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The emergent gravity paradigm interprets gravitational field equations as describing the thermodynamic
limit of the underlying statistical mechanics of microscopic degrees of freedom of the spacetime. The
connection is established by attributing a heat density Ts to the null surfaces where T is the appropriate
Davies-Unruh temperature and s is the entropy density. The field equations can be obtained from a
thermodynamic variational principle which extremizes the total heat density of all null surfaces. The
explicit form of s determines the nature of the theory. We explore the consequences of this paradigm for an
arbitrary null surface and highlight the thermodynamic significance of various geometrical quantities. In
particular, we show that (a) a conserved current, associated with the time development vector in a natural
fashion, has direct thermodynamic interpretation in all Lanczos-Lovelock models of gravity; (b) one can
generalize the notion of gravitational momentum, introduced in T. Padmanabhan, [arXiv:1506.03814] to all
Lanczos-Lovelock models of gravity such that the conservation of the total momentum leads to the relevant
field equations; (c) the thermodynamic variational principle which leads to the field equations of gravity
can also be expressed in terms of the gravitational momentum in all Lanczos-Lovelock models; and
(d) three different projections of gravitational momentum related to an arbitrary null surface in the
spacetime lead to three different equations, all of which have thermodynamic interpretation. The first one
reduces to a Navier-Stokes equation for the transverse drift velocity. The second can be written as a
thermodynamic identity TdS ¼ dEþ PdV. The third describes the time evolution of the null surface in
terms of suitably defined surface and bulk degrees of freedom. The implications are discussed.
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I. INTRODUCTION

The dynamical evolution of a fluid or a gas can be
studied without any direct reference to the fact that they are
made of microscopic degrees of freedom, viz., atoms and
molecules. Such a description was known for centuries
before physicists realized that matter is made of discrete
entities. But the existence of the microscopic degrees of
freedom had always left a clear signature even at the
macroscopic scales in the form of the heat content of
matter. While even the cave men knew the distinction
between a hot body and a cold one, the real nature of heat
was not well understood until Boltzmann pointed out that
the heat content of matter is a direct evidence for the
existence of the microscopic degrees of freedom.
Boltzmann essentially said, “If you can heat it, it must
have microstructure.” In other words, the microscopic
degrees of freedom make their presence felt even at the
macroscopic scales (in the form of heat) and the correct
(thermodynamic) description had taken this into account
phenomenologically in terms of temperature etc., even
before Boltzmann explained to us what it really is. The key
new element in thermodynamics which is absent in, say, the
Newtonian mechanics of point particles, is the heat content

TS of the matter, which is the difference (F − E) between
the free energy and the internal energy of the system.
In terms of densities, for systems with zero chemical
potential which we will be interested in, the heat density
is Ts ¼ Pþ ρ where s is the entropy density, ρ is the
energy density, and P is pressure.
Over the decades, it has been realized that spacetimes—

through the existence of the null surfaces which act as
horizons to a certain class of observers—also possess the
heat density Ts [1–8]. This connection between thermo-
dynamics and spacetime dynamics forms the core of the
emergent gravity paradigm [9–16]. This paradigm rests on
the results obtained over the last decade or so which suggest
that the field equations of gravity, in a large class of
theories, have the same status as the equations describing,
say, a fluid or an elastic solid. That is, gravity emerges in
the thermodynamic limit of the statistical mechanics of the
atoms of spacetime [17–20]. The heat density of spacetime
is an evidence for the existence of the atoms of spacetime
just as the heat density of matter was successfully inter-
preted by Boltzmann as evidence for the atomic structure of
matter. There is considerable amount of evidence which
suggests that this is indeed a useful and correct point of
view to pursue [21,22].
The development of an emergent gravity paradigm has

helped us to understand several interesting features of
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classical gravity itself [23], further bolstering our confi-
dence in the veracity of this approach. In particular, the
following results are of specific interest to the current work.
(1) The first one has to do with the curious relationship

between Einstein’s field equations and the structure
of null surfaces in the spacetime. Previous works
have shown that they manifest in three different
ways:
(a) In the most general situation, there arises an

identification between Navier-Stokes equation
and Einstein’s equation. Einstein’s equations,
when projected on an arbitrary null surface,
in any spacetime, leads to Navier-Stokes
equation of fluid dynamics [24,25]. (This gen-
eralizes the previously known results for black
hole horizons [26,27].)

(b) From the Einstein equations applied to a null
surface, one can get [15,28–31] a thermody-
namic identity of the form TδλS ¼ δλEþ PδλV
in which the symbols have their usual meanings
and the variation can be interpreted as changes
due to virtual displacement of the null surface
along null geodesics parametrized by the affine
parameter λ off the surface. Initially proved for a
few configurations with a high level of sym-
metry [31,32] this result has now been general-
ized for arbitrary null surfaces in both general
relativity and Lanczos-Lovelock theories of
gravity [33,34].

(c) A comparatively more approximate relationship
between the null surfaces and Einstein’s
equation emerged from the early work [35],
which “derived” Einstein’s field equations using
the local Rindler horizon as a null surface and
the Clausius relation. This relies heavily on the
structure of Raychaudhuri equation as well as
the assumptions: (a) the entropy density is one
quarter of the transverse area and, more impor-
tantly, (b) the quadratic terms in the Raychaud-
huri equation (involving the squares of shear
and expansion) can be set to zero. Since neither
the Raychaudhuri equation nor the assumption
that entropy is proportional to the horizon area
hold for theories more general than Einstein’s
gravity, this approach could not be generalized in
a simple manner to a more general class of
theories.

(2) The second result pertains to the derivation of
gravitational field equations from a thermodynamic
variational principle [14,16]. It turns out that maxi-
mizing the sum of gravitational heat density and
matter heat density, associated with every null sur-
face in the spacetime, leads to the appropriate
gravitational field equations. This derivation of the
field equations is consistent with the emergent

gravity paradigm and is much more general than
the other approaches (like, for example, [35]) used in
the literature to obtain the same. Not only does the
approach have a high level of logical simplicity, it
also generalizes smoothly to all Lanczos-Lovelock
models.

In this paper, we shall revisit these issues and elaborate
further on them using another recent development, which
was also motivated by the emergent gravity paradigm. This
was the introduction of the notion of the momentum
attributed to the spacetime by a class of observers, proposed
in [19,36]. This proposal was in the context of Einstein’s
theory. But, since virtually every result of emergent gravity
paradigm could be generalized in a meaningful way to
Lanczos-Lovelock models, we would expect the notion of
gravitational momentum to possess a similar generaliza-
tion. We will show that this is indeed the case.
Further, it seems reasonable to expect that (a) the

appropriate projections of the gravitational momentum
must allow us to obtain the above results—describing
Einstein’s equations in a thermodynamic language—in a
straightforward manner; (b) the thermodynamic variational
principle should have a simple representation in terms of
the gravitational momentum.
We will see that these expectations are also borne

out. Our analysis will also highlight the thermodynamic
significance of several variables which were originally
considered purely geometrical.
To achieve these goals, we will use two different

foliations of the spacetime. The first one is the standard
(1þ 3) foliation in terms of spacelike hypersurfaces
determined by constant values of a suitable time function
tðxÞ. The second is a coordinate system which is adapted to
a fiducial null surface. This adaptation is closely related to
the notion of a local Rindler horizon [35] and will prove
to be quite useful in illustrating the relationship between
field equations and the null surface thermodynamics. We
will see that the Noether current, gravitational momentum,
and related constructs, associated with the time evolution
vector field in the two foliations, allow us to obtain the
results mentioned above.
The paper is organized as follows: In Sec. II we introduce

the Noether current, gravitational momentum and a closely
related entity which we call the reduced gravitational
momentum in general relativity and Lanczos-Lovelock
gravity. The next section deals with the two coordinate
systems, one associated with the (1þ 3) foliation of the
spacetime and the other being the Gaussian null coordi-
nates adapted to an arbitrary null surface. In Sec. IV we
discuss the Noether current and the associated thermody-
namic results for both the (1þ 3) foliation and the
Gaussian null coordinates. The thermodynamic interpreta-
tion of the reduced gravitational momentum is given in
Sec. Vand the thermodynamic variational principle for null
surfaces is presented in Sec. VI. The final section, i.e.,
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Sec. VII, discusses the three different projections of the
gravitational momentum vis-a-vis a null surface and their
thermodynamic interpretation. We end the paper with a
short discussion on our results.
We will set c, ℏ and 16πG to be unity for most part of our

discussion. (Sometimes, when we switch to G ¼ 1 units, it
will be mentioned specifically.) Thus Einstein’s field
equations in this notation take the form 2Gab ¼ Tab.
The Latin letters, a; b; c;… run over all the spacetime
indices, the Greek letters, μ; ν; α;… run over all the spatial
indices, and the uppercase Latin letters, A;B; C;… run over
the codimension two surface.

II. NOETHER CURRENT AND THE
GRAVITATIONAL MOMENTUM

Given an arbitrary vector field va in the spacetime, one
can define three other geometrical objects which depend on
it and have direct thermodynamic significance under
certain circumstances. The first is a conserved current,
Ja½v�, which can be introduced without invoking any
symmetry or invariance principle. (This happens to be
the usual Noether current; but the usual way of deriving it
using diffeomorphism invariance of Hilbert action is
misleading since it suggests Ja½v� has something to do
with action and gravitational dynamics. It has nothing to do
with either and its conservation is a trivial algebraic
identity.) The second is the gravitational momentum
associated with a vector field Pa½v� which was introduced
in Ref. [36]. The third is a closely related vector (that
appears in the definitions of both Ja and Pa) which we will
call the reduced gravitational momentum Pa. Each of these
vector fields, associated with a given vector field va, can be
defined for both Einstein’s gravity as well as for Lanczos-
Lovelock models. We will now introduce these vector
fields.

A. Noether current

Given an arbitrary vector field va, we can immediately
construct a conserved current Ja ¼ ∇bJab from the anti-
symmetric 2-tensor Jab ¼ ∇avb −∇bva. (The normaliza-
tion of this current is arbitrary; we have chosen it so as to
make the later results transparent and simple. To match the
conventional description, the left-hand side should be
multiplied by 16πG which we have set to unity.) This
construction does not require any mention of diffeomor-
phism invariance or action principles and is completely
devoid of any dynamical content at this stage. Elementary
algebra now leads to the expression

ffiffiffiffiffiffi
−g

p
JaðvÞ ¼ ffiffiffiffiffiffi

−g
p ½∇bð∇avb −∇bvaÞ�

¼ 2
ffiffiffiffiffiffi
−g

p
Ra
bv

b þ fbc£vNa
bc ð1Þ

where we have defined

fab ¼ ffiffiffiffiffiffi
−g

p
gab;

Nc
ab ¼ −Γc

ab þ
1

2
ðδcaΓd

db þ δcbΓd
adÞ: ð2Þ

These variables contain the same amount of information as
the metric and the connection but has more direct thermo-
dynamic interpretation; see Ref. [21]. These expressions
are generally covariant because the Lie derivative of the
connection £vΓc

ab, given by

£vΓa
bc ¼ ∇b∇cva þ Ra

cmbvm ð3Þ

is generally covariant, making £vNc
ab a generally covariant

object.
There is a natural generalization of this current which can

be introduced as follows. We begin by noting that the Jab

and Ja can be expressed in an equivalent form as

Jab ¼ 2Pcd
ab∇cvd; Ja ¼ 2Pcd

ab∇b∇cvd;

Pcd
ab ≡ ð1=2Þðδcaδdb − δdaδ

b
cÞ ð4Þ

where Pab
cd is a tensor (which we will call the entropy tensor

for reasons which will become clear later on) called
determinant tensor. This tensor gives us the Ricci scalar
from the curvature tensor:

R ¼ 1

2
ðδacδbd − δadδ

c
bÞRcd

ab ¼ Pab
cdR

cd
ab ð5Þ

which shows if we take R ¼ FðRab
cd; gikÞ to be a function of

the (2, 2) Riemann tensor Rab
cd and the metric tensor gik, then

it is actually independent of the metric tensor. That is,
treating Rab

cd and gab to be algebraically independent we can
also define Pab

cd tensor through the following relations:

Pab
cd ¼

� ∂R
∂Rcd

ab

�
gik

;

� ∂R
∂gab

�
Rab
cd

¼ 0; ∇aPab
cd ¼ 0:

ð6Þ

Clearly, Pab
cd has the symmetries of the curvature tensor and

is divergence-free in all the indices.
An obvious generalization of this tensor can be obtained

by replacing R by some other arbitrary function FðRab
cd; δ

p
qÞ

constructed out of Rab
cd and Kronecker delta function, and

then define Pab
cd in an analogous manner. That is, we define

Pab
cd by the relations

Pab
cd ¼

� ∂F
∂Rcd

ab

�
gik

;

� ∂F
∂gab

�
Rab
cd

¼ 0; ∇aPab
cd ¼ 0:

ð7Þ

This requires finding the most general scalar function
FðRab

cd; δ
p
qÞ for which the condition ∇aPab

cd ¼ 0 in (7) is
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identically satisfied. This problem can be completely
solved [37–39]. It turns out that the most general function
which satisfies this criterion can be expressed as the sum

F ¼
X
m

cmFm ð8Þ

where cms are constants and Fm is given by

Fm ¼ 1

2m
δaba2b2…ambm
cdc2d2…cmdm

Rcd
abR

c2d2
a2b2

…Rcmdm
ambm

ð9Þ

where δaba2b2…ambm
cdc2d2…cmdm

is the completely antisymmetric m-
dimensional determinant tensor. The scalar F is constructed
out of Rab

cd and the Kronecker delta function δ
c
d, without any

metric gab present in it. Then Pab
cd for the mth term in the

sum in Eq. (8) can be obtained directly using Eqs. (7) and
(9), which leads to

Pab
cd ¼ ∂Fm

∂Rcd
ab

¼ m
2m

δaba2b2…ambm
cdc2d2…cmdm

Rc2d2
a2b2

…Rcmdm
ambm

≡mQab
cd:

ð10Þ

The mth order term Fm can be expressed as Fm ¼ Qab
cdR

cd
ab;

for m ¼ 1, Pab
cd and Qab

cd coincides.
Using the definition of Pabcd from Eq. (10) in Eq. (4)

leads to a natural generalization of Jab and Ja which, as we
shall see later, will be closely related to the Lanczos-
Lovelock models of gravity. In particular the Noether
current in Eq. (4) now becomes

JaðvÞ ¼ 2Pab
cd∇b∇cvd ¼ 2Ra

bv
b þ 2Pp

qra£vΓ
p
qr ð11Þ

where Ra
b is defined as Ra

b ≡ Pai
jkR

jk
bi .

