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We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically
massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to
deformations of round and warped (A)dS. We also find an explicit non-CSI Kundt solution at the merger
point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre
classification) and show that their Segre types match with the types of their counterparts in TMG.
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I. INTRODUCTION

In principle, the celebrated AdS/CFT duality can be used
in giving a “quantum description” of a gravity theory
possessing an anti–de Sitter (AdS) vacuum, or at the very
least, in ruling out the existence of such a “consistent”
quantum theory. Yet, the construction of a physically viable
theory that passes this powerful test has been a big
challenge. Since two-dimensional conformal field theories
(CFTs) are better understood, three-dimensional gravita-
tional models are in a better shape for the application of this
duality. One such 3D model is the “good old” cosmological
“topologically massive gravity” (TMG) [1,2], where the
“opposite sign” Einstein-Hilbert action with a cosmological
constant is modified by the addition of the parity-odd
gravitational Chern-Simons term. TMG has a single
massive propagating graviton mode, and when the
cosmological constant is negative it has an AdS vacuum.
The renowned BTZ black hole [3] is also a solution to
TMG, which makes the theory even more interesting.
Unfortunately, the central charge of the dual CFT is
negative when the bulk graviton has positive energy, and
this destroys unitarity. This so-called “bulk vs boundary
clash” problem persists also in the parity-preserving “new
massive gravity” (NMG) model [4,5], which has an action
described by the addition of a particular combination of
curvature-squared terms to the usual Einstein-Hilbert term.
Remarkably, a “deformation” of TMG theory, recently

proposed in [6] and termed as “minimal massive gravity”
(MMG), solves the bulk vs boundary clash problem for a
certain range of its parameters. This theory is “minimal” in
the sense that it has only one massive spin-2 mode in the
bulk, i.e., the same minimal local structure as TMG. These
features considerably promote MMG and determining its

exact solutions is quite an interesting problem on its own.
The exact solutions of MMG that have been found so far
are as follows: Apart from static black hole solutions,
which obviously exist for specific values of parameters, and
an ðAÞdS2 × S1 vacuum, there is a warped (A)dS [7], a
solution that describes gravitational waves [8], a two-
parameter deformation of a BTZ black hole [9] and a
non-BTZ AdS black hole [10]. It has been shown that all
solutions of TMG that have Petrov types O, N, and D are
also solutions of MMG after a proper redefinition of
parameters [11]. In [11] it was also found that MMG
inherits from TMG a specific type of Kundt solution.
In this article we construct and algebraically classify all

Kundt solutions, i.e., spacetimes with an expansion-free
null geodesic congruence, of MMG theory. Kundt space-
times in three dimensions are quite special: They are known
to be primary examples of spacetimes for which all scalar
invariants constructed from the relevant curvature tensors
and their covariant derivatives are constants. All such, so-
called “constant scalar invariant” (CSI) spacetimes in three
dimensions have been classified in [12]: Apart from Kundt
solutions, there are only locally homogeneous geometries
with this property. In our analysis to determine these special
solutions, we will adapt the strategy followed by [13] to
find the analogous solutions of TMG.We find that as TMG,
the CSI Kundt solutions of MMG turn out to be deforma-
tions of round and warped (A)dS. However, not all Kundt
solutions are CSI and indeed we also find an exact non-CSI
Kundt solution for a specific fine-tuning of two of the four
MMG parameters. Then, we algebraically classify the
solutions we find with respect to their traceless Ricci
tensor, i.e., present their algebraic Segre types, making
use of the results of [14]. It turns out that their Segre types
match with those of their relevant counterparts in TMG. In
passing, it is worth noting that the Kundt solutions of NMG
were studied in [15], where a non-CSI Kundt solution to
TMG was also found at the chiral point [16].
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The paper is organized as follows: In Sec. II we briefly
review MMG theory. Section III is devoted to the detailed
derivation of the Kundt solutions obtained and forms the
bulk of our paper. The algebraic Segre classification of the
Kundt solutions found are given in Sec. IV. We conclude
and discuss possible future problems in Sec. V. In two
separate appendixes, we give certain technical details that
we left out of the main text.

II. THE MMG MODEL

MMG theory itself is closely related to TMG [1,2],
whose source-free field equation reads

Rμν −
1

2
Rgμν þ Λ0gμν þ

1

μ
Cμν ¼ 0; ð1Þ

where the symmetric, traceless, parity-odd, and covariantly
conserved Cotton tensor Cμν is defined in terms of the
Schouten tensor Sσν as

Cμ
ν ≡ ϵμρσ∇ρSσν; Sσν ≡ Rσν −

1

4
Rgσν; ð2Þ

and the Levi-Cività pseudotensor is defined as ϵμρσ ¼ffiffiffiffiffiffi−gp
εμρσ in terms of the weight þ1 tensor density εμρσ,

where we use the convention ε012 ¼ þ1. Here Λ0 is the
cosmological constant, and μ is a mass parameter (with
dimensions 1=length).
On the other hand, the field equation of source-free

MMG theory reads

σ̄

�
Rμν −

1

2
Rgμν

�
þ Λ̄0gμν þ

1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð3Þ

where the symmetric, curvature-squared tensor Jμν is

Jμν ≡ −
1

2
ϵμρσϵντηSρτSση;

¼ SμρSνρ − SμνS −
1

2
gμνðSρσSρσ − S2Þ;

¼ RμρRν
ρ −

3

4
RμνR −

1

2
gμν

�
RρσRρσ −

5

8
R2

�
; ð4Þ

with S≡ gμνSμν. Even though the J-tensor is not cova-
riantly conserved on its own, i.e., it does not satisfy a
Bianchi identity so that the MMG field equation (3) cannot
be derived from an action that only involves the metric and
its curvature tensors, it is nevertheless conserved on shell as
a consequence of (3) itself (see [6,7] for details). Moreover,
it is possible to construct conserved charges for solutions of
the theory [17]. In (3), the parameters σ̄ and γ are nonzero
dimensionless constants, whereas Λ̄0 is the cosmological
constant with dimensions 1=length2. Note that the trace
of (3) implies that

