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We analyze the constraints that causality imposes on some of the particle detector models employed in
quantum field theory in general and, in particular, on those used in quantum optics (or superconducting
circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light
communication can impose severe constraints on the applicability of particle detector models in three
different common scenarios: (1) when the detectors are spatially smeared, (2) when a UV cutoff is
introduced in the theory and (3) under one of the most typical approximations made in quantum optics: the
rotating-wave approximation. We identify the scenarios in which the models’ causal behavior can and
cannot be cured.
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I. INTRODUCTION

Particle detector models may be thought of as control-
lable quantum systems that couple locally in space and time
to quantum fields. They provide a way to extract localized
spatiotemporal information from the fields without having
to implement projective measurements of localized field
observables [1,2]. This simplifies the task of extracting
localized information about the field and avoids all the
possible complications that may appear with the use of
projective measurements altogether [3]. Particle detector
models in quantum field theory were pioneered by Unruh
and DeWitt [4,5], and can be found in the literature in
several slightly different (but fundamentally similar) for-
mats, e.g., a field in a box [4], a two-level system [5] or a
harmonic oscillator (see, e.g., [6–8]).
Particle detector models have been successfully

employed in a plethora of contexts in fundamental quantum
filed theory [9,10]. Perhaps one of the most well-known
contexts is the operational formulation of the Hawking and
Unruh effects (see, e.g., [4,11]). Besides their many uses
in fundamental quantum field theory, particle detector
models are ubiquitous as models for experimental setups
in quantum optics [12] and in superconducting circuits
[13]. For example, an alkali atom as a first quantized
system can serve as such a detector for the second
quantized electromagnetic field. In fact, the common
light-matter interaction models, such as for instance the
Jaynes-Cummings model and its variants, are almost
identical in nature to the Unruh-DeWitt (UDW) model
[12]. Indeed, the Unruh-DeWitt detector-field interaction
has been proven to be a good model of the light-matter
interaction in quantum optics for processes not involving
exchange of orbital angular momentum [14,15].
More recently, UDW detectors have been extensively

used in studies of relativistic quantum information, such as

relativistic quantum computing [16,17], quantum commu-
nication via field quanta [18–20], cosmology [21–23], and
more generally in studies on a host of effects related to the
presence of spacelike entanglement in the vacuum state of
quantum fields both from fundamental [24–31] and applied
[32,33] perspectives. Interestingly, in these studies it is
shown that it is possible to harvest correlations from the
field vacuum to spacelike separated detectors, which gives
an operational proof of the spacelike entanglement present
in the quantum vacuum [34,35].
Because UDW detector models have been proven so

valuable in relativistic quantum information, the question
arises as to what extent these models (which involve
nonrelativistic systems coupled to fully relativistic quantum
fields) behave in a causal way. This is of special importance
when studying phenomena for which the causal behavior
of the model is paramount, such as the aforementioned
spacelike vacuum entanglement harvesting or, more gen-
erally, any quantum communication scenario where rela-
tivistic effects become important.
It is known that naive projective measurements in

quantum fields are not compatible with causality and
can suffer from superluminal signalling (see for instance
[3]). Do UDW-like detector models have similar problems?
In particular, in [36] this same question is posed about the
causal behavior of the Unruh-Dewitt model. The question
is well aimed: consider, for example, the usual over-
simplified single-mode Jaynes-Cummings model [12].
This model allows for faster-than-light signalling and is
indeed unable to model the light-matter interaction in
relativistic regimes. The question whether the full UDW
model respects causality was addressed in [18], where it
was shown that communication using pointlike Unruh-
DeWitt detectors as emitters and receivers of field quanta is
causal to any order in perturbation theory, as long as the
detectors remain pointlike as originally proposed.
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However, as we will discuss, it is all too common to
consider modifications of the original model that some-
times jeopardize its causal behavior, both in theoretical
studies on field theory and in the applications of these
models to quantum optics. Studying the causal behavior of
these modified models has a double interest: on the one
hand, from a theoretician’s point of view, in the scenarios
where the model presents causality problems it is interest-
ing to know if and when the causal behavior can be restored
in an approximate way in some regimes. On the other hand,
as an experimentalist using these models to predict phe-
nomenology, it is fundamental to know under what circum-
stances the models can be used to make meaningful
predictions and, conversely, when the models dramatically
fail due to violations of a first principle of relativistic
theory.
The first modification of the original model whose causal

behavior we are going to study is the generalization to
nonpointlike detectors. It is indeed very common to
consider that the detectors have a spatial smearing
[37,38]. The smearing of particle detectors may respond
to the need to regularize divergences of the pointlike model
[39]. Smearings can also be introduced, for example in
quantum optics, to improve on the accuracy of the light-
matter interaction models assuming that the atoms are not
pointlike objects, but are instead localized in the full
extension of their atomic wave functions [12,15].
Furthermore, as discussed in [39] oftentimes spatial smear-
ings are introduced implicitly, hidden in some form of soft
UV regularization of the model (see, e.g., [10]).
As was already noted in [36], and as we will study in

detail in this paper, spatially compactly supported detectors
are safe in terms of their causal behavior. However, the use
of compactly supported spatial smearing is not so common
in the literature. Instead, the most common smeared UDW
models used in the literature (both in QFT and quantum
optics) assign noncompact—but very strongly supported in
a finite region—smearing functions, such as Gaussian (See,
e.g., [14,30]) or Lorentzian (See, e.g, [37–39]) smearings.
Noncompact smearings are employed mainly for two
reasons: (1) the simplification of analytic computations
and the regularization of divergences and (2) in the context
of quantum optics, the introduction of smearing is part of
the refinement of the model: the atomic wave functions of
valence electrons characterizing the effective size of the
atom are exponentially suppressed in the radial distance to
the center of mass of the atom [15].
A relevant question to ask in these scenarios is to what

extent the use of fast-decaying smearing functions (as
opposed to strictly compactly supported ones) effectively
renders the predictions of the model acausal. Rigorously
speaking, any noncompactly supported smearing allows
for instantaneous signalling. For example, if we consider
communication between two noncompact detectors A and
B, the influence of A in B would instantaneously be felt

by B. Nevertheless, if in spite of being noncompact, the
smearing of the two detectors is only strongly supported
around a point of space with a characteristic length σ (as
is the case of Gaussian or Lorentzian smearing), causality
may be recovered in an approximate sense when we
consider, for instance, communication between two detec-
tors whose spatial separation is much larger than σ. In this
paper we will study quantitatively how the leading-order
causality violations in the communication between two
detectors are suppressed faster than exponentially as the
characteristic size-scale of the noncompact smearing is
reduced. Hence, this leads us to conclude that the causality
of the model can indeed be approximately recovered with
arbitrary precision when using strongly supported but
noncompact smearings such as Gaussian.
Another very typical modification of the UDW model,

fairly common in quantum optics, is the introduction of
hard UV cutoffs in the detector’s proper reference frame.
This is usually justified by the fact that the atomic response
to electromagnetic radiation is a function of frequency and
it does eventually become negligible in the far UV limit. If
we were to consider such as an effective model, we would
have to keep in mind that when a UV cutoff is introduced
the causality of the model is again compromised. How
causality is impacted by this sort of hard UV cutoffs has
been studied in cavity settings both perturbatively [19] and
nonperturbatively [7]. These studies shown that causality
violating vanish decrease polynomially fast as the UV
cutoff is relaxed. However, these studies had two limita-
tions: they were limited to 1þ 1-dimensional setups and
only to a discrete set of field modes corresponding to
quantum fields in periodic and Dirichlet cavities. The fact
that we consider a continuum of modes (field in free space)
as opposed to a discrete number of them does introduce
differences in the causal behavior of the UDW when UV
cutoffs are introduced. Much more important, as we will
see in this work, the dimensionality of spacetime is critical
for the causal behavior of the communication using UDW
detectors in the presence of UV cutoffs. For example, we
will discuss that in a 3þ 1-dimensional scenario the
causality loss due to the existence of these cutoffs cannot
be made arbitrarily small just increasing the cutoff without
further regularization, in stark contrast with what was
obtained for 1þ 1-dimensional cavities in [7,19].
Finally, we will analyze the impact of causality on the

validity of the rotating-wave approximation (RWA). The
RWA [12] is overwhelmingly present in the literature on
quantum optics. The approximation consists of the sim-
plification of the light-matter interaction Hamiltonian
removing the terms that oscillate rapidly. The RWA is
discussed to be valid for long interaction times (much
larger than the detector’s characteristic Heisenberg time).
However, this approximation may result extremely harmful
for the causality of the model. This issue has already drawn
the attention of several researchers in early [40,41] and
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more recent [42,43] works. We will analyze the faster-than-
light signalling that this approximation enables in the
context of quantum communication of particle detectors
through the exchange of field quanta. We will show that
even for long interaction times, the acausal signature of this
extremely common approximation is only very slowly
erased as the limit of longer times is taken, rendering this
approximated model unfit to describe any setting where the
causality of the theoretical model is important.
With this perturbative study of the causal behavior of

the UDW model and the light-matter interaction, we will
quantitatively characterize if (and in what regimes) the
approximations and considerations described above can
still be used mantaining some degree of approximate causal
behavior. This is important because current experimental
techniques in quantum optics and superconducting circuits
are nearing the point where intrinsically relativistic phe-
nomena can be accessed in experiments (see, e.g., [44]).
Finally, we note that we do a general study in one, two and
three spatial dimensions with a double purpose: (1) There
exist experimental setups where quantum fields live in an
effectively reduced dimensionality such as superconduct-
ing microwave guides coupling to artificial atoms
[13,45,46], and (2) in doing so, we will be able to
characterize the relevant role that the number of spatial
dimensions has in the causal behavior of the light-matter
interaction models, and learn some interesting aspects of
the regular UV behavior of the signalling between two
particle detectors.

