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We argue that the exponential relation gμν ¼ ḡμρðehÞρν is the most natural metric parametrization since it
describes geodesics that follow from the basic structure of the space of metrics. The corresponding
connection is derived, and its relation to the Levi-Civita connection and the Vilkovisky–DeWitt connection
is discussed. We address the impact of this geometric formalism on quantum gravity applications. In
particular, the exponential parametrization is appropriate for constructing covariant quantities like a
reparametrization-invariant effective action in a straightforward way. Furthermore, we reveal an important
difference between Euclidean and Lorentzian signatures: Based on the derived connection, any two
Euclidean metrics can be connected by a geodesic, while this does not hold for the Lorentzian case.
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I. INTRODUCTION

A metric on a manifold is a covariant rank-2 tensor field
(i.e. it is continuous and bilinear) which is symmetric and
nondegenerate. As a consequence of continuity and non-
degeneracy, the signature of any metric is constant. Fixing
the signature restricts the set of all possible metrics. When
we speak about “space of metrics” in this article, we assume
that all elements have the same prescribed signature. It is one
aim to discuss the fundamentals of the geometry of such a
space. In fact, the requirement for nondegeneracy, or,
equivalently, for a fixed signature, imposes a nonlinear
constraint on metrics, and all nontrivial geometric properties
of the space of metrics are due to this requirement.
While the constraint must be strictly satisfied in General

Relativity, it is not clear a priori if it should be respected in
a gravitational path integral, too [1]. However, in the class
of actions that we would like to consider, i.e. functionals
constructed from invariants of the type

R
ddx

ffiffiffi
g

p
,R

ddx
ffiffiffi
g

p
R, etc., it is crucial to have a nondegenerate

metric. Otherwise, the volume element
ffiffiffi
g

p
could vanish,

and the inverse metric required to raise indices could be
nonexistent. Therefore, we take the view that the constraint
has also to be taken into account in the domain of
integration in a path integral.
The application of conventional quantum field theory

methods to gravity requires the introduction of a back-
ground metric, say, ḡμν. Usually, the dynamical metric gμν is
split into background and fluctuations hμν in the standard
linear way by writing

gμν ¼ ḡμν þ hμν: ð1Þ

Due to the nonlinear constraint, however, the space of
metrics is not a vector space, and thus the addition in
Eq. (1) has to be handled with care. There are two ways to
approach this difficulty [2]: (a) If ḡμν and gμν lie in the same
coordinate patch, then hμν can simply be seen as a
coordinate increment, where the addition is well defined
in the chart. (b) In general, one should regard hμν as
components of a tangent vector to the space of metrics at ḡ.
Then the “addition” in (1) is to be understood as starting
at the base point ḡμν and going along a geodesic in the
direction of hμν which assumes the role of geodesic
(normal) coordinates. As we will see, both points of view
ultimately lead to a more natural parametrization of metrics
in comparison with the linear one.
The gravitational path integral is given by an integration

over the metric fluctuations,
R
Dhμν. Now the different

notions (a) and (b), which we refer to as nongeometric and
geometric, respectively, lead to different implementations
of the constraint for the metrics. In the nongeometric
interpretation (a), we have to restrict the domain of
integration to the (ḡμν-dependent) subset of those hμν
which define allowed metrics when using (1). This can
be done by reparametrizing the metric such that it auto-
matically has the correct signature for all fluctuations and
that the new domain of integration is trivial. By contrast, in
case (b) the constraint is satisfied already by construction.
The fluctuations are interpreted as tangent vectors that are
inserted into the exponential map of the space of metrics,
thus giving rise to admissible metrics only.
Motivated by a different argument,1 one particular metric

parametrization has been used previously in Ref. [3]. It is
given by the exponential relation
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1The exponential parametrization allows for an easy separation
of the conformal mode from the fluctuations.
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gμν ¼ ḡμρðehÞρν; ð2Þ

where indices are raised and lowered with the background
metric and h is a symmetric matrix-valued field, hμν ¼ hνμ
(or hμν ¼ hνμ with the shifted index position). In matrix
notation equation (2) reads

g ¼ ḡeḡ
−1h; ð3Þ

with hT ¼ h. Note that the factor ḡ−1 in the exponent is
meant implicitly in Eq. (2), indicated by the index posi-
tions. In our present context, the special significance of this
exponential parametrization lies in the fact that it satisfies
the above constraint.
To see this, let us first adopt the nongeometric inter-

pretation. From that point of view, we regard Eq. (2) as a
mere change of coordinates from metrics gμν to symmetric
tensors hμν, i.e. as a reparametrization. It can be shown
without relying on geometric constructions based on geo-
desics that this is a one-to-one correspondence [4].2 That is,
not only does the right-hand side of (2) give rise to
admissible metrics, but there also exists a unique symmetric
hμν for any given gμν and ḡμν. Hence, the required signature
constraint is satisfied, and the path integral over the
fluctuations hμν captures every gμν once and only once.
On the other hand, let us take the geometric view now,

where hμν assumes the role of a tangent vector. In the
remainder of this article, we will always take this view,
unless stated otherwise. It allows for profound insights into
the structure of the space of metrics. Remarkably enough, it
leads to the same parametrization (2) as above. This is
worked out in detail in Sec. IV (cf. also Refs. [5–7]). The
construction is based on geodesics, and thus the para-
metrization clearly depends on the underlying connection.
We will argue, however, that there is one natural choice of a
connection which results from the basic properties of
metrics. Accordingly, we consider the exponential relation
(2) the most natural parametrization.
Apart from its fundamental geometric meaning and its

advantage of generating only such metrics that satisfy the
signature constraint, the exponential parametrization is
further motivated by several physical arguments. Here,
we briefly mention some of them:

(i) As already indicated above, the use of parametriza-
tion (2) allows for an easy separation of the
conformal mode from the fluctuations: When split-
ting hμν into trace and traceless contributions, hμν ¼
ĥμν þ 1

d ḡμνϕ, with ϕ ¼ ḡμνhμν and ḡμνĥμν ¼ 0, the
trace part gives rise to a conformal factor in (2), and
notably the volume element on the spacetime mani-
fold depends only on ϕ,

ffiffiffi
g

p ¼ ffiffiffī
g

p
e
1
2
ϕ. In the context

of gravity, this means that the cosmological constant

occurs as a coupling only in the conformal mode
sector. This is one reason for the following point.

(ii) Some computations are simplified and some are
feasible only when using parametrization (2), for
instance to avoid infrared singularities in the search of
scaling solutions in scalar-tensor gravity [7,8], for
calculating the limit ϵ → 0 of the effective action in
2þ ϵ-dimensional quantum gravity [9], in unimod-
ular quantum gravity [10], and for ensuring gauge
independence at one loop level without resorting to
the Vilkovisky–DeWitt method [11] (cf. also Sec. III).

(iii) It is known from conformal field theory studies that
there is a critical number of scalar fields in a theory
of gravity coupled to conformal matter, referred to as
the critical central charge, which amounts to ccrit ¼
25 [12]. This result is correctly reproduced in the
Asymptotic Safety program [13] when using the
exponential parametrization [3,4,9], while a differ-
ent number is obtained when using the linear relation
(1) [4,9,14].