σ̄R − 6Λ̄0 þ
γ

μ2

�
RμνRμν −

3

8
R2

�
¼ 0: ð5Þ

The parameters showing up in the MMG field equation
can be expressed in terms of those of TMG [6] as1

σ̄ ¼ 1þ αþ α2Λ0

2μ2ð1þ αÞ2 ;

γ ¼ −
α

ð1þ αÞ2 ;

Λ̄0 ¼ Λ0

�
1þ α −

α3Λ0

4μ2ð1þ αÞ2
�
; ð6Þ

where α is a dimensionless parameter such that one gets
TMG in the α → 0 limit. For bulk and boundary unitarity it
is necessary to have [18]

−1 < α < 0; Λ0 <
4μ2ð1þ αÞ3

α3
: ð7Þ

Note that these conditions imply Λ0 < 0 and Λ0α > 0. [See
also Eqs. (5.13) and (5.15) of [6] and the discussion that
leads to them.]
There are two special points in the parameter space of the

MMG theory. The first one is called the “chiral point” [16]
for which the central charges vanish and is given by [6,17]

σ̄ þ γ

2μ2l2
ch

� 1

μlch
¼ 0;

1

μ2l2
ch

≡ σ̄2 −
γΛ̄0

μ2
: ð8Þ

The second one is called the “merger point” [7] where

Λ̄0 ¼
μ2σ̄2

γ
: ð9Þ

For this choice the quadratic equation for the effective
cosmological constant of maximally symmetric vacua has a
repeated root. (See [10] for further discussion.) Note that
the use of (6) in the condition (9) implies that

Λ0α ¼ −μ2ð1þ αÞ2 < 0; ð10Þ
which violates the unitarity conditions (7), since it
demands Λ0α > 0.

III. KUNDT SOLUTIONS

The MMG field equation (3) is highly nonlinear and
involves fourth-order derivatives, and we now want to look
for Kundt solutions of the theory. To facilitate the com-
parison of possible Kundt solutions with the known Kundt

1To be able to make smooth contact with the Kundt solutions
of TMG [13] in the limit γ → 0, we made the choice σ ¼ 1 in
these formulas.
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solutions of TMG found in [13], we hence use the same
strategy, notations, and conventions used there.
Thus, taking the orientation convention ϵvuρ ¼ 1, we

start with a general Kundt spacetime given by the metric

ds2 ¼ dρ2 þ 2dudvþ fðv; u; ρÞdu2 þ 2Wðv; u; ρÞdudρ:
ð11Þ

Note that the null vector required in the definition of a
Kundt spacetime is kμ ¼ δμv, which makes kμ ¼ δμu, and
fulfills the following conditions:

ðaÞ expansion free∶ ∇μkμ ¼ 0;

ðbÞ shear free∶ ð∇μkνÞ∇ðμkνÞ − ð∇μkμÞ2 ¼ 0;

ðcÞ twist free∶ ð∂μkνÞ∂ ½μkν� ¼ 0: ð12Þ

The vv-component of the field equation (3) gives

γ

�∂2W
∂v2

�
2

þ 2μ
∂3W
∂v3 ¼ 0: ð13Þ

The most general solution of (13) is

Wðv; u; ρÞ

¼ 2μ

γ2
ð−vγ þ ðvγ − 2μW2ðu; ρÞÞ ln ðvγ − 2μW2ðu; ρÞÞÞ

þ vW1ðu; ρÞ þW0ðu; ρÞ: ð14Þ

As shown in detail in Appendix A, unless one takes
vγ − 2μW2ðu; ρÞ ¼ 0, one ends up in a dead end. Hence,
as argued for the TMG case in [13] (and see also [19] for
the analogous result on Kundt solutions in higher dimen-
sions), we continue with a metric function W which is

linear in v rather than using the most general solution. Thus
we take

Wðv; u; ρÞ ¼ vW1ðu; ρÞ þW0ðu; ρÞ: ð15Þ

Now the vρ-component of the field equation becomes2

∂3f
∂v3 ¼ 0; ð16Þ

which is easily integrated as

fðv; u; ρÞ ¼ v2f2ðu; ρÞ þ vf1ðu; ρÞ þ f0ðu; ρÞ: ð17Þ

The form of the metric (11) [with metric functionsW and
f as in (15) and (17), respectively] is left invariant under the
following coordinate transformations3:

v ¼ ~v
_uð ~uÞ þ Fð ~u; ~ρÞ; u ¼ uð ~uÞ;

_uð ~uÞ≡ du
d ~u

; ρ ¼ ~ρþGð ~uÞ: ð18Þ

These will be needed in the discussion that follows.
Using (15) and (17) in (5) and a bit of massaging, one

now obtains

γ

4μ2

�
f2 −

1

4
W2

1

��
2
∂W1

∂ρ − f2 −
3

4
W2

1

�

− σ̄

�∂W1

∂ρ þ f2 −
3

4
W2

1

�
þ 3Λ̄0

¼ 0; ð19Þ

a quadratic equation for f2 unlike the case for TMG. One
can easily solve it to write

f2ðu; ρÞ ¼ −
2μ2σ̄

γ
þ ∂W1

∂ρ −
1

4
W2

1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12μ2

γ

�
μ2σ̄2

3γ
þ Λ̄0

�
þ
�∂W1

∂ρ −
1

2
W2

1

��∂W1

∂ρ −
1

2
W2

1 −
8μ2σ̄

γ

�s
; ð20Þ

which makes the γ → 0 limit, for comparison with the TMG case, intractable at first sight. It turns out that the trace equation
can be written as a linear combination of the vu- and ρρ-components of the field equation.4 Concentrating only on the
ρρ-component, one can write it as