The relationship between Jab and Ja has an obvious
electromagnetic analogy which is useful in some calcu-
lations to get an intuitive grasp of the results. Given any
vector field va, we can always construct the Noether
potential JabðvÞ in general relativity, which is exactly
analogous to the construction of the electromagnetic field
tensor Fab starting from the vector potential Aj ¼ vj [see
Eq. (4)]. The Noether current Ja ¼ ∇bJab bears the same
relation to Jab as the electromagnetic current does to Fab.
The dual of the tensor Jab is ~Jab ¼ ϵabcdJcd and the
corresponding (magnetic) current

~Ja ¼ ∇b
~Jab ¼ 2ϵabcd∇b∇cvd

¼ ϵabcdð∇b∇cvd −∇c∇bvdÞ ¼ −ϵabcdRibcdvi ð12Þ

should vanish identically, because this is just electromag-
netism in disguise. This is indeed true since we have the
identity

ϵabcdRibcd ¼
1

3
ϵabcdRibcd þ

1

3
ϵadbcRidbc þ

1

3
ϵacdbRicdb

¼ 1

3
ϵabcdðRibcd þ Ridbc þ RicdbÞ ¼ 0: ð13Þ

Further, as in the case of electromagnetism, we can also
define an “electric” field and a “magnetic” field as
measured by an observer with four-velocity ua as

EaðvjuÞ ¼ ubJabðvÞ ¼ ubð∇avb −∇bvaÞ; ð14Þ

BaðvjuÞ ¼ 1

2
ϵabcdubJcdðvÞ ¼ ϵabcdub∇cvd; ð15Þ

where EaðvjuÞ stands for the “electric” part of Jab½v� as
measured by an observer with four-velocity ua. Just as in
electromagnetism, we have uaEaðvjuÞ ¼ 0 ¼ uaBaðvjuÞ
so that Ea, Ba are purely spatial. The generalization of the
electric field to Lanczos-Lovelock gravity is straightfor-
ward with Pabcd of general relativity being replaced by that
of the Lanczos-Lovelock model. This leads to the expres-
sion for electric field given by

EaðvjuÞ ¼ ubJabðvÞ ¼ 2Pabcdub∇cvd: ð16Þ

The situation with magnetic field is somewhat more
complicated in d > 4 dimensions. The Jab has dðd −
1Þ=2 components of which the electric vector Ea ≡
ubJab (with the constraint uaEa ¼ 0) contains information
about d − 1 components. The magnetic field contains the
information about the remaining ðd − 1Þðd − 2Þ=2 inde-
pendent components which is greater than (d − 1) for
d > 4. Since in Lanczos-Lovelock gravity we are
working in d dimensions (d > 4) there is no vector field
that can account for all the independent components of the
magnetic field. In d-dimensions the magnetic field
is given by completely antisymmetric (d − 3) rank tensor
Bn1…nd−3ðvjuÞ ¼ ϵn1…nd−3abcuaJbcðvÞ. Thus the total
number of independent components is d−1Cd−3 ¼
ðd − 1Þðd − 2Þ=2 as to be expected. Because of this rather
complicated structure we shall not discuss the magnetic
field and shall concentrate on the electric field, which,
fortunately, turns out to be adequate.

B. Gravitational momentum

The second structurewewant to associatewith an arbitrary
vector field va is the gravitational four-momentum density
PaðvÞ, defined—in the context of general relativity—as

PaðvÞ ¼ −Rva − gij£vNa
ij: ð17Þ

From Eq. (1) we can substitute for the Lie variation term in
Eq. (17), which relates the gravitational momentum and the
Noether current as
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JaðvÞ ¼ −PaðvÞ þ 2Ga
bv

b: ð18Þ

The physical meaning of the gravitational momentum can
be understood from the following result. (This was moti-
vated and discussed in detail in [19,36]. We will not repeat
the motivation and logic behind this definition here.)
Consider the special case in which va is the velocity of
an arbitrary observer, who will attribute to the matter, with
energy-momentum tensor Tab, the momentum density
Ma ¼ −Ta

bv
b. We would expect the total momentum

associated with matter plus gravitation to be conserved
[36] in Nature, for all observers. This condition requires

0 ¼ ∇aðPa þMaÞ ¼ ∇að−Ja þ 2Ga
bv

b − Ta
bv

bÞ
¼ ∇að2Ga

bv
b − Ta

bv
bÞ ¼ ð2Ga

b − Ta
bÞ∇avb ≡ Sab∇avb;

ð19Þ

where Sab ≡ ð2Gab − TabÞ is a symmetric tensor and in the
last line we have used Bianchi identity and the fact that Ja

and Ta
b are conserved. The above relation should hold for

any normalized timelike vector field va, which requires
Sab ¼ 0, i.e., Gab ¼ 8πTab, which are the field equations
for gravity. [This result should be obvious from the fact that
∇avb can be chosen to be arbitrary at any event even for
normalized timelike vector fields. A more formal proof,
suggested by Date [40], goes as follows: Choose first va to
be a normalized geodesic velocity field with vava ¼ −1
and va∇avb ¼ 0. Then the most general Sab which satisfies
Sab∇avb ¼ 0 has the form Sab ¼ αðXavb þ XbvaÞ þ
βvavb with two arbitrary functions α and β and an arbitrary
vector Xa which can be chosen without loss of generality to
be purely spatial, i.e, vaXa ¼ 0. Choose next the velocity
field to be ua ¼ −N∇at. Using the form of Sab∇aub ¼ 0

leads to α ¼ β ¼ 0. This immediately gives Sab ¼ 0.]
We will now generalize the notion of the gravitational

momentum in exact analogy with the way we generalized
the Noether current, by the relation

PaðvÞ ¼ −Rva − 2Pp
qra£vΓ

p
qr ð20Þ

where

mR ¼ Pab
cdR

cd
ab ¼ δabR

b
a: ð21Þ

Simple algebra gives the equivalent form

PaðvÞ ¼ −JaðvÞ þ 2Ea
bv

b ð22Þ

where JaðvÞ is the Noether current defined in Eq. (4) and

Ea
b ≡ Pai

jkR
jk
bi −

1

2
δabR;

mR≡ Pab
cdR

cd
ab: ð23Þ

It is possible to prove that Eab is symmetric [41] and that
∇aEa

b ¼ 0. To demonstrate the latter, note that the covariant
derivative of Eab involves two parts,

∇aðPaijkRbijkÞ ¼ Paijk∇aRjkbi

¼ Paklmð−∇kRlmab −∇bRlmkaÞ
¼ −∇kðPkalmRbalmÞ þ Ppq

rs ∇bRrs
pq; ð24Þ

∂bR ¼ Ppq
rs ∇bRrs

pq; ð25Þ

which can be obtained by working in a local inertial frame.
These two can be combined to yield ∇aEa

b ¼ −∇aEa
b,

thereby leading to ∇aEa
b ¼ 0.

With this definition of Pa, the conservation of total
momentum of matter plus gravity leads to

0 ¼ ∇aðPa þMaÞ ¼ ∇að−Ja þ 2Ea
bv

b − Ta
bv

bÞ
¼ ð2Ea

b − Ta
bÞ∇avb: ð26Þ

Invoking the same argument as in the case of general
relativity and requiring the above relation to hold for all
timelike vector fields va leads to

Ea
b ≡ Pai

jkR
jk
bi −

1

2
δabR ¼ 1

2
Ta
b; ð27Þ

which are indeed the field equations in Lanczos-Lovelock
gravity. Thus imposing the condition that total momentum
of matter plus gravity is conserved, with the gravitational
momentum given by Eq. (20), leads to the gravitational
field equations in all Lanczos-Lovelock theories of gravity.
This also allows us to associate the Noether current in
Eq. (11) with the Lanczos-Lovelock models.

C. Reduced gravitational momentum

We notice that the combinations

Pa ¼ −gij£vNa
ij; Pa ¼ −2Pp

qra£vΓ
p
qr ð28Þ

appear quite naturally in both Noether current and in the
gravitationalmomentum inEinstein’s theory and inLanczos-
Lovelock models. We shall call this combination reduced
gravitational momentum Pa. (We will see later that Pa is
closely related to the rate of production of heat per unit area
on null surfaces.)
The algebraic reason for the occurrence of this

combination is as follows. It turns out that, in the
thermodynamic interpretation of gravity, the combination
T̄ab ¼ Tab − ð1=2ÞTgab occurs more naturally than the
energy momentum tensor Tab with the field equations
often arising [19,20] in the form 2Rab ¼ T̄ab rather than as
2Gab ¼ Tab in Einstein’s gravity. The total momentum of
gravity plus matter can be expressed, on shell, in the form
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ðPa þMaÞ ¼ −gij£vNa
ij − Rva − Ta

bv
b

¼ −gij£vNa
ij þ

1

2
Tδabv

b − Ta
bv

b

¼ −gij£vNa
ij − T̄a

bv
b ≡ ðPa þ M̄aÞ; ð29Þ

where M̄a ¼ −T̄a
bv

b is the matter momentum associated
with T̄a

b. This shows that the vector P
a ¼ −gij£vNa

ij bears
the same relation to T̄a

b as Pa does with Ta
b. Just as T̄a

b
appears more naturally in the emergent gravity paradigm,
the Pa will also appear repeatedly in our discussions.
The notion of reduced gravitational momentum can also

be generalized to the Lanczos-Lovelock models as well.
For pure mth order Lanczos-Lovelock gravity we have the
relation 2½m − ðD=2Þ�L ¼ T. So we can write

ðPa þMaÞ ¼ −2Pp
qra£vΓ

p
qr −Lva − Ta

bv
b

¼ −2Pp
qra£vΓ

p
qr −

1

2½m− ðD=2Þ�Tδ
a
bv

b − Ta
bv

b

¼ −2Pp
qra£vΓ

p
qr − T̄a

bv
b ≡Pa þ M̄a; ð30Þ

where the reduced gravitational momentum is naturally
defined as

Pa ¼ −2Pp
qra£vΓ

p
qr: ð31Þ

In the case of general relativity the gravitational momentum
Pa defined in Eq. (31) goes over to the −gij£vNa

ij term, as it
should.

III. COORDINATE SYSTEMS AND THE
ASSOCIATED VECTOR FIELDS

The Noether current and gravitational momentum
require a vector field va for their definition and we expect
them to have simple physical interpretations when we use
naturally defined vector fields in the spacetime, associated
with the foliations we use to describe the geometry. Our
next task is to introduce these foliations and the associated
vector fields. We will be using two different foliations and
the corresponding coordinate systems in our work. The first
one is based on the standard (1þ 3) foliation while the
second one is adapted to a particular null surface. Both of
these will turn out to be useful in understanding the
thermodynamic interpretation of the spacetime dynamics.

A. (1þ 3) foliation and the associated vector fields

This is completely straightforward and wewill follow the
conventions introduced in [19]. Our primary interest is in
the case of a coordinate system adapted to a null surface
(which we will discuss in the next section, Sec. III B) and
the purpose of this section is just to recall the key formulas
needed later for comparison.

In the given spacetime, we introduce an arbitrary 1þ
ðd − 1Þ foliation based on a time function tðxaÞ, with a unit
normal uaðxiÞ ∝ ∇at. This splits the metric gab into the
lapse (N), shift (Nα) and the (d − 1)-metric hab ¼ gabþ
uaub. The unit normal to these hypersurfaces is ua ¼
−N∇at which reduces to −Nδ0a in the natural coordinate
system with t as the time coordinate. Observers with four
velocity ua will be called fundamental observers. (These
observers follow the world lines xα ¼ constant, i.e., they
have the same spatial coordinates, if we choose a gauge
with Nα ¼ 0. We will, however, keep our discussion
general and shall keep Nα nonzero unless explicitly
mentioned.) This foliation also introduces another natural
vector field:

ξa ¼ Nua → −ðN2; 0Þ; ξa ¼ Nua → ð1;−NαÞ ð32Þ

where the components are in the preferred coordinate
system. This vector corresponds to the standard timelike
Killing vector if the spacetime is static. Further, in any
spacetime, it has the time component which is unity, i.e.,
ξ0 ¼ 1. We will call ξa the time evolution vector field.
The fundamental observers will have (in general, non-

zero) acceleration vector ai ≡ uj∇jui ¼ hjið∇jN=NÞ
which is purely spatial (i.e., uiai ¼ 0) and has the magni-
tude a≡ ffiffiffiffiffiffiffiffi

aiai
p

. The conditions tðxÞ ¼ constant,
NðxÞ ¼ constant, taken together, define the codimension-
2 surface S with an induced metric qab the area elementffiffiffi
q

p
dd−2x and the binormal ϵab ≡ r½aub� where rα ¼

ϵðaα=aÞ is essentially the unit vector along the acceleration.
(The factor ϵ ¼ �1 ensures that the normal rα is pointing
outwards irrespective of the direction of acceleration. We
will usually assume ϵ ¼ 1.) Note that ai and ∇iN projected
on the t ¼ constant surface coincides.
We will next consider the construction of an appropriate

coordinate system associated with an arbitrary null surface
which we will use extensively in this paper.