At this point a comment is in order. The equivalence
theorem [15] states invariance of the S-matrix, and thus of
all physical quantities, under field redefinitions. With this
in mind, let us discuss why the choice of parametrization
matters at all.
The first point we want to make is that the linear split (1)

is often taken seriously where the addition is the usual
tensor addition. The path integral is then thought of as an
integration over all symmetric tensors. This way, it would
be easy to evaluate Gaussian integrals [16], for instance.
However, as discussed above, metrics have to satisfy the
signature constraint which amounts to a restricted domain
of integration. Therefore, the exponential parametrization
(2) is a field redefinition of (1) only if the latter is combined
with the constraint. Only then the S-matrices can be
expected to agree.
Second, one is often interested in off shell quantities, e.g.

in β-functions for renormalization group studies or in the
effective potential part of the effective action for inves-
tigating spontaneous symmetry breaking. In general, off
shell quantities depend on the choice of parametrization.
This fact can be important when comparing different
approaches that describe the same physics. For instance,
there are several candidate theories of quantum gravity, and
the use of a particular parametrization in one theory might
be most appropriate for a comparison with another one. So
the choice of parametrization can indeed be relevant in the
usual noninvariant framework, and it can be a powerful tool
to simplify computations.
Pioneered by Vilkovisky [17] and DeWitt [18], there is,

however, a way to construct an effective action Γ which is
reparametrization invariant and gauge independent both off
and on shell. The price one has to pay for this invariance is a
nontrivial dependence of Γ on the background metric,
encoded in generalized Nielsen identities [19] (cf. Sec. V),

2The one-to-one correspondence was shown for Euclidean
metrics. For Lorentzian signatures see Sec. IV B.
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which obscures relations between variables and makes
calculations more complex. As wewill argue, the geometric
interpretation of (2) leads to reparametrization and gauge-
invariant (but not gauge-independent) constructions, too,
and it entails a simpler relation between two metrics
connected by a geodesic as compared to the Vilkovisky–
DeWitt approach. Ultimately, it depends on the desired
application whether or not reparametrization invariance
should be implemented and which connection for deter-
mining geodesics should be chosen.
Above we have seen the significance of the exponential

parametrization with its geometric meaning and its many
advantages for physical applications. The present work is
dedicated to investigating the geometric structure behind it.
We aim at finding a connection in field space such that the
corresponding geodesics are parametrized by relation (2). To
put it another way, we determine a connection such that the
exponential map is given by the standard matrix exponential.
Some of the arguments brought up here for our calcu-

lations are already known. Our objective is to collect them,
supplement them further, compare different approaches, and
embed the ideas into a broader context. This article is
organized as follows. In Sec. II we present a derivation of
a connection that leads to parametrization (2). We compare
this connection with the Levi-Civita connection and the
Vilkovisky–DeWitt connection in Sec. III, starting from a
metric in field space. The main part is contained in Sec. IV:
We rederive the connection of Sec. II with more general
methods borrowed from group theory and differential geom-
etry, where we find that it originates from a basic geometric
structure that is given in a natural way. Furthermore, we study
differences between the space of Euclidean and Lorentzian
metrics; see Sec. IVB. In Sec. V we discuss the meaning of
the exponential parametrization for its application to covar-
iant Taylor expansions and Nielsen identities. Finally, we
conclude with a short summary in Sec. VI.

II. DERIVATION OF THE CONNECTION

Geodesics on a differentiable manifold—parametrized
by means of the exponential map—are fixed by the choice
of an affine connection. In this context, different connec-
tions lead to different exponential maps. Since we have
already discussed the importance of the metric parametri-
zation (2), we now aim at finding a connection on the space
of metrics such that the exponential map has the simple
form of the standard matrix exponential.
Before we start, let us briefly fix the notations and

conventions used in this article. The spacetime manifold is
denoted byM and points inM by x, y, z. The set of all field
configurations is referred to as field space, henceforth
denoted by F. In the present case, F is the space of all
metrics onM. It can be shown that F exhibits the structure
of an (infinite-dimensional) manifold [20–22]. We observe
that any spacetime metric g ∈ F at a given spacetime point
can be considered a symmetric matrix. More precisely, if g

has signature ðp; qÞ, then in any chart ðU;ϕÞ for the
spacetime manifold M, the metric in local coordinates is
a map,

gjU∶ U → M; x ↦ gμνðxÞ; ð4Þ

where M denotes the set of real nondegenerate symmetric
d × d matrices with signature3 ðp; qÞ,

M≡ fA ∈ GLðdÞjAT ¼ A; A has signature ðp; qÞg: ð5Þ

Due to this local appearance of metrics at a given point, we
may think of the configuration space F as the topological
product

Q
x∈MM. In practice, this notion has to be

supplemented by additional requirements concerning con-
tinuity. Actually,F is the space of sections of a fiber bundle
with typical fiber M and base space M, but in the present
context, it is not necessary to specify this further. As wewill
argue, geodesics in F are closely related to geodesics inM
for a certain class of connections.
A generic field φi can be regarded as the local coordinate

representation of a point in field space F . We employ
DeWitt’s condensed notation [23], where the (Latin) index i
represents both discrete and continuous (e.g. spacetime)
labels, so we identify φi ≡ gμνðxÞ. Repeated condensed
indices are interpreted as summation over discrete and
integration over continuous indices. By φ̄i we denote a
fixed but arbitrary background field.
Our starting point for the derivation of the desired

connection will be an expansion of φi in terms of tangent
vectors of a geodesic connecting φ̄i and φi. Let φiðsÞ
denote such a geodesic, i.e. a curve with

φið0Þ ¼ φ̄i and φið1Þ ¼ φi; ð6Þ
that satisfies the geodesic equation

φ̈iðsÞ þ Γi
jk _φ

jðsÞ _φkðsÞ ¼ 0; ð7Þ

where the dots indicate derivatives with respect to the curve
parameter s and Γi

jk is the Christoffel symbol evaluated at
φiðsÞ, i.e. Γi

jk ≡ Γi
jk½φiðsÞ�. We assume for a moment that

the geodesic φiðsÞ lies entirely in one coordinate patch.
As wewill see, the connection determined below only gives
rise to such geodesics that automatically satisfy this
assumption. Then we can expand the local coordinates
as a series,

φiðsÞ ¼
X∞
n¼0

sn

n!

�
dn

dsn
φiðsÞ

����
s¼0

�
: ð8Þ

3In our convention, p is the number of positive eigenvalues and
q the number of negative ones. Due to nondegeneracy we have
pþ q ¼ d. Matrices with p ¼ d, q ¼ 0 are positive definite,
corresponding to Euclidean metrics.
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We observe that it is possible to express all higher
derivatives in (8) in terms of _φi by using Eq. (7) iteratively.
If hi ≡ _φið0Þ denotes the tangent vector at φ̄ in the direction
of the geodesic, we obtain the following relation for
φi ¼ φið1Þ:

φi ¼ φ̄i þ hi −
1

2
Γ̄i
jkh

jhk

þ 1

6
ðΓ̄i

mjΓ̄m
lk þ Γ̄i

kmΓ̄m
lj − Γ̄i

jk;lÞhjhkhl þOðh4Þ; ð9Þ

with Γ̄i
jk ¼ Γi

jk½φ̄� and Γ̄i
jk;l ≡ δ

δφ̄l Γ̄i
jk. In standard index

notation, Eq. (9) reads

gμνðxÞ ¼ ḡμνðxÞ þ hμνðxÞ

−
1

2

Z
y

Z
z
Γ̄αβρσ
μν ðx; y; zÞhαβðyÞhρσðzÞ þOðh3Þ: ð10Þ

This expansion is to be compared with the exponential
metric parametrization (2), which can be written as the
series

gμνðxÞ ¼ ḡμνðxÞ þ hμνðxÞ þ
1

2
ḡρσðxÞhμρðxÞhνσðxÞ þOðh3Þ:

ð11Þ

From the second-order terms in (10) and (11), we can
finally read off the connection Γ̄αβρσ

μν ðx; y; zÞ.4 Since the
result is valid for arbitrary base points ḡμν, we can go over
to its unbarred version, i.e. to the connection evaluated at
gμν, and we obtain

Γαβρσ
μν ðx; y; zÞ ¼ −δðαðμg

βÞðρðxÞδσÞνÞδðx − yÞδðx − zÞ: ð12Þ

This is the main result of this section.
It remains to be shown that the connection (12) is

consistent also with all higher orders in (10) and (11).
One can check as an easy exercise that the third-order terms
do in fact agree. For a proof at all orders, however, we
proceed differently. The idea is to find exact solutions to the
geodesic equation (7) based on the connection (12).
But first, we make an important remark about a funda-

mental property of the connection. Since Γαβρσ
μν ðx; y; zÞ is

proportional to δðx − yÞδðx − zÞ, all integrations in (7) are
trivial. Thus, the geodesic equation is effectively pointwise
with respect to the spacetime. As already stated above, at
any given point x, the metric can be considered an element
of M, defined in (5), which is an open and connected
subset in the vector space of symmetric matrices (cf. the

discussion in Sec. IV) and which can thus be covered with
one coordinate chart. Therefore, geodesics corresponding
to (12) stay indeed in one chart.
Due to the pointwise character of the geodesic equation,

the dependence on x is not written explicitly in the
following. Now Eq. (7) becomes

g̈μν − δðαðμg
βÞðρδσÞνÞ _gαβ _gρσ ¼ g̈μν − gβρ _gμβ _gρν ¼ 0: ð13Þ

After multiplication with gνλ, we observe that (13) can be
brought to the form

d
ds

ð_gμνgνλÞ ¼ 0; ð14Þ

that is, _gμνgνλ ¼ cλμ ¼ const. In matrix notation this reads

_gðsÞ ¼ cgðsÞ: ð15Þ
Equation (15) is known to have the unique solution
gðsÞ ¼ escgð0Þ. With the initial conditions gð0Þ ¼ ḡ and
h ¼ _gð0Þ ¼ cgð0Þ ¼ cḡ, we obtain gðsÞ ¼ eshḡ