−
1

μ

∂f2
∂ρ þ 1

μ
f2W1 þ

γ

4μ2

�
f2 −

1

4
W2

1

�
2

− σ̄

�
f2 −

1

4
W2

1

�
þ Λ̄0 ¼ 0: ð21Þ

2See (A1) of Appendix A for its form in the generic case.
3Here we have directly reproduced Eq. (2.9) of [13]. Refer to Eqs. (2.9) to (2.11) of [13] for details.
4The trace equation (19) equals the sum of the ρρ- and twice the vu-component of the field equation.
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Substituting (20) into (21), one obtains

−
1

μ

∂
∂ρ

�
χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χ −

4μ2σ̄

γ

�
2

þ 12μ2

γ

�
Λ̄0 −

μ2σ̄2

γ

�s �
þ Λ̄0 −

μ2σ̄2

γ

þ γ

4μ2

�
−
4μ2σ̄

γ
þ χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χ −

4μ2σ̄

γ

�
2

þ 12μ2

γ

�
Λ̄0 −

μ2σ̄2

γ

�s �2

þW1

μ

�
−
2μ2σ̄

γ
þ 1

2
χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χ −

4μ2σ̄

γ

�
2

þ 12μ2

γ

�
Λ̄0 −

μ2σ̄2

γ

�s �
¼ 0; ð22Þ

where

χðu; ρÞ≡ ∂W1

∂ρ −
1

2
W2

1: ð23Þ

In principle, one can determine the function W1ðu; ρÞ from
(22). If one has a solution which is only ρ-dependent, say
W1ðρÞ, then for an arbitrary smooth enough function cðuÞ,
W1ðρþ cðuÞÞ will also be a solution because of (18). So,
out of the two “integration constants” present in the
solution of (22), one can be discarded since the trans-
formation ρ → ρ − cðuÞ can be employed to that effect5 for
a generic ρ-dependent W1. Hence, in what follows we will
take W1 ¼ W1ðρÞ only.
Once W1ðρÞ is determined from (22), the coordinate

transformation v → vþ Fðu; ρÞ can be employed to set
W0 ¼ 0. Then the uρ-component of the field equation turns
out to be of the form

A

�
W1;

dW1

dρ

�
vþ B

�
W1;

dW1

dρ
;
∂f1
∂ρ ;

∂2f1
∂ρ2

�
¼ 0; ð24Þ

where the coefficient functions A and B, with their
indicated arguments, are rather long and complicated.
Unlike the TMG case, where the coefficient function A
identically vanishes, both A and B must equal zero for (24)
to hold. For a generic W1ðρÞ, however, it turns out that the
differential constraints (22) and A ¼ 0 together are too
strong and yield an overdetermined system with only the
trivial solution.
Hence we trace back the steps we have taken from (19) to

(22) and ask whether there are any “simple” choices one
can make to find some “special” classes of solutions. Thus
we are led to the following cases to consider:

ðAÞ χðρÞ≡ dW1

dρ
−
1

2
W2

1 ¼ w1 ¼ const; ð25Þ

ðBÞ W1 ¼ ω ¼ const; ð26Þ

ðCÞ Λ̄0 ¼
μ2σ̄2

γ
ðmerger pointÞ: ð27Þ

We will show that the first two choices lead to CSI
solutions, whereas there is a non-CSI solution for the last
one. Let us also note that even though the case
f2 −W2

1=4 ¼ const seems to be special at first sight, as
we show in Appendix B, it turns out that this only leads
to special instances of solutions obtained in other cases,
which we now study in detail below.

A. χ ¼ const

As argued after (23), taking W1 ¼ W1ðρÞ, one easily
integrates (25) to find6

W1ðρÞ ¼
ffiffiffiffiffiffiffiffi
2w1

p
tan

�
ρ

ffiffiffiffiffiffi
w1

2

r �
: ð28Þ

The solution of f2, which follows from (19) and replaces
(20), is

f2ðu; ρÞ ¼ −
2μ2σ̄

γ
þ w1

2

�
1þ sec2

�
ρ

ffiffiffiffiffiffi
w1

2

r ��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
w1 −

4μ2σ̄

γ

�
2

þ 12μ2

γ

�
Λ̄0 −

μ2σ̄2

γ

�s
:

ð29Þ

Note that the u-dependency of f2 has effectively dropped
altogether. Substituting (28) and (29) into the ρρ-component
of the field equation (21), one finds a long expression
which is a linear function of W1ðρÞ. Setting the coefficient
ofW1ðρÞ to zero, which can be shown to be equivalent to the
condition

γw2
1 − 8μ2σ̄w1 þ 16μ2Λ̄0 ¼ 0; ð30Þ

5This immediately follows from the first equation in (2.11)
of [13].

6Here we again use the transformation ρ → ρ − const to drop
an integration constant.
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onecan fix the constantw1 uniquely, dependingon the sign in
the solution of f2 (29), as

7

w1 ¼
4μ2σ̄

γ

�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γΛ̄0

μ2σ̄2

s �
: ð31Þ

Substituting (31) back into (29), one finds a much simpler
expression for f2:

f2ðu; ρÞ ¼
1

4
ðW1ðρÞÞ2 þ

w1

2
¼ w1

2
sec2

�
ρ

ffiffiffiffiffiffi
w1

2

r �
: ð32Þ

Setting f1ðu; ρÞ ¼ 0 and f0ðu; ρÞ ¼ 0, one finds the “back-
ground metric,” which is itself a solution to MMG, as

ds2 ¼ dρ2 þ 2dudvþ w1

2
sec2

�
ρ

ffiffiffiffiffiffi
w1

2

r �
v2du2

þ 2v
ffiffiffiffiffiffiffiffi
2w1

p
tan

�
ρ

ffiffiffiffiffiffi
w1

2

r �
dudρ; ð33Þ

with curvature scalar R ¼ 3w1 and RμνRμν ¼ 3w2
1.