II. SIGNALLING OF TWO PARTICLE
DETECTORS THROUGH A QUANTUM FIELD

We will study the Unruh-DeWitt particle detector (from
now on referred to as the ‘detector’) which will be
considered in this work as a spatially localized two-level
quantum system coupled to a scalar field. The spatial
smearing of the detector will be given by the real-valued
smearing function FðxÞ which we choose, for convenience
and w.l.g., to be localized and centered around x ¼ 0. This
detector couples to a scalar field locally along its trajectory
in spacetime. In general, we can consider that the detector’s
center of mass moves in a trajectory parametrized in terms
of its proper time τ. That is, x ¼ x0ðτÞ. In the particular case
of a stationary detector whose center of mass is placed at
x ¼ x0, the detector is comoving with the usual Minkowski
frame ðx; tÞ in which we carry out the field quantization.
This means that we can take t ¼ τ. The Unruh-DeWitt
interaction Hamiltonian (in the interaction picture) for this
case is given by [37]

ĤI ¼ λ

Z
dnxF½x − x0�χðtÞm̂ðtÞϕ̂½x; t�; ð1Þ

where χðtÞ is the switching function controlling the
coupling-decoupling speed and the duration of the

detector-field interaction, m̂ðtÞ ¼ ðσ̂þeiΩt þ σ̂−e−iΩtÞ is
the detector’s monopole moment (being Ω the energy
gap between the detector’s two energy levels), ϕ̂½x; t� is
the quantum scalar field, and n is the number of spatial
dimensions. The difference of (1) with the pointlike model
is that the field operator is evaluated along the worldline of
the detector, as usual, but summed over the whole spatial
extension of the detector.
Although this is out of the scope of the present paper, it is

worth mentioning that if we were to generalize the analysis
of these localized detector models to general noninertial
trajectories, we would have to face the well-known problem
of accelerating rigid bodies. Roughly speaking, the proper
distance between two points of a solid accelerating with
the same proper acceleration increases in time, eventually
destroying the solid when the internal cohesion forces that
support it are overrun by “stress forces” [47]. A reasonable
hypothesis made for a physical detector in those cases is
that, until this happens, the detector has to keep internal
coherence to a good approximation. In other words, the
internal forces that keep the detector together will prevent it
from being further smeared due to relativistic effects, up to
some threshold acceleration. This in turn implies that,
effectively, every point of the detector will accelerate with a
different acceleration in order to keep up with the rest of its
points and maintain the shape of the spatial profile of the
detector in the center-of-mass reference frame. The natural
framework to treat such a detector is the use of the well-
known Fermi-Walker frame. If smeared detectors under-
going noninertial trajectories are considered approximately
rigid and sustained by internal cohesion forces, the smear-
ing function becomes a function of the Fermi-Walker
coordinates on the spacelike orthogonal hypersurface to
the detector’s motion. How this localization works out for
general trajectories of the detector is very well detailed
in [39] (or among other references, in, for example,
[14,38,48]).
Back to our original scenario, consider now two sta-

tionary Unruh-DeWitt detectors A and B whose profiles are
centered at positions xA and xB. They are mutually at rest
and they share a proper time t. The interaction picture
Hamiltonian describing the interaction of these two detec-
tors with the field is

ĤI ¼
X
ν

λνχνðtÞμ̂νðtÞ
Z

dnxFðx − xνÞϕ̂ðx; tÞ; ð2Þ

where ν ¼ fA;Bg labels the detectors, and the monopole
moment operators μ̂νðtÞ act on the two-detector Hilbert
space HA ⊗ HB according to

μ̂AðtÞ≡ m̂AðtÞ⊗ 1B; μ̂BðtÞ≡1A ⊗ m̂BðtÞ; ð3Þ

where
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m̂νðtÞ ¼ ðσ̂þν eiΩνt þ σ̂−ν e−iΩνtÞ: ð4Þ

Let us now consider an arbitrary initial state density
matrix ρ̂0 for the system comprised of the two detectors and
the field. After the interaction of the detectors with the field,
modulated by the switching functions χνðtÞ, the time-
evolved state will be given by ρ̂T ¼ Ûρ̂0Û

†, where Û is
the interaction picture time evolution operator. Assuming
that each λν is small enough to be in the perturbative
regime, we can consider the Dyson expansion of the time-
evolution operator Û∶ Û ¼ Ûð0Þ þ Ûð1Þ þ Ûð2Þ þOðλ3νÞ
where Ûð0Þ ¼ 1 and

Ûð1Þ ¼ −i
Z

∞

−∞
dtHðtÞ;

Ûð2Þ ¼ −
Z

∞

−∞
dt
Z

t

−∞
dt0ĤðtÞĤðt0Þ: ð5Þ

Hence, ρ̂T ¼ ρ̂0 þ ρ̂ð1ÞT þ ρ̂ð2ÞT þOðλ3Þ, where

ρ̂ð1ÞT ¼ Uð1Þρ̂0 þ ρ̂0Uð1Þ†; ð6Þ

ρ̂ð2ÞT ¼ Uð1Þρ̂0Uð1Þ† þ Uð2Þρ̂0 þ ρ̂0Uð2Þ†: ð7Þ

The final state of the two-detector subsystem will, hence, be
given by

ρ̂d;T ¼ Trϕðρ̂TÞ ¼ ρ̂d;0 þ ρ̂ð1Þd;T þ ρ̂ð2Þd;T þOðλ3Þ; ð8Þ
where Trϕ denotes the trace over the field Hilbert space.
As we will detail below, we are going to consider that

detector A interacts with the field earlier in time, and detector
B will couple to the field afterwards. We would like to
analyze the ability of A to signal B. In particular, we would
like to see what the influence is of the existence of A in the
time evolved quantum state of B. Obviously, in a causal
model, detector B’s state cannot depend in any way on the
initial state of detector A if A and B remain spacelike
separated during their interactionwith the field. If we assume
the most general uncorrelated initial state for the detectors
and the field, the initial state density matrix takes the general
form ρ̂0 ¼ ρ̂d;0 ⊗ ρ̂ϕ̂;0, where ρ̂d;0 and ρ̂ϕ̂;0 are respectively
the initial state of the two-detector subsystem and the initial
state of the field. The leading-order contributions of the
influence of detector A on detector B will be proportional to
λAλB. The first-order term in (8) hence does not contribute to
the signalling between A and B. Let us then focus on the
second-order contribution. Under the assumption that
ρ̂0 ¼ ρ̂d;0 ⊗ ρ̂ϕ̂;0, the second-order contribution to the time
evolved state of the two detectors will be given by

ρ̂ð2Þd;T ¼
X
ν;η

λνλη

�Z
∞

−∞
dt
Z

∞

−∞
dt0χνðt0ÞχηðtÞμ̂νðt0Þρ̂d;0μ̂ηðtÞW½xη; t; xν; t0�

−
Z

∞

−∞
dt
Z

t

−∞
dt0χνðtÞχηðt0Þμ̂νðtÞμ̂ηðt0Þρ̂d;0W½xν; t; xη; t0�

−
Z

∞

−∞
dt
Z

t

−∞
dt0χνðtÞχηðt0Þρ̂d;0μ̂ηðt0Þμ̂νðtÞW½xη; t0; xν; t�

�
: ð9Þ

WhereW½xν; t; xη; t0� denotes the pullback of the Wightman
function on the detectors’ smeared worldlines,

W½xν; t;xη; t0� ¼
Z

dnx
Z

dnx0F½x− xν�

×F½x0 − xη�Trϕ̂½ϕ̂ðx; tÞϕ̂ðx0; t0Þρ̂ϕ̂;0�: ð10Þ
Again Trϕ̂ denotes the partial trace over the field Hilbert
space.
Since we are going to analyze the signalling between

detectors A and B, we will not be interested in the local
terms in (9), that is, the terms that would vanish if one of
the detectors is not present. With this in mind, we can
decompose (9) as

ρ̂ð2Þd;T ¼ λAλBρ̂
ð2Þ
signal þ

X
ν

λ2νρ̂
ð2Þ
ν;noise; ð11Þ

where the terms ρ̂ð2Þν;noise contain only contributions
proportional to λ2ν, and as such they are local to each
detector and they are not involved in the flow of

information from A to B. One quick way to see this is
to notice that in the partial state of detector B, i.e.
ρ̂B;T ¼ TrAρ̂d;T , the only leading-order contributions that
depend on the existence of detector A at all are proportional
to λAλB.
The terms ρ̂ð2Þsignal can be further simplified assuming that

the detector’s switching functions are compactly supported
and that their supports do not overlap in time. Without loss
of generality let us assume that the detector A is switched
on before B, and then let us make the additional assumption
that

supp½χAðtÞ� ¼ ½Ton
A ; Toff

A �;
supp½χBðtÞ� ¼ ½Ton

B ; Toff
B �;

Ton
B > Toff

A : ð12Þ

Imposing this assumption on (9), we can simplify ρ̂ð2Þsignal

to
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ρ̂ð2Þsignal ¼
Z

∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0Þ

× ½W½xB; t0;xA; t�ðμ̂AðtÞρ̂d;0μ̂Bðt0Þ− μ̂Bðt0Þμ̂AðtÞρ̂d;0Þ
þW½xA; t;xB; t0�ðμ̂Bðt0Þρ̂d;0μ̂AðtÞ− ρ̂d;0μ̂AðtÞμ̂Bðt0ÞÞ�:

ð13Þ

In a signalling scenario under the assumption (12), since
A interacted with the field first, we can regard A as the
sender and B as the receiver. All the information trans-
mitted through the field from A to B will be encoded (to
leading order) in the parts of the density matrix of B that are
proportional to λAλB. This signalling contribution to B’s
partial state will be given by