−1
ḡ, which

finally leads to

gðsÞ ¼ ḡesḡ
−1h: ð16Þ

At s ¼ 1 and in index notation, this is precisely the
exponential relation (2) for the metric. Hence, we have
proven that geodesics corresponding to the connection (12)
are uniquely parametrized by gμν ¼ ḡμρðehÞρν. As a result,
Eqs. (10) and (11) agree at all orders. Note that Eq. (16)
defines a geodesic in M, too, as it holds at each spacetime
point x separately, while it becomes a geodesic in F when
regarding ḡ and h as x-dependent tensor fields. Continuity
of g with respect to x is then ensured by continuity of ḡ
and h.
In conclusion, there is indeed a connection that defines a

structure on field space F entailing a simple parametriza-
tion of geodesics. Whether there is even more structure by
virtue of a field space metric will be discussed in the
following section.

III. COMPARISON OF CONNECTIONS
ON FIELD SPACE

Above we showed that the field spaceF can be equipped
with a connection Γk

ij that reproduces the exponential
parametrization. Now, we discuss different connections
on field space known from the literature and their relation to
the new connection (12).
As we already described in the previous section, the

metric gμν is a map from the spacetime manifold M to the
set of nondegenerate symmetric matrices M, which by
itself carries the structure of a manifold. Including field
space, we are dealing with three manifolds in total, which
we carefully distinguish. We will see that all of them can be

4Since we must take into account that the affine connection
maps again to an element of the tangent space, i.e. to a symmetric
tensor, we have to symmetrize adequately. By convention, round
brackets indicate symmetrization: aðμνÞ ≡ 1

2
ðaμν þ aνμÞ.
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equipped with a metric, leading to the three (semi-)
Riemannian manifolds,

ðM; gÞ; ðM; γÞ; ðF ; GÞ; ð17Þ

where gμν is the spacetime metric, γ is the metric inM, and
Gij denotes the field space metric. Note that gμν also
represents a point in F . The field space metricGij is part of
the definition of the theory under consideration, but
nevertheless it can be fixed if a few requirements are made.
First, we want to take into account that gravity is a gauge

theory. The classical action is invariant under diffeomor-
phisms, and so are all physical quantities. This leads to the
reasonable requirement that the metric Gij on F be gauge
invariant, too, i.e. that the action of the gauge group on F
be an isometry. In general terms, a gauge transformation
can be written as

δφi ¼ Ki
α½φ�δϵα; ð18Þ

where δϵα parametrizes the transformation and the Kα are
the generators of the gauge group G. In the case of gravity,
Eq. (18) reads δgμν ¼ Lδϵgμν, with the Lie derivative L
along a vector field δϵα. The action of G on F induces a
principal bundle structure. Points that are connected by
gauge transformations are physically equivalent, while the
space of orbits F=G contains all physically nonequivalent
configurations. Now, if the gauge group is to generate
isometric motions in F , then the field space metric Gij½φ�
must satisfy Killing’s equation; i.e. our first requirement
reads

Kk
α;iGjk þ Kk

α;jGik þ Kk
αGij;k ¼ 0; ð19Þ

where commas denote functional derivatives with respect to
the field φi.
Second, we require that Gij½φ� be ultralocal, i.e. that it

involve only undifferentiated φ’s and that it be diagonal in
x-space.
There is a unique one-parameter family of field space

metrics satisfying all requirements, which is known as the
DeWitt metric [5]. It reads

Gμνρσðx; yÞ½g� ¼ ffiffiffi
g

p �
gμðρgσÞν þ c

2
gμνgρσ

�
δðx − yÞ; ð20Þ

where the x-dependence of gμν is implicit. This metric on F
is our starting point.
From it we can deduce a metric on M as well by

identifying it with the tensor part of the DeWitt metric. [The
factor

ffiffiffi
g

p
in (20) is needed only to make Gμνρσðx; yÞ a

bitensor density of correct weight.] That is, we define

γμνρσðgÞ≡ gμðρgσÞν þ c
2
gμνgρσ: ð21Þ

Hence, the DeWitt metric can be written as

Gμνρσðx; yÞ½g� ¼
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
γμνρσðgðxÞÞδðx − yÞ: ð22Þ

Next, we determine the Levi-Civita (LC) connection on
M with respect to the metric (21), where we point out the
difference compared with the LC connection on F induced
by the DeWitt metric. In the following, capital Latin indices
abbreviate pairs of spacetime indices, e.g. gIðxÞ≡ gμνðxÞ.
Let fK

IJg denote the LC connection onM. By definition we
have

�
K
IJ

�
¼ 1

2
γKLðγIL;J þ γJL;I − γIJ;LÞ: ð23Þ

Notably, a direct calculation yields

�
K
IJ

�
≡

�
αβρσ
μν

�
¼ −δðαðμg

βÞðρδσÞνÞ ; ð24Þ

which has exactly the same tensor structure as our con-
nection given by (12), reproducing the exponential
parametrization.
With this in mind, let us construct connections on field

space F now. For that purpose we start from the LC
connection with respect to the DeWitt metric (20). It is
denoted by fk

ijg, and it follows from the usual definition,

�
k
ij

�
¼ 1

2
GklðGil;j þ Gjl;i −Gij;lÞ: ð25Þ

Its form in terms of field space coordinates gμν will be
specified below. Now, a generic connection on F can be
written as

Γk
ij ¼

�
k
ij

�
þ Ak

ij: ð26Þ

The last term in (26) is an arbitrary smooth bilinear bundle
homomorphism, and different connections on F merely
differ in that term.
We would like to emphasize that, although by Eq. (22)

Gμνρσðx; yÞ is proportional to γμνρσ, the corresponding LC
connections are not. The field space LC connection rather
contains additional terms. We find that it decomposes into
two pieces,

�
k
ij

�
¼

��
K
IJ

�
þ TK

IJ

�
ðxÞδðx − yÞδðx − zÞ; ð27Þ

where the first term is given by Eq. (24) with gμν replaced
by gμνðxÞ, and TK

IJ ≡ Tαβρσ
μν reads [5,24]
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Tαβρσ
μν ¼ 1

4
gαβδρðμδ

σ
νÞ −

1

2ð2þ dcÞ gμνg
αðρgσÞβ

þ 1

4
gρσδαðμδ

β
νÞ −

c
4ð2þ dcÞ gμνg

αβgρσ: ð28Þ

Clearly, the reason for this difference between the LC
connections on M and F can be traced to a nonconstant
proportionality factor relating the underlying metrics, i.e.
to the volume element

ffiffiffi
g

p
in (22). When taking functional

derivatives of Gij, they act both on
ffiffiffi
g

p
and on γμνρσ in (22).

Thus, the second term in (27) contains only contributions
due to derivatives acting on the volume element. This is a
special characteristic of gravity. In other theories, like in
nonlinear sigma models for instance [25], proportionality
of a field space metric to a metric in (the equivalent of) M
results in proportional LC connections. There the volume
element is a prescribed external ingredient, while it depends
on the field in the case of gravity.
If we want to lift geodesics with respect to (24) from M

toF , or, in other words, if we want to obtain the connection
(12) on F that reproduces the exponential parametrization,
we simply have to remove the terms originating from the
volume element. This can easily be achieved by choosing a
bundle homomorphism Ak

ij in (26) which takes the form

Ak
ij ¼ −TK

IJδðx − yÞδðx − zÞ: ð29Þ

That choice is perfectly admissible: All terms in TK
IJ are

properly symmetrized, and thus it maps two symmetric
tensors to a symmetric tensor again. Therefore, Ak

ij repre-
sents a valid bundle homomorphism. That way, we can
indeed reconstruct our connection (12).
For comparison, we would like to mention another

famous choice for Ak
ij which is due to Vilkovisky [17]

and DeWitt [18]. It is adapted to the principal bundle
structure of F induced by the gauge group. The basic idea
is to define geodesics on the physical base spaceF=G of the
bundle and horizontally lift them to the full space F . In this
manner, coordinates in field space are decomposed into
gauge and gauge-invariant coordinates. The resulting
Vilkovisky–DeWitt connection is obtained by using (26)
with the bundle homomorphism

