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For a set of N asymptotically flat black holes with arbitrary charges and masses, all initially at rest and
well separated, we prove the following extremum principle: the extremal charge configuration (jqij ¼ mi

for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent
horizon areas, at fixed charges and fixed Euclidean separations. We prove this result through second order
in an expansion in the inverse separations. If all charges have the same sign, this result is a variational
principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as
an extremum of total energy, rather than as a balance of forces; this result augments a list of related
variational principles for other static black holes, and is consistent with the independently known
Bogomol'nyi-Prasad-Sommerfield (BPS) energy minimum.
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I. INTRODUCTION

A system of multiple black holes is not static in general,
but the system can be kept static by a strut (a conical
singularity) on the axis between each pair of black holes.
Each strut is interpreted as providing a force that prevents
the black holes from moving (see [1] and references
therein). Remarkably, without any struts present, there is
also a well-known solution [2] that describes a set of N
charged black holes in static equilibrium, regardless of their
mutual separations. A key feature of this static solution is
that the black holes’ individual charges qi all have the same
sign, and are related to their individual masses mi by the
condition (in units with G ¼ c ¼ 4πϵ0 ¼ 1)

jqij ¼ mi; 1 ≤ i ≤ N: ð1Þ

The asymptotically flat static geometry satisfying (1) was
found by Hartle and Hawking [2], who extended the
Majumdar-Papapetrou solutions [3,4]. The interpretation
and significance of the condition (1) is of central interest
in this paper. The traditional interpretation of the Hartle-
Hawking solution [2] appeals to forces: the static equilib-
rium is attributed to the exact balance between the black
hole pairwise gravitational attraction and electric repulsion.
However, the condition (1) refers to each black hole, not to
a balance of forces between black holes. Thus, (1) is a
stronger condition than a Newtonian balance of forces,
which for two particles requires q1q2 ¼ m1m2. This sug-
gests that (1) can be interpreted without using forces.
Such an alternative interpretation is the purpose of

this paper. We show that the condition (1) can be derived
from an extremum of the system’s total energy E. This fits
naturally into the framework of general relativity, where

gravity and total energy are determined by spacetime
geometry, and gravity is fundamentally not treated as
a force.
The condition (1) describes extremal charge, since a

nonrotating black hole satisfies a charge-mass inequality,
jqj ≤ m. Thus, our results can be briefly summarized as a
set of extremally charged black holes extremizing the total
energy. More precisely, we consider a conformally flat
spatial geometry in the form introduced by Brill and
Lindquist [5], and we prove the following extremum
principle for well-separated black holes:

ForN charged black holes; initially at rest;
eachwith jqij ≤ mi and apparent horizon areaAi;
the extremal charge condiditon jqij ¼ mi follows
from extremizing the total energy∶ ∂E=∂Ai ¼ 0

at fixed chargesqi andEuclidean separations rij: ð2Þ

We prove the extremum principle (2) as an expansion in the
inverse separation distances (1=rij), through second order,
which is where relativistic post-Newtonian contributions
first appear. The particular quantities that are varied or held
fixed in this energy extremum are motivated by the first
law of black hole mechanics, as we illustrate when we
prove (2).
If all of the black hole charges in (2) have the same sign,

then (2) is a variational principle for static black holes: it
identifies a static black hole configuration as an extremum
of total energy, within a family of black holes that are
initially at rest. That is, a configuration with extremal
energy remains at rest, while all other configurations evolve
dynamically. Such variational principles have been proved
for a single uncharged black hole [6], a single black hole
in Einstein-Yang-Mills theory [7], and pairs of mirror-
symmetric black holes in the Randall-Sundrum braneworld
models [8]. Our extremum principle (2) adds the case of
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charged black holes to these earlier variational principles
[6–8] and identifies the static Hartle-Hawking solution as
its energy extremum. In contrast to [6–8], in this paper, the
number N of black holes that we consider is arbitrary, and
our energy extremum varies (rather than holds fixed) the
black hole areas.
We also show that the energy extremum in (2) is an

energy minimum. This result is consistent with the earlier
result of Gibbons and Hull [9], but our methods are
different. In [9], it was found that the Majumdar-
Papapetrou solution saturates the lower bound of a
supersymmetric Bogomol'nyi-Prasad-Sommerfield (BPS)
inequality, E ≥ jQj, for global quantities: the total energy E
and charge Q (with zero magnetic charge in the context of
this paper). In contrast to [9], in this paper, we minimize the
energy EðAi; qi; rijÞ as a function of several variables, and
we do not use supersymmetry; we also obtain additional
extremum conditions (mi ¼ jqij) on the individual masses
and charges.
It is worth noting that, although black holes with

extremal charge are not often considered in astrophysical
applications, they have attracted significant theoretical
interest. For example, they represent stable ground states
for black holes in supersymmetric theories [10] and they
have been used to investigate the nature of entropy in black
hole thermodynamics [11].
This paper is organized as follows. In Sec. II, we review

the necessary geometry. In Sec. III, we prove the extremum
principle (2) for well-separated black holes, through second
order, and we specify the physical conditions under which
the separations rij are sufficiently large. In Sec. IV, we
show that the energy extremum is a minimum, and verify
that it agrees with the BPS bound. We conclude in Sec. V.
Throughout this paper, we work in four spacetime dimen-
sions and use geometric units with G ¼ c ¼ 4πϵ0 ¼ 1.
Much of our analysis does not require that the black hole

charges have the same sign. We only need to refer to same-
sign charges in the following contexts: in a higher-order
analysis (Sec. III E), in comparisons to the BPS bound
(Sec. IV), and in applications of the extremum principle (2)
as a variational principle that reproduces the static Hartle-
Hawking solution (as described above).