B. Gaussian null coordinates and the associated
vector fields

The construction of a coordinate system associated with
an arbitrary null surface has already been discussed in detail
in [42–44], which we will briefly review. This coordinate
system will have the following properties: (a) All the
redundant gauge degrees of freedom are eliminated, leaving
only 6 free functions in the metric tensor. (b) The null
surface we are interested in is chosen to be a surface
determined by r ¼ 0 where r is one of the spatial
coordinates. The other r ¼ constant (but nonzero) valued
surfaces will represent timelike surfaces and the null
surface can be obtained as a limit r → 0. [e.g., this is
what will happen in Schwarzschild spacetime if we choose
(r − 2M) as one of the coordinates with the event horizon
being the chosen null surface].

SUMANTA CHAKRABORTY AND T. PADMANABHAN PHYSICAL REVIEW D 92, 104011 (2015)

104011-6



This coordinate system is known as Gaussian null
coordinates (henceforth referred to as GNC), constructed
in analogy with the Gaussian normal coordinates. To
handle the fact that the normals are null, we need to
introduce another auxiliary null vector ka and then con-
struct the coordinates by moving away from the null
surface along the appropriate null geodesics. After such
a construction the line element adapted to an arbitrary null
surface (identified with r ¼ 0) takes the following form
in GNC:

ds2 ¼ −2rαdu2 þ 2dudr − 2rβAdudxA þ qABdxAdxB:

ð33Þ

This line element contains six independent functions α, βA
and qAB as advocated, all dependent on the coordinates
ðu; r; xAÞ. We shall restrict our discussion to α > 0, which
is adequate for our purposes. The metric on the two-surface
(i.e. u ¼ constant and r ¼ constant) is represented by qAB.
The surface r ¼ 0 is the fiducial null surface but surfaces
with r ¼ nonzero constant are not null.
We will now introduce the time development vector ξa

appropriate for this coordinate system as the one with the
components ξa ¼ δa0 in the GNC; that is

ξa ¼ ð1; 0; 0; 0Þ; ξa ¼ ð−2rα; 1;−rβAÞ: ð34Þ

It can be easily shown that ξa will be identical to the
timelike Killing vector corresponding to the Rindler time
coordinate if we rewrite the standard Rindler metric in the
GNC form. Therefore, we can think of ξa as a natural
generalization of the time development vector correspond-
ing to the Rindler-like observers in the GNC; of course, it
will not be a Killing vector in general. Since ξ2 ¼ −2rα, we
see that, in the r → 0 limit, ξa becomes null. Given ξa, we
can construct the four-velocity ua for a comoving observer
by dividing ξa by its norm

ffiffiffiffiffiffiffiffi
2rα

p
obtaining

ui ¼
�

1ffiffiffiffiffiffiffiffi
2rα

p ; 0; 0; 0

�
;

ui ¼
�
−

ffiffiffiffiffiffiffiffi
2rα

p
;

1ffiffiffiffiffiffiffiffi
2rα

p ;
−rβAffiffiffiffiffiffiffiffi
2rα

p
�
: ð35Þ

The form of ui shows that the comoving observers can also
be thought of as observers with ðr; xAÞ ¼ constant. This
proves to be convenient for probing the properties of the
null surface.
This four-velocity has the four-acceleration ai ¼ uj∇jui.

The magnitude of the acceleration
ffiffiffiffiffiffiffiffi
aiai

p
, multiplied by the

redshift factor
ffiffiffiffiffiffiffiffi
2rα

p
, has a finite result in the null limit (i.e.,

r → 0 limit):

Najr→0 ¼ ð
ffiffiffiffiffiffiffiffi
2rα

p
Þajr→0 ¼ α −

∂uα

2α
: ð36Þ

When the acceleration α varies slowly in time (i.e.,
∂uα=α2 ≪ 1), the second term is negligible and Na → α.
The redshifted Unruh-Davies [5,6] temperature associated
with the r ¼ 0 surface, as measured by ðr; xAÞ ¼ constant
observer is given [19] by Eq. (36). We will call this
temperature the “acceleration temperature.”
We will next introduce the relevant null vectors asso-

ciated with the GNC. Given the four-velocity ua and
four-acceleration ai we can construct two null vectors l̄i

and k̄i as

l̄a ¼
ffiffiffiffiffiffiffiffi
2rα

p

2
ðua þ raÞ; k̄a ¼ 1ffiffiffiffiffiffiffiffi

2rα
p ðua − raÞ ð37Þ

where ri is the unit vector in the direction of the accel-
eration, i.e., ri ¼ ai=a. These two vectors l̄i and k̄i satisfy
l̄2 ¼ 0, k̄2 ¼ 0, and l̄ak̄a ¼ −1 and we have the following
components on the null surface:

l̄ijr→0 ¼ ð0; 1; 0; 0Þ; ð38Þ

k̄ijr→0 ¼
�
−1;

qABaAaB

4rαa2
;−

aAffiffiffiffiffiffiffiffi
2rα

p
a

�
: ð39Þ

Since we are essentially interested only in the r → 0 limit, it
is more convenient to work with a simpler vector field li ≡∇ir everywhere, which reduces to this l̄i on the null surface
and defines the natural null normal to the r ¼ 0 surface as a
limiting case. Similarly, we can introduce another vector ka
in place of k̄a to simplify the computations. Using the
nonuniqueness in the definition of k̄a, we can change it to
another vector ka such that,

k̄a ¼ ka þ Ala þ BAeAa ð40Þ

where eAa are basis vectors on the null surface and la ¼ l̄a.
From the property laeaA ¼ 0 and l2 ¼ 0we get laka ¼ −1,
since lak̄a ¼ −1. The condition k2 ¼ 0, leads to a con-
dition between A and BA as 2A ¼ qCDBCBD. Choosing
A ¼ ðqABaAaB=4rαa2Þ and BA ¼ −ðaA=

ffiffiffiffiffiffiffiffi
2rα

p
aÞ leads to

the simple form ka ¼ ð−1; 0; 0; 0Þ. Thus the vector la ¼∇ar and the auxiliary ka ¼ −∇au have the following
components in the GNC:

la ¼ ð0; 1; 0; 0Þ; la ¼ ð1; 2rαþ r2β2; rβAÞ; ð41aÞ

ka ¼ ð−1; 0; 0; 0Þ; ka ¼ ð0;−1; 0; 0Þ: ð41bÞ

Along with these two vectors we also have the vector ξa,
which is the time development vector introduced earlier.
Thus, through the GNC, we have introduced three vectors
la, ka, and ξa. The binormal associated with the null
surface can be obtained in terms of la and ka
as ϵab ¼ lakb − lbka.
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There are a few more geometrical quantities associated
with the null vectors which we will introduce for ready
reference later on. The first one corresponds to the induced
metric qab on the null surface, defined as

qab ≡ gab þ lakb þ lbka;

qab ≡ δab þ lakb þ lbka: ð42Þ

Note that both laqab and kaq
a
b identically vanish on the null

surface, thanks to the relation laka ¼ −1; we can think of
qab as a projector on to the r ¼ 0 surface, which is two-
dimensional. Using this projector, we can define extrinsic
curvature on a null surface:

Θab ≡ qma qnb∇mln ¼
1

2
qma qnb£lqmn: ð43Þ

If λ is the parameter along the null generator la on the null
surface, the only nonzero components of Θab are [see
Eq. (A14)]

ΘAB ¼ 1

2

d
dλ

qAB: ð44Þ

The trace ofΘab isΘ ¼ qabΘab and it is useful to define the
trace free shear tensor σab as

σab ≡ Θab −
1

2
qabΘ: ð45Þ

Then, as described in Ref. [25] we can introduce the shear
viscosity coefficient η ¼ ð1=16πÞ and the bulk viscosity
coefficient ζ ¼ −ð1=16πÞ as well as the dissipation term by

D≡ 8πð2ησabσab þ ζΘ2Þ ¼ ΘabΘab − Θ2: ð46Þ

The importance of σab andD—which will occur repeatedly
in our discussion—arises from the following fact: It turns
out that Einstein’s equations, when projected on to any null
surface in any spacetime, takes the form of a Navier-Stokes
equation [24] with σab acting as a viscous tensor and η, ζ
acting as bulk and shear viscosity coefficients. In that case,
the apparent viscous dissipation is given by D. (The
conceptual issues related to this “dissipation without
dissipation” since there can be no real, irreversible drain
of energy are clarified in [24]). In the GNC, we have on the
null surface

D ¼ 1

4
qacqbd∂uqab∂uqcd − ð∂u ln

ffiffiffi
q

p Þ2 ð47Þ

which vanishes when ∂uqab ¼ 0 on the null surface. We
will have occasion to comment on these results later on.

IV. NOETHER CURRENT FOR THE TIME
EVOLUTION VECTOR FIELD AND
SPACETIME THERMODYNAMICS

In Sec. III we introduced two natural foliations of the
spacetime, one based on the (1þ 3) split and the other
adapted to a fiducial null surface. These coordinate charts
also come with certain natural vector fields. In the case of
the (1þ 3) split, the time evolution is related to the vector
field ξa we introduced in Eq. (32). In the case of the
foliation based on a null surface, we again have a natural
time evolution field ξa given by Eq. (34) as well as the null
vector la which is tangent to the null congruence defining
the null surface. It would be interesting to study the Noether
current and the gravitational momenta corresponding to
these vector fields which turn out to have direct thermo-
dynamic significance. In this section we shall consider the
Noether currents; we will take up the properties of
gravitational momenta in Sec. VII.

A. Noether current adapted to (1þ 3) foliation

We will begin with a brief description of several proper-
ties of the Noether current associated with the vector field
ξa, developing further the ideas introduced in Ref. [19].
Let us start with the situation corresponding to general

relativity. The form of the Noether potential Jab and current
Ja is most easily analyzed in terms of the electromagnetic
analogy introduced earlier. Using the foliation vectors ua ¼
−N∇at and ξa ¼ Nua we readily obtain the following
expressions for “electric” and “magnetic” fields of Jab½ξ� as

EaðξjuÞ ¼ ub½∇aðNubÞ −∇bðNuaÞ� ¼ −2Naa;

BaðξjuÞ ¼ 0: ð48Þ

For Jab½ξ� the magnetic field vanishes and the electric field
is proportional to the acceleration. So Jab can be expressed
in terms of Ea and ub as 16πJabðvÞ ¼ uaEbðvjuÞ −
ubEaðvjuÞ whose divergence gives (with 16π inserted;
we are now using units with G ¼ 1)

16πJaðvÞ ¼ 16π∇bJabðvÞ
¼ ua∇bEbðvjuÞ þ EbðvjuÞ∇bua

− EaðvjuÞ∇bub − ub∇bEaðvjuÞ: ð49Þ

Projecting along ua leads to the Noether charge density on a
t ¼ constant surface given by

16πuaJaðξÞ ¼ −∇bEbðξjuÞ − uaub∇aEbðξjuÞ
¼ −DbEbðξjuÞ ¼ Dαð2NaαÞ ð50Þ

where Di is the covariant derivative operator on the spatial
slices. This matches with earlier results [19] and is
analogous to ∇ ·E ¼ ρ in electromagnetism. Incidentally,
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there is a similar result for JaðuÞ; one can show that
16πuaJaðuÞ ¼ DαðNaαÞ.
The thermodynamic interpretation of the result

16πuaJaðξÞ ¼ Dαð2NaαÞ can be extracted by integrating
the Noether charge density uaJaðξÞ over a 3-dimensional
region V of a t ¼ constant surface with integration measure
d3x

ffiffiffi
h

p
to obtain the total Noether charge in that volume.

We get

Z
V
d3x

ffiffiffi
h

p
uaJaðξÞ ¼

Z
∂V

qαrαd2x ð51Þ

where rα is the vector normal to ∂V and qα is the heat flux
vector defined as

qα ¼
�
Na
2π

�� ffiffiffi
q

p
4

�
âα ¼ ðTsÞâα ð52Þ

where aα is the unit vector in the direction of the
acceleration. The magnitude of the heat flux vector qα

gives the heat density, Ts, where T ¼ Na=2π is the local
Davies-Unruh temperature [5,6] and s ¼ ffiffiffi

q
p

=4 is the
entropy density per unit coordinate area. Thus, the total
Noether charge contained in an arbitrary bulk volume V
within t ¼ constant surface is equal to total heat flux
contained within the boundary ∂V. When the boundary
∂V is a N ¼ constant surface then rα ¼ âα and the total
heat flux qαrα equals the heat content of the boundary, as
derived previously [19]. Also note that

ffiffiffi
q

p
JabðξÞ ¼ qaub − qbua ¼ 2ðTsÞϵab ð53Þ

where the binormal is defined as ϵab ¼ ð1=2Þðâaub −
âbuaÞ. That is, the Noether potential is proportional to
the binormal of the equipotential surfaces.
The above analysis uses the fact that uaJaðξÞ is a 3-

divergence, so that the spatial volume integral of uaJaðξÞ
can be converted to a surface integral. In this case, it is
natural to interpret uaJaðξÞ as a spatial density, viz., charge
per unit volume of space. It turns out that similar results can
be obtained even for the component of JaðξÞ in the
direction of the normal to the equipotential surface along
the following lines. It can be easily shown that

âpJpðξÞ ¼ −ðgij − âiâjÞ∇ið2NaujÞ ¼ −gij⊥∇ið2NaujÞ;
ð54Þ

where the tensor gij⊥ acts as a projection tensor transverse to
the unit vector âi. However in order to define a surface
covariant derivative we need âi to foliate the spacetime,
which in turn implies ui∇iN ¼ 0. In this case Eq. (54) can
be written as âpJpðξÞ ¼ −Dið2NauiÞ, where Di is the
covariant derivative operator corresponding to the induced
metric gij⊥ on the N ¼ constant surfaces with normal âi.