ρ̂ð2ÞB;signal ¼ TrAðρ̂ð2ÞsignalÞ: ð14Þ
Recalling (3) and making the reasonable assumption that

prior to communication the initial state of the two detectors
is uncorrelated (i.e. ρ̂d;0 ¼ ρ̂A ⊗ ρ̂B), we can compute the
explicit form of (14) from (13):

ρ̂ð2ÞB;signal ¼
Z

∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0ÞTr½m̂AðtÞρ̂A�

× 2iIm½W½xA; t; xB; t0��ðm̂Bðt0Þρ̂B − ρ̂Bm̂Bðt0ÞÞ;
ð15Þ

where we have also used that

W½xA; t; xB; t0� ¼ ðW½xB; t0; xA; t�Þ�; ð16Þ

which is very easy to check form (10).
For each of the individual detectors we may introduce a

two-by-two matrix representation for each detector’s indi-
vidual Hilbert spaces. We will follow the same convention
as in [49], in which the ground jgi and excited jei states of
the two-level detectors correspond to

jgi ¼
�
1

0

�
; jei ¼

�
0

1

�
; ð17Þ

and the monopole moments

mνðτÞ ¼
�

0 e−iΩντ

eiΩντ 0

�
: ð18Þ

In this representation, the most general uncorrelated
initial state for the two detectors is

ρ̂d;0¼ ρ̂A ⊗ ρB ¼
�
αA βA

β�A 1−αA

�
⊗
�
αB βB

β�B 1−αB

�
; ð19Þ

where αν ∈ R, βν ∈ C satisfying the conditions that make
ρ̂d;0 a positive operator. One can now trivially evaluate

Tr½m̂AðtÞρ̂A� ¼ 2ReðβAeiΩAtÞ ð20Þ

and also the commutator

½m̂Bðt0Þ; ρ̂B� ¼
�
−2iImðβBeiΩBt0 Þ e−iΩBt0 ð1−2αBÞ
−eiΩBt0 ð1−2αBÞ 2iImðβBeiΩBt0 Þ

�
ð21Þ

Substituting (20) and (21) in (15) we get

ρ̂ð2ÞB;signal ¼ 4

Z
∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0ÞReðβAeiΩAtÞ

×Im½W½xA; t;xB; t0��

×
�

2ImðβBeiΩBt0 Þ ie−iΩBt0 ð1−2αBÞ
−ieiΩBt0 ð1−2αBÞ −2ImðβBeiΩBt0 Þ

�
ð22Þ

This expression can still be further simplified, since the
imaginary part of the Wightman function can be expressed
in terms of the expectation value of the field commutator:

ImðTr½ϕ̂ðx; tÞϕ̂ðx0; t0Þρ̂ϕ̂;0�Þ

¼ 1

2i
ðTr½ϕ̂ðx; tÞϕ̂ðx0; t0Þρ̂ϕ̂;0� − Tr½ρ̂ϕ̂;0ϕ̂ðx0; t0Þϕ̂ðx; tÞ�Þ

¼ 1

2i
Trð½ϕ̂ðx; tÞϕ̂ðx0; t0Þ − ϕ̂ðx0; t0Þϕ̂ðx; tÞ�ρ̂ϕ̂;0Þ

¼ 1

2i
h½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�i: ð23Þ

Notice that this quantity is independent of the initial state of
the field ρ̂ϕ̂;0 since the field commutator is a c-number.
Now substituting (10) into (22) and using the identity

(23) we can finally write

ρ̂ð2ÞB;signal ¼ 2

Z
∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0ÞReðβAeiΩAtÞCðt; t0Þ

×

�
−2ImðβBeiΩBt0 Þ −ie−iΩBt0 ð1−2αBÞ
ieiΩBt0 ð1−2αBÞ 2ImðβBeiΩBt0 Þ

�
ð24Þ

where Cðt; t0Þ is the final responsible for the causal behavior
of the leading-order signalling, and it is simply the integral
of the field commutator expectation over the detector’s
smearing

Cðt; t0Þ ¼ i
Z

dnx
Z

dnx0F½x − xA�F½x0 − xB�

× h½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�i: ð25Þ

Notice that (24) is traceless, as it should be the case for all
the different-order perturbative contributions to the evolved
density matrix of detector B. This stems from the fact that
all the Dyson series perturbative corrections to the time
evolved density matrix at given order in perturbation theory
are traceless (see, e.g., [19] for a proof).
The full-density matrix leading-order expressions in

Eq. (24) generalize for arbitrary smearings the results
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obtained in [20] for the leading-order contribution to the
transition probability of pointlike detectors. They also
generalize the results obtained in [19] for pointlike detec-
tors to smeared profiles. We notice already several inter-
esting aspects of (24): First, all the leading-order
contributions to the full density matrix of B coming from
the presence of A are proportional to the smeared integral
of the expectation of the field commutator, which is a c-
number and, therefore, independent of the initial state of the
field. The fact that the leading-order signalling contribution
to the transition probability of a detector was independent
of the background noise was already noted in [20]. Here we
show that this feature is not limited to transition proba-
bilities and carries over to the full state of the detector,
including the detector’s quantum coherences, and for
arbitrary spatial smearing. Note, however, that this does
not necessarily mean that it is equally easy to communicate
(at leading order) using two-level detectors independently
of the level of “noise” in the field. This is not so because the
noise terms in (11) (which give rise to contributions to ρB;T
proportional to λ2B) do indeed depend on the background
field state. Hence, the signal-to-noise ratio will, in general,
depend on the field background state.
Second, since the field commutator always vanishes for

events that are spacelike separated, it is obvious from (24)
and (25) that for compactly supported smearing functions,
and if no UV cutoffs are introduced in the response of the
detector, the time evolution of the full density matrix of
detector B is causal, as noted in a slightly different context
in [36]. This is also an explicit leading-order extension for
compactly supported smeared detectors of the results in all
orders of perturbation theory in [18], which showed that,
for pointlike detectors, the microcausality of the scalar
theory already guarantees that the flow of information from
detector A to detector B is causal. In other words, here
we see explicitly that if the two detectors are compactly
smeared and spacelike separated during their entire inter-
action time, detector B is not sensitive to the state in which
detector A was prepared or even to the very existence of
detector A.
Finally, note that (24) under the assumption (12) is better

behaved in terms of divergences than the noise terms in
(11). This is remarkable because it is well known that
the second-order contributions to the time evolved density
matrix present UV divergences for three spatial dimensions
when the switching is discontinuous [50]. This divergence
is present in the λ2B noise terms, but it does not appear in the
signalling contribution, even in 3þ 1-dimensional space-
times and for pointlike detectors plus sudden switching [to
see it one can check the expression of the field commutator
in 3þ 1 spacetime dimensions (13) and how it enters in
(24)]. We shall discuss this point further in Sec. III C, where
we will explicitly consider the pointlike limit of a scenario
where both detectors are suddenly switched on and off in
3þ 1 dimensions.

III. EFFECT OF NONCOMPACT SMEARING ON
THE CAUSALITY OF DETECTOR MODELS

A. Explicit expressions of Cðt;t0Þ for Gaussian smearing

We have discussed how the signalling between the two
detectors is strictly zero for compactly supported spacelike
separated detectors due to the presence of the field
commutator in (24). In this section we will see how one
of the most common noncompact smearing profiles
(namely Gaussian) affects the causality of the model in
the interaction of two particle detectors with the field.
Let us consider the following spatial smearing

FðxÞ ¼ 1

ðσ ffiffiffi
π

p Þn e
−x2=σ2 ð26Þ

where n is the number of spatial dimensions. Let us also
recall the value of the field commutator in flat spacetime for
one, two and three spatial dimensions (calculated in full
detail in Appendix A):

½ϕ̂ðx;tÞ; ϕ̂ðx0; t0Þ� ¼ i
2
sgnðt0− tÞΘðjt− t0j− jx−x0jÞ ð27Þ

for 1þ 1 dimensions,

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�

¼ i
2π

sgnðt0− tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt− t0Þ2− jx−x0j2

p Θ½ðt− t0Þ2− jx−x0j2� ð28Þ

for 2þ 1 dimensions, and

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�

¼ i
jx − x0j

1

4π
½δðt − t0 þ jx − x0jÞ − δðt − t0 − jx − x0jÞ�

ð29Þ

for the 3þ 1-dimensional case (note that, as operators in
the Hilbert space of the field, they are all multiples of the
identity but we have not made this explicit to relax the
already heavy notational load of this paper).
With these ingredients we can evaluate (25) for the

different flat spacetime dimensionalities. Let us consider
that the two detectors are at rest and their centers of mass
are located respectively at xA and xB. Without loss of
generality, we are going to assume that xA ¼ 0 and there-
fore jxBj ¼ L is the distance between the two detectors’
centers of mass.