II. GEOMETRY

In this section, we review the geometry [2,5] that we
use in this paper. A system of N charged black holes, all
initially at rest, is described by its instantaneous spatial
geometry. The appropriate area Ai of a black hole is that of
its apparent horizon, which is determined by the spatial
geometry alone (unlike the event horizon, which is a global
spacetime property). The apparent horizon generally lies
inside the event horizon, and coincides with it for a static or
stationary spacetime.
We use a conformally flat geometry, in the form

introduced by Brill and Lindquist [5]. This geometry

contains no conical singularities (struts) to prevent the
black holes from moving. The extremal black holes
considered by Hartle and Hawking [2] remain eternally
static. The nonextremal black holes considered by Brill and
Lindquist [5] are initially at rest, and evolve dynamically
thereafter [12,13]. For both cases, the instantaneous spatial
geometry, exterior to all N black holes, is

ds2 ¼ f2ðdx2 þ dy2 þ dz2Þ; ð3aÞ

f ¼
�
1þ

XN
i¼1

αi
j~r − ~rij

��
1þ

XN
i¼1

βi
j~r − ~rij

�
: ð3bÞ

Figure 1 illustrates the setup. The Euclidean vector ~r locates
any point outside the black holes. The vector ~ri locates
black hole i. We let rij denote a Euclidean separation
distance between black holes i and j,

rij ¼ j~ri − ~rjj: ð4Þ

The parameters αi and βi are non-negative constants, and
are related to physical quantities (mass, charge, energy) as
follows [2,5]. Black hole i has individual mass (rest energy)
mi and charge qi,

mi ¼ αi þ βi þ
X
j≠i

ðαiβj þ αjβiÞ
rij

; ð5Þ

qi ¼ βi − αi þ
X
j≠i

ðβiαj − βjαiÞ
rij

: ð6Þ

Each pair ðmi; qiÞ satisfies the black hole charge-mass
inequality, jqij ≤ mi. The system of N black holes has total
energy E and interaction energy Eint,

E ¼
XN
i¼1

ðαi þ βiÞ; ð7Þ

FIG. 1. Illustration of three nonextremal black holes in the
spherical approximation. Black holes 1 and 2 are separated by
distance r12. Black hole i has position ~ri and apparent horizon
radius Ri. Dots denote the punctures described in the text.
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Eint ¼ E −
XN
i¼1

mi ¼ −
XN
i¼1

X
j≠i

ðαiβj þ αjβiÞ
rij

: ð8Þ

The expressions for mi and qi, in (5)–(6), can be solved
for the parameters αi and βi. For large rij, the results to first
order in 1=rij are [5]

αi ≃ ðmi − qiÞ
2

�
1 −

1

2

X
j≠i

ðmj þ qjÞ
rij

�
; ð9aÞ

βi ≃ ðmi þ qiÞ
2

�
1 −

1

2

X
j≠i

ðmj − qjÞ
rij

�
: ð9bÞ

Using (9), for large rij, the interaction energy (8) can be
written to first order in 1=rij as [5]

Eint ≃ −
XN
i¼1

X
j>i

ðmimj − qiqjÞ
rij

: ð10Þ

This has the expected form: it is the sum of the pairwise
gravitational and electrostatic potential energies.
For the static Hartle-Hawking solution [2], only one set

of the parameters αi and βi is nonzero,

ðαi ¼ 0; βi > 0Þ or ðβi ¼ 0; αi > 0Þ: ð11Þ

In terms of mass and charge, the two cases in (11) are
equivalent to, respectively [2]

qi ¼ mi ¼ βi > 0 or − qi ¼ mi ¼ αi > 0: ð12Þ

Thus, the static condition, (11)–(12), can be summarized as
an extremal condition for same-sign charges,

jqij ¼ mi; with all qi of like sign: ð13Þ

The black hole charges are nonextremal, if the param-
eters αi and βi do not satisfy the static condition (11)–(13).
Near a nonextremal black hole i, we may transform from
Cartesian coordinates ðx; y; zÞ in (3) to spherical coordi-
nates ðr; θ;ϕÞ centered at ~ri. As found in [5], for suffi-
ciently large separations rij, the apparent horizon of black
hole i can be treated as a sphere, rðθ;ϕÞ ¼ Ri ¼ constant.
We refer to this as the spherical approximation, which is
illustrated in Fig. 1. The radius Ri is given by [5]