(When ui∇iN ¼ 0, we have aj ¼ ∇j lnN.) To obtain an
integral version of this result, let us transform from the
original ðt; xαÞ coordinates to a new coordinate system
ðt; N; xAÞ using N itself as a “radial” coordinate. In this
coordinate we have ai ∝ δNi and thus uN ¼ 0, thanks to
the relation uiai ¼ 0. Thus Dið2NauiÞ will transform
into Dᾱð2NauᾱÞ, where ᾱ stands for the set of coordinates
(t, xA) on the N ¼ constant surface. Integrating both
sides âpJpðξÞ ¼ −Dᾱð2NauᾱÞ over the N ¼ constant sur-
face will now lead to the result (with restoration of 1=16π
factor)

Z
d2xdt

ffiffiffiffiffiffiffiffiffi
−g⊥

p
âpJpðξÞ ¼ −

Z
d2x

ffiffiffi
q

p
N

�
Na
8π

�
ut

¼
Z

d2x
�
Na
2π

�� ffiffiffi
q

p
4

�����
t1

t2

; ð55Þ

where we have used the standard result
ffiffiffiffiffiffiffiffiffi−g⊥

p ¼ N
ffiffiffi
q

p
,

with q being the determinant of the two-dimensional
hypersurface. The right-hand side can be thought of as
the difference in the heat content Qðt2Þ −Qðt1Þ between
the two surfaces t ¼ t2 and t ¼ t1 where

QðtÞ≡
Z

d2x

�
Na
2π

�� ffiffiffi
q

p
4

�
¼

Z
d2xðTsÞ: ð56Þ

This looks very similar to the result we obtained in the case
of the integral over uiJi earlier [see Eq. (51) with aα ¼ rα

on theN ¼ constant surface], but there is a difference in the
interpretation of the left-hand side. While uiJi can be
thought of as the charge density per unit spatial volume, the
quantity âpJpðξÞ represents the flux of Noether current
through a timelike surface; therefore, âpJpðξÞ should be
thought of as a current per unit area per unit time. We will
see later that the flux of Noether current through null
surfaces leads to a very similar result.
The generalization of these results to Lanczos-Lovelock

gravity is straightforward if we rewrite the expression in
Eq. (52) for the heat flux qa in the form

qα ¼
�
Na
2π

�� ffiffiffi
q

p
4

�
ð2Pαb

cβubu
câβÞ: ð57Þ

[When Pcd
ab ≡ ð1=2Þðδcaδdb − δdaδ

b
cÞ the qα becomes parallel

to aα thanks to uaaa ¼ 0 and reduces to the previous
expression.] To get the results for the Lanczos-Lovelock
gravity, we only need to replace Pab

cd for general relativity
with the Pab

cd for Lanczos-Lovelock gravity given
in Eq. (10).
In this case, the antisymmetric Noether potential is

constructed by using the entropy tensor Pab
cd introduced

through Eq. (6) as 16πJabðvÞ ¼ 2Pab
cd∇cvd. Then the

“electric” component of JabðξÞ turns out to be
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EaðξjuÞ ¼ 2Pabcdub∇cξd ¼ 2Pabcdub½N∇cud þ ud∇cN�
¼ 2PabcdubudðNac − ucub∇bNÞ
− 2NPabcdubðKcd þ ucadÞ

¼ 4NPabcdubacud ≡ −2Nχa; ð58Þ

where

χa ≡ −2Pab
cduba

cud: ð59Þ

Note that uaχa ¼ 0, thanks to the antisymmetry of Pab
cd in

the first two indices, making χa another spatial vector.
(However the “magnetic” component does not vanish in
this case and is algebraically complicated.) The contraction
of JaðξÞ with ua will again lead to the simple relation
uaJaðξÞ ¼ −DaEaðξjuÞ, thanks to the Frobenius identity
for ua and complete antisymmetric tensor ϵabcd. (Of course,
this is again to be expected from the electromagnetic
analogy related to ∇ ·E ¼ ρ.) Thus we obtain, by using
Eq. (58), the result

16πuaJaðξÞ ¼ Dαð2NχαÞ: ð60Þ

Integrating over (d − 1)-dimensional t ¼ constant hyper-
surface with dd−1x

ffiffiffi
h

p
as the volume measure we get

Z
V
dd−1x

ffiffiffi
h

p
uaJaðξÞ ¼

Z
∂V

�
Na
2π

��
1

2

ffiffiffi
q

p
Pαbcβubucâβ

�

× rαdd−2x

¼
Z
∂V

qαrαdd−2x; ð61Þ

where the heat flux vector qα is now defined as

qα¼
�
Na
2π

��
1

2

ffiffiffi
q

p
Pαb
cβubu

câβ
�
¼
�
Na
2π

�� ffiffiffi
q

p
4

�
χα: ð62Þ

Thus, even in Lanczos-Lovelock gravity we can define a
suitable heat flux vector which is spatial (though is no
longer in the direction of acceleration). If we consider a
region bounded by an equipotential surface, then rα ¼ âα
and the integrand of Eq. (61) will have the combination
Pαbcβâαubâβuc which can be reexpressed in terms of
the binormal of the surface. This allows us to express
the integrand in the form Ts ¼ ðNa=2πÞs and read off the
entropy density as

s ¼ −
1

8

ffiffiffi
q

p
Pabcdϵabϵcd: ð63Þ

This is in fact an alternate way of defining Pabcd which
justifies calling it the entropy tensor.
Using the form of the Noether current it is possible relate

the evolution of spacetime to the difference between

suitably defined surface and bulk degrees of freedom.
(This was discussed in detail in Ref. [19] which we will
recall here because we will later obtain a similar result for
the null surface.) To do this, we start with the relation

Dαð2NaαÞ ¼ 8πð2NT̄abuaubÞ þ uagbc£ξNa
bc; ð64Þ

where we have used the field equation Rab ¼ 8πT̄ab, in the
expression for uaJaðξÞ and Eq. (50). The Lie variation term
[19] is given by (see Sec. A.3 of [19])

ffiffiffi
h

p
uagij£ξNa

ij ¼ −hab£ξpab ð65Þ

which depends only on the extrinsic curvature through
pab ¼ ffiffiffi

h
p ðKhab − KabÞ. For a section of a spacelike sur-

face V with boundary ∂V, we define the average boundary
temperature as

Tavg ¼
1

Asur

Z
∂V

d2x
ffiffiffi
q

p Na
2π

¼ 1

Asur

Z
∂V

d2x
ffiffiffi
q

p
T loc; ð66Þ

where T loc ¼ Na=2π is the local (Tolman-redshifted)
Davies-Unruh temperature [5,6] and Asur is the area of
∂V. We also define the surface and bulk degrees of freedom
by

Nsur ¼
Z
∂V

d2x
ffiffiffi
q

p ¼ Asur

L2
P
;

Nbulk ¼
1

ð1=2ÞTavg

Z
d3x

ffiffiffi
h

p
2NT̄abuaub

¼ jEKomarj
ð1=2ÞTavg

: ð67Þ

The Nsur counts the number of degrees of freedom on the
surface area in Planck units; Nbulk is the number of degrees
of freedom in a bulk volume if an amount of (Komar)
energy EKomar, is in equipartition at the temperature Tavg.
(We do not assume that the equipartition is reached, of
course.) Using Eq. (65) in Eq. (64) and integrating it over a
bulk volume bounded by N ¼ constant surface can be
written in the form [19]

−
1

8π

Z
d3x

ffiffiffi
h

p
hab£ξpab ¼ 1

2
TavgðNsur − NbulkÞ ð68Þ

which shows that the difference between the surface and the
bulk degrees of freedom defined in Eq. (68) is what drives
the time evolution of the spacetime through the Lie
variation of the momentum pab. It will turn out that a
similar result holds for null surfaces as well.
We conclude this section with a discussion of the

Newtonian limit of general relativity treated using the
Noether current which has some amusing features.
The Newtonian limit is obtained by setting N2¼1þ2ϕ,
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g0α ¼ 0 and gαβ ¼ δαβ, where ϕ is the Newtonian potential
[12]. Then the acceleration of the fundamental observers
turn out to be aα ¼ ∂αϕ. Since the spatial section of
the spacetime is flat, the extrinsic curvature identically
vanishes and so does the Lie variation term. Also
2T̄abuaub ¼ ρKomar ¼ ρ, which immediately leads to [with
G inserted, see Eq. (64)]

∇2ϕ ¼ 4πGρ ð69Þ

the correct Newtonian limit. The same can also be obtained
using the four velocity ua. The Noether charge associated
with ua turns out to have the following expression [19]:

Dαaα ¼ 16πuaJaðuÞ ¼ 16πT̄abuaub þ uagbc£uNa
bc:

ð70Þ
In the Newtonian limit the following results hold
2T̄abuaub ¼ ρ and uagbc£uNa

bc ¼ −Dαaα (which follows
from the Newtonian limit of the result uagbc£ξNa

bc ¼
NDαaα þ 2aαDαN − Nuagij£uNa

ij and the fact that in
spacetime with a flat spatial section the term uagbc£ξNa

bc
identically vanishes). This immediately leads to Eq. (69).
We also see that the Noether charge is positive as long as

ρ > 0 in the Newtonian limit. In fact, the Noether charge
contained inside any equipotential surface is always a
positive definite quantity as long as rα and aα point in
the same direction (which happens when T̄abuaub > 0). To
prove this we can integrate the Noether charge over a small
region on a t ¼ constant hypersurface to obtain,

Z
t¼constant

d3x
ffiffiffi
h

p
uaJaðuÞ ¼

1

8π

Z
N;t¼constant

d2x
ffiffiffi
q

p
2Naαrα

¼
Z
N;t¼constant

d2x

�
Na
2π

�� ffiffiffi
q

p
4

�
:

ð71Þ

Since ρ is positive definite in this case the fundamental
observers are accelerating outwards and thus rαaα ¼ a. The
temperature as measured by these fundamental observers is
a positive definite quantity and so is the entropy density and
hence the positivity of Noether charge follows.

B. Noether current adapted to GNC

We shall next consider the corresponding thermody-
namic interpretation of the Noether current when we use
the time development vector field adapted to the null
surface in the GNC. Let us begin with the above result,
i.e., Noether charge contained in a bulk region equals the
heat content of the boundary, which was derived for a
subregion of a spacelike surface. It turns out that a similar
result holds for a null surface as well. Given the fact that the
Noether current corresponding to the time development

vector led to a nice thermodynamic interpretation, we will
consider the object laJaðξÞ. [In GNC ξa has the compo-
nents in Eq. (34) and la is given by Eq. (41a) but of course
our results are covariant.] It then turns out that [see
Eq. (B22)]

16πlaJaðξÞ ¼ JrðξÞ ¼ 1ffiffiffi
q

p d
dλ

ð2α ffiffiffi
q

p Þ ð72Þ

where λ is the parameter along the null generator la, which
in GNC is simply u. This equation can be integrated over
the null surface with integration measure

ffiffiffi
q

p
d2xdλ and

leads to

Z
d2xdλ

ffiffiffi
q

p
laJaðξÞ ¼

Z
d2x

�
α

2π

�� ffiffiffi
q

p
4

�����
λ¼λ2

λ¼λ1

¼ Qðλ2Þ −Qðλ1Þ ð73Þ

where

QðλÞ ¼
Z

d2x

�
α

2π

�� ffiffiffi
q

p
4

�
¼

Z
d2xTs ð74Þ

is the heat content of the null surface at a given λ.
This again shows that total Noether charge density for the

vector field ξa integrated over the null surface equals the
difference of the heat content Q of the two dimensional
boundaries located at λ ¼ λ2 and λ ¼ λ1. Previously the
connection between bulk Noether charge to surface heat
density was derived in the context of spacelike surfaces. The
result in Eq. (73) generalizes the previous connection—
between bulk Noether charge and surface heat density in the
context of spacelike surfaces—by showing that the total
Noether charge on a null surface is also expressible as the
heat content of the boundary.
The following aspect of this result is worth highlighting.