Ak
ij ¼ Kα

ðiK
β
jÞK

l
αKk

β;l − Kα
i K

k
α;j − Kα

jK
k
α;i; ð30Þ

where semicolons denote covariant derivatives with respect
to the field space LC connection (25). In contrast to (12),
the Vilkovisky–DeWitt connection is highly nonlocal,
containing infinitely many differential operators [26].
Based on this connection, it is possible to construct a
reparametrization-invariant and gauge-independent effec-
tive action.
To sum up, we discussed three different connections on

field space F , all of which have the form given by Eq. (26),
using different choices for Ak

ij. Setting Ak
ij ¼ 0 yields the

LC connection induced by the DeWitt metric, where
associated geodesics were calculated in Refs. [5,6,21].
Choosing relation (30) gives rise to the Vilkovisky–
DeWitt connection which takes into account the principal
bundle character of field space with the gauge group as a
structure group. Instead, the choice (29) leads to connection
(12) which entails the easy exponential parametrization of
geodesics. Furthermore, the latter choice is adapted to the
geometric structure ofM, i.e. to the local appearance of all
metrics in F as symmetric matrices with a prescribed
signature. This is worked out explicitly in the next section.

IV. CLASSIFICATION OF THE CONNECTION
AND ITS GEODESICS

In this section we describe our results concerning the
connection and the corresponding exponential map in terms
of a more general group theory and differential geometry
language. It turns out that the connection derived in Sec. II
is not merely a choice adapted to one particular para-
metrization but rather has a more fundamental justification
as it arises in a canonical way from the geometry of the
space of metrics. The arguments presented in Sec. IVA are
well known; see for instance Refs. [27,28] (cf. also
Refs. [5,6] and [7]). They are intended to reconcile the
mathematical with the physical literature. Thus, the expe-
rienced reader may skip Sec. IVA. Here, we cover both
Euclidean and Lorentzian spacetime metrics at the same
time. A distinction becomes necessary only when studying
the global properties of configuration space F ; the most
important differences will be discussed in Sec. IV B.

A. General description

As argued in Sec. II, a spacetime metric g ∈ F at any
given spacetime point can be considered an element of M
given by (5), i.e. an element of the space of symmetric
matrices with signature ðp; qÞ. Due to this property, it is
convenient to think of F as the topological productQ

x∈MM, although it is defined more precisely as the
space of sections of a fiber bundle with base space M and
typical fiber M [6,20]. Note that the arguments presented
in this subsection are valid for all p, q ≥ 0 satisfying
pþ q ¼ d. We observe that for the search of a geodesic in
F connecting two different metrics g and g0 it is sufficient
to find a geodesic in M that connects gμνðxÞ to g0μνðxÞ for
some x ∈ M and repeat the construction for all points inM.
In that sense the spacetime dependence is trivial since the
analysis can be done pointwise (cf. Ref. [6]). This notion is
compatible with a connection on F that is ultralocal and
diagonal in x-space [i.e. proportional to δðx − yÞδðx − zÞ],
a property that is satisfied by our connection (12) in
particular. For such connections we can reduce our dis-
cussion to the matrix space M instead of considering F .
Once we have found a geodesic in M parametrized by a
tangent vector, we obtain a geodesic inF by using the same
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parametrization but promoting the tangent vector to an
x-dependent field. Continuity of the geodesic with respect
to x is then ensured by continuity of the vector field.
We find that M is a smooth manifold since it is an open

subset in the vector space of all symmetric matrices,

Sd ≡ fA ∈ Rd×djAT ¼ Ag: ð31Þ
Hence, the tangent space at any point o ∈ M is given by
ToM ¼ Sd. Here, we aim at describing M as a homo-
geneous space. For this purpose we recognize that the
group G≡ GLðdÞ acts transitively on M by

ϕ∶ G ×M → M;

ðg; oÞ ↦ ϕðg; oÞ≡ g � o≡ ðg−1ÞTog−1: ð32Þ
The fact that g � o belongs indeed toM and that the action
is transitive (i.e. ∀o1; o2 ∈ M∃g ∈ G∶g � o1 ¼ o2) is a
consequence of Sylvester’s law of inertia. Note that ϕ is a
left action; that is, g1 � ðg2 � oÞ ¼ ðg1g2Þ � o. Let us con-
sider a fixed but arbitrary base point ō ∈ M now. It is most
convenient to think of ō as

Ip;q ¼
�
1p×p

−1q×q

�
; ð33Þ

although the subsequent construction is independent of that
choice. The isotropy group (stabilizer) of ō is given by5

H ≡Hō ≡ Oōðp; qÞ≡ fh ∈ Rd×djhTōh ¼ ōg; ð34Þ

which is conjugate to the semiorthogonal group and which
is a closed subgroup of G. This makes M a homogeneous
space, and we can write

M≃G=H; ð35Þ
where G=H are the left cosets of H in G. Defining the
canonical projection

π∶ G → M; g ↦ πðgÞ≡ ðg−1ÞTōg−1; ð36Þ

we see that ðG; π;M; HÞ becomes a principal bundle with
structure group H.
Before setting up a connection on the principal bundle,

let us briefly illustrate the geometric notion behind this
construction. Consider d linearly independent vectors in
Rd. This frame can be represented as a matrix, B ∈ GLðdÞ.
Now we fix a metric η by declaring the frame to be
orthonormal,

ηðBðiÞ; BðjÞÞ≡ δðp;qÞij ≡ ðIp;qÞij; ð37Þ
where BðiÞ denotes the ith column of B and Ip;q is given by
(33). Writing (37) in matrix notation and solving for η yields

η ¼ ðB−1ÞTIp;qðB−1Þ; ð38Þ

so η is indeed determined by B. We see, however, that
the rhs of Eq. (38) is invariant under multiplications
of the type B → BO−1, where O ∈ Oðp; qÞ ¼
fA ∈ Rd×djATIp;qA ¼ Ip;qg. Thus, two frames that differ
by a semiorthogonal transformation define the same metric,
so the set of all metrics is given by GLðdÞ=Oðp; qÞ.
To find a connection on ðG; π;M; HÞ, we consider the

corresponding Lie algebras. In the following, Lie brackets
are given by the commutator of matrices. The Lie algebra g
of G is the space of all matrices,

g ¼ Rd×d: ð39Þ

The Lie algebra of H is the space of “ō-antisymmetric”
matrices,

h ¼ fA ∈ Rd×djATō ¼ −ōAg: ð40Þ

By Ad∶ G → AutðgÞ we denote the adjoint representation
of the group G,

AdðgÞðXÞ ¼ gXg−1; g ∈ G;X ∈ g: ð41Þ

We find that its restriction AdðHÞ keeps h invariant; i.e.

AdðhÞðhÞ ¼ h ∀ h ∈ H: ð42Þ

Let us further define m as the space of “ō-symmetric”
matrices,

m≡ fA ∈ Rd×djATō ¼ ōAg: ð43Þ

This defines a vector space complement of h in g,

g ¼ m ⊕ h; ð44Þ

andm is called Lie subspace forG=H. (Note, however, that
m is not a Lie algebra since ½m1;m2�∈h ∀m1;m2∈m.)
It is easy to show that m is invariant under AdðHÞ, too,

AdðhÞðmÞ ¼ m ∀ h ∈ H: ð45Þ

Therefore, the homogeneous space G=H is reductive.
We use the differential of the canonical projection at the

identity e in G in order to make the transition from the Lie
algebra g to the tangent space of M at ō ¼ πðeÞ,

dπe∶ TeG≡ g → TōM: ð46Þ

Since dπe is surjective and has kernel h, the restriction
dπejm is an isomorphism on the complement m. Thus, we
can identify m with TōM.
By means of the left translations Lg∶ G → G, we can

push forward the Lie subspace m to any point g in order5Note that hTōh ¼ ō is equivalent to h � ō≡ ðh−1ÞTōh−1 ¼ ō.