Ri
2 ¼ αiβi

�
1þ

X
j≠i

αj
rij

�
−1
�
1þ

X
j≠i

βj
rij

�
−1
: ð14Þ

In the spherical approximation, the metric function f in (3)
evaluated on the surface r ¼ Ri is [5]

f ¼
�
1þ αi

Ri
þ
X
j≠i

αj
rij

��
1þ βi

Ri
þ
X
j≠i

βj
rij

�
: ð15Þ

As we see in Sec. III, the results (14)–(15) will only hold to
up to an appropriate order, when expanded in powers of the
inverse separations (1=rij).
We end this subsection by reviewing some technical

features [2,5] of the geometry and topology, for both
nonextremal black holes and extremal black holes. The
spatial geometry has the topology of R3 with N points
(“punctures”) removed. Each puncture is located by the
vector ~ri. In the flat background metric, the distance
between two punctures is the Euclidean distance rij.
In the full conformal geometry, for a nonextremal black

hole, each puncture represents the spatial infinity of an
asymptotically flat region (“sheet”), which is hidden behind
the black hole’s apparent horizon, as viewed in the common
asymptotic region (sheet) exterior to all N black holes,
where the total energy E is defined. The topology referred
to above is equivalent to the topology of N þ 1 connected
sheets. Each black hole’s individual mass mi is the
Arnowitt-Deser-Misner (ADM) mass of its hidden asymp-
totic region (its individual sheet).
In contrast, for an extremal black hole, a careful

coordinate analysis [2] reveals that the puncture at ~ri
represents the apparent horizon, with finite area. In this
case, the parameter values (11) cannot be used to evaluate
the apparent horizon radius (14). As shown in [2], for
extremal charge, j~r − ~rij → 0 is a simple coordinate sin-
gularity, and the area of the apparent horizon in this limit is
nonzero, Ai ¼ 4πmi

2 ¼ 4πqi2. This coordinate issue will
pose no complications in our proof of the extremum
principle in Sec. III B, where we perform all calculations
in the nonextremal regime, and then express the energy E
as a function of the finite areas Ai. These areas reproduce
the correct values Ai ¼ 4πmi

2 ¼ 4πqi2 when we take the
extremal limit in terms of charges and masses (jqij → mi),
which is a coordinate-independent limit.

III. ENERGY EXTREMUM PRINCIPLE

A. Physical motivation

In this subsection, we illustrate how the first law of
black hole mechanics motivates our extremum principle
(2). This also demonstrates the basic extremum procedure
that we use in our proof of the extremum principle
(Secs. III B–III E).
For clarity, we begin with the case of a single black hole,

and then generalize it to the multi-black hole case. A single
static charged black hole (the Reissner-Nordström solution)
has energy E ¼ m and charge jqj ≤ m. Variations conserve
energy via the first law of black hole mechanics [14],

δE ¼ κ

8π
δAþ Φδq: ð16Þ
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Here A, κ, and Φ are the black hole’s surface area, surface
gravity, and electric potential, respectively. In the case of
extremal charge (jqj ¼ m), it is well known that κ ¼ 0, so
the first law reduces to

δE ¼ Φδq: ð17Þ

The key point of (17) is the following: if jqj ¼ m, then
variations that hold q constant (δq ¼ 0) extremize the
energy (δE ¼ 0), and this means ∂E=∂A ¼ 0, since E is
a function of A and q. Conversely, if q is held constant in
(16), then an energy extremum requires ∂E=∂A ¼ 0, and
this reduces to jqj ¼ m, as follows. The total energy of the
Reissner-Nordström solution is

E ¼
ffiffiffiffi
π

A

r �
A
4π

þ q2
�
: ð18Þ

Evaluating ∂E=∂A ¼ 0 for (18) yields jqj ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
,

for which E ¼ m ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p ¼ jqj and hence jqj ¼ m. In
summary, the extremum ∂E=∂A ¼ 0 occurs if and only if
the extremal charge property holds, jqj ¼ m.
As already noted, the vanishing coefficient of δA in the

first law (17) motivates why, for an arbitrarily charged
black hole, we extremize the energy (18) by varying the
area A and holding the charge q constant. This generalizes
to the multiblack hole case, as follows. The expected first
law for the static Hartle-Hawking solution [2] is

δE ¼
XN
i¼1

Φiδqi; ð19Þ

where E is the total energy. For arbitrarily charged black
holes, in analogy with the single-black hole case, we
extremize E by varying the black hole areas Ai while
holding constant all other quantities: the charges qi (which
appear in the first law) and also the black hole separations
rij (which are internal parameters of the geometry). This
motivates our extremum principle (2).
Note that the single black hole considered above remains

at rest, so it illustrates our energy extremum procedure, but
not any subsequent dynamics. In this paper, the initially
static multi-black hole configurations that are nonextremal
will not remain static; their dynamics were studied in [12].