1. Gaussian smearing in 1þ 1 dimensions

For the 1þ 1-dimensional case, an explicit evaluation of
(25) yields
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C1ðt; t0Þ ¼ −
1

2πσ2

Z
∞

−∞
dx

Z
∞

−∞
dx0e−x2=σ2e−ðx0−LÞ2=σ2

× Θðjt − t0j − jx − x0jÞ ð30Þ

we can make the following change of variables

u ¼ xþ x0; v ¼ x − x0; ð31Þ

which makes the Heaviside function easier to handle. We
evaluate this expression analytically recalling that, in our
setting, detector B will be switched on after detector A
[see (12) and (24)]. Taking this into account we obtain

C1ðt; t0Þ ¼
−1
4πσ2

Z
∞

−∞
du

Z
t0−t

t−t0
dve

−ðuþvÞ2
ð2σÞ2 e

−ðu−v−2LÞ2
ð2σÞ2

¼ 1

4

�
Erf

�
t − t0 þ Lffiffiffi

2
p

σ

�
− Erf

�
t0 − tþ Lffiffiffi

2
p

σ

��
ð32Þ

2. Gaussian smearing in 2þ 1 dimensions

For the 2þ 1-dimensional case

C2ðt; t0Þ ¼ −
1

2π3σ4

Z
d2x

Z
d2x0e−x2=σ2e−ðx0−xBÞ2=σ2

×
Θ½ðt − t0Þ2 − jx − x0j2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − t0Þ2 − jx − x0j2
p ð33Þ

we can perform a change of variables similar to (31)

u ¼ xþ x0; v ¼ x − x0 ð34Þ

yielding

C2ðt; t0Þ ¼
−1

4π3σ4

Z
d2u

Z
d2ve

−ðuþvÞ2
ð2σÞ2 e

−ðu−v−2xBÞ2
ð2σÞ2

×
Θ½ðt − t0Þ2 − jvj2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − t0Þ2 − jvj2
p ð35Þ

which can be simplified to

C2ðt; t0Þ ¼ −
e−L

2=σ2

4π3σ4

Z
d2ue−

juj2−2u·xB
2σ2

Z
d2ve−

jvj2þ2v·xB
2σ2

×
Θ½ðt − t0Þ2 − jvj2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − t0Þ2 − jvj2
p ð36Þ

The integral over d2u can be readily solved analytically

Z
∞

0

djujjuje−juj2
2σ2

Z
2π

0

dφe
jujL cosφ

σ2

¼ 2π

Z
∞

0

djujjuje−juj2
2σ2I0

�
Ljuj
σ2

�
¼ 2πσ2e

L2

2σ2 ð37Þ

where in the intermediate step I0ðxÞ is the 0-th modified
Bessel function of the first kind. Substituting in (36)
we get

C2ðt; t0Þ ¼ −
e−

L2

2σ2

2π2σ2

Z
t0−t

0

djvjjvje−jvj2
2σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − t0Þ2 − jvj2
p

Z
2π

0

dφe−
jvjL cosφ

σ2

¼ −
e−

L2

2σ2

πσ2

Z
t0−t

0

djvjjvje−jvj2
2σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − t0Þ2 − jvj2
p I0

�
Ljvj
σ2

�
ð38Þ

which unfortunately, to the best of the author knowledge,
does not admit a closed expression in terms of well-known
functions. It is nevertheless regular and easy to evaluate
numerically.

3. Gaussian smearing in 3þ 1 dimensions

For the 3þ 1-dimensional case we get that

C3ðt; t0Þ ¼ −
1

4π4σ6

Z
d3x

Z
d3x0e−x2=σ2e−ðx0−xBÞ2=σ2

×
1

jx − x0j ½δðt − t0 þ jx − x0jÞ

− δðt − t0 − jx − x0jÞ� ð39Þ

we can again perform the change of variables (34):

u ¼ xþ x0; v ¼ x − x0 ð40Þ

we also have to disregard the contribution of one of the
deltas recalling that, in our setting, detector B will be
switched on after detector A [see (12) and (24)] so that
in the whole integral evaluation of (24) only t0 > t yields
nonvanishing contributions:

C3ðt; t0Þ ¼
−1

8π4σ6

Z
d3u

Z
d3ve

−ðuþvÞ2
ð2σÞ2 e

−ðu−v−2xBÞ2
ð2σÞ2

×
1

jvj δðt − t0 þ jvjÞ ð41Þ

which can be simplified to

C3ðt; t0Þ ¼ −
e−L

2=σ2

8π4σ6

Z
d3ue−

juj2−2u·xB
2σ2

Z
d3ve−

jvj2þ2v·xB
2σ2

×
1

jvj δðt − t0 þ jvjÞ ð42Þ

The integral over d3u can readily be solved analytically
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2π

Z
∞

0

djujjuj2e−juj2
2σ2

Z
1

−1
dðcos θÞejujL cos θ

σ2

¼ 4πσ2

L

Z
∞

0

djujjuje−juj2
2σ2 sinh

�
Ljuj
σ2

�

¼ 2
ffiffiffiffiffiffiffi
2π3

p
σ3e

L2

2σ2 ð43Þ

substituting in (42) and performing the integration over d3v
we get

C3ðt; t0Þ ¼ −
e−

L2

2σ2

2
ffiffiffiffiffiffiffi
2π3

p
σ3

Z
∞

0

djvjjvje−jvj2
2σ2δðt − t0 þ jvjÞ

×
Z

1

−1
dðcos θÞe−jvjL cos θ

σ2

¼ −e−
L2

2σ2ffiffiffiffiffiffiffi
2π3

p
σL

Z
∞

0

djvje−jvj2
2σ2δðt − t0 þ jvjÞ sinh

�
Ljvj
σ2

�

¼ −e−
L2

2σ2ffiffiffiffiffiffiffi
2π3

p
σL

e−
ðt0−tÞ2
2σ2 sinh

�
Lðt0 − tÞ

σ2

�
ð44Þ

which can be further simplified to

C3ðt; t0Þ ¼
−1

2
ffiffiffiffiffiffiffi
2π3

p
σL

ðe−½L−ðt0−tÞ�2
2σ2 − e−

½Lþðt0−tÞ�2
2σ2 Þ ð45Þ

where the peak at the light cone is explicit.

B. Causality with a delta switching

It is possible to do a clean analytic study of the causal
response of the Gaussian smeared detector model consid-
ering detectors that interact with the field instantaneously.
Namely, we consider that detector A perturbs the field only
at an instant tA and detector B switches its interaction at an
instant tB. This technically translate into assuming that the
switching functions are given by

χAðtÞ ¼ δðt − tAÞ; χBðtÞ ¼ δðt − tBÞ; ð46Þ

where according to the setup that we have been consider-
ing, tB > tA. With these switching functions, the leading-
order signalling contribution from the presence of Alice to
the time-evolved density matrix of Bob is given by

ρ̂ð2ÞB;signal ¼ 2ReðβAeiΩAtAÞCðtA; tBÞ

×

�
−2ImðβBeiΩBtBÞ −ie−iΩBtBð1−2αBÞ
ieiΩBtBð1−2αBÞ 2ImðβBeiΩBtBÞ

�
ð47Þ

and, from (47), we can see that in this case the signalling
contribution will in general be zero if and only if CðtA; tBÞ
is zero. We discussed that if the detectors are compactly
supported, this will happen when the detectors become
spacelike separated, this is, if we define Δ ¼ tB − tA and
recall that we defined L ¼ jxB − xAj, for pointlike sup-
ported detectors we have that

Δ < L ⇒ CðtA; tBÞ ¼ 0: ð48Þ

This is not the case for noncompact detectors for which
CðtA; tBÞ never vanishes. To estimate how much casuality is
violated in the communication between detectors A and B
we build the following estimator of the causal influence of
A on B in Eq. (47),

EnðΔ; L; σÞ ¼ jCðtA; tBÞj; ð49Þ

to which all the matrix elements of detector B in (47) are
proportional, modulo constants of order one. From (32),
(38), (45) we get that

E1ðΔ; L; σÞ ¼
1

4

�
Erf

�
Lþ Δffiffiffi

2
p

σ

�
− Erf

�
L − Δffiffiffi

2
p

σ

��
ð50Þ

for one spatial dimension,

FIG. 1 (color online). Estimator EnðΔ; L; σÞ of the signalling contribution of the presence of detector A to the state of detector B for
(from left to right) n ¼ 1; 2 and 3 dimensions as a function of their spatial separation L (in units of the time separation between their
interactions with the field, Δ) and for various characteristic length scales σ of the Gaussianly smeared detectors. The maximum light-
contact between the two detectors occurs when the two detectors are fully null-separated L ¼ Δ. The different lines correspond to values
of σ ¼ 0.02Δ (red triangles), σ ¼ 0.05Δ (green rhombi), σ ¼ 0.1Δ (orange squares), σ ¼ 0.2Δ (blue circles). We see that in the
pointlike limit the estimator vanishes for spacelike separation between detectors. The timelike signalling is nonvanishing for timelike
separation in 1þ 1 dimensions and 2þ 1 dimensions showing the violations of the strong Huygens principle.
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E2ðΔ; L; σÞ ¼
e−