CONNECTIONS AND GEODESICS IN THE SPACE OF METRICS PHYSICAL REVIEW D 92, 104013 (2015)

104013-7



to define a distribution on G, namely the horizontal
distribution

Hg ¼ dLgm: ð47Þ

This defines a connection on the principal bundle since it is
invariant under the right translations of H:

dRhðHgÞ ¼ dRhdLgm ¼ dLgdRhm ¼ dLgdLhAdðh−1Þm
¼ dLgdLhm ¼ dLghm ¼ Hgh: ð48Þ

It is called the canonical connection of the principal
bundle ðG; π;M; HÞ.
The canonical connection, in turn, induces a connection

on the tangent bundle TM which is associated to the
principal bundle [28],6

TM≃ G ×H m≡ ðG ×mÞ=H; ð49Þ

where h ∈ H acts on G ×m by ðg; XÞ ↦ ðgh−1;AdðhÞXÞ.
This is often referred to as the canonical linear connection
of the homogeneous space M≃ G=H. As we will see
below, it can be derived from a metric on M. In the
following we use only the term “canonical connection”
since it is clear from the context whether a connection on
the principal bundle or on the tangent bundle is meant.
In general, the torsion tensor following from the canoni-

cal connection is given by TðX; YÞ ¼ −prmð½X; Y�Þ for X,
Y ∈ m, where prm denotes the projection onto m (see e.g.
Ref. [28]). Here, since ½m;m� ⊂ h, the connection is
torsion free.
Furthermore, it is possible to define a G-invariant metric

on M, denoted by γ. For any X, Y ∈ TōM ¼ Sd, we set

γōðX; YÞ≡ trðō−1Xō−1YÞ þ c
2
trðō−1XÞtrðō−1YÞ; ð50Þ

with an arbitrary constant c. Here, G-invariance means that
the group action (32) of G on M, ϕgðoÞ≡ ϕðg; oÞ ¼
ðg−1ÞTog−1, is isometric with respect to this metric: Since
ðdϕgÞōX ¼ ðg−1ÞTXg−1, we have

γϕgðōÞððdϕgÞōX; ðdϕgÞōYÞ ¼ γōðX; YÞ ð51Þ

for all X, Y ∈ TōM. In combination with the G-invariance
of the canonical connection (with respect to left

translations), Eq. (51) has the consequence that the covar-
iant derivative obtained from the canonical connection
preserves the metric (50). Thus, we conclude that the
canonical connection is the Levi-Civita connection on TM
with respect to γ [28].
We can deduce the Levi-Civita connection from (50).

For X, Y ∈ TōM, it is given by

ΓōðX; YÞ ¼ −
1

2
ðXō−1Y þ Yō−1XÞ: ð52Þ

For the sake of completeness, we mention that for
any point ō ∈ M there is a symmetry sō, i.e. a map
sō∶ M → M which is an element of the isometry group
of the metric γ and which has the reflection properties,
sōðōÞ ¼ ō and ðdsōÞō ¼ −Id. It is given by the involution
sōðoÞ≡ ōo−1ō and makes M a symmetric space.
With the above groundwork, it is straightforward to

construct geodesics through the point ō. For that purpose
we have to find the exponential map on the manifold M
with base point ō, here denoted by expō. On the matrix Lie
group G, the exponential map is given by the standard
matrix exponential, exp, where we also write expA ¼ eA.
As shown in Refs. [27,28], the map expō ∘ dπe∶ m → M is
a local diffeomorphism, and it holds

expō ∘ dπe ¼ π ∘ exp : ð53Þ

Hence, geodesics on M are determined by

expōX ¼ πðedπ−1e XÞ; ð54Þ
for X ∈ TōM ¼ Sd. From Eq. (36) we obtain dπ−1e X ¼
− 1

2
ō−1X, resulting in

expōX ¼ πðe−1
2
ō−1XÞ ¼ ðe12ō−1XÞTōe12ō−1X

¼ ōeō
−1X: ð55Þ

With the identifications ō ¼ ḡðxÞ and X ¼ hðxÞ, that is
precisely our parametrization (3) of the metric.7 This is the
main result of this section. The exponential parametrization
describes geodesicswith respect to the canonical connection.
To sum up, we have seen that the canonical connection

arises in a very straightforward way from the basic fiber

6Equation (49) comprises an implicit reduction of the frame
bundle: Generically the tangent bundle is associated to the frame
bundle, GLðMÞ, according to TM≃ GLðMÞ ×GLðDÞ RD, where
D≡ dimðMÞ ¼ 1

2
dðdþ 1Þ. Since the adjoint representation (41)

maps H to GLðDÞ (up to an isomorphism) and since it is possible
to find a principal bundle homomorphismG → GLðMÞ (withM
as common base space) compatible with the H-action, the
structure group is reduced, and we have GLðMÞ ×GLðDÞ RD≃
G ×H m.

7This is to be contrasted with the geodesics found in Ref. [6]
(see also Ref. [5]) which are based on the LC connection induced
by the DeWitt metric in F . This is equivalent to determining
geodesics in M with respect to the LC connection of the metricffiffiffi
g

p
γ, i.e. of our metric (21) times

ffiffiffi
g

p
. The resulting para-

metrization of geodesics has a more involved form than (55).
In the referenced calculations, the authors decompose M into a
product of Mμ and Rþ, where Mμ are all elements of M with
determinant μ. Remarkably, geodesics inMμ based on

ffiffiffi
g

p
γ have

the same structure as our result (55) that describes geodesics in
M based on γ. Related to our discussion in Sec. III, this can be
traced back to the factor

ffiffiffi
g

p
again which is constant in Mμ.
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bundle structure of M≃G=H. Since this leads directly to
the exponential parametrization, we consider it the most
natural approach to parametrizing metrics.
Finally, we convince ourselves that the metric γ on M

defined in (50) is identical to (21). Setting ō ¼ ḡ and
symmetrizing adequately, we obtain

γḡðX; YÞ ¼ trðḡ−1Xḡ−1YÞ þ c
2
trðḡ−1XÞtrðḡ−1YÞ

¼
�
ḡμðρḡσÞν þ c

2
ḡμνḡρσ

�
XμνYρσ

¼! γμνρσXμνYρσ: ð56Þ

Thus, we find indeed γμνρσ ¼ ḡμðρḡσÞν þ c
2
ḡμνḡρσ.

Moreover, the corresponding Christoffel symbols follow
directly from Eq. (52), yielding the same result as in
Eq. (24). We emphasize that they are independent of the
parameter c.

B. Euclidean vs Lorentzian metrics

Next, we specify some topological and geometrical
properties of M, defined in Eq. (5), where we have to
distinguish between different signatures. In the following,
“for all p, q” refers to “for all p, q ∈ N0 with pþ q ¼ d.”
As already stated above, M is an open subset in the

space of symmetric matrices for all p, q. Irrespective of the
signature, it is noncompact.
Furthermore, it is path connected for all p, q. [Note that

G ¼ GLðdÞ is nonconnected, but the subgroup H has
elements in both of the connected components of G].
For the special cases p ¼ d, q ¼ 0 (positive definite

matrices) and for p ¼ 0, q ¼ d (negative definite matrices),
the space M is also simply connected since it is convex. In
contrast, when considering mixed signatures, M is not
simply connected.8

The scalar curvature of M is a negative constant:
Independent of p, q and the metric parameter c, it is
given by

RM ¼ −
1

8
dðd − 1Þðdþ 2Þ: ð57Þ

For all values of p and q, we find thatM is geodesically
complete; i.e. every maximal geodesic is defined on the
entire real line R. It can be shown, for instance algebrai-
cally, that ōeō

−1X stays in M for all X ∈ Sd. In Ref. [4] this
has been done for positive definite matrices. Along similar
lines it can be proven for all p, q. Here, however, an
algebraic proof is not necessary since geodesic complete-
ness is guaranteed by construction: M is a homogeneous

space, and the exponential map is defined on the entire
tangent space.
We emphasize that connectedness plus geodesic com-

pleteness does not imply that, given any two points in M,
there exists a geodesic connecting these two points.
Actually this is the main difference between the cases of
positive and negative definite matrices on the one hand and
matrices with signature p ≥ 1, q ≥ 1 on the other hand. In
case (a), p ¼ d, q ¼ 0 or p ¼ 0, q ¼ d, any two points in
M can be connected by a geodesic, while for case (b), i.e.
for all other signatures, this is generally not possible. The
deeper reason lies in the (semi-)Riemannian structure
of M.
Let us consider (a) first. In that case M has a

Riemannian structure provided that c ≥ − 2
d since the metric

γ given by Eq. (50) is positive definite: For both p ¼ d,
q ¼ 0 and p ¼ 0, q ¼ d, one can show that