B. Outline of proof

In Secs. III C–III E below, we prove the extremum
principle (2) as an expansion in the inverse separations,
1=rij. Zeroth order (1=rij → 0) corresponds to rij → ∞,
and treats each black hole in isolation from the other black
holes. Through first order, we retain all terms linear in
1=rij, which characterize effectively Newtonian inter-
actions among the black holes. Through second order,

we retain all terms quadratic in 1=rij, which characterize
post-Newtonian relativistic interactions.
All of the terms in our expansions will be dimensionless

ratios of black hole properties (αi, βi,mi, qi) divided by the
separations rij. These ratios are small for sufficiently large
separations. In particular, we show that the extremum
principle holds for sufficiently well separated black holes,
as specified by conditions on rij that take the form Ui > 0,
where Ui can be interpreted as the effective gravitational
potential experienced by black hole i.
At each order, the main steps are to calculate each black

hole’s apparent horizon area Ai, and then to obtain the
energy EðAi; qi; rijÞ as a function of the areas, charges, and
separations. We then extremize the energy as ∂E=∂Ai ¼ 0,
and from this obtain the condition jqij ¼ mi, which proves
the extremum principle.

C. Proof through first order

We begin by calculating the apparent horizon area Ai of
each black hole. As in the original work of Brill and
Lindquist [5], through first order in 1=rij, we use the
spherical approximation (see Sec. II), for which the
apparent horizon is the surface r ¼ Ri ¼ constant in
spherical coordinates ðr; θ;ϕÞ centered at ~ri. Then the
differential area is

dAi ¼ f2Ri
2sin2θdθdϕ; ð20Þ

where Ri and f are given by (14)–(15), respectively.
Integrating then yields the area formula:

Ai ¼ 4πRi
2f2: ð21Þ

We now evaluate this using (14)–(15). Expanding through
first order in 1=rij gives

ffiffiffiffiffiffi
Ai

4π

r
¼ mi þ

ffiffiffiffiffiffiffiffi
αiβi

p �
2þ

X
j≠i

αj þ βj
rij

�
; ð22Þ

with mi given by (5) as a function of the other parameters
ðαi; βi; rijÞ. We can express the area Ai completely in terms
of the mass mi and charge qi, by substituting αi and βi in
(9). Then simplifying yields

ffiffiffiffiffiffi
Ai

4π

r
¼ mi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

2 − qi2
q

×

�
1 −

X
j≠i

mj

2rij

��
1þ

X
j≠i

mj

2rij

�
: ð23Þ

When we expand this expression, the terms that are first
order in 1=rij exactly cancel. At first order, we neglect the
terms quadratic in 1=rij, and obtain
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ffiffiffiffiffiffi
Ai

4π

r
¼ mi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

2 − qi2
q

: ð24Þ

Solving this for the mass mi yields

mi ¼
ffiffiffiffiffi
π

Ai

r �
Ai

4π
þ qi2

�
: ð25Þ

Due to the cancellation that occurred to obtain (24), the
mass (25) contains neither first-order terms (proportional to
1=rij) nor any parameters related to the other black holes
(j ≠ i). This first-order result is therefore the same as the
zeroth-order result, and it has the same form as the energy
(18) for a single black hole.
We now evaluate the total energy E, which by (8) and

(10) is, to first order in 1=rij,

E ¼
XN
i¼1

mi −
XN
i¼1

X
j>i

ðmimj − qiqjÞ
rij

: ð26Þ

The zeroth-order term in (26) is the sum of the rest energies,
and the first-order terms are the pairwise gravitational
and electrostatic potential energies; this will be useful in
interpreting the quantity Ui below.
We now take each mass mi in (26) to be given by (25),

which expresses the energy (26) in the functional form
EðAi; qi; rijÞ. Then holding constant the charges qi and
separations rij, we find

∂E
∂Ai

¼ Ui
∂mi

∂Ai
; ð27Þ

where

Ui ¼ 1 −
X
j≠i

mj

rij
: ð28Þ

We now extremize the total energy E by requiring
∂E=∂Ai ¼ 0, which by (27) is equivalent to

Ui
∂mi

∂Ai
¼ 0: ð29Þ

For sufficiently large separations, Ui ≠ 0, as seen by (28).
In this case, the extremum (29) requires

∂mi

∂Ai
¼ 0: ð30Þ

Evaluating this for (25) reduces to

jqij ¼
ffiffiffiffiffiffi
Ai

4π

r
: ð31Þ

For this charge value, the mass (25) is

mi ¼
ffiffiffiffiffiffi
Ai

4π

r
¼ jqij: ð32Þ

Thus, since the extremum (29) has produced the N desired
conditions, jqij ¼ mi, we have proved the extremum
principle (2) through first order.
As noted above, our proof requires Ui ≠ 0. As seen by

(28), this condition is always satisfied at zeroth order
(1=rij → 0 and Ui ¼ 1), and it is satisfied at first order
for sufficiently large separations rij compared to the masses
mi. In particular, the continuity of our perturbative approach
with the zeroth-order limit (Ui ¼ 1) requires 0 < Ui ≤ 1.
We end this subsection by interpreting the quantity Ui.

Note that Ui can be obtained from the energy (26) in the
form Eðmi; qi; rijÞ, along with (27) and the chain rule,

Ui ¼
∂E
∂mi

: ð33Þ

This expression motivates the interpretation of Ui as the
effective gravitational potential experienced by black hole
i, including its rest energy. This interpretation is justified by
the derivation of (27)–(28) from (26), which makes clear
that (i) the zeroth order term in (28) is the rest energy,
normalized per unit mass; (ii) the first-order sum in (28) is
the Newtonian gravitational potential; and (iii) there is no
electric potential contribution to Ui since (27)–(28) are
obtained by holding the charges constant in (26).