Turning f1ðu; ρÞ and f0ðu; ρÞ on, the uρ-component of
the field equation reads8

∂2f1
∂ρ2 þ

�
μσ̄ −

w1γ

4μ
−

ffiffiffiffiffiffi
w1

2

r
tan

�
ρ

ffiffiffiffiffiffi
w1

2

r �� ∂f1
∂ρ ¼ 0: ð34Þ

This can be thought of as a first-order linear partial
differential equation for ∂f1=∂ρ, which can easily be
solved as

∂f1
∂ρ ¼ f11ðuÞeaρ sec

�
ρ

ffiffiffiffiffiffi
w1

2

r �
; a≡ w1γ

4μ
− μσ̄:

Thus the most general solution of (34) reads

f1ðu; ρÞ ¼ FðρÞf11ðuÞ þ f12ðuÞ;

FðρÞ≡
Z

ρ
d~ρea~ρ sec

�
~ρ

ffiffiffiffiffiffi
w1

2

r �
: ð35Þ

A coordinate transformation of the form v → v=ðdu=d ~uÞ;
u → uð ~uÞ, can be employed to set f12ðuÞ ¼ 0.9 Finally the
uu-component of the field equation reads

∂3f0
∂ρ3 þ

�
3

2
W1ðρÞ þ μσ̄ −

w1γ

4μ

��∂2f0
∂ρ2 þW1ðρÞ

∂f0
∂ρ þ 1

2
ðW1ðρÞÞ2f0ðu; ρÞ

�

þ 2w1

∂f0
∂ρ þ

�
3

2
w1W1ðρÞ þ μð4Λ̄0 − w1σ̄Þ

�
f0ðu; ρÞ

¼ dF
dρ

�ðf11ðuÞÞ2
2

�
γ

μ

dF
dρ

− FðρÞ
�
−
df11
du

�
; ð36Þ

which is a linear partial differential equation for the remaining metric function f0ðu; ρÞ. Given f11ðuÞ, one can in principle
solve it to find f0ðu; ρÞ. Hence the generic Kundt solution for this case is

ds2 ¼ dρ2 þ 2dudvþ
�
w1

2
sec2

�
ρ

ffiffiffiffiffiffi
w1

2

r �
v2 þ f1ðu; ρÞvþ f0ðu; ρÞ

�
du2 þ 2v

ffiffiffiffiffiffiffiffi
2w1

p
tan

�
ρ

ffiffiffiffiffiffi
w1

2

r �
dudρ; ð37Þ

with a real w1 determined as in (31), f1ðu; ρÞ as given by
(35) [with f11ðuÞ arbitrary and f12ðuÞ ¼ 0] and f0ðu; ρÞ
satisfying (36).
Inspired by the discussion given in subsection 4.3.2 of

[13], if one defines a new coordinate

v̂ ¼ u −
4cos2ðρ ffiffiffiffiffiffiffiffiffiffi

w1=2
p Þ

w1v
;

then the solution (33) takes the form

ds2 ¼ dρ2 þ 8cos2ðρ ffiffiffiffiffiffiffiffiffiffi
w1=2

p Þ
w1ðu − v̂Þ2 dudv̂; ð38Þ

which is the metric for the round (A)dS. Thus (37) can be
thought of as the deformation of the round (A)dS metric,
cast in the generalized Kerr-Schild form with an (A)dS
background.

7Note that ω1 is twice the value of the allowed cosmological
constant for maximally symmetric vacua of MMG, found in
Eq. (2.3) of [7]. (31) simplifies considerably at the chiral point (8)
and the merger point (9).

8For clarity of argument, w1 found in (31) has not been used in
the remainder of this subsection.

9See (2.11) of [13] for details.
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B. W1¼const

When one setsW1 ¼ ω ¼ const, (19) can be arranged to
read

f22 þ f2

�
ω2

2
þ 4μ2σ̄

γ

�
− 3

�
ω4

16
þ μ2

γ
ðσ̄ω2 þ 4Λ̄0Þ

�
¼ 0;

ð39Þ

which clearly implies that f2 must also be a constant. Using
this in the ρρ-component of the field equation (21), one
finds that this can be written as

f22−f2

�
ω2

2
þ4μ

γ
ðμσ̄−ωÞ

�
þ
�
ω4

16
þμ2

γ
ðσ̄ω2þ4Λ̄0Þ

�
¼ 0:

ð40Þ

Since (39) and (40) must be satisfied simultaneously, one
can simply solve for Λ̄0 using either one of these and use
this in the other to solve for f2. Doing so, one finds that
there are two possibilities:

f2 ¼ 0 or f2 ¼
ω2

4
−
3μω

γ
þ 2μ2σ̄

γ
: ð41Þ

If one sets f2 ¼ 0 in either (39) or (40), one finds that these
are satisfied only if

ω2 ¼ −
8μ2σ̄

γ

�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γΛ̄0

μ2σ̄2

s �
; ð42Þ

which simplifies both at the chiral point (8) and the merger
point (9). At this stage if one were to further set f1ðu; ρÞ ¼
0 and f0ðu; ρÞ ¼ 0, one would simply obtain the spacetime
of constant curvature

ds2 ¼ dρ2 þ 2dudvþ 2ωvdudρ; ð43Þ

with curvature scalar R ¼ −3ω2=2 and RμνRμν ¼ 3ω4=4.
This, of course, is a solution to MMG with any real ω
satisfying (42).
However, one can dress up this “background metric”

further in the following way: The uρ-component of the field
equation yields10

∂2f1
∂ρ2 þ

�
μσ̄ þ γω2

8μ
−
ω

2

� ∂f1
∂ρ ¼ 0: ð44Þ

Using a coordinate transformation [similar to the one
employed after (35) in Sec. III A] to set an arbitrary
function of u to zero, we take the solution of (44) as

f1ðu; ρÞ ¼ FðρÞf11ðuÞ; where FðρÞ ¼ e−ðμσ̄þ
γω2

8μ −
ω
2
Þρ;
ð45Þ

with f11ðuÞ an arbitrary function.11 Then the uu-component
of the field equation is