γōðX;XÞ ¼ trððō−1XÞ2Þ þ c
2
ðtrðō−1XÞÞ2 > 0; ð58Þ

for all X ∈ TōM ¼ Sd, X ≠ 0, and for c ≥ − 2
d. Therefore,

the Hopf–Rinow theorem is applicable, and, as a conse-
quence, any two points of M can be connected by a
geodesic. The exponential map is a global diffeomorphism
then. Since we have already seen that the connection is
independent of the parameter c, the resulting geodesics do
not depend on c either, and thus the statement of geodesic
connectedness remains true even for c < − 2

d. Using alge-
braic methods, it has already been shown in Ref. [4] that
any two points of M are connected by means of the
exponential parametrization, but with the arguments pre-
sented here, we know in addition that this parametrization
describes a geodesic.
The situation is different in case (b): For p ≥ 1, q ≥ 1

and for all values of c, it is easy to check that γōðX;XÞ can
become both positive and negative, depending on X, so γ is
indefinite, and M is semi-Riemannian.9 This means that
the Hopf–Rinow theorem is not applicable. It turns out that
there are points in M that cannot be connected by a
geodesic. Thus, the exponential map is not surjective. But
even the restriction to its image does not make it a global
diffeomorphism since it is also not injective. To see this we
discuss two counterexamples for 2 × 2-matrices, that is, for
p ¼ 1 and q ¼ 1.
First, let us consider the base point

ō ¼
�
1 0

0 −1

�
; and X ¼

�
0 α

α 0

�
∈ TōM: ð59Þ

8This can be proven by means of the long exact homotopy
sequence.

9It is possible to define a different metric when p ≥ 1, q ≥ 1
that makesM Riemannian. However, such a metric would not be
G invariant, its Levi-Civita connection would not be the canonical
connection, and it would not extend to a covariant metric in field
space F . In particular, corresponding geodesics would not be
given by the simple exponential parametrization.
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This gives rise to the exponential map

o ¼ ōeō
−1X ¼

�
cos α sin α

sin α − cos α

�
; ð60Þ

which is periodic, and thus not injective.
Second, we try to connect the base point

ō ¼
�
1 0

0 −1

�
to another point o ¼

�−2 0

0 1

�
; ð61Þ

which clearly belongs to M, too. That means we have to
find an X ∈ TōM ¼ Sd that solves the equation

ō−1o ¼
�−2 0

0 −1

�
¼ eō

−1X: ð62Þ

There is an existence theorem [29], however, which states
that a real square matrix has a real logarithm if and only if
it is nondegenerate and each of its Jordan blocks belonging
to a negative eigenvalue occurs an even number of times.
Thus, since the matrix in the middle of Eq. (62) has two
distinct negative eigenvalues, it does not have a real
logarithm, so there is no X ∈ TōM that solves (62).
This proves that the exponential map is not surjective
for p ¼ 1 and q ¼ 1.
Similar counterexamples can be found for higher dimen-

sions. To sum up, for all nondegenerate symmetric matrices
with mixed signature (p ≥ 1, q ≥ 1), the exponential map
is neither injective nor surjective.
In the case of 2 × 2-matrices, the space M can be

illustrated by means of three-dimensional plots. It will turn
out convenient to parametrize any symmetric matrix by

�
z − x y

y zþ x

�
; ð63Þ

since the various subspaces assume simple geometric
shapes then. The eigenvalues of (63) are given by

λ ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
: ð64Þ

Thus, the condition for positive definite, negative definite,
or indefinite matrices, i.e. both eigenvalues positives,
negative, or mixed, respectively, leads to a condition for
x, y, and z, which can be displayed graphically. LetMðp;qÞ
denote the set of symmetric matrices with signature ðp; qÞ.
Then the set of all nondegenerate symmetric 2 × 2-matrices
decomposes intoMð2;0Þ,Mð1;1Þ, andMð0;2Þ. This is shown
in Fig. 1. By use of parametrization (63), the set of positive
definite matrices,Mð2;0Þ, is represented by the inner part of
a cone which is upside down and has its apex at the origin.
Note that it extends to z → ∞. Negative definite matrices,
Mð0;2Þ, are merely a reflection of this cone through the

origin. Finally, Mð1;1Þ is mapped to R3 from which two
cones are cut out. The surface of the cones belongs to
neither of the three sets but rather to degenerate symmetric
matrices.
At last, we illustrate geodesics in Mð1;1Þ. This helps to

understand how it can be possible that every maximal
geodesic is defined on the entire real line, while still not all
points can be reached by geodesics starting from a base
point. Figure 2 shows what happens. By way of example,
we choose the base point ō ∈ Mð1;1Þ with parametrization
ðx; y; zÞ ¼ ð−1; 0; 0Þ and some random tangent vectors that
give rise to corresponding geodesics. We observe that most
of the example geodesics lie entirely in the half-space with
negative x. However, those entering the positive x half-
space have in common that they run through the same
axis: Whenever they cross the yz plane at positive x, they
intersect the x axis. This holds for all geodesics starting at
ō; that is, at x > 0 they can never reach points in the yz
plane with z > 0 or z < 0. Furthermore, we see the periodic
solutions in Fig. 2 as geodesics circling around the origin.
By using the existence theorem concerning real loga-

rithms [29], it can be shown that the points which can be
reached from the base point by a geodesic are given by the
white region in Fig. 3. We find that the two cones
effectively shield the space behind them.
In conclusion, the exponential parametrization describes

geodesics in the space of metrics, adapted to the funda-
mental geometric structure. For Euclidean metrics there is a
one-to-one correspondence between tangent vectors and
metrics, while for general/Lorentzian signatures, there is
not. In the latter case, the parametrization can only be cured
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FIG. 1. Using parametrization (63) the space of symmetric
2 × 2-matrices decomposes into positive definite matricesMð2;0Þ
(interior of the cone with positive z), negative definite matrices
Mð0;2Þ (interior of the cone with negative z), and symmetric
matrices with signature (1,1) (R3 where the two cones are cut
out). The cones extend to z → �∞. We observe thatMð1;1Þ is not
simply connected.
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by restricting the tangent space and starting from several
base points such that all metrics are reached once and
only once.

V. COVARIANT TAYLOR EXPANSIONS AND
NIELSEN IDENTITIES

In the previous sections, we have discussed the geometry
of the gravitational field space F in great detail. It was

shown specifically that F can be equipped with a canonical
field space connection (12), reproducing the exponential
parametrization of the metric field. Thus, like any other
parametrization based on such a geodesic formalism, the
use of the exponential parametrization allows for the
construction of covariant objects, in particular, of a geo-
metric effective (average) action, which is briefly reviewed
in this section. A thorough introduction to the topic can be
found, for instance, in Ref. [26].
Having a connection Γk

ij on F at hand, the key idea is to
define coordinate charts based on geodesics. We start by
selecting an arbitrary base point φ̄ in field space and using
Γk
ij to construct geodesics that connect neighboring points

φ to φ̄.10 As in Sec. II, let φiðsÞ denote such a geodesic
connecting φið0Þ ¼ φ̄i to φið1Þ ¼ φi. The vector tangent
to the geodesic at the starting point φ̄i is given by
dφiðsÞ
ds js¼0 ¼ hi½φ̄;φ�. It depends on both the base point

and end point. We have already argued that F is geodesi-
cally complete and that geodesics are determined by the
exponential map. Since the exponential map is a local
diffeomorphism, we see that expφ̄ ∶T φ̄F → U ⊆ F with
h ↦ φ½h; φ̄� constitutes a coordinate chart. We refer to this
chart as geodesic coordinates. Note again that the field
hi½φ̄;φ� plays a twofold role as a tangent vector located at φ̄
and as the coordinate representation of the point φ.
On the basis of geodesic coordinates, it is possible to

perform covariant expansions which can eventually be used
to define a reparametrization-invariant effective action.
Let A½φ� be any scalar functional of the field φi, and let
φiðsÞ be a geodesic as above. Then the functional A½φ� can
be expanded as a Taylor series according to

A½φ� ¼ A½φð1Þ� ¼
X∞
n¼0

1

n!
dn

dsn

����
s¼0

A½φðsÞ�: ð65Þ

By extensively making use of the geodesic equation, this
relation can be rewritten as [26,30]

A½φ� ¼
X∞
n¼0

1

n!
AðnÞ
i1…in

½φ̄�hi1 � � �hin ; ð66Þ

where AðnÞ
i1…in

½φ̄�≡Dðin…Di1ÞA½φ̄� denotes the nth covar-
iant derivative (induced by the field space connection) with
respect to φ evaluated at the base point φ̄ and hi are the
coordinates of the tangent vector h ∈ T φ̄F. Relation (66)
constitutes a covariant expansion of A½φ� in powers of
tangent vectors. Since the field hi can be thought of as the
coordinate representation of the point φ when using
geodesic coordinates, φ ¼ φ½h; φ̄�, any scalar functional
depends parametrically on h and on the base point φ̄. Let us
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FIG. 3 (color online). The white region shows the space within
Mð1;1Þ that can be reached by a geodesic starting from the base
point at ðx; y; zÞ ¼ ð−1; 0; 0Þ.
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FIG. 2 (color online). Geodesics in Mð1;1Þ, starting at
ðx; y; zÞ ¼ ð−1; 0; 0Þ, where Mð1;1Þ is given by the white space
without the gray cones. As opposed to the case of positive definite
matrices, we find periodic solutions here. Moreover, whenever a
geodesic traverses the yz plane on the positive x side, it crosses
the half-line fðx; 0; 0Þ ∈ R3jx > 0g. There is no geodesic con-
necting the base point to the marked point at ðx; y; zÞ ¼
ð3
2
; 0;− 1

2
Þ.