D. Proof through second order

In this section, we prove the extremum principle (2)
through second order. Our first task is to evaluate each
apparent horizon area Ai. This is a longer calculation than
in our first-order proof (Sec. III C), since at second order,
we must depart from the spherical approximation. Figure 2
illustrates the setup.
In general, each black hole’s apparent horizon is non-

spherical, due to its interactions with the other black holes.
Thus, in spherical coordinates ðr; θ;ϕÞ centered at ~ri, the
apparent horizon of black hole i is generally a surface
rðθ;ϕÞ. To simplify the analysis, we will take all black
holes to be collinear (aligned on the z axis). The resulting
axisymmetry simplifies each nonspherical horizon rðθ;ϕÞ
to the azimuthally symmetric form rðθÞ. Thus, as illustrated
in Fig. 2, we take allN black hole positions ~ri to lie on the z
axis. Near black hole i, we introduce spherical coordinates
ðr; θ;ϕÞ centered at ~ri, and consider another black hole
labeled by j ≠ i. This gives

j~r − ~rij ¼ r; ð34aÞ

j~r − ~rjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rij cos θ þ rij2

q
: ð34bÞ
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To calculate the area Ai, we only need to consider points
ðr; θÞ on the apparent horizon, so r < rij. In this case, the
distance (34b) has a standard expansion in Legendre
polynomials Pk,

1

j~r − ~rjj
¼ 1

rij

X
k≥0

�
r
rij

�
k
Pkðcos θÞ: ð35Þ

The form (35) is very suitable for our purposes, since it is
an expansion in the inverse separations ð1=rijÞ. Our first-
order proof (Sec. III C), like the original work of Brill and
Lindquist [5], used the summation in (35) through k ¼ 0
and P0 ¼ 1. Here, our second-order proof proceeds
through k ¼ 1 and P1 ¼ cos θ.
We now use (34)–(35) to evaluate the metric function f

in (3) near black hole i. We retain all terms through second
order in 1=rij. This gives

fðr; θÞ ¼ 1þ αi þ βi
r

þ αiβi
r2

þ
X
j≠i

αj
rij

X
k≠i

βk
rik

þ
X
j≠i

��
1

rij
þ r cos θ

rij2

�

×

�
αj þ βj þ

αiβj þ βiαj
r

��
: ð36Þ

This contains all of the second-order terms from expanding
the spherical approximation (15), and generalizes it by
including nonspherical terms, proportional to cos θ.

Each black hole’s apparent horizon rðθÞ is an extremal
surface, so it is determined by extremizing the area [5],

Ai ¼ 2π

Z
π

0

dθ sin θr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ _r2

p
f2; ð37Þ

where _r ¼ dr=dθ. Extremizing (37) gives

rþ ̈r
1þ _r2=r2

¼ −_r
�
cot θ þ 2∂θf

f

�
þ r

�
3þ 2r∂rf

f

�
: ð38Þ

As in [5], we solve (38) by expanding in Legendre
polynomials Pn as basis functions. This function-basis
expansion for rðθÞ is distinct from our previous multipole
expansion (35). Thus, we take

rðθÞ ¼
X
n≥0

CniPnðcos θÞ; ð39Þ

where Cni are constant coefficients and i labels the black
hole. Our first-order proof (Sec. III C), like the original
work of Brill and Lindquist [5], used the expansion (39)
through n ¼ 0, which is the spherical approximation (14).
At second order, we use (39) through n ¼ 1,

rðθÞ ¼ C0i þ C1i cos θ; ð40Þ

with P0 ¼ 1 and P1 ¼ cos θ. To determine the coefficients
Cni, we evaluate the differential equation (38) for rðθÞ
using (40) and the metric function f in (36). After
expanding all quantities to second order in 1=rij, (38) then
takes the form

F0P0 þ F1P1ðcos θÞ ¼ 0; ð41Þ

where F0 and F1 are functions (which for brevity we do not
list here) that are independent of θ, but involve the other
parameters (αi, βi, rij). Since (41) is an expansion in the
basis functions Pn, both F0 and F1 must vanish. Solving
the equation F0 ¼ 0 reduces to

C0i ¼ Ri; ð42Þ

where Ri is the radius in the spherical approximation (14),
which is here to be expanded through second order in 1=rij.
Solving the equation F1 ¼ 0 yields

C1i ¼ −
�

αiβi
4

ffiffiffiffiffiffiffiffi
αiβi

p þ αi þ βi

�

×
X
j≠i

2
ffiffiffiffiffiffiffiffi
αiβi

p ðαj þ βjÞ þ αiβj þ βiαj
rij2

: ð43Þ

Thus, the coefficients C1i are second-order quantities. In
[5], the coefficients Cni were determined numerically for
uncharged black holes, and jCnijwas found to decrease as n