∂3f0
∂ρ3 þ

�
3ω

2
þ μσ̄ þ γω2

8μ

��∂2f0
∂ρ2 þ ω

∂f0
∂ρ

�
− ω2

∂f0
∂ρ

¼ dF
dρ

�ðf11ðuÞÞ2
2

�
γ

μ

dF
dρ

− FðρÞ
�
−
df11
du

�
; ð46Þ

a linear partial differential equation for the metric function
f0ðu; ρÞ. As in Sec. III A, one can in principle solve it to find
f0ðu; ρÞ given f11ðuÞ. Putting it all together, the Kundt
solution found is

ds2 ¼ dρ2 þ 2dudvþ 2ωvdudρ

þ ðvf1ðu; ρÞ þ f0ðu; ρÞÞdu2; ð47Þ

where ω is any one of the real roots of (42), f1ðu; ρÞ
is given by (45) with f11ðuÞ arbitrary, and f0ðu; ρÞ
satisfies (46).
Note that the coordinate transformation v̂ ¼ veωρ turns

(43) into

ds2 ¼ dρ2 þ 2e−ωρdudv̂; ð48Þ

which is simply the round AdS [13]. Thus (47) can be
considered as a deformation of the round AdS, cast again in
a generalized Kerr-Schild form with an AdS background.
Now one can also use the other choice of f2 in (41), i.e.,

that

f2 ¼
ω2

4
−
3μω

γ
þ 2μ2σ̄

γ
: ð49Þ

Before proceeding any further, note that this can also be
written as12

f2 ¼
ω2

4
þ ξ; where ξ≡ −

3μω

γ
þ 2μ2σ̄

γ
or

ω ¼ 2μσ̄

3
−
γξ

3μ
: ð50Þ

In this case both (19) and (21) imply

10For clarity, neither of the roots in (42) has been used
explicitly in the remainder of this subsection.

11A careful scrutiny of Eqs. (2.9) to (2.11) of [13] shows that
the function f11ðuÞ cannot be “gauged away” by the coordinate
transformations (18).

12This alternative form will be of use for the discussion in
Appendix B.
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ω3

4μ
−
3ω2

4γ
þ 2μσ̄ω

γ
þ
�
Λ̄0 −

μ2σ̄2

γ

�
¼ 0; ð51Þ

or for easier access to the γ → 0 limit

γ3

108μ4
ξ3 þ γ

6μ2

�
1

2
−
γσ̄

3

�
ξ2 þ σ̄

3

�
1þ γσ̄

3

�
ξ

−
�
Λ̄0 þ

2μ2σ̄3

27

�
¼ 0; ð52Þ

a cubic equation in ω (or ξ), the explicit roots of which are
better left not displayed. One can now “play the game” of
setting f1ðu; ρÞ ¼ 0 and f0ðu; ρÞ ¼ 0, and obtain the
background metric

ds2 ¼ dρ2 þ 2dudvþ 2ωvdudρ

þ
�
ω2

4
−
3μω

γ
þ 2μ2σ̄

γ

�
v2du2; ð53Þ

which has a curvature scalar

R ¼ −ω2 þ 2ξ and RμνRμν ¼
1

8
ð2ω4 þ ðω2 − 4ξÞ2Þ;

with ω any one of the real root(s) of (51).
Turning f1 and f0 on is straightforward: The uρ-

component of the field equation is

∂2f1
∂ρ2 þ ω

∂f1
∂ρ ¼ 0; ð54Þ

which is readily integrated, with an arbitrary function
f12ðuÞ ¼ 0 as before, as

f1ðu; ρÞ ¼ e−ωρf11ðuÞ: ð55Þ

However, the coordinate transformation

v → v −
1

2f2
e−ωρf11ðuÞ

lets one take f11ðuÞ ¼ 0, so that one can set f1ðu; ρÞ ¼ 0
for good. Finally, the uu-component of the field equation
becomes

∂3f0
∂ρ3 þ

�
2μσ̄ þ γω2

4μ

� ∂2f0
∂ρ2

−
�
ω2

2
−
3μω

γ
þ 2μ2σ̄

γ
þ γΛ̄0 − μ2σ̄2

� ∂f0
∂ρ ¼ 0; ð56Þ

whose most general solution is easy to obtain:

f0ðu;ρÞ ¼ f01ðuÞ þ f02ðuÞe−ðΩþ3ωþγf2=μÞρ=2

þ f03ðuÞeðΩ−3ω−γf2=μÞρ=2;
with

Ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ω2 þ 6γf2ω

μ
þ γ2f22

μ2
þ 4ðf2 þ γΛ̄0 − μ2σ̄2Þ

s
;

ð57Þ

for arbitrary functions f01ðuÞ, f02ðuÞ, and f03ðuÞ with f2
given in (49). Thus, with f0ðu; ρÞ determined as in (57), the
generic Kundt solution for this case is

ds2 ¼ dρ2 þ 2dudvþ 2ωvdudρ

þ
��

ω2

4
−
3μω

γ
þ 2μ2σ̄

γ

�
v2 þ f0ðu; ρÞ

�
du2: ð58Þ

A specific solution of this type with f0 ¼ 1 has already
been found in [11].
Note first that the metric (53) can be written in the simple

form

ds2 ¼ 2dudvþ ðdρþ ωvduÞ2 − qv2du2; ð59Þ
where

q≡ ω2 − f2 ¼
3ω2

4
þ 3μω

γ
−
2μ2σ̄

γ
:

The coordinate transformations û ¼ qu=2 and v̂ ¼ 1=vþ
qu=2 take (59) into the form

ds2 ¼ −
4dûdv̂

qðû − v̂Þ2 þ
�
dρ −

2ωdû
qðû − v̂Þ

�
2

: ð60Þ

Finally the coordinates t ¼ ðûþ v̂Þ=2, x ¼ ðv̂ − ûÞ=2, and
z ¼ qρ=ω − ln ðv̂ − ûÞ can be employed to cast (60) into

ds2 ¼ 1

q

�
−dt2 þ dx2

x2
þ ω2

q

�
dzþ dt

x

�
2
�
; ð61Þ

which renders this solution as the spacelike-warped (A)dS
[7,13]. Thus (58) can be thought of as the deformation
of spacelike-warped (A)dS, written in a generalized Kerr-
Schild form with a spacelike-warped (A)dS background.

