorentz frame: the one where the center of mass
of the shell is not moving. Therefore, the two observers can
synchronize their clocks in this frame. In the distant future,
the two observers find themselves again in a common
Minkowski space with a preferred frame and therefore can
synchronize their clocks again. However, there is no reason
for the proper time τo measured by one observer to be equal
to the proper time τR measured by the other one, because of
the conventional, general relativistic time dilation. Let us
compute the time difference accumulated between the two
clocks during the full process.
The two observers are both in a common Minkowski

region until the shell reaches Rwhile falling in, and they are
again both in this region after the shell reaches R while
going out. In the coordinate system ðtI ¼ ðvI þ uIÞ=2; rI ¼
ðvI − uIÞ=2Þ of the region I, these are the points with
coordinates ð−R; RÞ and ðR; RÞ respectively. The two
simultaneous points for the inertial observer at r ¼ 0 are
ð−R; 0Þ and ðR; 0Þ, and his proper time is clearly

τ0 ¼ 2R: ð33Þ

Meanwhile, the observer at r ¼ R sits at constant radius
in a Schwarzschild geometry. The proper time between the
two moments she crosses the shell is twice the time from

FIG. 4 (color online). The portion of a classical black hole
spacetime which is reproduced in the quantum case. The contours
r ¼ 2m are indicated in both panels by dashed lines.

FIG. 5 (color online). Some r ¼ const. lines. A trapped region
is a region where these lines become spacelike. There are two
trapped regions in this metric, indicated by shading.
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the first crossing to the t ¼ 0 surface. This is analogous to
twice the bounce time we have computed in Sec. II, but let
us redo the calculation here, to avoid confusion, since the
overall context is different (the relevant parameter is vo
rather than a). Since the observer is stationary, the proper
time is given by

τR ¼ −2
�
1 −

2m
R

�1
2

t; ð34Þ

where t is the Schwarzschild time. Therefore, the proper
time can simply be found by transforming the coordinates
(u, v) to Schwarzschild coordinates. The standard change
of variables to the Schwarzschild coordinates in the exterior
region r > 2m is

uþ v
2

¼
�

r
2m

− 1

�1
2

e
r
4m sinh

t
4m

; ð35Þ

v − u
2

¼
�

r
2m

− 1

�1
2

e
r
4m cosh

t
4m

: ð36Þ

Along the shell’s in-fall, v ¼ vo, and so

t ¼ 4m ln

�
vo

ð R
2m − 1Þ1=2 e

− R
4m

�
: ð37Þ

Therefore, the total time measured by the observer at radius
R is

τR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
R

r �
2R − 8m ln vo þ 4m ln

R − 2m
2m

�
: ð38Þ

If the external observer is at large distance, R ≫ 2m, we
obtain, to the first relevant order, the difference in the
duration of the bounce measured outside and measured
inside to be

τ ¼ τR − τo ¼ −8m ln vo: ð39Þ

This can be arbitrarily large as vo is arbitrarily small.
The process seen by an outside observer takes a time

arbitrarily longer than the process measured by an observer
inside the collapsing shell.
In Refs. [30,31], Barceló et al. consider a similar

geometry. They also find the immense length of the
Hawking time for a solar mass black hole intriguing.
However, in sharp contrast to the present work, to arrive
at a modification of these time scales, they consider a
significant departure from general relativity and argue that
the bounce time can be made quite brief by discarding the
causal structure of general relativity in the region of the
bounce. It is not clear to us that such a drastic modification
of general relativity is required or how it would be justified.

That is, it is unclear what quantum mechanical mechanism
might underly this departure.
They also emphasize that the bounce time of Eq. (8),

while indeed being divergent, is only logarithmically so,
and hence the mirror radius a must be extremely close to
2m for this divergence to appear. We agree, but again we
diverge in our approaches to what we take this fact to
indicate. Barceló et al. conclude that all observers should
see a short bounce time. By contrast we take this as
further evidence that we should seek quantum mechanical
modifications of the bounce time that should appear before
we arrive within a Planck distance of the horizon. In fact,
the estimates of the second half of Sec. II indicate that this
can happen already at a macroscopic distance from the
horizon.
In the next Section we determine vo, and therefore the

duration of the bounce seen from the outside.