We obtained earlier two results [see Eqs. (51) and (55)] of
similar nature. The first one [in Eq. (51)] was for a spatial
region V contained in a spacelike hypersurface. In that case,
the normal to the surface was ua and the natural integration
measure for integrating the normal component of a vector
field is ua

ffiffiffi
h

p
d3x. We computed the integral Jaua

ffiffiffi
h

p
d3x

and found that it is given by a boundary term; we could
have also computed the integral in a region contained
within two boundary surfaces like, for example, in the
shell-like region between two spherical surfaces of radii R1

and R2. We would have then found that the Noether charge
in the bulk region is the difference between the heat
contents of the two surfaces.
In the second case [in Eq. (55)], we considered the flux of

Noether current through a timelike surface with normal âi.
In this case we calculated the integral of âpJpðξÞ with the
measure d2xdt

ffiffiffiffiffiffiffiffiffi−g⊥
p

on a timelike surface and got a similar
result. We also mentioned that in this case, the integrand
âpJpðξÞ is to be thought of as heat flux per unit time.
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In the case of a null surface, our result is similar to the
second one, given by Eq. (55). Now the corresponding
integration measure for integrating a vector field over a null
surface is given by la

ffiffiffi
q

p
d2xdλ where la ¼ dxa=dλ is the

tangent vector to the null congruence defining the null
surface. Therefore, in this case, we calculate the integral
over Jala

ffiffiffi
q

p
d2xdλ. This leads to the difference ΔQ of the

heat content at the two boundaries corresponding to λ ¼ λ1
and λ ¼ λ2. In the integrand in this case, Jala

ffiffiffi
q

p
d2xdλ,

one of the coordinates λ is similar to a time coordinate
rather than a spatial coordinate. So we cannot think of Jala
as charge per unit volume; instead it represents charge per
unit area (flux) per unit time and more appropriately, it is
the rate of production of heat per unit area of the null
surface.
It is possible to proceed further and relate the change

in the heat content with the matter energy flux through the
null surface. To do this, we use Eq. (1) and field equation
Gab ¼ 8πTab to obtain (on the null surface)

16πTablalb ¼ 16πlaJaðξÞ − lagbc£ξNa
bc: ð75Þ

The Lie derivative term can be computed directly to give
[see Eq. (B60)]

ffiffiffi
q

p
lagij£ξNa

ij ¼ −qab£ξΠab þ d2
ffiffiffi
q

p
dλ2

ð76Þ

where Πab ¼ ffiffiffi
q

p ½Θab − qabðΘþ κÞ� is the momentum
conjugate to qab and Θab ¼ qamqbn∇mln where Θ is the
trace of Θab. Integrating this result over the null surface
between λ ¼ λ1 and λ ¼ λ1, and assuming for simplicity
that the boundary terms at λ ¼ λ1, λ1 do not contribute
(which assumes dA=dλ ¼ 0 at the end points where A is
the area of the null surface), we get

−
1

16π

Z
d2xdλqab£ξΠab ¼ ½Qðλ2Þ −Qðλ1Þ�

−
Z

dλd2x
ffiffiffi
q

p
Tablalb:

ð77Þ

This expression shows that the evolution of the spacetime,
which is encoded by the evolution of the momentumΠab, is
driven by the difference between (i) heat content Q at the
boundary and (ii) the matter heat flux flowing into the null
surface. We can rewrite this in a nicer manner as follows.
We define the surface degrees of freedom as (in units with
G ¼ 1):

Nsur ≡ A
L2
P
¼ A ¼

Z
d2x

ffiffiffi
q

p ð78Þ

and the average temperature as

Tavg ¼
1

A

Z
d2x

ffiffiffi
q

p �
α

2π

�
: ð79Þ

We also introduce the effective bulk degrees of freedom by

Nbulk ¼
1

ð1=2ÞTavg

Z
dλd2x

ffiffiffi
q

p
2T̄ablalb: ð80Þ

If the matter heat flux, given by the integral on the right-
hand side, thermalizes at the average temperature of the null
surface then Nbulk will represent the the effective equi-
partition degrees of freedom. We now rewrite Eq. (77) as

−
1

8π

Z
d2xdλqab£ξΠab ¼ 1

2

Z
λ2

d2x

�
α

2π

� ffiffiffi
q

p

−
1

2

Z
λ1

d2x

�
α

2π

� ffiffiffi
q

p

− 2

Z
dλd2x

ffiffiffi
q

p
Tablalb

ð81Þ
which, on using our definitions, becomes

−
1

8π

Z
d2xdλðqab£ξΠabÞ ¼ 1

2
Tavg½ðNsurÞλ2λ1 − Nbulk�:

ð82Þ
This has the interpretation that and hence the evolution of
spacetime on a null surface, encoded in the Lie variation of
the momentum Πab along the time development vector, can
be thought of as due to the difference between surface
degrees of freedom and the bulk degrees of freedom. This
an exact analogy to the corresponding result in (1þ 3)
foliation presented in Eq. (68), which was originally
obtained in [19].
For the sake of completeness, we clarify the notion of

Tablalb being the heat flux through the null surface. This
concept has been introduced in [35] and arises as follows:
Let there be a matter field, in the spacetime, with energy
momentum tensor Tab. Around any given spacetime event
P, we can construct local inertial and hence local Rindler
frames. We then have an approximate Killing vector field
ξa, generating boosts, which coincides with the null normal
la at the null surface (see Sec. III B). The heat flow vector
is defined as the boost energy current obtained by projec-
ting Tab along ξb yielding Tabξ

b. Thus the energy (heat)
flux through the null surface will be

Q ¼
Z

ðTabξ
bÞdΣa ¼

Z
Tabξ

bla ffiffiffi
q

p
d2xdλ; ð83Þ

where
ffiffiffi
q

p
d2xdλ is the integration measure on a null surface

generated by null vectors la, parametrized by λ. Hence, in
the null limit, Tablalb (when ξa → la on the null surface)
represents the heat flux through the null surface.
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The same argument can also be presented along the
following lines. On a null surface we can decompose Tabξ

b

in canonical null basis as Tabξ
b ¼ Ala þ Bka þ CAeAa .

Then the heat flux through the surface is given by the
component B along ka, which is off the null surface. This
component B is obtained by contracting with la (since
l2 ¼ 0 and laka ¼ −1). This leads to the heat flux through
the null surface to be Tablalb.

V. REDUCED GRAVITATIONAL MOMENTUM
ASSOCIATED WITH THE TIME

DEVELOPMENT VECTOR

The expression for the Noether current contains a Lie
derivative term which was defined earlier as the reduced
gravitational momentum. In this section, we shall describe
some key properties of this reduced gravitational momen-
tum vector in different contexts, emphasizing the results
in GNC.
In the case of (1þ 3) foliation using spacelike surfaces

with normal ua ¼ −N∇at (N is the lapse function) and
induced metric hab ¼ gab þ uaub the reduced gravitational
momentum can be related [19] to the Lie variation of
pab ¼ ffiffiffi

h
p ðKhab − KabÞ by

−
ffiffiffi
h

p
uaPaðξÞ ¼

ffiffiffi
h

p
uagij£ξNa

ij ¼ −hab£ξpab: ð84Þ

In the case of null surfaces, one can obtain a similar
relation. For a general, nonaffine parametrization, i.e.,
when the null generator la satisfies the relation lb∇bla ¼
κla, we find that the Lie variation term is given by [see
Eq. (B60)]

−
ffiffiffi
q

p
laPaðξÞ ¼ ffiffiffi

q
p

lagij£ξNa
ij ¼ −qab£ξΠab þ d2

ffiffiffi
q

p
dλ2

ð85Þ

where Πab ¼ ffiffiffi
q

p ½Θab − qabðΘþ κÞ� is the momentum
conjugate to qab. Thus as in the case of the spacelike
surface, for null surfaces as well, the Lie variation of Nc

ab is
directly related to the Lie variation of the momentum
conjugate to the induced metric on the null surface. But in
the case of null surfaces there is an extra term which
contributes only at the boundaries λ ¼ λ1, λ2.
It can be seen from straightforward algebra [see

Eq. (A43)] that qab£ξΠab is directly related to the object
D ¼ ΘabΘab − Θ2 defined in Eq. (46) which, as we
mentioned earlier, can be interpreted as dissipation [25].
This leads to an alternative expression on the null surface
for the Lie variation term in the adapted coordinate system
as [see Eqs. (B45) and (B59)]

lagij£ξNa
ij ¼ 2Dþ 2ffiffiffi

q
p ∂2

λð
ffiffiffi
q

p Þ þ 2∂λα: ð86Þ

Integrating this expression over the r ¼ 0 null surface with
integration measure d2xdu

ffiffiffi
q

p
, neglecting total divergence

and dividing by 16π leads to

1

16π

Z
d2xdλ

ffiffiffi
q

p
lagij£ξNa

ij ¼
1

8π

Z
d2xdλ

ffiffiffi
q

p
D

þ
Z

d2x
� ffiffiffi

q
p
4

�
d
�
α

2π

�

ð87Þ
which explicitly shows that the Lie variation term inte-
grated over the null surface leads to the dissipation and the
sdT term (interpreted as dT ¼ ðdT=dλÞdλ). Hence the
reduced gravitational momentum on the null surface can be
given a natural thermodynamic interpretation.
What is important regarding the above result is that

for ∂λqab ¼ 0 (i.e., the induced metric on the null surface
is independent of the parameter along the null generator) the
dissipation term vanishes and thus Eq. (87) can bewritten as

1

16π

Z
d2xdλ

ffiffiffi
q

p
lagij£ξNa

ij ¼ Qðλ2Þ −Qðλ1Þ: ð88Þ

Hence the Lie variation term in this particular situation is
equal to the difference in the heat content allowing us to
relate Pa to the rate of heating of the null surface.

VI. THE THERMODYNAMIC VARIATIONAL
PRINCIPLE FOR THE FIELD EQUATIONS

It was shown earlier [14,16] that the gravitational field
equations can be obtained by extremizing the total heat
density of all the null surfaces in the spacetime. The
purpose of this section and the next is to show that this
variational principle takes a simple form in terms of the
gravitational momentum for both general relativity and the
Lanczos-Lovelock models.

A. General relativity

In Sec. II we have defined the gravitational momentum
PaðvÞ and the matter momentum MaðvÞ associated with
the vector field va. Using these two we can construct a
thermodynamic variational principle leading to the field
equations for gravity. We start by defining a suitable
expression for the heat density associated with a null
surface as

Q ¼
Z

d2xdλ
ffiffiffi
q

p ½f−laPaðlÞg þ f−laMaðlÞg�; ð89Þ

where la is the null vector, such that on the null surface
lala ¼ 0. Then from Eq. (18) we observe that the Ricci
scalar does not contribute since lala ¼ 0 on the null
surface. From the definition of matter momentum as
MaðlÞ ¼ −Ta

bl
b, we find that
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Q ¼
Z

d2xdλ
ffiffiffi
q

p �
Tablalb þ 1

16π
lagbc£lNa

bc

�
: ð90Þ

To understand the interpretation of this quantity as the heat
content of the null surface, note that the matter term
involves an integral over d2xdλ

ffiffiffi
q

p
laðTa

bl
aÞ on the null

surface. As we argued earlier, Tablalb can be related to the
heat flux due to the matter and hence this integral represents
the heat content of the null surface contributed by matter.
(In the case of an ideal fluid in GNC, Tablalb will be equal
to ρþ p, which is the same as the heat density Ts when we
use the Gibbs relation.) Similarly, the expression obtained
by replacingMa by the gravitational momentum Pa can be
thought of as the heat density due to gravity. The explicit
form involving reduced gravitational momentum supports
this interpretation. Since la ¼ ∇aϕ, we have JaðlÞ ¼ 0.
Hence we have lagbc£lNa

bc ¼ −2Rablalb, which allows
us to write

Q ¼
Z

d2xdλ
ffiffiffi
q

p �
Tablalb −

1

8π
Rablalb

�
: ð91Þ

Varying the integrand with respect to all the null vectors
fields la, after adding a Lagrange multiplier term λðxÞlala

to enforce the condition l2 ¼ 0 will lead to the field
equation Gab ¼ 8πTab þ Λgab where the cosmological
constant Λ appears as an integration constant. (The details
of this derivation have been given in several previous works
[14,16,19] and hence is not repeated here.) So, starting
from the projection of gravitational momentum and matter
momentum along the null normal la, we can derive the
field equations for gravity.
The same result arises even if we have started using the

contractions −laPaðξÞ and −laMaðξÞ. As we have shown
in Eq. (A29) in Sec. A the Lie variation term and Rablalb

differs only by a total divergence. Hence after neglecting
the surface contributions, the action would be identical to
Eq. (91) and thus on variation of la it would lead to the
field equations for gravity.

B. Lanczos-Lovelock gravity

The power of this analysis becomes apparent when we
realize that the same expression as presented in Eq. (89)
leads to the Lanczos-Lovelock field equations when we use
the corresponding momentum PaðlÞ given by Eq. (20).
Using this, we can construct a variational principle asso-
ciated with a null surface, leading to the field equations for
Lanczos-Lovelock theories of gravity. This is achieved by
using exactly the same expression for the heat content:

Q ¼
Z

dD−2xdλ
ffiffiffi
q

p ½f−laPaðlÞg þ f−laMaðlÞg� ð92Þ

where la is the null vector, such that on the null surface
lala ¼ 0. As in the case of general relativity, the scalar R

present in gravitational momentum does not contribute
since lala ¼ 0 on the null surface. From the definition of
matter momentum as MaðlÞ ¼ −Ta

bl
b, we arrive at the

explicit form

Q¼
Z

dD−2xdλ
ffiffiffi
q

p �
Tablalbþ 1

16π
laP

nqa
m £lΓm

nq

�
: ð93Þ

Since la ¼ ∇aϕ, we have JaðlÞ ¼ 0. Hence
laPm

nqa£lΓm
nq ¼ −2Rablalb, which gives the variational

principle for the null surface to be

Q ¼
Z

dD−2xdλ
ffiffiffi
q

p �
Tablalb −

1

8π
Rablalb

�
: ð94Þ

Again varying the integrand with respect to all the null
vectors fields la, with a Lagrange multiplier λlala to
impose the constraint l2 ¼ 0, we obtain the field equation
to be Eab ¼ 8πTab þ Λgab as before. Hence starting from
the gravitational momentum and matter momentum along
the normal, null vector field la, we can derive the field
equations for gravity.
Thus, one can write down a thermodynamic variational

principle directly in terms of the gravitational momentum.
The logical simplicity of this result and the fact that it holds
for Lanczos-Lovelock models without any modification is
noteworthy. Because of this feature, this procedure seems
to be the natural way of obtaining the field equations in the
emergent gravity paradigm.