C. Merger point: Λ̄0 ¼ μ2σ̄2=γ

For this special fine-tuning of the parameters Eq. (19)
factorizes:

γ

4μ2

�
f2−

1

4
W2

1−
2μ2σ̄

γ

��
f2−2

dW1

dρ
þ3

4
W2

1þ
6μ2σ̄

γ

�
¼0;

ð62Þ

which lets f2 be determined in terms of W1.
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The substitution of the first choice

f2 ¼
1

4
W2

1 þ
2μ2σ̄

γ
ð63Þ

into the ρρ-component of the field equation (21) gives

W1

�
dW1

dρ
−
1

2
W2

1 −
4μ2σ̄

γ

�
¼ 0: ð64Þ

If one takes W1 ¼ 0, so that f2 ¼ 2μ2σ̄=γ, then one ends
up finding the solution described in the second half of
Sec. III B with ω¼0. If, however [using our earlier notation
of (25)], one takes χ ¼ 4μ2σ̄=γ ¼ const, one is led to the
general solution described in Sec. III A with w1 ¼ 4μ2σ̄=γ.
The substitution of the second choice, namely,

f2 ¼ 2
dW1

dρ
−
3

4
W2

1 −
6μ2σ̄

γ
; ð65Þ

into the ρρ-component of the field equation (21) is a bit
subtler. One finds

d
dρ

�
dW1

dρ
−
1

2
W2

1 −
4μ2σ̄

γ

�
−

γ

2μ

�
dW1

dρ
−
1

2
W2

1 −
4μ2σ̄

γ

�
2

−
3

4
W1

�
dW1

dρ
−
1

2
W2

1 −
4μ2σ̄

γ

�
¼ 0; ð66Þ

a nonlinear second-order ordinary differential equation
from which W1ðρÞ can in principle be solved. It is easy
to see that the particular choices, the cases W1 ¼ 0 and
χ ¼ 4μ2σ̄=γ that we have already covered, solve it. Now we
present a “particular” solution of (66) which is a non-CSI
spacetime as we will see. Provided that out of the three
remaining “free” parameters, σ̄, μ, and γ, of the MMG
theory, the pair σ̄ and γ are further fine-tuned as
2σ̄γ þ 1 ¼ 0, such that Λ̄0 ¼ μ2=ð4γ3Þ now, one finds that
(66) is identically satisfied if

dW1

dρ
−
1

2
W2

1 þ
μ

2γ
W1 þ

μ2

γ2
¼ 0: ð67Þ

Employing the transformation ρ → ρ − const to get rid of
an integration constant as previously argued, the solution of
this equation reads

W1ðρÞ ¼
μ

γ

�
2þ e3μρ=ð2γÞ

1 − e3μρ=ð2γÞ

�
; ð68Þ

which determines f2 through (65) as

f2 ¼
�
1

2
W1 −

μ

γ

�
2

¼ 9μ2

4γ2
e3μρ=γ

ð1 − e3μρ=ð2γÞÞ2 : ð69Þ

Thus one arrives at the background metric

ds2 ¼ dρ2 þ 2dudvþ 9μ2

4γ2
e3μρ=γ

ð1 − e3μρ=ð2γÞÞ2 v
2du2

þ 2
μ

γ

�
2þ e3μρ=ð2γÞ

1 − e3μρ=ð2γÞ

�
vdudρ; ð70Þ

with f1 and f0 switched off. This metric has curvature
scalar

R ¼ −
3μ2

γ2

�
2þ e3μρ=ð2γÞ

1 − e3μρ=ð2γÞ

�
and

RμνRμν ¼
3μ4

8γ4
ð32þ 32e3μρ=ð2γÞ þ 17e3μρ=γÞ

ð1 − e3μρ=ð2γÞÞ2 :

Note that there is a curvature singularity at ρ ¼ 0 and as
ρ → ∞ the metric (70) approaches to the CSI metric given
in (53) with ω ¼ −μ=γ (and hence ξ ¼ 2μ2=γ2), which is a
root of (51), at this special setting. Note that the asymptotic
CSI metric has positive curvature scalar R ¼ 3μ2=γ2 >
0 then.
Turning f1 and f0 on is straightforward. One finds that

f1 must satisfy

∂2f1
∂ρ2 −

μ

γ

∂f1
∂ρ ¼ 0; ð71Þ

which is easily integrated, with an arbitrary function
f12ðuÞ ¼ 0 as before, as

f1ðu; ρÞ ¼ eμρ=γf11ðuÞ: ð72Þ

On the other hand, the coordinate transformation

v → v −
1

2f2
eμρ=γf11ðuÞ

can be employed to set f11ðuÞ ¼ 0, so that one has
f1ðu; ρÞ ¼ 0 for good. The equation that f0 must satisfy is

∂3f0
∂ρ3 þ 3μ

4γ

�
4þ e3μρ=ð2γÞ

1 − e3μρ=ð2γÞ

� ∂2f0
∂ρ2

þ μ2

4γ2
ð8þ 47e3μρ=ð2γÞ − 10e3μρ=γÞ

ð1 − e3μρ=ð2γÞÞ2
∂f0
∂ρ

þ 9μ3

8γ3
e3μρ=ð2γÞð14þ e3μρ=ð2γÞÞ

ð1 − e3μρ=ð2γÞÞ3 f0 ¼ 0: ð73Þ

Thus the general Kundt solution for this case is
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ds2 ¼ dρ2 þ 2dudv

þ
�
9μ2

4γ2
e3μρ=γ

ð1 − e3μρ=ð2γÞÞ2 v
2 þ f0ðu; ρÞ

�
du2

þ 2
μ

γ

�
2þ e3μρ=ð2γÞ

1 − e3μρ=ð2γÞ

�
vdudρ; ð74Þ

where it is understood that f0 satisfies the linear partial
differential equation (73).