L2

2σ2

πσ2

Z
Δ

0

dy
ye−

y2

2σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − y2

p I0

�
Ly
σ2

�
; ð51Þ

for two spatial dimensions and

E3ðΔ; L; σÞ ¼
1

2
ffiffiffiffiffiffiffi
2π3

p
σL

ðe−ðL−ΔÞ2
2σ2 − e−

ðLþΔÞ2
2σ2 Þ; ð52Þ

for three spatial dimensions.
These magnitudes reflect the strength of the signalling

from A in the full state of B after interaction, and thus they
should be zero when A and B remain causally discon-
nected, that is, whenΔ < L. In Fig. 1 we show, for different
values of σ, how the signalling estimator behaves as a
function of the spatial separation of the detectors interact-
ing for a finite amount of time Δ. We see how in the
pointlike limit σ → 0, the model is fully causal and the
signalling estimator vanishes when the detectors are space-
like separated, that is, when L > Δ. We observe how for
one and two dimensions there is a leakage of the ability of
the detectors to communicate into the timelike area of the
light cone. This is due to the violations of the strong
Huygens principle [51,52]. This phenomenon enables the
transmission of information without being supported by an
energy flow between sender and receiver, as proved in [20].
Interestingly, although flat 3þ 1-dimensional spacetimes
do not allow for this kind of timelike energyless signalling,
almost any other nonflat three-dimensional spacetime
does, as for example in expanding universes [53]. For
our purposes, we also see in Fig. 1 how for finite-sized
detectors smeared in a noncompact way, the setup suffers
from superluminal signalling. We will quantify this viola-
tion of causality and see how fast considering σ sufficiently
small it is possible to recover approximate causality.
This is done in the analysis performed in Fig. 2. In the

top panel of Fig. 2 we see that for a given detector spatial
separation L ¼ 1.1Δ (where Δ is the spatial separation) the
undesired faster-than-light signalling is reduced faster than
exponentially as σ → 0 regardless of the number of spatial
dimensions. Thus, independently of the dimensionality
of spacetime, it is possible to recover an approximately
causal model for the quantum communication between two
detectors when σ ≪ L − Δ to arbitrary precision when
considering noncompactly smeared detectors.
On a further step, we analyze a crucially different case: in

the bottom panel of Fig. 2 we consider a scenario where
two detectors are separated by a σ-dependent distance. In
particular we consider that L ¼ Δþ 2σ. That is, the
detectors are separated by a distance always equal to twice
their characteristic size σ from the light cone. If the
detectors were compactly supported with size σ this would
mean the detectors would be spacelike separated but still
close to each other in relation with their own size. The
reason for this analysis is to understand if in order for the
causality violations to stay in check it is also necessary that

the spatial separation is bigger than the detectors’ character-
istic length, that is, whether we need L ≫ σ in order to
recover approximate causality or not.
We see in the bottom panel of Fig. 2 that, indeed,

causality is recovered faster than exponentially as σ goes to
zero also in this case, as expected from the analysis above.
However, there is another aspect of the figure that results
interesting and perhaps unexpected at first sight: the
causality violations when L ¼ Δþ 2σ grow with the size
of the detector only up to certain point, which depends
on the number of spatial dimensions, before starting a
slow polynomial decay as σ keeps growing. This perhaps
surprising effect stems from the fact that there is a distance

FIG. 2 (color online). (Top) Estimator EnðΔ; L; σÞ of the
signalling contribution from detector A to the state of B when
the centers of mass of the two detectors are separated by a
distance L ¼ 1.1Δ as a function of the smearing length scale σ (in
units of Δ) for n ¼ 1, 2 and 3 dimensions. We see that the
signalling when σ ≪ ðL − ΔÞ (which would be zero for com-
pactly supported detectors) decays over-exponentially fast. (Bot-
tom) EnðΔ; L; σÞ for L ¼ Δþ 2σ: when the centers of mass of the
two detectors are separated by twice the ‘size’ of the detectors
from the spacetime point of maximum light connection. For
compactly supported detectors of size σ it would imply spacelike
separation and thus En should be zero. We see (1) the over-
exponential dampening of the signalling when σ → 0 and (2) the
signalling from A to B peaks at a dimension-dependent value of σ
before decaying polynomially on the length scale σ (in units of
Δ). The different lines correspond to the number of spatial
dimensions: n ¼ 1 (blue circles), n ¼ 2 (orange squares), n ¼ 3
(green rhombi). The inset shows a zoomed-in area for σ=Δ < 0.8.
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decay in the integral of the commutator in the spacelike
area of the field in all cases (explicit in 2þ 1 and 3þ 1
dimensions but also existent in the 1þ 1-dimensional case)
This decay is not dependent at all on the detector size length
scale σ but it does depend on the dimensionality of
spacetime. This means that, for extremely large noncom-
pact supported detectors whose centers of mass are space-
like separated by only twice their characteristic distance, it
is possible to recover some degree of approximate causal
behavior in principle, albeit only very slowly converging to
causality as the size of the detectors increases.

C. Dependence on the switching: The regular behavior
of the signalling contributions

In the section above we have considered a delta switch-
ing corresponding to the instantaneous interaction of the
detectors with the field to keep the analysis clean. However,
one may legitimately wonder how considering different
compactly supported switching functions (including some
finite-time interaction of the detectors with the field) may
modify these results about the causality of the Gaussianly
smeared detectors.
To convince ourselves that the shape of the switching is

not relevant for the results presented in this section, we can
analyze the case of an extended switching function in the
3þ 1 dimensions which again yields closed expressions for
our signalling estimators. Furthermore, this analysis will
allow us to show some interesting aspects about the UV
regularity of the signalling contribution (24).

For simplicity, let us assume for this subsection that the
detectors are gapless. This assumption will remove from
the study undesired oscillations coming from the internal
detector dynamics that are irrelevant for the causal behavior
of the detectors. From (24) we can see that a reasonable
signalling estimator for compact switching functions with
nonoverlapping support can be

EC ¼
����
Z

∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0ÞCðt; t0Þ

����: ð53Þ

Let us consider the following simple sudden switching
scenario where the interaction of both detectors has a
duration T:

χνðtÞ ¼
�
1 t ∈ ½tν; tν þ T�
0 t ∉ ½tν; tν þ T� : ð54Þ

Without loss of generality we consider the switch-on time
of detector A tA ¼ 0, and we call Δ the time interval
between the switch-off of detector A and the switch-on
of detector B. In that case we can express (55) for the
3þ 1-dimensionsal case, using (45), as

EC ¼
1

2
ffiffiffiffiffiffiffi
2π3

p
σL

Z
T

0

dt
Z

Δþ2T

ΔþT
dt0

�
e−

½L−ðt0−tÞ�2
2σ2 − e−

½Lþðt0−tÞ�2
2σ2

�
;

ð55Þ

which admits the following closed form:

ECðΔ;L;σ;TÞ¼
1

4πL

�
ðL−ΔÞErf

�
L−Δffiffiffi

2
p

σ

�
− ðΔþLÞErf

�
ΔþLffiffiffi

2
p

σ

�
þ2ðΔ−LþTÞErf

�
L−Δ−Tffiffiffi

2
p

σ

�

þðL−Δ−2TÞErf
�
L−Δ−2Tffiffiffi

2
p

σ

�
þ2ðΔþLþTÞErf

�
ΔþLþTffiffiffi

2
p

σ

�
− ðΔþLþ2TÞErf

�
ΔþLþ2Tffiffiffi

2
p

σ

�

þ
ffiffiffi
2

π

r
σ

�
e−

ðL−ΔÞ2
2σ2 −e−

ðΔþLÞ2
2σ2 −e−

ðΔ−LþTÞ2
2σ2 þe−

ðΔþLþTÞ2
2σ2 −e−

ðΔ−LþTÞ2
2σ2 þe−

ðΔ−Lþ2TÞ2
2σ2 þe−

ðΔþLþTÞ2
2σ2 −e−

ðΔþLþ2TÞ2
2σ2

��
: ð56Þ

In Fig. 3 we see how the behavior is qualitatively the
same as in the case of a delta switching just accounting for
the larger amount of causal contact due to the duration of
the interaction T. In the figure, the signalling contribution is
smaller in magnitude than in the instantaneous switching
scenario (which causes a more violent perturbation of the
field). Notice an important point: as it can be seen in the
plot, in Fig. 3, the pointlike limit σ → 0 is no longer a delta
distribution, but instead a finite function that has support
from the point when the causal contact is initiated at
L ¼ Δ, peaks at maximum causal contact L ¼ Δþ T and
decreases down to zero when the causal contact finishes
at L ¼ Δþ 2T.
We can actually compute the exact limit σ → 0 on (56),

which yields

lim
σ→0

ECðΔ; L; σ; TÞ

¼ jL − Δj þ jL − 2T − Δj − 2jL − T − Δj
4πL

: ð57Þ

The signalling estimator peaks at maximum light-contact
L ¼ Δþ T yielding a finite value, even in the pointlike
case, of

EC
max ¼ 1

2πð1þ Δ=TÞ ð58Þ

which also does not diverge when the duration of the
interaction is considered large T → ∞.
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This is a very remarkable aspect of the leading-order
signalling contribution from a detector A to a detector B: It
does not diverge when a noncontinuous switching function
and pointlike detectors are considered. This is in stark
contrast to the known divergences in the noise terms propor-
tional to λ2B for 3þ 1-dimensional spacetimes [50]. What is
more, this signalling contribution remains finite and con-
trolled even for long interaction times. This means that, in
what concerns the leading-order terms, the signalling con-
tribution can be perturbatively investigated in a consistent
way even for very long interaction times. This is however
only fully consistent if the larger-order corrections to higher-
power signalling terms were also to remain finite in the limit
T → ∞. Regarding the causal behavior of the model, we see
that the acausal predictions of the noncompact smeared
detectors with a finite sharp switching behave in an identical
way as the case of the delta switching, reflecting the
switching independence of the observed behavior.

IV. EFFECT OF A UV CUTOFF ON THE
CAUSALITY OF COMMUNICATION

In this section we will analyze the violations of causality
in the communication between two particle detectors
steaming from the introduction of a hard UV cutoff Λ in
the interaction between the field and the detector in the
privileged quantization frame ðt; xÞ. As discussed in the
introduction, it is common to carry this kind of approx-
imations when modelling the light-matter interaction. The
rationale of such an approximation is the fact that the
coupling between an atom and the electromagnetic field is

frequency dependent and will eventually vanish for large
enough electromagnetic energies (the atoms become trans-
parent to all frequencies above certain threshold).
This approximation, of course, strongly affects the causal

behavior of the model. In this section we will perform a
clean study of the emergent causality violations that appear
in the two-detectors communication model when a hard
cutoff is introduced. Since we have to have a clean
signature of the effect of the UV cutoff and not mix it
with the effect of a spatial smearing, we are going to
consider delta switching and pointlike detectors for this
study in the cases of 1þ 1, 2þ 1 and 3þ 1 dimensions.
The hard UV cutoff is implemented by directly severing

the interaction of the field with the detector for field
frequencies above a given threshold frequency Λ. To model
this, we need to replace the field operator that couples to the
atoms in (1) by an operator ϕ̂Λðx; tÞ which incorporates an
UV cutoffΛ in its mode expansion. Regarding the detector’s
causal response, this cutoff translates into the modification
of the field commutators in (24) to a UV cutoff version.