VII. PROJECTIONS OF GRAVITATIONAL
MOMENTUM ON THE NULL SURFACE

We shall now take up a further application of the concept
of gravitational momentum. Given the thermodynamic
significance of the null surfaces, we would expect the flow
of gravitational momentum vis-a-vis a given null surface to
be of some importance. To explore this, we have to first
choose a suitable vector field, using which the gravitational
momentum can be defined. The most natural choice—as
before—is the time evolution field ξa. Further, in the
canonical null basis ðla; ka; eaAÞ the gravitational momen-
tum can be decomposed as Pa ¼ Ala þ Bka þ CAeaA.
These components A, B and CA are related to the three
projections of Pa by A ¼ −PaðξÞka, B ¼ −PaðξÞla, and
CA ¼ PaðξÞeAa . So we need to consider the following three
components, qabP

bðξÞ, kaPaðξÞ, and laPaðξÞ, to get the
complete picture. We will see that each of them leads
to interesting thermodynamic interpretation. In view of
the rather involved calculations, we will first provide a
summary of the thermodynamic interpretations of these
projections:

(i) The component qbaPaðξÞ leads to the Navier-Stokes
equation for fluid dynamics, using which we can
obtain yet another justification for the dissipation
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term introduced in Eq. (46). This is described in
Sec. VII A

(ii) The component kaPaðξÞ, when evaluated on an
arbitrary null surface leads to a result which can
be stated in the form TdS ¼ dEþ PdV, i.e., as a
thermodynamic identity. This helps us to identify a
notion of energy associated with an arbitrary null
surface. We obtain this result in Sec. VII B.

(iii) Finally, the component laPaðξÞ yields the evolution
of null surface, which involves both ds=dλ and
dT=dλ, where s is the entropy density and T is the
temperature associated with an arbitrary null surface
and λ is the parameter along the null generator la.
This is studied in Sec. VII C.

We shall now show how all of these three results tie up
with the notion of gravitational momentum and arise
naturally from the three different projections of the gravi-
tational momentum.

A. Navier-Stokes equation

The equivalence of field equations for gravity, when
projected on a null surface, and the Navier-Stokes equation
is an important result in the emergent paradigm of gravity.
This result, which generalizes the previous one [27] in the
context of black holes, shows that when Einstein’s equa-
tions are projected on any null surface and viewed in local
inertial frame, they become identical to the Navier-Stokes
equation of fluid dynamics [24]. Here we will project the
gravitational momentum Pa on an arbitrary null surface
parametrized by GNC and show that the Navier-Stokes
equation is obtained. For this purpose we will consistently
use the vector field ξa. Even though we will present the
results for the adapted coordinates to a null surface (i.e., in
GNC), the same result continues to hold in any other
parametrization as well.
In order to project the gravitational momenta

16πPcðξÞ ¼ gab£ξNc
ab þ Rξc on the null surface we need

to determine the induced metric qab, which [44] turns out to
be diagð0; 0; 1; 1Þ. Hence it is the angular part which is
going to contribute. The vectors la and ka are already given
in Eqs. (41a) and (41b), respectively. In the Navier-Stokes
equation two other vectors play a crucial role. These vectors
and their components in the adapted GNC system have the
following expressions:

ωb ¼ lm∇mkb ¼
�
α; 0;

1

2
βA

�
; ωa ¼

�
0; α;

1

2
βA

�

ð95Þ
and

Ωa ¼ ωa þ αka ¼
�
0; 0;

1

2
βA

�
; Ωa ¼

�
0; 0;

1

2
βA

�
:

ð96Þ

From [24] we know that βA can be interpreted as the
transverse velocity of observers on the null surface. (In
particular it can be interpreted as velocity drift of local
Rindler observers parallel to the Rindler horizon.) With this
physical motivation, let us now start calculating the
projection of Pa on the null surface. Using the coordinates
adapted to a given null surface, we arrive at

−16πqabPbðξÞ ¼ qabg
pq£ξNb

pq ¼ 2£ξNA
ur þ qBC£ξNA

BC

ð97Þ

where we have used the identity laqab ¼ 0. We next need
to find the Lie variation of Nc

ab. For that we use the
expression in Eq. (3) for the Lie variation of Christoffel
symbol with respect to an arbitrary vector field va and the
result Na

bc ¼ Qad
beΓe

cd þQad
ceΓe

bd. Then the Lie variation of
Na

bc becomes

£vNa
bc ¼ Qad

be£vΓe
cd þQad

ce£vΓe
bd

¼ 1

2
ðδab∇c∇dvd þ δac∇b∇dvdÞ

−
1

2
ð∇b∇cva þ∇c∇bvaÞ −

1

2
ðRa

bmc þ Ra
cmbÞvm:

ð98Þ

We obtain the expressions for Lie variation of NA
ur and

NA
BC on the null surface (located at r ¼ 0) to be [see

Eq. (B26)]

£ξNA
ur ¼

1

2
∂uβ

A ¼ 1

2
qAB∂uβB þ 1

2
βB∂uqAB; ð99Þ

£ξNA
BC ¼ 1

2
δAB∂CΘþ 1

2
δAC∂BΘ − ∂uΓ̂A

BC: ð100Þ

Substituting these results in Eq. (97) we arrive at

−16πqpbPb ¼ qpaðgbc£ξNa
bcÞ

¼ qPB∂uβB þ βB∂uqPB þ qPC∂CΘ

− qBC∂uΓ̂P
BC: ð101Þ

In order to get the Navier-Stokes equation in its familiar
form we need to lower the free index in Eq. (101) and
multiply both sides by (−1=2). Using Noether current for ξa
we have from Eq. (1)

qabðgpq£ξNb
pqÞ ¼ qabJbðξÞ − 2Rmnlmqna: ð102Þ

On using Einstein’s equations Rab ¼ 8πðTab − ð1=2ÞTgabÞ
and the result laqab ¼ 0, Eq. (101) leads to the following
result:
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8πTmnlmqna ¼
1

2
βA∂u ln

ffiffiffi
q

p þ 1

2
∂uβA − ∂Aα −

1

2
∂A∂u ln

ffiffiffi
q

p þ 1

2
qABqPQ∂uΓ̂B

PQ

¼ 1

2
βA∂u ln

ffiffiffi
q

p þ 1

2
∂uβA − ∂Aα −

1

2
∂A∂u ln

ffiffiffi
q

p
−
1

2
qABΓ̂B

PQ∂uqPQ þ 1

2
∂DðqCD∂uqACÞ

þ 1

2
∂uqCF∂CqAF −

1

2
qAB∂uðqBD∂D ln

ffiffiffi
q

p Þ

¼ 1

2
βA∂u ln

ffiffiffi
q

p þ 1

2
∂uβA − ∂Aα − ∂A∂u ln

ffiffiffi
q

p
−
1

2
qAB∂uqBDð∂D ln

ffiffiffi
q

p Þ

þ 1

2
∂DðqCD∂uqACÞ þ

1

2
∂uqCF∂CqAF −

1

2
∂CqAF∂uqCF −

1

2
qCDΓ̂E

AC∂uqED; ð103Þ

where in the second line we have used the relation
Eq. (B10b) and in the third line Eq. (B10c) as presented
in Appendix B. From Eq. (B9) we obtain

1

2
∂uβA þ ∂B

�
1

2
qBC∂uqAC

�
þ 1

2
qCD∂uqAD∂C ln

ffiffiffi
q

p

−
1

2
qBD∂uqCDΓ̂C

AB þ ∂u ln
ffiffiffi
q

p 1

2
βA − ∂A∂u ln

ffiffiffi
q

p
− ∂Aα

¼ qna£lΩn þDmσ
m
a þ ΘΩa −Da

�
Θ
2
þ α

�
: ð104Þ

After some trivial manipulations in Eq. (103) and using
Eq. (104), the following final expression is obtained:

8πTmnlmqna ¼ qna£lΩn þDmσ
m
a þ ΘΩa −Da

�
Θ
2
þ α

�

ð105Þ

which can be interpreted as the Navier-Stokes equation for
fluid dynamics.
The correspondence between Eqs. (104) and (105) with

the Navier-Stokes equation for fluid dynamics is based on
the following identifications of various geometric quan-
tities on the null surface: (i) The momentum density is
given by −Ωa=8π. In the coordinates adapted to the null
surface, Ωa has only transverse components which are
given by ð1=2ÞβA. This reinforces our interpretation of βA
as the transverse fluid velocity. Moreover, we can identify
(ii) the pressure κ=8π, (iii) the shear tensor defined as
σmn [see Eq. (45)], (iv) the shear viscosity coefficient
η ¼ ð1=16πÞ, (v) the bulk viscosity coefficient ζ ¼
−1=16π, and finally (vi) an external force given by
Fa ¼ Tmalm. Thus Eq. (104) has the form of a Navier-
Stokes equation for a fluid with the convective derivative
replaced by the Lie derivative. Since this equation and its
interpretation have been extensively discussed in the
references cited earlier, we will not repeat them and will
confine ourselves to highlighting the dissipation term.
In order to interpret the dissipation term we start from the

heat density q ¼ −4Pab
cd∇alc∇bld (i.e., heat content per

unit null surface volume
ffiffiffi
q

p
d2xdλ) used in the variational

principle, where Pab
cd ¼ ð1=2Þðδacδbd − δadδ

b
cÞ and la is the

null generator of the null surface. To connect up the heat
density with the dissipation term [25] we consider a virtual
displacement of the null surface in which the volume
changes by δAδλ, where δA is a small area element on
the two-surface (i.e.,

ffiffiffi
q

p
d2x). Then qδAdλ represents the

change in heat content of the null surface, which is obtained
by multiplying the heat density q with the infinitesimal
3-volume element on the null surface. Expanding the
expression for the heat density and introducing temperature
through local Rindler horizon [25], we obtain

qδAdλ
8π

¼ −δAdλð2ησabσab þ ζΘ2Þ þ 1

2

κ

2π
dδA ð106Þ

where the first term represents the (virtual) dissipation of a
viscous fluid during the evolution of the small area element
δA of the null surface along the null generator and has the
following expression:

dE ¼ δAdλð2ησabσab þ ζΘ2Þ ¼ 1

8π
δAdλD: ð107Þ

So the combination D ¼ ðΘabΘab − Θ2Þ represents the
dissipation as we have mentioned earlier. The second
term in Eq. (106) can be interpreted as ð1=2ÞkT dN,
where T ¼ ðκ=2πÞ and dN is the degrees of freedom on
the null surface corresponding to the change in area δA.
For affinely parametrized null generator κ ¼ 0, which
would lead to

qδAdλ
8π

¼ −δAdλð2ησabσab þ ζΘ2Þ ¼ 1

8π
δAdλD: ð108Þ

Thus for affinely parametrized null generators the change
in the heat content is solely due to the dissipation
term D.
Having derived the Navier-Stokes equation from the

projection of gravitational momentum PaðξÞ on the null
surface, we will now take up the task of projecting it along
ka and la respectively and retrieve the thermodynamic
information encoded in them.
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B. A thermodynamic identity for the null surface

It has been shown that in a wide class of gravity theories,
the gravitational field equations near a horizon imply a
thermodynamic identity Tδλ̄S ¼ δλ̄Eþ Pδλ̄V where the
variations are interpreted as being due to virtual displace-
ment of the null surface along the affine parameter λ̄ of ka.
This result was first obtained for general relativity and
Lanczos-Lovelock theories of gravity when (i) the space-
time admits some symmetry, e.g. staticity or spherical
symmetry and (ii) has a horizon. This may suggest that this
connection—between the field equations and a thermody-
namic identity—is a specific phenomenon that occurs only
in solutions containing horizons. But this illusion is broken
in [33] for general relativity and in [34] for Lanczos-
Lovelock theories of gravity. There it was shown that
gravitational field equations near any generic null surface in
both general relativity and Lanczos-Lovelock theories of
gravity lead to a relation: Tδλ̄S ¼ δλ̄Eþ Pδλ̄V.
Here we will show that this thermodynamic identity is

also contained in the gravitational momentum for ξa and
can be retrieved from its component along la which is
contained in the projection PaðξÞka (which picks out the
component along la because k2 ¼ 0 and laka ¼ −1).
Since all the details are similar to the one in [33] we will
be quite brief and just indicate the manner in which the
result can be obtained. (For detailed derivation, see
Appendix C of [33]). From Eq. (18) we obtain

−kaPaðξÞ ¼ kaJaðξÞ − 2Ga
bξ

bka: ð109Þ

In the second term we can use the field equations, i.e.,
2Gab ¼ Tab leading to the combination Tabξ

akb, which is
the work function (effective pressure) for the matter (see
e.g., [45,46]) which, when integrated over the two-surface,
will yield the average force F̄ due to matter flux on the
surface. The first term, viz., the projection of the Noether
current kaJaðξÞ has been evaluated explicitly in the earlier
work [33]. Using this result from Ref. [33] for the
projection of the Noether current we arrive at

F̄δλ̄ ¼ Tδλ̄S − δλ̄E: ð110Þ

In this expression, F̄ stands for the average force on the null
surface, T corresponds to the null surface temperature
obtained using local Rindler observers, S ¼ ðA=4Þ is the
entropy, and E represents the energy given by

E ¼ 1

2

Z
dλ̄

�
χ

2

�
−

1

8π

Z
d2x∂u

ffiffiffi
q

p

−
1

16π

Z
dλ̄

Z
d2x

ffiffiffi
q

p �
1

2
βAβ

A

�
; ð111Þ

where χ stands for the Euler characteristics of the two-
surface. (For a detailed discussion see [33]). A simpler

expression covering most of the interesting cases is
obtained by setting (i) βAjr¼0 ¼ 0 and (ii) ∂Aα ¼ 0 on
the null surface [33]. On imposing these conditions we
arrive at the following simpler expression for energy as

E ¼ 1

2

Z
dλ̄

�
χ

2

�
−

1

8π

Z
d2x∂u

ffiffiffi
q

p

¼ 1

2

Z
dλ̄

�
χ

2

�
−

1

8π
∂uA: ð112Þ

Hence the projection of the gravitational momentum along
la is equivalent to thermodynamic identity.