FIG. 2. Illustration of two nonextremal black holes in the
second-order analysis, showing useful distances and coordinates
ðr; θÞ. The dots have Euclidean separation rij ¼ j~ri − ~rjj. All
black holes (including others, not shown) are collinear on the z
axis, and have azimuthal symmetry about the z axis.
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increases. Our results, (42)–(43), show analytically that
here jCnij decreases as n increases due to its leading power
in the inverse separations, ð1=rijÞ2n.
For the coefficients Cni in (42)–(43), the horizon surface

(40) approximates a prolate ellipsoid with one focus at
r ¼ 0. This can be seen by linearizing the surface function
reðθÞ of a prolate ellipsoid in the eccentricity (ϵ ≪ 1),

reðθÞ ¼
að1 − ϵ2Þ
1þ ϵ cos θ

≃ a − aϵ cos θ: ð44Þ

The linearized form matches the horizon (40), so the
horizon approximates an ellipsoid with semimajor axis
a ¼ C0i ¼ Ri and eccentricity ϵ ¼ C1i=Ri, as illustrated
in Fig. 2.
We now evaluate the horizon area Ai in (37) for the

surface rðθÞ in (40), using the metric function f in (36).
Expanding through second order in 1=rij, we find

ffiffiffiffiffiffi
Ai

4π

r
¼ mi þ

ffiffiffiffiffiffiffiffi
αiβi

p �
2þ

X
j≠i

αj þ βj
rij

�

−
ffiffiffiffiffiffiffiffi
αiβi

p
4

�X
j≠i

αj − βj
rij

�
2

; ð45Þ

with mi given by (5) as a function of the other parameters
ðαi; βi; rijÞ. The result (45) is the first-order area (24), plus
second-order corrections.
Our next step is to obtain the energy EðAi; qi; rijÞ as a

function of the areas, charges, and separations. We evaluate
the energy E by a different method than in our first-order
proof (Sec. III C), where we used the Newtonian form (26)
of the energy, and expressed the masses mi in terms of the
areas Ai. At second order, our setup is post-Newtonian, and
we find it convenient to express the parameters αi and βi in
terms of the areas Ai and charges qi, and then evaluate the
energy (7) in the form E ¼ P

iðαi þ βiÞ.
Thus, we must solve the area equation (45) and the

charge definition (6) for the parameters ðαi; βiÞ as functions
of the areas and charges ðAi; qiÞ. For convenience in
summarizing our results below, we define the following
functions ðμi;Mi;QiÞ of the areas and charges. We define
the quantity μi as

μi ¼
ffiffiffiffiffi
π

Ai

r �
Ai

4π
þ qi2

�
; ð46Þ

which is our mass result (25) through first order. We define
the two dimensionless quantities ðMi;QiÞ as

Mi ¼
X
j≠i

μj
rij

; Qi ¼
X
j≠i

qj
rij

: ð47Þ

We now solve for the parameters ðαi; βiÞ using a perturba-
tion approach: we write αi and βi as their leading-order

values (9), plus second-order corrections ð ~αi; ~βiÞ. We
rephrase the leading-order values (9) using the definitions
(46)–(47). This gives

αi ¼
ðμi − qiÞ

2

�
1 −

ðMi þQiÞ
2

�
þ ~αi; ð48aÞ

βi ¼
ðμi þ qiÞ

2

�
1 −

ðMi −QiÞ
2

�
þ ~βi: ð48bÞ

It remains to solve for ~αi and ~βi as functions of the areas
and charges ðAi; qiÞ. To this end, we insert (48) into the
area result (45) and into the charge definition (6). After
expanding through second order in 1=rij, we then find that
(45) and (6) reduce to, respectively,

Kþ ~αi þ K− ~βi ¼ εi; ~βi − ~αi ¼ δi: ð49Þ

We summarize the coefficients K� and source terms ðεi; δiÞ
below. Solving the linear equations (49) yields the second-
order corrections,

~αi ¼
εi − K−δi
Kþ þ K−

; ~βi ¼
εi þ Kþδi
Kþ þ K−

: ð50Þ

The coefficients K� and source terms ðεi; δiÞ are

K� ¼ 1þ μi � qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μi

2 − qi2
p ; ð51Þ

εi ¼
ffiffiffiffiffiffi
Ai

4π

r
Si − qiT i; ð52Þ

δi ¼ qiSi − μiT i: ð53Þ

For convenience, we have let Si and T i denote the
following dimensionless second-order quantities,

Si ¼
Mi

2 þQi
2

4
þ
X
j≠i

X
k≠j

ðμjμk − qjqkÞ
4rijrjk

; ð54aÞ

T i ¼
MiQi

2
−
X
j≠i

X
k≠j

ðμjqk − qjμkÞ
4rijrjk

: ð54bÞ

Two simple results follow from using the second-order
solutions for αi and βi. First, when we evaluate the massmi
in (5) using (48)–(54), a significant number of terms cancel,
and we find

mi ¼ μi; ð55Þ

with μi defined in (46). Interestingly, this is the same as
the mass function (25) through first order. Henceforth, we
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write mi in place of μi. A second result is that, after using
(50)–(54), the sum ~αi þ ~βi reduces to