VI. CONSTANTS OF THE METRIC AND THE
BREAKING OF THE SEMICLASSICAL

APPROXIMATION

The metric we have constructed depends on the mass m
and three additional constants: vo, ϵ, δ. We now determine
all of them as functions of m.
The constant ϵ fixes the moment in which the collapsing

shell abandons the region where the classical theory is
reliable. In quantum gravity, we exit the quantum region
when the matter density, or the curvature, reaches the
Planck scale (see a full discussion in Ref. [23]). This must
also be true for black holes [3,9,11–13]. The curvature
R is of the order m=r3 and reaches the Planck value
R ∼ l−2P when

r ∼ ðml2PÞ13 ¼
�
m
mP

�1
3

lP: ð40Þ

Here lP and mP are the Planck length and the Planck mass.
Therefore, we expect the parameter ϵ to be of the order

ϵ ∼
�
m
mP

�1
3

lP: ð41Þ

The parameter δ is the most important of all. To under-
stand its meaning, consider the quantum region III. A part
of it is inside r ¼ 2m. This is very reasonable, since this
part surrounds the region where the classical singularity
would appear. However, a part of region III leaks outside
the r ¼ 2m sphere. This is needed, if we want to avoid the
event horizon and have the bounce, because if the entire
region r ≥ 2m were classical, an event horizon would be
unavoidable, as the r ¼ 2m classical surface is null. If an
event horizon forms, matter cannot bounce out, and a
singularity is unavoidable.
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Thus, the quantum effect must leak outside r ¼ 2m. We
have shown in Sec. II that this can happen without violating
the validity of the semiclassical approximation, because of
the piling up of corrections. But we have also seen that for
this to happen we need a long time, which we have
estimated in Sec. II to be given by Eq. (22). For the
process to last this long, vo must be small. Indeed, we have
seen in the previous section that the duration of the process
is determined by vo via Eq. (39). Bringing the two together,
we find the condition

τ ¼ −8m ln vo > τq ¼ 4k
m2

lp
; ð42Þ

that is,

vo < e−k
m
2lp ; ð43Þ

which is very small for a macroscopic black hole. Let us

therefore fix vo to the value vo ¼ e−k
m
2lp that minimizes the

bounce time and yet still yields a sufficiently long time for
quantum gravity to act. In turn, this fixes δ, because δ is
bounded from below by vo. The value of δ can easily be
deduced from the discussion in Sec. II: the quantum region
needs to extend all the way to 7=6th of the Schwarzschild
radius. That is, 2mþ δ ¼ 7

6
ð2mÞ or

δ ¼ m
3
: ð44Þ

Notice that δ is of the order of the size of the black hole
itself.
Summarizing, the metric we have constructed is deter-

mined by a single constant: the mass m of the collapsing
shell. The other constants are fixed in terms of the mass and
the Planck constants,

ϵ ∼
�
m
mP

�1
3

lP; ð45Þ

vo ∼ e−k
m
2lp ; ð46Þ

δ ∼
m
3
: ð47Þ

A tentative time reversal symmetric metric describing the
quantum bounce of a star is entirely defined.

VII. RELATION WITH A FULL QUANTUM
GRAVITY THEORY

We have constructed the metric of a black hole tunnelling
into a white hole by using the classical equations outside the
quantum region, an order of magnitude estimate for the onset
of quantum gravitational phenomena, and some indirect
indications on the effects of quantum gravity. This, of course,
is not a first principle derivation. For a first principle
derivation, a full theory of quantum gravity is needed.
However, the metric we have presented poses the

problem neatly for a quantum gravity calculation. The
problem now can be restricted to the calculation of a
quantum transition in a finite portion of spacetime.
The quantum region that we have determined is bounded

by a well-defined classical geometry. Given the classical
boundary geometry, can we compute the corresponding
quantum transition amplitude? Since there is no classical
solution that matches the in and out geometries of this
region, the calculation is conceptually a rather standard
tunnelling calculation in quantum mechanics.
Indeed, this is precisely the form of the problem that is

adapted for a calculation in a theory like covariant loop
quantum gravity [43,44]. The spinfoam formalism is
designed for this. Notice that the process to be considered
is a process that takes a short time and is bounded in space.
Essentially, we want to know the transition probability
between the state with the metric on the lower to upper
E − Δ surfaces. This may be attacked, for instance in a
vertex expansion, to first order. If this calculation can be
done, we should then be able to replace the order of
magnitudes estimates used here with a genuine quantum
gravity calculation and, in particular, compute from first
principles the duration τ of the bounce seen from the
exterior. We leave this for the future.
Most interestingly, this phenomenon could open a novel

window on quantum gravity phenomenology [14,15].
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