A. 1þ 1 dimensions

For the case of one spatial dimension we start from (A4)
and apply the UV cutoff:

½ϕ̂Λðx; tÞ; ϕ̂Λðx0; t0Þ� ¼
−i
2π

�Z
Λ

0

dk
1

k
sin ½kðt− t0 − xþ x0Þ�:

þ
Z

0

−Λ
dk

1

−k
sin ½kð−tþ t0 − xþ x0Þ�

�

ð59Þ
The integrals in the expression above are exactly the
definition of the sine integral functions, so we can rewrite
this UV-cutoff commutator as

½ϕ̂Λðx; tÞ; ϕ̂Λðx0; t0Þ� ¼
−i
2π

ðSi½Λðt − t0 þ x − x0Þ�
− Si½Λðt − t0 − xþ x0Þ�Þ; ð60Þ

where SiðzÞ is the sine integral function.
As mentioned above, we are going to assume that the

detectors are pointlike and placed at positions xA, xB, and
that they interact instantaneously with the field at times tA
and tB. Namely,

χAðtÞ¼δðt− tAÞ; χBðtÞ¼ δðt− tBÞ; FðxÞ¼δðxÞ ð61Þ

in Eq. (24). Without loss of generality, let us assume that
xA ¼ 0, xB ¼ L, tA ¼ 0 and tB ¼ Δ. With these choices,
we can write the signalling estimator (49) defined in the
previous section as

EΛ
1 ðΔ; LÞ ¼

1

2π
jSi½ΛðLþ ΔÞ� − Si½ΛðL − ΔÞ�j: ð62Þ

FIG. 3 (color online). Estimator ECðΔ; L; σ; TÞ of the signalling
contribution of the presence of detector A to the state of detector B
in a 3þ 1-dimensional spacetime when the detectors are sharply
switched on and off after allowing them to interact with the field for
a finite time (T ¼ 0.1Δ) as a function of their spatial separation L
(in units of Δ) and for various characteristic length scales σ of
the Gaussianly smeared detectors. The maximum light-contact
between the two detectors occurs when L ¼ Δþ T. The different
lines correspond to values of σ ¼ 0.02Δ (red triangles), σ ¼ 0.05Δ
(green rhombi), σ ¼ 0.1Δ (orange squares), σ ¼ 0.2Δ (blue
circles). In the pointlike limit the estimator vanishes for spacelike
separation between detectors. The signalling contribution is finite
in this limit even with a sharp switching.
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B. 2þ 1 dimensions

We operate under the same hypotheses as in the
1þ 1-dimensional case (pointlike detectors and delta
switchings). Upon the introduction of a UV cutoff in the
expression for the field commutator (A8) and following the
same prescriptions as above we can compute the form of
the signalling estimator (49) for the 2þ 1-dimensional
case,

EΛ
2 ðΔ; LÞ ¼

1

2π

����
Z

Λ

0

dyJ0ðyLÞ sin½yΔ�
����; ð63Þ

which cannot be evaluated in a closed form, but which is
again easy to evaluate numerically.

C. 3þ 1 dimensions

We repeat the same analysis for the 3þ 1-dimensional
case. From (A12), the cutoff version of the field commu-
tator is

½ϕ̂Λðx; tÞ; ϕ̂Λðx0; t0Þ� ¼
i

8π2jx − x0j
�Z

Λ

−Λ
dkeikðt−t0þjx−x0jÞ

−
Z

Λ

−Λ
dkeikðt−t0−jx−x0jÞ

�
; ð64Þ

which can be readily evaluated to the following closed
expression:

½ϕ̂Λðx; tÞ; ϕ̂Λðx0; t0Þ�

¼ i
4π2jx − x0j

�
sin½Λðt − t0 þ jx − x0jÞ�

t − t0 þ jx − x0j

þ sin½Λðt0 − tþ jx − x0jÞ�
t0 − tþ jx − x0j

�
: ð65Þ

Again, L ¼ jxA − xBj and Δ ¼ tB − tA. With these
choices, we can write the signalling estimator (49) for
the 3þ 1-dimensional case as

EΛ
3 ðΔ; LÞ ¼

1

4π2L

���� sin½ΛðL − ΔÞ�
L − Δ

þ sin½ΛðLþ ΔÞ�
Lþ Δ

����: ð66Þ

We show in Fig. 4 the behavior of the estimator EΛ
n ðΔ; LÞ

as a function of the spatial separation of the detectors L in
units of their time separation Δ for different increasing
values of the UV cutoff Λ and for 1þ 1, 2þ 1 and 3þ 1
dimensions. We see in which way the fully causal model is
approximated as the cutoff increases.
One can quickly appreciate a rather concerning aspect of

the causal behavior of this model in the three-dimensional
(space) case: we can see from the analytic expression (66)
that increasing the cutoff Λ will not fix the acausal
signaling for a fixed distance Lwhen considering spacelike
separated detectors (L > Δ). Instead of restoring causality,
increasing the cutoff will induce faster oscillations, but the
magnitude of the acausal influence of A on detector B will
remain unaltered and causality will only be recovered in the
strict limit Λ → ∞. This can be seen graphically in Fig. 5
where we see that increasing the cutoff reduces the acausal
influence of A on B at a fixed L polynomially with the UV
cutoff for 2þ 1 and 1þ 1 dimensions, but it does not
reduce it for the 3þ 1-dimensional case.
In particular, for 2þ 1 and 1þ 1 dimensions we see that

the acausal influence decreases as ∼Λ−α, with α > 1 for
1þ 1 dimensions and α < 1 for 2þ 1 dimensions. These
results are consistent with the result for 1þ 1-dimensional
Dirichlet cavities obtained in [19] where the causal influ-
ence of one detector on another decayed with the square of
the number of cavity modes considered in the model.

FIG. 4 (color online). Estimator EΛ
n ðΔ; LÞ of the signalling contribution of the presence of detector A to the state of detector B for

(from left to right) n ¼ 1, 2 and 3 dimensions as a function of their spatial separation L (in units of the time separation between their
interactions with the field, Δ) and for various UV cutoffs Λ. The maximum light-contact between the two detectors occurs when the two
detectors are null-separated L ¼ Δ. The different lines of the 1þ 1-dimensional plot correspond to values of Λ ¼ 5Δ−1 (blue circles),
Λ ¼ 10Δ−1 (orange squares), Λ ¼ 20Δ−1 (green rhombi) and Λ ¼ 103Δ−1 (orange triangles). For the 2þ 1-dimensional and 3þ 1-
dimensional plots they correspond to values of Λ ¼ 25Δ−1 (blue circles), Λ ¼ 50Δ−1 (orange squares) and Λ ¼ 100Δ−1 (green rhombi).
Since the detectors are pointlike and interact with the field instantaneously, the nonvanishing values in the spacelike separation area
(L > Δ) are due to causality violations caused by the finite UV-cutoff. Signalling is nonvanishing for timelike separation in 1þ 1
dimensions and 2þ 1 dimensions even in the limit Λ → ∞ due the violations of the strong Huygens principle.
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Although the ill behavior in 3þ 1 dimensions may of
course be, to some extent, smoothed by considering
smoother switchings than a delta kick, the fact remains
that the restoration of the casual behavior of the model in
3þ 1-dimensional spacetimes is much worse than in 1þ 1
and 2þ 2 dimensions, and so the use of hard cutoff detector
models in three spatial dimensions for detectors switched
on for a finite time to scenarios where the causality of the
model is relevant is problematic.
We conclude that while it may be argued that approxi-

mate causality may be recovered with arbitrary precision
polynomially fast in 1þ 1- and 2þ 1-dimensional scenar-
ios if we introduce a hard UV cutoff, it is not a reasonable
assumption to introduce UV cutoffs in relativistic quantum
communication scenarios in 3þ 1-dimensional spacetimes.

V. CAUSALITY VIOLATIONS OF THE
ROTATING-WAVE APPROXIMATION

The rotating-wave approximation (RWA) is yet another
very common approximation made in the modelling of
quantum optical settings. In fact, it is arguably the most
common approximation in quantum optics, and it can be
ubiquitously found anywhere from basic textbooks to
research works [12]. To better understand this approxima-
tion, let us first expand the field in plane-wave modes in the
Hamiltonian (1):

ĤI ¼
X
ν

λνχνðtÞ
Z

dnk
~FðkÞffiffiffiffiffiffijkjp

×
	
âkσ̂þν e−i½ðjkj−ΩνÞt−k·xν� þ â†kσ̂

−
ν ei½ðjkj−ΩνÞt−k·xν�

þ â†kσ̂
þ
ν ei½ðjkjþΩνÞt−k·xν� þ âkσ̂−ν e−i½ðjkjþΩνÞt−k·xν�



ð67Þ

where the integral over dnx has already been performed and
where we have defined the Fourier transform of the real-
valued spatial profile as

~FðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffið2πÞnp
Z

dnxFðxÞeik·x: ð68Þ

The RWA consists of removing the terms proportional
to σþa† and their Hermitian conjugates in the Hamiltonian
(67). More explicitly, the so-called rotating-wave approxi-
mation consists of replacing the Hamiltonian (67) by

ĤI ¼
X
ν

λνχνðtÞ
Z

dnk
~FðkÞffiffiffiffiffiffijkjp

×
	
âkσ̂þν e−i½ðjkj−ΩνÞt−k·xν� þ â†kσ̂

−
ν ei½ðjkj−ΩνÞt−k·xν�



:

ð69Þ

The rationale behind this approximation is that the
neglected terms do not have a stationary phase for the
detector-field resonance k ¼ Ω, and as such, those terms
yield bounded oscillations when integrated in time. Within
the approximation, these bounded oscillations can be
neglected in the detector-field dynamics when compared
to the close-to-resonance rotating wave terms. Thus, the
Hamiltonian (69) is expected to approximate the light-
matter interaction for interaction times longer than the
Heisenberg time of the detectors Ω−1 [12].
Notice that from the form of this Hamiltonian we already

see that if the initial state of the field is the vacuum and the
detectors are both in the ground state, there is no nontrivial
dynamics: the detectors will not be able to communicate or
get excited even if the interaction is switched on sharply
and for a finite time.
Since the Hamiltonian is no longer linear in the field,

the microcausality of the scalar field theory no longer
guarantees that the model will behave causally at all. To
illustrate and study the causality violations in this approxi-
mated model, we are going to consider a particular scenario
where we begin with a general state of the two detectors,
A and B, but the field is initialized in the vacuum. This is
akin to the classical scenario of communication with a pair
of antennas in the presence of no background noise,

ρ̂0 ¼ ρ̂d;0 ⊗ j0ih0j: ð70Þ

To have a clean result and disregard all the other possible
sources of acausal behavior that we have already studied,
we are also going to consider pointlike detectors.
The leading-order signalling will have, again, two con-

tributions corresponding to each term in (7) that is propor-
tional to λAλB. We will focus on the 3þ 1-dimensional case

and let us evaluate TrϕðÛð1Þρ̂0
ˆUð1Þ†Þ:

FIG. 5 (color online). Scatter plot of the estimator EΛ
n ðΔ; LÞ of

the signalling contribution of the presence of detector A to the
state of detector B for a fixed spacelike separation of the detectors
L ¼ 1.4Δ as a function of the UV cutoff scale Λ (in units of Δ−1)
for spatial dimensions equal to n ¼ 1 (blue circles), n ¼ 2
(orange squares), n ¼ 3 (green rhombi). In one and two spatial
dimensions causality is restored polynomially in Λ. In three-
dimensional spaces increasing the cutoff does not restore
causality unless we go to the strict limit Λ → ∞.
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TrϕðÛð1Þρ̂0
ˆUð1Þ†Þ

¼ 1

16π3
X
ν;η

λνλησ̂
−
ν ρ̂d;0σ̂

þ
η

Z
∞

−∞
dt
Z

∞

−∞
dt0χνðtÞχηðt0Þ

×
Z

d3k
jkj e

i½ðjkj−ΩÞðt−t0Þ−k·ðxν−xηÞ� ð71Þ

where we have used that Trϕða†kj0ih0jak0 Þ ¼ δð3Þðk − k0Þ
and the fact that the detectors are considered pointlike, that
is ~FðkÞ ¼ 1.
We can quickly evaluate the integral over d3k that we

will denote as

Cðt; t0;xν;xηÞ¼
Z

d3k
jkj e

i½ðjkj−ΩÞðt−t0Þ−k·ðxν−xηÞ�

¼ 4πe−iΩðt−t0Þ

jxν−xηj
Z

∞

0

djkjeijkjðt−t0Þ sinðjkjjxν−xηjÞ

¼ 4πe−iΩðt−t0Þ

jxν−xηj
� jxν−xηj
jxν−xηj2− ðt− t0Þ2þ

iπ
2

× ½δðt− t0− jxν−xηjÞ−δðt− t0− jxνþxηjÞ�
�
:

ð72Þ

Here we see explicitly how for the signalling terms
(proportional to λAλB), the rotating-wave approximation
breaks causality: if we compare this expression with the
commutator (29), we see that the result under the rotating-
wave approximation is essentially the same in terms of
causal behavior as the full model without approximation,
except for the first summand in (72), which is explicitly
nonvanishing outside the light cone and thus introduces
causality violations.
Let us compute the signalling contribution from A to the

density matrix of B in the terms TrϕðÛð1Þρ̂0
ˆUð1Þ†Þ of (7)

under the RWA by tracing out detector A in the terms
proportional to λAλB of (72):

Trϕ;AðÛð1Þρ̂0
ˆUð1Þ†Þ

¼ λAλB
16π3

�
Trðσ̂−Aρ̂A;0Þρ̂B;0σ̂þB

×
Z

∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0ÞCðt; t0; xA; xBÞ

þ Trðρ̂A;0σ̂þAÞσ̂−Bρ̂B;0
×
Z

∞

−∞
dt
Z

∞

−∞
dt0χBðtÞχAðt0ÞCðt; t0; xB; xAÞ

�
: ð73Þ

It is easy to see that the signalling contribution to the
density matrix of B coming from Ûð2Þρ̂0 þ ρ̂0Û

ð2Þ† yields
identically behaved terms in terms of the scaling of

causality violation as those coming from Ûð1Þρ̂0
ˆUð1Þ† under

the hypothesis (12).
Therefore, to estimate the causality violations in the two-

detector communication scenario coming from the rotating-
wave approximation, we need to assess the magnitude of
the following signalling estimator which will be zero if
there is no influence of A on B:

ERW ¼
����
Z

∞

−∞
dt
Z

∞

−∞
dt0χAðtÞχBðt0Þ

e−iΩðt−t0Þ

L2 − ðt − t0Þ2
����; ð74Þ

that is, the terms of the causal influence of A on B
[Eq. (72)] that are nonzero outside of the light cone.
Because it is argued that the rotating-wave approximation
only becomes accurate for long durations of the interaction,
we are going to consider a finite-duration interaction.
Namely, we will use the switching function (54). In other
words, the interactions of A and B have a duration T, A
switches on at t ¼ 0 and there is a delay Δ between the
switching off of A and the switching on of B. This leaves
(74) as follows,

ERW ¼
����
Z

T

0

dt
Z

2TþΔ

TþΔ
dt0

e−iΩðt−t0Þ

L2 − ðt − t0Þ2
����; ð75Þ

this integral can be evaluated analytically, for which we first
perform the change of variables,

u ¼ tþ t0; v ¼ t − t0; ð76Þ

which maps the integral to

ERW ¼ 1

2

����
Z

2TþΔ

TþΔ
du

Z
u−2T−2Δ

−u
dve−iΩv

�
1

L2 − v2

�

þ
Z

3TþΔ

2TþΔ
du

Z
−uþ2TΔ

u−4T−2Δ
dve−iΩv

�
1

L2 − v2

�����: ð77Þ

The closed expression is lengthy (a long sum of sine
integral and cosine integral functions) but easily evaluable.
The two pointlike detectors are completely spacelike

separated for values of L satisfying L > 2T þ Δ. To see
how the violation of causality of the rotating-wave approxi-
mation behaves with the increase in the duration of
the interaction, we are going to fix L ¼ 3T þ Δ so
that the detectors are always fully spacelike separated
during the interaction.
We see in Fig. 6 that when T ∼ Ω−1 (the interaction times

where the RWA is usually considered to start being
unacceptable), the causality violation decreases very slowly
with the spatial separation betweeen the detectors. The fact
that the RWA model allows for long-range faster-than-light
signalling renders the model in this regime completely
unsafe for any kind of relativistic considerations.
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We see also that as we increase the product ΩT the RWA
violation of causality becomes smaller as expected.
However, importantly, as ΩT increases, the speed at which
causality is restored in the model becomes increasingly
slower: while it is possible to improve the causality of the
RWA-approximated model if the interaction time is much
larger than Ω−1, the speed at which causality is recovered
drops fast as the duration of the interaction increases. While
it seems possible to work under the RWA and have some
approximate degree of causal behavior for very long
interaction times, the spacelike signalling that the RWA
enables is resilient, long-ranged (in terms of the spatial
separation of the detectors) and remains even for relatively
long timescales. This means that one should be extremely
careful when using this approximation in settings where

faster-than-light signalling cannot be tolerated. For instance
to make predictions about experiments where the outcome
relies on the fact that the detectors remain spacelike
separated.

VI. CONCLUSIONS

We have analyzed, in an operational way, the causal
behavior of three of the common approximations and
generalizations of the particle detector models used in
quantum field theory to probe quantum fields (such as the
Unruh-DeWitt detector) and of the closely related models
of light-matter interaction (such as the Jaynes-Cummings
model). Namely, we have studied (1) the introduction of a
noncompact spatial smearing of the detector, (2) the
introduction of a UV cutoff in the detector-field interaction
and (3) the use of the rotating-wave approximation (RWA).
Concretely, we have studied how the three modifications

of the model enable unacceptable faster-than-light signal-
ling between two particle detectors interacting with a
quantum field at different times in flat spacetimes of
one, two and three spatial dimensions. While all these
three modifications of the standard UDW model introduce
some degree of pathological faster-than-light signalling in
quantum communication scenarios, we have seen that some
are more harmful than others.
First, we have analyzed the causality violations that

appear when particle detectors are spatially smeared with a
smearing function that is not compactly supported. This is
of interest because this kind of approximation is very often
considered in the literature, both as a means to regularize
divergences or as a refinement of the light-matter inter-
action models to include the finite size of the (noncom-
pactly supported) atomic wave function. We have seen that
the causality violations introduced by a Gaussianly sup-
ported spatial profile can be made arbitrarily small over-
exponentially fast as we reduce the size of the detectors in
units of the time separation between them, regardless of the
number of spacetime dimensions.
Second, we have studied the effect of the introduction

of a UV cutoff on the signalling between two spacelike
separated detectors. This kind of approximation is made in
the context of the light-matter interaction, and it is often
justified by the fact that atomic probes do not couple with
the same strength to all the frequencies of the electromag-
netic field, being effectively transparent to frequencies
much above the atomic frequency resonances. We have
seen that the effect of this kind of cutoff is critically
dependent on the dimension of spacetime, and so are the
limitations on the model that relativistic causality imposes.
Namely, while the violation of causality can be made
arbitrarily small for 1þ 1 and 2þ 1 dimensions polyno-
mially fast on the frequency of the cutoff, the case of 3þ 1
dimensions is different: for very fast switchings it is not
possible to make the faster-than-light signalling arbitrarily
small for any finite value of the UV cutoff. This renders this