IV. ALGEBRAIC CLASSIFICATION

In three dimensions the algebraic classification of
curvature can be achieved by using either the traceless
Ricci tensor

R̂μ
ν ≡ Rμ

ν −
1

3
Rδμν

(Segre classification) or the Cotton tensor (2) (Petrov
classification). Even though these two classifications
coincide for TMG, this is not so for MMG. Since the
Cotton tensor involves the derivative of the Ricci tensor,
and thus can be considered “less fundamental,” we con-
centrate on the traceless Ricci tensor for the algebraic
classification of the Kundt solutions of MMG. In this case,
one must thus find the eigenvalues of R̂μ

ν and their
multiplicities, if any. Since the Jordan normal form encodes
all of this information, we calculate this for each of the
solutions obtained thus far. However it will be convenient
to first recall the basics of the Segre notation we use: The
symbols 1, 2, and 3 indicate the sizes of Jordan blocks.
Parentheses are used for grouping Jordan blocks that
belong to the same eigenvalue. A comma is used for
splitting the Jordan blocks corresponding to spacelike
eigenvectors from those corresponding to the timelike
ones, where the former are always written before the
comma. (Refer to Table 1 of [14] for details.)
A generic Kundt spacetime (11), where W and f are

given as in (15) and (17), respectively, is of Segre type ½12�,
where the eigenvalues of R̂μ

ν are β and −2β with algebraic
multiplicities 2 and 1, respectively, and

β≡ 1

6

�
2f2 −

∂W1

∂ρ
�
: ð75Þ

For the solutions found in Sec. III A, it turns out that
β ¼ 0. The solution (33) is of Segre type ½ð12Þ�, whereas
(37) is of Segre type ½3�. Since W1 ¼ const and f2 must be
as in (41) for the solutions found in Sec. III B, there are two
possibilities for each choice of f2: For the trivial case
f2 ¼ 0, it follows that β ¼ 0 as well. Then the solution (43)
is of Segre type [(11,1)], whereas (47) is of Segre type [3].
For the nontrivial f2 given as in (49), it is obvious that
β ¼ f2=3 ≠ 0 and it turns out that the solution (53) is of
Segre type [1(1,1)], whereas the solution (58) is of Segre

type [12]. Note that solutions presented in Appendix B,
namely, (B3)and itsdressed-upversion (B4), arebothclosely
related to their counterparts (53) and (58) of Sec. III B,
respectively, and are of the same Segre type as their cousins.
Finally, for the non-CSI solution presented in Sec. III C,
namely, (70) and its sister with f0 turned on (74), the specific
value of the eigenvalue is

β ¼ −
3μ2

4γ2

�
e3μρ=ð2γÞ

1 − e3μρ=ð2γÞ

�
;

and both of these solutions are again of Segre type [12].
Comparing the Segre types of these solutions to the

Segre types of the Kundt solutions of TMG, one sees that
the presence of the parameter γ does not alter the general
picture. The Kundt solutions of MMG also fall into two
broad classes of Segre type [12] and Segre type [3], with
special cases of Segre types [(11,1)], [1(1,1)], and [(12)]
also occurring.

V. DISCUSSION

In this paper we investigated the Kundt solutions of
MMG theory. All of the explicit solutions presented in
Secs. III A and III B turn out to be CSI spacetimes, which
are deformations of round and warped (A)dS. We also
showed the existence of Kundt solutions at the merger point
(9) in Sec. III C and found an explicit non-CSI solution.
Even though the fine-tuned parameters of the latter violate
the unitarity conditions (7), there are no restrictions on the
parameters of the former and they remain indifferent to the
unitarity requirements. The chiral point (8) does not seem
to be special for Kundt solutions except for simplifying
relevant expressions. Since the algebraic classification is a
useful tool for identifying seemingly different spacetimes,
we also gave the Segre classification of these solutions and
found that their Segre types coincide with their cousins
in TMG.
There are various possible directions to extend our work.

First of all, one may try to relax the expansion-free
condition on the null vector kμ in (12) and look for
Robinson-Trautman solutions. One may also try to find
all locally homogeneous solutions as was done for TMG
[20,21]. This is an interesting problem, since then all CSI
solutions of MMG can be completed. Another open
question is whether the Goldberg-Sachs theorem is also
valid for MMG. This was recently proven for TMG in [22].
Studying such solutions in models that are related to MMG
would also be interesting [23,24]. We hope to investigate
these and related issues in the near future.
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APPENDIX A: THE MOST GENERAL
SOLUTION OF (13)

As argued in the beginning of Sec. III, here we show
that the Kundt spacetimes exist only if one takes
Yðv; u; ρÞ≡ vγ − 2μW2ðu; ρÞ ¼ 0.
Recall that the most general solution of (13) is given by

(14). Using (13), the vρ-component of the field equation (3)
reads

�
8μ2σ̄ þ γ

�∂W
∂v

�
2

− 2γ
∂2f
∂v2

� ∂2W
∂v2 − 4μ

∂3f
∂v3 ¼ 0; ðA1Þ

which after the substitution of (14) can be cast into

8γμ2σ̄ þ ðγW1ðu; ρÞ þ 2μ ln ðvγ − 2μW2ðu; ρÞÞÞ2

− 2γ
∂
∂v

�
ðvγ − 2μW2ðu; ρÞÞ

∂2f
∂v2

�
¼ 0: ðA2Þ

Assuming that Yðv; u; ρÞ≡ vγ − 2μW2ðu; ρÞ ≠ 0, this par-
tial differential equation for the metric function f can be
solved to determine its v dependency as