10We assume here that such geodesics exist. This assumption is
valid for Euclidean metrics, but metrics with Lorentzian signa-
tures have to be handled with more care; see Sec. IV B.
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denote functionals interpreted this way with a tilde, so in
geodesic coordinates, we have

A½φ½h; φ̄��≡ ~A½h; φ̄�: ð67Þ
Expansion (66) implies a useful relation connecting partial
and covariant derivatives which reads

δn

δhi1…δhin
~A½h; φ̄�

����
h¼0

¼ Dðin…Di1ÞA½φ̄�: ð68Þ

The significance of Eq. (68) comes from the fact that the
right-hand side is manifestly covariant, so it can be used to
construct reparametrization-invariant objects, while covari-
ance is hidden on the left-hand side. Hence, we observe that
ð δ
δhÞnA½expφ̄ðhÞ�jh¼0 is covariant.
Employing the connection (12) with its diagonal char-

acter in x-space, a covariant derivative in field space F
reduces to a covariant derivative in target space M, which
we will denote by

Dkhi ≡DKhIδðx − yÞ≡DαβhμνðgÞδðx − yÞ; ð69Þ
where capital Latin labels denote again pairs of spacetime
indices, hIðxÞ≡ hμνðxÞ. Assuming that the functional A
can be written as A½φ� ¼ R

ddxLðφÞ, expansion (66)
becomes

A½φ� ¼
Z

ddx
X∞
n¼0

1

n!
DðIn…DI1ÞL½φ̄�hI1ðxÞ � � � hInðxÞ:

ð70Þ

Thus, with connection (12), covariant expansions inM can
be lifted to covariant expansion in F in a minimal way.
Note that, related to our discussion in Sec. III, in gravity
derivatives act on the volume element

ffiffiffi
g

p
inside L, too, in

contrast to the situation in nonlinear sigma models.
Let us turn to the quantum theory now. Based on the

usual definition, the effective action Γ is determined by a
functional integro-differential equation,

e−Γ½φ̄� ¼
Z

Dφe
−S½φ�þðφi−φ̄iÞ δΓ

δφ̄i ; ð71Þ

where S is the classical action. In the case of gauge theories,
the functional integral involves an additional integration
over ghost fields, and gauge fixing and ghost action terms
are added in the exponent on the rhs. For a discussion of the
measure Dφ, we refer the reader to Ref. [16]. It is known
that Γ fails to be reparametrization invariant. As already
noted by Vilkovisky [17], the reason for noncovariance in
the naive definition originates from the source term
ðφi − φ̄iÞJi with Ji ¼ δΓ=δφ̄i. Since φi and φ̄i are merely
coordinates, such a term makes no sense from a geometrical
point of view. However, by employing the powerful tools of
Riemannian geometry, it is possible to define the path

integral covariantly. The key idea is to couple sources to
tangent vectors which are determined by geodesics from φ̄
to φ. That means the source term in (71) must be of the
form Ssource ¼ JiGijhi ≡ JiGij½φ̄�hi½φ̄;φ�, where both the
source field Ji and fluctuation field hi are now elements of
TḡF over some arbitrary base point ḡ. Moreover, the field
space metric can be used to include the volume factorffiffiffiffiffiffiffiffiffiffiffiffiffi
detGij

p
in the functional integral such that the combina-

tion Dφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGij½φ�

p
and its analog in terms of Dh are

manifestly covariant. This procedure allows for the con-
struction of a reparametrization-invariant effective action
[17], referred to as the geometric effective action.
Here, we would like to review some properties of the

geometric effective action Γ and its generalization to the
geometric effective average action Γk which takes into
account scale dependence according to the renormalization
group. We emphasize that the following statements are not
restricted to a particular connection, say, the Vilkovisky–
DeWitt connection, but they are valid for any field space
connection, in particular for the one given by Eq. (12).
The geometric effective action Γ½φ; φ̄�≡ ~Γ½h; φ̄� in a

Euclidean quantum field theory satisfies the ℏ-expansion

~Γ½h; φ̄� ¼ ~S½h; φ̄� þ ℏ
2
Tr log ~Sð2Þ½h; φ̄� þOðℏ2Þ; ð72Þ

where ~Sð2Þij ½h; φ̄� ¼ δ2 ~S½h;φ̄�
δhjδhi . By adding an infrared cutoff

term − 1
2
hiðRk½φ̄�Þijhj with scale k in the exponent on the

rhs of (71), it is possible to construct a generalization of the
geometric Γ, denoted by Γk, which is referred to as
geometric effective average action [31,32]. Its running is
governed by the functional renormalization group (RG),
leading to the flow equation [31,33]

∂k
~Γk½h; φ̄� ¼

1

2
Tr½ð ~Γð2Þ

k ½h; φ̄� þ RkÞ−1∂kRk�: ð73Þ

Both in (72) and in (73), the effective (average) action
depends additionally on the base point φ̄. In general, an
extra φ̄-dependence also remains when switching from
geodesic coordinates to a φ-based coordinate chart,
~Γk½h; φ̄� ¼ Γk½φ; φ̄�. This extra dependence stems from
gauge fixing and cutoff terms. A single field effective
(average) action is usually obtained by taking the coinci-
dence limit φ̄ → φ, or equivalently h → 0.
In practice, flows of the effective average action are

computed by resorting to the method of truncations, i.e.
by constructing ~Γk½h; φ̄� out of a restricted set of possible
invariants. Most studies based on the functional RG deal
with single field truncations, where the effective average
action is approximated by functionals of the form
~Γk½h; φ̄� ¼ Γk½φðh; φ̄Þ� without extra φ̄-dependence. In this
case, after taking the field coincidence limit, we can make
use of relation (68) on the right-hand side of (73), where we
write
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δ2 ~Γk½h; φ̄�
δhiδhj

����
h¼0

¼ DðiDjÞΓk½φ̄�: ð74Þ

Thus, we obtain a covariant expression. In particular, this
applies to the use of the exponential parametrization:
By means of Eq. (9), we can expand g ¼ ḡeḡ

−1h inside
Γk in terms of h; that is, schematically we have
Γk½ḡeḡ−1h; ḡ� ¼ Γk½ḡþ h − 1

2
Γ̄hhþOðh3Þ; ḡ�. Thanks to

the appearance of the connection, a subsequent expansion
of Γk in terms of h is covariant, in contrast to an expansion
of Γ½ḡþ h; ḡ� with the linear split (1). This is a very
important property of the exponential parametrization.
At second order we have, in uncondensed notation,

δ2Γk½ḡeḡ−1h; ḡ�
δhμνðxÞδhαβðyÞ

����
h¼0

¼ Dμν
ðxÞD

αβ
ðyÞΓk½g; ḡ�jg¼ḡ; ð75Þ

where the covariant derivatives act on the first argument of
the effective average action, and symmetrization is ensured
by connection (12).
Above we have mentioned the extra φ̄-dependence of the

effective (average) action. However, ~Γ½h; ḡ� only seemingly
depends on two fields. As it has been discussed in
Refs. [19,31,34–37], it rather depends on a certain combi-
nation of the two fields g and ḡ, for ~Γ½h; ḡ� has to satisfy the
generalized Nielsen or split-Ward identities