FIG. 6 (color online). (Top) Estimator ERW of the signalling
contribution from detector A to the state of B under the RWA for
two pointlike detectors separated by a distance L (in units of
Ω−1). The duration of the interaction for both detectors is T ¼
Ω−1 and the interval between A’s switching off and B’s swithcing
on is Δ ¼ Ω−1. The values of L where the detectors’ interactions
have some light contact are enclosed by two vertical red dashed
lines. The signalling estimator peaks at maximum causal contact.
We see that the signalling at strictly spacelike separation
(L > Δþ 2T) is nonzero due to the causality violation intro-
duced by the RWA, decreasing slowly with the spatial separation.
(Bottom) ERW for fixed L ¼ 3T þ Δ (detectors fully spacelike
separated) as a function of Ω in units of T−1: We see that while it
is true that causality gets restored when T ≪ Ω−1, the causality
violation is only polynomially recovered when Ω grows.
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kind of approximation in 3þ 1 dimensions unsuitable to
describe scenarios in relativistic quantum communication
or any other scenarios where relativistic considerations are
important.
Finally, we have assessed the violations of causality that

emerge from the application of the rotating-wave approxi-
mation (commonly used in the light-matter interaction
models such as the Jaynes-Cummings model). We have
seen that the RWA allows for long-range faster-than-light
signalling for interaction times of the order of the detector’s
Heisenberg time Ω−1. The violations of causality do get
reduced as the interaction time becomes larger than the
detector’s Heisenberg time, but their reduction is slow
and that makes the RWA perilous to use and arguably an
approximation to be avoided—even for long interaction
times—when describing setups in relativistic quantum
communication and any other circumstance where the
causality of the model is crucial.
Additionally, we have discussed some remarkable

aspects of the quantum communication between two
particle detectors through a quantum field. First, the
leading-order signalling contributions of one particle detec-
tor to the state of another detector (that is, the influence that
a detector A switched on at early times has over a detector
B switched in A’s future) is completely independent of the
background initial state of the field regardless of the initial
state of detectors A and B. This is commensurate with what
was seen for the transition rate of detector B in [20].
Nevertheless, we have discussed that signalling from A
to B is still affected by the background state through the
local noise terms. Second, we have seen that the influence
of detector A on the state of detector B (referred to as
the “signalling contributions” throughout this work) does
not fundamentally present the kind of UV divergences
described in [50] for pointlike detectors and discontinuous
switching functions.
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APPENDIX: FIELD COMMUTATORS IN
DIFFERENT SPACETIMES

In this appendix we obtain in full detail the scalar field
commutator in flat spacetime for 1þ 1, 2þ 1 and 3þ 1
spacetime dimensions. Although very basic, these calcu-
lations are going to be useful to show how to obtain the
field commutator when an UV cutoff is introduced.
Notice that throughout this appendix the results of these

commutator evaluations have to be regarded as c-numbers
(multiples of the identity in the field’s Hilbert space).

1. Free scalar field commutator in 1þ 1-dimensional
Minkowski spacetime

The easiest way to obtain this commutator is to consider
a plane-wave mode expansion of the field:

ϕ̂ðx; tÞ ¼
Z

∞

−∞
dk

1ffiffiffiffiffiffiffiffiffiffi
4πjkjp ðâke−iðjkjt−kxÞ þ â†ke

iðjkjt−kxÞÞ:

ðA1Þ

Using this we get

½ϕ̂ðx;tÞ; ϕ̂ðx0; t0Þ�

¼ 1

4π

Z
∞

−∞
dk

Z
∞

−∞
dk0

1ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp ð½âk; â†k0 �e−i½ðjkjt−jk
0jt0Þ−kx−k0x0Þ�

þ ½â†k; âk0 �ei½ðjkjt−jk
0jt0Þ−kx−k0x0Þ�Þ; ðA2Þ

where we have used that ½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0. Now
since

½ak; a†k0 � ¼ δðk − k0Þ;
½â†k; âk0 � ¼ −½a†k0 ; ak� ¼ −δðk0 − kÞ; ðA3Þ

we have that

½ϕ̂ðx;tÞ; ϕ̂ðx0; t0Þ� ¼ 1

4π

Z
∞

−∞
dk

1

jkj ðe
−i½ðjkjðt−t0Þ−kðx−x0Þ�

−ei½jkjðt−t0Þ−kðx−x0Þ�Þ

¼ −i
2π

�Z
∞

0

dk
1

k
sin ½kðt− t0−xþx0Þ�

þ
Z

0

−∞
dk

1

−k
sin ½kð−tþ t0−xþx0Þ�

�
:

ðA4Þ

Now since
R
∞
0 dx 1

x sinðaxÞ ¼ π
2
sgnðaÞ,

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ� ¼ −i
4
ðsgn½t − t0 − xþ x0�

− sgn½t0 − t − xþ x0�Þ; ðA5Þ

which can be simplified to

½ϕ̂ðx;tÞ; ϕ̂ðx0; t0Þ� ¼ i
2
sgnðt0− tÞΘðjt− t0j− jx−x0jÞ: ðA6Þ

2. Free scalar field commutator in 2þ 1-dimensional
Minkowski spacetime

Again we make a plane-wave mode expansion of the
field, as in the 1þ 1-dimensional case:
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ϕ̂ðx; tÞ ¼
Z

d2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ22jkj

p ðâke−iðjkjt−k·xÞ þ â†ke
iðjkjt−k·xÞÞ:

ðA7Þ

We can now use this expansion to obtain that

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�

¼ 1

8π2

Z
d2k

Z
d2k0

1ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp ð½â†k; âk0 �ei½ðjkjt−jk
0jt0Þ−k·x−k0·x0Þ�

þ ½âk; â†k0 �e−i½ðjkjt−jk
0jt0Þ−k·x−k0·x0Þ�Þ;

where we have used that ½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0. Now
since ½ak; a†k0 � ¼ δð2Þðk − k0Þ,

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�

¼ 1

8π2

Z
d2k
jkj ðe

−i½ðjkjðt−t0Þ−k·ðx−x0Þ� − ei½ðjkjðt−t0Þ−k·ðx−x0Þ�Þ

¼ 1

8π2

Z
∞

0

djkj
Z

2π

0

dφðe−i½ðjkjðt−t0Þ−jkjjx−x0j cosφ�

− ei½ðjkjðt−t0Þ−jk∥x−x0j cosφ�Þ ðA8Þ

¼ 1

2iπ

Z
∞

0

djkjJ0ðjkjjx − x0jÞ sin½jkjðt − t0Þ�; ðA9Þ

which can be evaluated in closed form as

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�

¼ i
2π

sgnðt0 − tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − t0Þ2 − jx − x0j2

p Θ½ðt − t0Þ2 − jx − x0j2�:

ðA10Þ

3. Free scalar field commutator in 3þ 1-dimensional
Minkowski spacetime

Once again, we expand the field in terms of plane-wave
modes as we did in the previous cases:

ϕ̂ðx; tÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jkj

p ðâke−iðjkjt−k·xÞ þ â†ke
iðjkjt−k·xÞÞ:

ðA11Þ

With this expansion at hand we obtain that

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ�

¼ 1

16π3

Z
d3k

Z
d3k0

1ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp
× ð½âk; â†k0 �e−i½ðjkjt−jk

0jt0Þ−k·x−k0·x0Þ�

þ ½â†k; âk0 �ei½ðjkjt−jk
0jt0Þ−k·x−k0·x0Þ�Þ;

where we have used that ½ak; ak0 � ¼ ½ak; a†k0 � ¼ 0. Now
since ½ak; a†k0 � ¼ δð3Þðk − k0Þ,

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ� ¼ 1

16π3

Z
d3k
jkj ðe

−i½jkjðt−t0Þ−k·ðx−x0Þ� − ei½jkjðt−t0Þ−k·ðx−x0Þ�Þ

¼ −i
8π3

Z
d3k

1

jkj sin½jkjðt − t0Þ − k · ðx − x0Þ�

¼ i
4π2

Z
djkjjkj

Z
−1

1

dðcos θÞ sin½jkj½ðt − t0Þ − jx − x0j cos θ��

¼ i
4π2

Z
djkj 1

jx − x0j ðcos ½jkjðt − t0 þ jx − x0jÞ� − cos ½jkjðt − t0 − jx − x0jÞ�Þ

¼ i
jx − x0j

1

8π2

�Z
∞

0

djkjeijkjðt−t0þjx−x0jÞ þ
Z

∞

0

djkje−ijkjðt−t0þjx−x0jÞ −
Z

∞

0

djkjeijkjðt−t0−jx−x0jÞ

−
Z

∞

0

djkje−ijkjðt−t0−jx−x0jÞ
�

¼ i
jx − x0j

1

8π2

�Z
∞

−∞
dkeikðt−t0þjx−x0jÞ −

Z
∞

−∞
dkeikðt−t0−jx−x0jÞ

�
; ðA12Þ

which finally yields the following closed expression with support only on the null boundary of the light cone, (in contrast to
the timelike leakage of 1þ 1 dimensions and 2þ 1 dimensions):

½ϕ̂ðx; tÞ; ϕ̂ðx0; t0Þ� ¼ i
jx − x0j

1

4π
½δðt − t0 þ jx − x0jÞ − δðt − t0 − jx − x0jÞ�: ðA13Þ
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