fðv; u; ρÞ ¼ v2
�
μ2

2γ2
½17þ 4γσ̄ − ð10 − 2 lnYÞ lnY� − μ

2γ
W1ðu; ρÞð5 − 2 lnYÞ þ 1

4
W2

1ðu; ρÞ
�

þ v

�
f1ðu; ρÞ −

f2ðu; ρÞ
γ

ð1 − lnYÞ − 2μ3

γ3
W2ðu; ρÞ½17þ 8γσ̄ − ð10þ 4γσ̄ − 2 lnYÞ lnY�

þ 2μ2

γ2
W1ðu; ρÞW2ðu; ρÞð7 − 4 lnYÞ − μ

γ
W2

1ðu; ρÞW2ðu; ρÞð2 − lnYÞ
�

þ f0ðu; ρÞ −
2μ

γ2
f2ðu; ρÞW2ðu; ρÞ lnY −

2μ4

γ4
W2

2ðu; ρÞ½5þ 2 lnYð5þ 4γσ̄ − lnYÞ�

−
2μ3

γ3
W1ðu; ρÞW2

2ðu; ρÞð1 − 6 lnYÞ − 2μ2

γ2
W2

1ðu; ρÞW2
2ðu; ρÞ lnY: ðA3Þ

Using (14) and (A3) in (5), one obtains a very long
expression, better not displayed here at all, whose general
form is

X2
m¼0

X3
n¼0

amnðu; ρÞvmðln ðvγ − 2μW2ðu; ρÞÞÞn ¼ 0:

Obviously each of the coefficients amnðu; ρÞ must vanish
for this equality to hold, but the vanishing of the “highest”
one, a23ðu; ρÞ ¼ 96γ2μ4 ¼ 0, implies that either γ ¼ 0 or
μ ¼ 0, both of which take us out of MMG theory.

APPENDIX B: THE CASE f 2 −W2
1=4¼const IN (19)

In this appendix, we study what happens when one
chooses f2 −W2

1=4 ¼ const in equation (19) and after-
wards. Dropping the u-dependency of f2 and setting
f2ðρÞ −W1ðρÞ2=4 ¼ ξ ¼ const, (19) simplifies to

ξðγξþ 4μ2σ̄Þ − 12μ2Λ̄0 − 2χðρÞðγξ − 2μ2σ̄Þ ¼ 0; ðB1Þ
where we have used the definition of χðρÞ as given in (25),
and taken W1 ¼ W1ðρÞ as argued after (23). The generic
solution of (B1) falls precisely into the χ ¼ const case
already discussed in detail in Sec. III A.13

Note also that if one were to set ξ ¼ 0 to start with, and
solve for the relevant version of (B1) keepingW1 ¼ W1ðρÞ
generic, then one immediately finds that (21) can only be
satisfied if Λ̄0 ¼ 0. This at once leads to the “trivial”
solution: Both W1 and f2 must vanish and one simply
obtains the flat Minkowski metric

ds2 ¼ dρ2 þ 2dudv; ðB2Þ

when one keeps both f1 and f0 switched off. When one
chooses to turn f1 and f0 on, the analysis flows exactly
as in the second paragraph of Sec. III B with the
substitution ω ¼ 0.
Still keeping ξ ¼ 0, if one instead takesW1 ¼ ~ω ¼ const,

one finds from (19) that14 ~ω2 ¼ −6Λ̄0=σ̄, which makes
f2 ¼ −3Λ̄0=ð2σ̄Þ. Substituting these in (21), one ends up
with either Λ̄0 ¼ 0 or Λ̄0 ¼ −2μ2σ̄3=27. The former case
goes ahead as mentioned in the previous paragraph. The
latter givesW1 ¼ 2μσ̄=3 and f2 ¼ μ2σ̄2=9.15 If one chooses
to set f1ðu; ρÞ ¼ 0 and f0ðu; ρÞ ¼ 0 here, then one simply
obtains the spacetime of constant negative curvature

13The field equations then impose the identification of the
constant w1 of Sec. III A as w1 ¼ 2ξ.

14Of course, the constraint Λ̄0=σ̄ < 0 (or Λ̄0σ̄ < 0) is implicitly
assumed in what follows.

15Note that these choices correspond to taking ξ ¼ 0 in (50)
and (52).
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ds2 ¼ dρ2 þ 2dudvþ μ2σ̄2

9
v2du2 þ 4μσ̄

3
vdudρ; ðB3Þ

with R ¼ −4μ2σ̄2=9 and RμνRμν ¼ 2μ4σ̄4=27, as a solution
toMMG.The storywith the turning on of the other functions
f1 and f0 follows similar steps as before, but we skip the
details for clarity and simply present the final result: The
general Kundt solution for this case is16

ds2 ¼ dρ2 þ 2dudvþ
�
μ2σ̄2

9
v2 þ f0ðu; ρÞ

�
du2

þ 4μσ̄

3
vdudρ; ðB4Þ

where a coordinate transformation as in (18) has been
employed on v to set f1ðu; ρÞ ¼ 0 for good and f0ðu; ρÞ
reads

f0ðu; ρÞ ¼ f01ðuÞ þ f02ðuÞe−μσ̄ð18þγσ̄þΞÞρ=18

þ f03ðuÞe−μσ̄ð18þγσ̄−ΞÞρ=18;

with Ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2σ̄2 þ 12γσ̄ þ 72

q
; ðB5Þ

for arbitrary functions f01ðuÞ, f02ðuÞ, and f03ðuÞ.
To cover all bases, if one were to examine the assumption

W1ðρÞ ¼ ω̄ ¼ const with ξ ≠ 0, then one soon finds that
this reduces to the case covered in the first half of Sec. III B,
with the identification ω̄ → ω and f2 ¼ 0, etc.
Finally, if one were to set the coefficient of χðρÞ in (B1)

to zero, i.e., set ξ ¼ 2μ2σ̄=γ, then the remainder of (B1)
demands Λ̄0 ¼ μ2σ̄2=γ, which is examined in detail in
Sec. III C.
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