δ ~Γ
δφ̄i þ hD̄iĥ

ji δ
~Γ

δhj
¼ 0; ð76Þ

in the case of nongauge theories. The tangent vector ĥj

appearing inside the expectation value corresponds to the
integration variable φ̂; i.e. we have ĥj ≡ ĥj½φ̄; φ̂�. The
barred covariant derivative in (76) acts on the base point,
D̄iĥ

j½φ̄; φ̂� ¼ δĥj

δφ̄i þ Γj
ik½φ̄�ĥk. Relation (76) implies that φ̄i

and hi can simultaneously be varied in such a way that
~Γ½h; φ̄� is left unchanged. This result is particularly impor-
tant as it guarantees that the effective action, and con-
sequently, all physical quantities are independent of the
choice of the base point. In flat field space F and in
Cartesian coordinates, we have ĥi½φ̄; φ̂� ¼ φ̂i − φ̄i and thus
hD̄iĥ

ji ¼ −δji . In this special case, relation (76) reduces to
the simple identity

δ ~Γ
δφ̄i ¼

δ ~Γ
δhj

; ð77Þ

implying a linear split, ~Γ½h; φ̄� ¼ Γ½φ̄þ h� ¼ Γ½φ�. For
gauge theories there are additional terms on the right-hand
side of (76) due to ghosts and gauge fixing if a general field
space connection different from Vilkovisky–DeWitt is
underlying; in this case the zero in (76) has to be replaced
with

�
δSgf
δφ̄i

	
þ
�
δSgh
δφ̄i

	
: ð78Þ

The corresponding relation for the effective average
action receives further contributions due to the presence
of the regulator. When using the Vilkovisky–DeWitt con-
nection, the modified Nielsen identities read [31]

δ ~Γk

δφ̄i þ hD̄iĥ
ji δ

~Γk

δhj
¼ 1

2
TrGk

δRk

δφ̄i þ TrRkGk
δhD̄iĥi
δh

; ð79Þ

with the propagator Gk ¼ ð ~Γð2Þ
k ½h; ḡ� þ RkÞ−1. For a gen-

eral connection, the two terms in (78) have to be added on
the right-hand side of (79). In the limit k → 0, the identity
(79) reduces to the standard form (76). Another instructive
limit is hD̄iĥ

ji → −δji which considers flat field space,
where the last term in (79) vanishes. Recently, RG flows
satisfying Nielsen identities like (79) have been studied in
Refs. [31,32,35–37]. It would be interesting to see to what
extent the geometry of field space corresponding to the
exponential parametrization with its property (69) simpli-
fies the Nielsen identities. We postpone this question to
future work, but we conclude by stating that all geometric
identities discussed above are valid when using para-
metrization (2).

VI. CONCLUSIONS

When approaching a quantum theory of gravity on the
basis of standard quantum field theory methods involv-
ing a path integral, it seems inevitable to introduce a
background field ḡμνðxÞ. Then, fluctuations hμνðxÞ
around this background field are quantized, assuming
the role of variables of integration. We have argued that
the path integral should include only proper metrics, i.e.
nondegenerate metrics with a prescribed signature. This
requirement is implemented in a very natural way by
choosing an appropriate metric parametrization, where
we identified the exponential parametrization (2) as the
most straightforward choice. Its justification resides in
the fact that it strictly satisfies the nondegeneracy and
signature constraint and that it is adapted to the
geometry of field space F at a given spacetime point
x. The fluctuations hμν are interpreted as tangent vectors
which parametrize geodesics in F starting at ḡμν by
means of gμν ¼ ḡμρðehÞρν. We explicitly constructed a
connection Γk

ij on field space that reproduces the
exponential parametrization as the Riemannian expo-
nential map from tangent space to field space. Thereby,
we can identify metrics gμν as points connected to ḡμν by
geodesics.
The “naturalness” of the connection and the resulting

parametrization originates from the geometric structure of
field space. Locally, metrics at a given point x can be
considered as elements of M, the space of symmetric
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matrices with a prescribed signature. We have demon-
strated thatM is a homogenous space which can be written
as M≃ GLðdÞ=Oðp; qÞ. For the tangent space g of
GLðdÞ at the identity, there is a vector space decomposition
g¼m⊕h that represents the bundle structure of GLðdÞ→
GLðdÞ=Oðp;qÞ, where h is the Lie algebra of Oðp; qÞ and
m defines the horizontal direction. Pushing forward the
spacem to other points in GLðdÞ gives rise to a connection
on the principal bundle, referred to as the canonical
connection. As we have shown, geodesics on M induced
by this connection are parametrized by the exponential
relation (2). In that sense, this parametrization arises
canonically.
We have seen that the linear split gμν ¼ ḡμν þ hμν as it

stands is not suitable in respect of the signature constraint,
which any metric has to satisfy. Therefore, when writing
Dhμν in a path integral, it seems reasonable to assume that
the hμν’s are tangent vectors which parametrize metrics by
means of the “natural” relation gμν ¼ ḡμρðehÞρν. That is, it is
reasonable to assume that the functional integral measure is
simple when using this parametrization. If one adopted the
point of view that the measure is simple when hμν is defined
by the linear parametrization, the transition to the expo-
nential parametrization would require the introduction of a
nontrivial Jacobian [7].
As a brief remark, wewould like to mention that, owing to

the fact that the metric is a map between two manifolds,
gravity shares many properties with nonlinear sigma models,
e.g. the G=H-structure as a homogeneous space [25]. These
models play an important role in many branches of physics,
in particular in the context of symmetry breaking. Recently,
breaking of spacetime symmetries in gravity has drawn some
attention again [38]. There is, however, a significant differ-
ence between nonlinear sigma models and the geometry
discussed in the present article. Any metricGij on field space
F must contain the volume element

ffiffiffi
g

p
, which is field

dependent in our case, while it is a field-independent
externally prescribed factor in nonlinear sigma models.
We have seen that this factor leads to additional terms in
the Levi-Civita connection.
Our approach is to be contrasted with the one of

Vilkovisky and DeWitt. While the latter takes into
account the bundle structure of field space with respect
to the gauge group, we take into account the canonical
bundle structure of the space of symmetric matrices with
the prescribed signature. The Vilkovisky–DeWitt method
is crucial for constructing gauge-independent quantities
like a gauge-independent effective action. Due to the
nonlocality of the connection, however, it is involved to
perform explicit calculations and to determine the cor-
responding geodesics. Instead, our method does not aim

at gauge independence, but it leads to a local connection
giving rise to geodesics which are described by a simple
exponential parametrization. Thus, its advantage are
considerable simplifications in particular calculations.
After all, whether the connection derived here or the
Vilkovisky–DeWitt connection should be used depends
on the desired application.
We would like to emphasize that there is a difference

between Euclidean and Lorentzian metrics. This difference
is particularly important for the gravitational path integral.
In the Euclidean case, any two metrics can be connected
by a geodesic based on the canonical connection (12).
Thus, we have geodesic connectedness of field space F .
In contrast, this does not hold in the Lorentzian case; in
spite of geodesic completeness, F does not exhibit geo-
desic connectedness. There are points that cannot be
reached by geodesics from a fixed base point ḡμν, and
there are periodic geodesics; i.e. the cut locus of ḡμν is
nonempty. As a consequence, in the Euclidean case, the
path integral

R
Dhμν using the exponential parametrization

captures all metrics once and only once. For Lorentzian
signatures, however, some metrics are covered more than
once, and some are not reached at all. This flaw can be
cured by two steps: (i) One should sum over several
background metrics such that any metric can be reached,
and (ii) the tangent spaces should be restricted such that
each metric is integrated over only once.
Having established a connection between the expo-

nential parametrization and the geometry of field space
F , we have argued that this parametrization is appro-
priate for the construction of covariant quantities with
respect to the field space connection (12). The use of the
geodesic formalism allows for covariant Taylor expan-
sions and the definition of a geometric effective (average)
action. With regard to bimetric truncations for gravity, it
would be interesting to see if the geometry of field space
with the exponential parametrization can further simplify
the Nielsen identities and renormalization group flows. It
remains an open question, too, whether the ideas pre-
sented here can be combined with those of Vilkovisky
and DeWitt, that is, whether it is possible to find a simple
geometric parametrization which respects to some extent
the gauge bundle structure of field space. Remarkably, at
one loop level, the exponential parametrization consid-
ered here can already be sufficient to ensure gauge
independence [11].
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