C. Evolution of the null surface

Finally, we consider the component of the gravitational
momentum Pa½ξ� along ka. If we expand any vector in the
basis ðla; ka; eaAÞ as va ¼ Ala þ Bka þ CAeaA, the compo-
nent along ka is obtained by the contraction lava, since
l2 ¼ 0 and laka ¼ −1 on the null surface. For a given null
surface we will use our adapted coordinates, i.e., GNC, and
will show that this component is intimately connected with
spacetime evolution.
In the adapted coordinate system the scalar −laPaðξÞ

has the following expression:

−16πlaPaðξÞ ¼ lagbc£ξNa
bc ¼ 2£ξNr

ur þ qAB£ξNr
AB

ð113Þ
where the first line follows from the fact that on the null
surface l2 ¼ 0. Both the Lie variation terms have been
calculated in Appendix B explicitly. From the expressions
obtained there the projection of gravitational momentum
turns out to be [see Eqs. (B45) and (B59)]

−16πlaPaðξÞ ¼ lagbc£ξNa
bc ¼ 2∂λαþ 2Dþ 2ffiffiffi

q
p ∂2

λ

ffiffiffi
q

p
:

ð114Þ
Here D represents the dissipation term obtained through
the Navier-Stokes equation and has the definition D ¼
ðΘabΘab − Θ2Þ.
To get a physical interpretation we integrate this expres-

sion over the null surface with volume measure
ffiffiffi
q

p
d2xdλ

(for the null vector la the parameter λ is just u) and divide
by proper factors of π, and ignore the surface term (which
arises from the third term) to obtain

1

16π

Z
dλd2x

ffiffiffi
q

p
lagij£ξNa

ij ¼
1

8π

Z
dλd2x

ffiffiffi
q

p
D

þ
Z

d2xsdT ð115Þ

where s ¼ ffiffiffi
q

p
=4 and dT ≡ ðdT=dλÞdλ. This leads to the

result that laPaðξÞ and lagbc£ξNa
bc can be interpreted as
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the heating rate of the null surface per unit area. Integrated
over the affine parameter dλ and the proper area

ffiffiffi
q

p
d2x, it

leads to the heating due to the dissipation (given by the first
term on the right-hand side) and the integral of sdT which
is the second term.
Incidentally, a similar interpretation can be given for the

matter energy flux which crosses the null surface as well.
Using a corresponding expression for Rablaξb and using
the field equations, we can easily show that [see Eq. (B46)]

Tablalb ¼ 1ffiffiffi
q

p
�
α

2π

� ∂
∂u

� ffiffiffi
q

p
4

�
−

1

8π
D −

1

8π

1ffiffiffi
q

p ∂2 ffiffiffi
q

p
∂u2 :

ð116Þ

Integrating both sides over the null surface and ignoring
boundary contributions at the ends of integration of affine
parameter, we get

Z
d2xdλ

ffiffiffi
q

p
Tablalb þ 1

8π

Z
d2xdλ

ffiffiffi
q

p
D ¼

Z
d2xTds:

ð117Þ

This tells us that the heating due to matter flux plus the heat
generated by the dissipation is equal to the integral of T∂us
over the null surface. This reconfirms the earlier interpre-
tation of the projection of the momentum contributing to
the heating of the null surface.
These results can be used to reexpress the heat content of

the null surface which was used in the thermodynamic
variational principle. Two equivalent forms of the varia-
tional principle, which differ by a total divergence, can be
given based on Rablalb and the Lie variation term. These
two variational principles (neglecting surface contribu-
tions) have the following expressions:

Q1≡
Z

dλd2x
ffiffiffi
q

p �
−

1

8π
RablalbþTablalb

�

¼
Z

dλd2x
ffiffiffi
q

p �
1

8π
DþTablalb

	
−
Z

d2xTds ð118Þ

and

Q2≡
Z

dλd2x
ffiffiffi
q

p �
1

16π
lagij£ξNa

ijþTablalb

	

¼
Z

dλd2x
ffiffiffi
q

p �
1

8π
DþTablalb

	
þ
Z

d2xsdT: ð119Þ

Note that both of these variational principles have the
dissipation term D and matter energy flux through the null
surface Tablalb in common. However Q1 is connected to
TdS while Q2 is connected to SdT. Thus both the
variational principles have thermodynamic interpretation.

VIII. CONCLUSIONS

Since we have described the physical consequences of
the results in the various sections themselves, we shall limit
ourselves to summarizing the key conclusions in this
section.

(i) There is considerable amount of evidence to suggest
that gravitational field equations have the same
status as, say, the equations of fluid mechanics.
They describe the macroscopic, thermodynamic
limit of an underlying statistical mechanics of the
microscopic degrees of freedom of the spacetime.
The macro- and microdescriptions are connected
through the heat density Ts of the spacetime. Here,
the temperature T arises from the interpretation of
the null surfaces as local Rindler horizons. The
entropy density is a phenomenological input, the
form of which determines the theory. For a very
wide class of theories, it can be defined in terms of a
function FðRcd

ab; δ
i
jÞ built from (2, 2) curvature tensor

Rcd
ab and the Kronecker deltas, as

s ¼ −
1

8

ffiffiffi
q

p
Pab
cdϵabϵ

cd;

Pab
cd ¼ ∂F

∂Rcd
ab

;

∇aPab
cd ¼ 0: ð120Þ

(ii) Given a vector field va, one can construct three
currents: (a) the Noether current JaðvÞ, (b) the
gravitational momentum PaðvÞ, and (c) the reduced
gravitational momentum PaðvÞ. Interestingly
enough, one can attribute thermodynamic meaning
to these quantities which are usually considered to
be geometrical. For example, the conserved current
Ja, associated with the time-development vector ξa

of the spacetime, leads to a conserved charge [i.e.,
integral of uaJaðξÞ defined either on a spacelike
surface or on a null surface] that can be related to the
boundary heat density Ts, where T is the Unruh-
Davies temperature and s stands for entropy density.

(iii) One can also define the notion of gravitational
momentum Pa for all the Lanczos-Lovelock models
of gravity such that ∇aðPa þMaÞ ¼ 0 (whereMa is
the momentum density of matter) for all observers
leads to the field equation of the Lanczos-Lovelock
model. This generalizes a previous result for general
relativity.

(iv) The field equations can also be derived from a
thermodynamic variational principle, which essen-
tially extremizes the total heat density of all the null
surfaces in the spacetime. This variational principle
can be expressed directly in terms of the total
gravitational momentum, thereby providing it with
a simple physical interpretation.
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(v) One can associate with any null surface the two
null vector fields la, ka with laka ¼ −1 and la
being the tangent vector to the congruence
defining the null surface, as well as the 2-metric
qab ¼ gab þ lakb þ lbka. These structures define
three natural projections of the gravitational mo-
mentum (Pala, Paka, Paqab), all of which have
thermodynamic significance. The first one leads to
the description of time evolution of the null surface
in terms of suitably defined bulk and surface degrees
of freedom; the second leads to a thermodynamic
identity which can be written in the form TdS ¼
dEþ PdV; the third leads to a Navier-Stokes
equation for the transverse degrees of freedom on
the null surface which can be interpreted as a drift
velocity.

These results again demonstrate that the emergent gravity
paradigm enriches our understanding of the spacetime
dynamics and the structure of null surfaces, by allowing
a rich variety of thermodynamic backdrops for the geo-
metrical variables.

ACKNOWLEDGMENTS

The work of S. C. is funded by a SPM fellowship from
CSIR, Government of India. The research of T. P. is
partially supported by J. C. Bose research grant of DST,
Government of India. We thank Shyam Date, Dawood
Kothawala, Kinjalk Lochan, Krishnamohan Parattu, and
Suprit Singh for helpful discussions.

APPENDIX A: GENERAL ANALYSIS
REGARDING NULL SURFACES

We will start with a null vector la ¼ A∇aB, which
satisfies the condition l2 ¼ 0 only over a single surface,
which is the null surface under our consideration. Then we
obtain

la∇alb ¼ κlb ðA1Þ

where we have the following expression for κ:

κ ¼ la∂a lnAþ ~κ; ~κ ¼ −
1

2
ka∂al2: ðA2Þ

The last relation defining ~κ can also be written as
∇al2 ¼ 2~κla. The derivation of the result goes as
follows: let us expand ∇bl2 in canonical null basis,
i.e., ∇al2 ¼ Cla þDka þ EAeAa . Then both EA ¼
eaA∇al2 and D ¼ −la∇al2 vanish, since variation of
l2 along the null surface vanishes. This shows that the
only nonzero component of ∇al2 is along la. Then it turns
out that [44]

∇ili ¼ Θþ κ þ ~κ; ðA3Þ

where Θ ¼ qmaqmb∇alb. Note that the term ~κ enters
the picture as l2 ¼ 0 only on the null surface. With this
setup let us now find out Rablalb in detail, which leads to

Rablalb ¼ ljð∇i∇jli −∇j∇iliÞ
¼ ∇iðlj∇jliÞ −∇jðlj∇iliÞ −∇ilj∇jli þ ð∇iliÞ2
¼ ∇iðlj∇jli − li∇jljÞ − ð∇ilj∇jli − ð∇iliÞ2Þ: ðA4Þ

However in general, lj∇jli ¼ κli is not true, it only holds
on the null surface (when l2 ¼ 0 everywhere this relation is
also true everywhere). Since we were doing the calculation
for the most general case, l2 ≠ 0 in the above expression
we cannot substitute lj∇jli ¼ κli, since it appears inside
the derivative. Thus for the special case when l2 ¼ 0
everywhere, we will arrive at the following result:

Rablalb ¼ −∇iðΘliÞ − ð∇ilj∇jli − ð∇iliÞ2Þ: ðA5Þ

In order to simplify things quite a bit we will compute the
last term ð∇ilj∇jli − ð∇iliÞ2Þ which we designate by S.
Then we start by calculating the following object on the
null surface:

Θab ¼ qamqbn∇mln

¼ ðδam þ lakm þ kalmÞðδbn þ lbkn þ kblnÞ∇mln

¼ ∇alb þ lakm∇mlb þ κkalb þ lbkn∇aln þ lalbkmkn∇mln − κkalb þ ~κlakb − ~κlakb þ κkakbl2

¼ ∇alb þ lakm∇mlb þ lbkn∇aln þ lalbkmkn∇mln: ðA6Þ
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In arriving at the third line we have used the following
results: la∇ali ¼ κli and la∇bla ¼ ~κlb. Then we can
reverse the above equation leading to

∇alb ¼ Θab − lakm∇mlb − lbkn∇aln

− lalbkmkn∇mln: ðA7Þ

From the above equation we can derive two very important
identities:

ð∇albÞð∇albÞ ¼ ΘabΘab þ lalbkm∇mlbkn∇aln

þ lalbkn∇alnkm∇mlb

¼ ΘabΘab þ 2ð~κkmlmÞðκlnknÞ
¼ ΘabΘab þ 2κ ~κ: ðA8Þ

In the same spirit we will arrive at

ð∇albÞð∇blaÞ ¼ ΘabΘab þ lalbkn∇alnkm∇blm

þ lalbkm∇mlakn∇nlb

¼ ΘabΘab þ ð~κkmlmÞð~κknlnÞ
þ ðκlnknÞðκlmkmÞ

¼ ΘabΘab þ κ2 þ ~κ2: ðA9Þ

The extrinsic curvature for null surfaces, i.e., Θab can be
given a very natural interpretation. This essentially follows
from [44]. There the expression for Θab in terms of Lie
variation of qab along the null generator la was obtained as

Θab ¼
1

2
qma qnb£lqmn: ðA10Þ

Now expanding out the Lie derivative term we obtain

£lqmn ¼ li∂iqmn þ qma∂nla þ qan∂mla: ðA11Þ

Which on being substituted in Eq. (A10) immediately
leads to

Θab ¼
1

2
qma qnbl

i∂iqmn þ
1

2
qaiqnb∂nli þ 1

2
qbiqma ∂mli:

ðA12Þ

Now on the null surface qab ¼ qAB as the only nonzero
component. Hence the above equation can be written as

Θab ¼ ΘAB ¼ 1

2

d
dλ

qAB þ 1

2
qAC∂BlC þ 1

2
qBC∂AlC:

ðA13Þ

On the null surface qabl
b ¼ 0, which in this coordinate

system leads to lA ¼ 0 on the null surface. Since ∂Al2

represent derivatives on the null surface it also vanishes.
If l2 ¼ 0 everywhere, then also lA is identically zero
everywhere. Hence we have

Θab ¼
1

2

d
dλ

qAB: ðA14Þ

There is another way to get this result. If eaA are the basis
vectors on the null surface and if la, eaA forms coordinate
basis vectors, then qAB ¼ qabeaAe

b
B is a scalar under

4-dimensional coordinate transformation. This immedi-
ately leads to the previous expression. For more discussions
along identical lines see [44].
Now the expression for the quantity S can be obtained as

S ¼ ∇ilj∇jli − ð∇iliÞ2
¼ ΘabΘab þ κ2 þ ~κ2 − ðΘþ κ þ ~κÞ2
¼ ðΘabΘab − Θ2Þ − 2Θðκ þ ~κÞ − 2κ ~κ: ðA15Þ