~αi þ ~βi ¼ miSi − qiT i: ð56Þ

We now evaluate the total energy E ¼ P
iðαi þ βiÞ, as

given by (7). Using (48) and (56) gives

E¼
XN
i¼1

�
mi−

1

2
ðmiMi−qiQiÞþmiSi−qiT i

�
: ð57Þ

The zeroth-order and first-order terms in (57) reproduce our
previous result (26), which is the sum of the rest energies
and the pairwise Newtonian and electrostatic potential
energies. The second-order terms in (57), proportional to
Si and T i, are relativistic post-Newtonian corrections.
The energy (57) can be regarded as a function

EðAi; qi; rijÞ of the areas, charges, and separations. This
follows from using the definitions of the quantities shown
ðmi;Mi;Qi;Si; T iÞ. Holding constant the charges qi and
separations rij, we then find

∂E
∂Ai

¼ Ui
∂mi

∂Ai
; ð58Þ

where

Ui ¼ 1 −Mi þ
1

2
ðMi

2 þQi
2Þ

þ 3

4

X
j≠i

X
k≠j

ðmjmk − qjqkÞ
rijrjk

þ 1

4

X
j

X
k≠i;j

ðmjmk − qjqkÞ
rikrjk

: ð59Þ

In (59), the leading term ð1 −MiÞ is our first-order result
(28) for Ui. The additional terms in (59), which are second
order, are relativistic post-Newtonian contributions.
The remaining steps in our proof are now essentially

the same as (29)–(32) in our first-order proof (Sec. III C).
We extremize the total energy E in (57) by requiring
∂E=∂Ai ¼ 0, which by (58) is equivalent to

Ui
∂mi

∂Ai
¼ 0: ð60Þ

For sufficiently large separations, Ui ≠ 0. In this case, the
extremum (60) requires ∂mi=∂Ai ¼ 0. Evaluating this for
(46) reduces to jqij ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ai=4π

p
. For this charge value, the

mass (46) is mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ai=4π

p ¼ jqij.
Thus, since the extremum (60) has produced the N

desired conditions, jqij ¼ mi, we have proved the
extremum principle (2) through second order. As noted
above, our proof requires Ui ≠ 0. This condition is always

satisfied at zeroth order (for which Ui ¼ 1), and it is
satisfied through second order for sufficiently large sepa-
rations rij compared to the masses and charges, as seen
by (59), and by (62) below. As in the first-order case,
continuity of our perturbative approach with the zeroth-
order limit (Ui ¼ 1) requires 0 < Ui ≤ 1.
We end this subsection by revisiting the interpretation of

Ui. As in the first-order case (Sec. III C), note that Ui can
be obtained from the energy (57) in the form Eðmi; qi; rijÞ,
along with (58) and the chain rule,

Ui ¼
∂E
∂mi

: ð61Þ

As in the first-order case, this motivates the interpretation of
Ui as the effective gravitational potential experienced by
black hole i, including its rest energy. In this interpretation,
it is not surprising that the gravitational potential (59)
contains quadratic charge-dependent terms; this is because
nonzero electric stress energy (a quadratic function of the
electric field) contributes to curving the geometry, and so
contributes to the gravitational field. As an explicit exam-
ple, for two black holes (N ¼ 2),

U1 ¼ 1 −
m2

r12
þm2

2 þ q22 þ 2ðm1m2 − q1q2Þ
2r122

; ð62Þ

and U2 is similarly given by interchanging all subscripts
(1↔2). If we interpret U1 as an effective gravitational
potential, then the terms proportional to m1m2 − q1q2
(which refer to black hole 1 itself) represent the nonlinear
gravitational coupling in general relativity between black
hole 1 and the other sources of energy ðm2; q2Þ.

E. Higher orders

At higher orders, a proof of the extremum principle (2)
can be expected to proceed similarly to Sec. III D, so this
subsection provides additional comments, rather than a
full analysis. Through second order, as already noted in
Sec. III D, the mass mi in (55) has the same form as the
result (25) through first order: it is the same intrinsic
function of the black hole’s area Ai and charge qi,
independent of the other black holes (j ≠ i). This result
is perhaps unexpected, based on (5), where mi is a
summation that involves the other black holes ðj ≠ iÞ.
However, it could be anticipated physically, since the mass
mi is specific to black hole i. Each mass mi contributes to
the total energy,

E ¼
XN
i¼1

mi þ Eint: ð63Þ

Our goal is to evaluate and extremize the energy function
EðAi; qi; rijÞ. From the observations above, the sum of the
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masses mi in (63) can be anticipated to take a simple form
at higher orders. To evaluate E, it remains to consider the
interaction energy, which we can view as the essential new
task at each higher order, as a comparison of (26) and (57)
illustrates; the steps will be similar to those following the
evaluation of the area Ai in Sec. III D.
Through second order, our results of Sec. III D show that

Eint ¼ 0 at the energy extremum, if all charges have the
same sign. This is seen by letting qi ¼ �mi for extremal
charges, each with the same sign (�). This gives Qi ¼
�Mi and T i ¼ �Si from (47) and (54), respectively. Then
several terms cancel in the energy (57), which reduces to
E ¼ P

imi, and shows that Eint ¼ 0.
It is promising to note that, at all orders, the following

converse of the above result holds: if all charges are
extremal and have the same sign, then the interaction
energy vanishes, Eint ¼ 0. This is most easily seen by
substituting the extremal charge condition in the form (11)
into the interaction energy (8). Since this is an exact result,
it must hold at all orders, when all quantities are expanded
in the inverse separations. The vanishing of Eint for
extremal same-sign charges is an exact supporting result,
and is a precise statement about energy, like the extremum
principle.

IV. ENERGY MINIMUM

For sufficiently well separated black holes, as specified
by the condition Ui > 0 (see Secs. III C–III D), it is
straightforward to show that our energy extremum, (29)
and (60), is a minimum. To show this, we verify that the
second derivatives of E are positive. Differentiating (27)
and (58), holding constant the charges qi and separations
rij, gives

∂2E
∂Ai

2
¼ Ui

∂2mi

∂Ai
2
þ ∂Ui

∂Ai

∂mi

∂Ai
: ð64Þ

We then evaluate ∂2mi=∂Ai
2 from (25) or (46), and we

evaluate at the extremum (∂mi=∂Ai ¼ 0). This gives

∂2E
∂Ai

2
¼ Ui

8
ffiffiffi
π

p
Ai

3=2 ; ð65Þ

where Ui is to be evaluated with mi ¼ jqij. The condition
Ui > 0 ensures that (65) is positive; hence the energy
extremum is a minimum.
If each charge qi has the same sign, it is also straightfor-

ward to verify that at the extremum, E ¼ jQj, where Q is
the total charge. This is seen as follows. Let qi ¼ �mi for
extremal charges, each with the same sign (�). Then

Q ¼
XN
i¼1

qi ¼ �
XN
i¼1

mi: ð66Þ

As already noted in Sec. III E, for extremal same-sign
charges (qi ¼ �mi), we also have

E ¼
XN
i¼1

mi ¼ �Q ¼ jQj: ð67Þ

The energy minimum and its extremum value are both
consistent with the BPS bound in the energy inequality [9]
that is satisfied by the Hartle-Hawking static solution [2]. In
contrast to [9], we have minimized the energy EðAi; qi; rijÞ
as a function of physical variables, without using
supersymmetry.

V. CONCLUSION

Our main result in this paper is an extremum principle,
which derives the extremal charge condition (jqij ¼ mi) for
a set N black holes (all initially at rest and arbitrarily
charged) by extremizing the total energy EðAi; qi; rijÞ with
respect to the black hole horizon areas, at fixed charges
and Euclidean separations. This principle is motivated by
the first law of black hole mechanics, and is valid if the
black holes are sufficiently well separated, as specified by
the condition Ui > 0, where Ui can be interpreted as the
effective gravitational potential experienced by black
hole i.
Our energy extremum is taken at fixed Euclidean

separations rij, rather than fixed proper distances between
horizons. This is natural, in the sense that the proper
distances are well known to become infinite for extremal
charges, while the separations rij remain finite.
If all of the black hole charges have the same sign, then

our extremum principle is a type of variational principle,
and augments a list of existing principles [6–8] that
interpret static black holes (here, the static Hartle-
Hawking solution) as extrema of total energy. Our results
are also consistent with the supersymmetric BPS energy
minimum (E ¼ jQj) of [9]. Our derivation also shows
how the corresponding substructure arises (mi ¼ jqij) for
each individual black hole. To our knowledge, our results
provide the first energy interpretation of the static Hartle-
Hawking solution [2]. This interpretation requires neither
the use of balanced forces nor supersymmetry.
It would be interesting to consider the regime of very

small black hole separations, which is beyond the scope of
this paper. This would probably require numerical methods,
and would involve an outermost common apparent horizon
surrounding two nonextremal black holes that are suffi-
ciently close to each other, similar to the case of uncharged
black holes released at rest [5,15]. The formation of a
common apparent horizon has been studied numerically in
the head-on collision of symmetric like-charged black holes
[12] for charge-to-mass ratios in the range 0 ≤ q=m ≤ 0.98.
In this paper, to locate a black hole’s apparent horizon

analytically, we have done so perturbatively, which is a
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well-known feature of the Brill-Lindquist geometry [5]
that we have employed. One might wonder if a different
geometry could be used instead; this appears to be
unlikely. For example, in the conformally flat geometry
found from Misner’s well-known method of images
[16,17], each black hole’s apparent horizon is designed
to be an exact coordinate sphere in the flat background
space, which is analytically convenient. This is achieved
by constructing the solution as an infinite series (similar
to the method of images in electrostatics). However, this
approach does not permit black holes with extremal
charge, since the infinite series solution must satisfy a
convergence condition. This condition is rather formal in
general; for two symmetric black holes with opposite

charges, it reduces to the statement that the black holes
are nonextremal [17]. A similar restriction can be
expected for same-sign charges. This suggests that the
Brill-Lindquist geometry [5] is the unique family of
nonextremal solutions that smoothly connects to the
extremal Hartle-Hawking solution.
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