Using the general expression for Rablalb we obtain the
following form:

Rablalb ¼ ∇iðlj∇jli − li∇jljÞ − S

¼ ∇iðlj∇jli − li∇jljÞ − ðΘabΘab − Θ2Þ
þ 2Θðκ þ ~κÞ þ 2κ ~κ: ðA16Þ

For the situation where l2 ¼ 0 everywhere, we finally
arrive at the following simplified expression:

Rablalb ¼ −ðΘabΘab − Θ2Þ þ 2Θκ

þ∇iðκli − ½Θþ κ�liÞ

¼ −ðΘabΘab − Θ2Þ þ Θκ −
1ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
ΘÞ:

ðA17Þ
Let us now try to derive the Raychaudhuri equation starting
from the basic properties of null surfaces. We start with the
following result:

la∇að∇cldÞ ¼ la∇a∇cld ¼ Rdbaclalb þ la∇c∇ald

¼ ∇cðla∇aldÞ −∇ald∇cla − Rbdaclbla:

ðA18Þ

Then contraction of the indices c, d leads to the following
result:

la∇að∇clcÞ ¼ ∇cðla∇alcÞ −∇alb∇bla − Rablalb:

ðA19Þ

Otherwise we can rewrite it in a different manner which
exactly coincides with Eq. (A4). On using Eq. (A9) and the
decomposition Θab ¼ ð1=2ÞΘqab þ σab þ ωab we arrive at
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la∇að∇clcÞ −∇cðla∇alcÞ ¼ −ΘabΘab − κ2 − ~κ2

− Rablalb

¼ −
1

2
Θ2 − σabσab þ ωabω

ab

− κ2 − ~κ2 − Rablalb:

ðA20Þ

For the situation where l2 ¼ 0, the left-hand side is just
dðΘþ κÞ=dλ and the first term on the right-hand side is
dκ=dλþ κðΘþ κÞ. The above equation leads to

dΘ
dλ

¼ κΘþ κ2 −∇alb∇bla − Rablalb

¼ κΘ − ΘabΘab − Rablalb

¼ κΘ −
1

2
Θ2 − σabσab þ ωabω

ab − Rablalb; ðA21Þ

where to arrive at the last line we have used the following
decomposition: Θab ¼ ð1=2ÞΘqab þ σab þ ωab. This is
precisely the one obtained in [12] though in a completely
different manner.
The next object to consider is the quantity laJaðlÞ. This

can be obtained by using the identity for the Noether
current leading to

1

A
laJaðlÞ ¼ ∇b

�
flalb − l2gabg∇aA

A2

�

¼ ∇b

�
1

A
lbðκ − ~κÞ

	
−∇b

�
l2

∇bA
A2

�

¼ 1

A
∇i½ðκ − ~κÞli� − 1

A
ðκ − ~κÞ2 −∇bA

A2
∇bl2

¼ 1

A
∇i½ðκ − ~κÞli� − 1

A
ðκ − ~κÞ2 − 2

A
~κðκ − ~κÞ:

ðA22Þ

This can be written in a slightly modified manner as

laJaðlÞ ¼ ∇i½ðκ − ~κÞli� − ðκ2 − ~κ2Þ
¼ li∇iðκ − ~κÞ þ ðκ − ~κÞðΘþ κ þ ~κÞ − ðκ2 − ~κ2Þ

¼ d
dλ

ðκ − ~κÞ þ Θðκ − ~κÞ: ðA23Þ

The above expression can be simplified significantly by
noting that Θ ¼ dðln ffiffiffi

q
p Þ=dλ, which leads to

laJaðlÞ ¼
1ffiffiffi
q

p d
dλ

½ðκ − ~κÞ ffiffiffi
q

p �: ðA24Þ

Again, we have

Da½ðκ − ~κÞla�
¼ ðgab þ lakb þ lbkaÞ∇a½ðκ − ~κÞlb�
¼ ∇a½ðκ − ~κÞla� þ ðlakb þ lbkaÞ½ðκ − ~κÞ∇alb

þ lb∇aðκ − ~κÞ�
¼ ∇a½ðκ − ~κÞla� − κðκ − ~κÞ − ~κðκ − ~κÞ

−
d
dλ

ðκ − ~κÞ ðA25Þ

¼ ðκ − ~κÞðΘþ κ þ ~κÞ − ðκ2 − ~κ2Þ

¼ ðκ − ~κÞ d ln
ffiffiffi
q

p
dλ

: ðA26Þ

Thus we arrive at

laJaðlÞ ¼ Da½ðκ − ~κÞla� þ d
dλ

ðκ − ~κÞ þ ðκ − ~κÞðκ þ ~κÞ
− ðκ2 − ~κ2Þ

¼ Da½ðκ − ~κÞla� þ d
dλ

ðκ − ~κÞ: ðA27Þ

From the expression of the Noether current we get

laJaðlÞ ¼ 2Rablalb þ lagij£lNa
ij: ðA28Þ

The above equation can be used to write gab£lNc
ab in terms

of κ and Rab. For that purpose we use Eq. (1) and insert
Eq. (A23) leading to

lagij£lNa
ij ¼ laJaðlÞ − 2Rablalb

¼ d
dλ

ðκ − ~κÞ þ Θðκ − ~κÞ − 2Rablalb

¼ 1ffiffiffi
q

p d
dλ

½ ffiffiffi
q

p ðκ − ~κÞ� − 2Rablalb

¼ 2ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
κÞ − 2Rablalb

−
1ffiffiffi
q

p d
dλ

½ ffiffiffi
q

p ðκ þ ~κÞ�: ðA29Þ

The above expression when integrated over the null surface
with integration measure,

ffiffiffi
q

p
d2xdλ and then being divided

by 16π leads to

1

16π

Z
d2xdλ

ffiffiffi
q

p �
lagij£lNa

ij þ
1ffiffiffi
q

p d
dλ

½ ffiffiffi
q

p ðκ þ ~κÞ�
�

¼ 1

8π

Z
d2x

ffiffiffi
q

p
κj21 −

1

8π

Z
d2xdλ

ffiffiffi
q

p
Rablalb: ðA30Þ

Then on using the field equation Rab ¼ 8π½Tab −
ð1=2ÞgabT� ¼ 8πT̄ab and then being substituted in
Eq. (A30) we arrive at the following expression:
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1

4

Z
d2x

ffiffiffi
q

p �
κ

2π

�����
2

1

−
Z

d2xdλ
ffiffiffi
q

p
Tablalb ¼ 1

16π

Z
d2xdλ

ffiffiffi
q

p �
lagij£lNa

ij þ
1ffiffiffi
q

p d
dλ

½ ffiffiffi
q

p ðκ þ ~κÞ�
�
; ðA31Þ

where the last equality follows from the fact that l2 ¼ 0 on the null surface. The above equation can be written in a more
abstract form as

1

16π

Z
d2xdλ

ffiffiffi
q

p
lagij£lNa

ij ¼
�
1

4

Z
λ2

d2x
ffiffiffi
q

p �
κ

2π

�
−
1

4

Z
λ1

d2x
ffiffiffi
q

p �
κ

2π

�	
−
Z

d2xdλ
ffiffiffi
q

p
Tablalb

−
1

16π

Z
d2xdλ

d
dλ

½ ffiffiffi
q

p ðκ þ ~κÞ�: ðA32Þ

As an illustration when l2 ¼ 0 everywhere, we have ~κ ¼ 0, then Eq. (A32) leads to

1

16π

Z
d2xdλ

ffiffiffi
q

p
lagij£lNa

ij ¼
1

2

�Z
λ2

d2x
ffiffiffi
q

p
4

�
κ

2π

�
−
Z
λ1

d2x
ffiffiffi
q

p
4

�
κ

2π

�	
−
Z

d2xdλ
ffiffiffi
q

p
Tablalb: ðA33Þ

Wewill now try to obtain an expression for the quantity lagij£lNa
ij independently. For that we start with the symmetric and

antisymmetric part of the derivative ∇alb such that

Sab ¼ ∇alb þ∇bla; Jab ¼ ∇alb −∇bla: ðA34Þ

Then we have the following result: ∇alb ¼ ð1=2ÞðSab þ JabÞ, which on being substituted in the identity

∇bð∇albÞ −∇að∇blbÞ ¼ Ra
bl

b; ðA35Þ

leads to the following identification:

gab£lNc
ab ¼ −∇bðSbc − gbcSÞ: ðA36Þ

Hence we arrive at the following relation:

lagbc£lNa
bc ¼ −la∇b½∇alb þ∇bla − 2gab∇clc�

¼ −∇b½la∇alb þ la∇bla − 2lbð∇clcÞ� þ∇alb∇bla þ∇alb∇alb − 2ð∇clcÞ2
¼ −∇b½la∇alb þ la∇bla − 2lbð∇clcÞ� þ 2ΘabΘab þ ðκ þ ~κÞ2 − 2ðΘþ κ þ ~κÞ2
¼ −∇b½la∇alb þ la∇bla − 2lbð∇clcÞ� þ 2ðΘabΘab − Θ2Þ − 4Θðκ þ ~κÞ − ðκ þ ~κÞ2: ðA37Þ

For the case l2 ¼ 0 the term within brackets can be written in a simplified manner such that the Lie derivative term gets
simplified leading to

lagbc£lNa
bc ¼ 2ðΘabΘab − Θ2Þ − 4Θκ − κ2 þ∇b½ð2Θþ κÞlb�

¼ 2ðΘabΘab − Θ2Þ − 4Θκ − κ2 þ ð2Θþ κÞðΘþ κÞ þ d
dλ

ð2Θþ κÞ

¼ 2ðΘabΘab − Θ2Þ − Θκ þ d
dλ

κ þ 2ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
ΘÞ: ðA38Þ

If the null generator is affinely parametrized, then κ ¼ 0 and Eq. (A38) reduces to

lagbc£lNa
bc ¼ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi

q
p d

dλ
ð ffiffiffi

q
p

ΘÞ: ðA39Þ

While for the null generator la in GNC we have [see Eq. (B35)]:
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lagbc£lNa
bc ¼ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi

q
p d2

ffiffiffi
q

p
dλ2

þ 2
dκ
dλ

−
2ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
κÞ: ðA40Þ

Through the above analysis we have obtained expressions
for laJaðlÞ, Rablalb, and lagbc£lNa

bc.
It turns out from the above analysis that ΘabΘab − Θ2

can be given a more physical meaning by considering Lie
variation of gravitational momentum. This can be obtained
by considering variation of the gravitational momentum
first:

qabδΠab ¼ qabδ½
ffiffiffi
q

p ðΘab − ΘqabÞ�
¼ qab

ffiffiffi
q

p
δΘab − 2

ffiffiffi
q

p
δΘ −

ffiffiffi
q

p
Θqabδqab

− Θδ
ffiffiffi
q

p

¼ ffiffiffi
q

p
qabδΘab − 2

ffiffiffi
q

p
δΘþ Θδ

ffiffiffi
q

p
: ðA41Þ

Now specializing to Lie variation we arrive at

−qab£lΠab ¼ −Θ£l
ffiffiffi
q

p
−

ffiffiffi
q

p
qab£lΘab þ 2

ffiffiffi
q

p
£lΘ

¼ −
ffiffiffi
q

p
£lΘþ ffiffiffi

q
p

Θab£lqab − Θ£l
ffiffiffi
q

p

þ 2
ffiffiffi
q

p
£lΘ

¼ 2
ffiffiffi
q

p ðΘabΘab − Θ2Þ þ £lð
ffiffiffi
q

p
ΘÞ

¼ ffiffiffi
q

p
lagbc£lNa

bc −
d2

ffiffiffi
q

p
dλ2

; ðA42Þ

where in the last line we have used Eq. (A39). Here the
quantities Θab and Θ can be defined as Θab ¼
ð1=2Þ£lqab and Θ ¼ £l ln

ffiffiffi
q

p
. In GNC parametrization,

ð1=2Þ£lqab ¼ ð1=2Þ∂uqab and £l ln
ffiffiffi
q

p ¼ ∂u ln
ffiffiffi
q

p
.

Thus the Lie variation of gravitational momentum for
affine parametrization is directly related to D, i.e.
to ðΘabΘab − Θ2Þ.
For nonaffine parametrization the gravitational momen-

tum associated with null surfaces can be taken as
Πab ¼ ffiffiffi

q
p ðΘab − ðΘþ κÞqabÞ. Then we readily arrive at

the Lie variation expression:

−qab£lΠab ¼ 2
ffiffiffi
q

p ðΘabΘab − Θ2Þ þ £lð ffiffiffi
q

p
ΘÞ

þ 2
ffiffiffi
q

p
£lκ: ðA43Þ

Since κ is a scalar, the Lie variation term can be written as
£lκ ¼ dκ=dλ, where λ is the parameter along la. If we
consider the null generator la from GNC then we arrive at
[see Eq. (A40)]

−qab£lΠab ¼ ffiffiffi
q

p
lagbc£lNa

bc −
d2

ffiffiffi
q

p
dλ2

þ 2ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
κÞ

ðA44Þ

while if we have defined the conjugate momenta Πab as
Πab ¼ ffiffiffi

q
p ðΘab − ΘqabÞ, then the above relation could

have been written as

−qab£lΠab ¼ ffiffiffi
q

p
lagbc£lNa

bc −
d2

ffiffiffi
q

p
dλ2

þ 2κ
d
dλ

ð ffiffiffi
q

p Þ:
ðA45Þ

APPENDIX B: DERIVATION OF VARIOUS
EXPRESSIONS USED IN TEXT

This appendix will contain derivations of most of the
results that we have used in the main text. The derivations
will be arranged in the same order as that in the main text.
First we will present derivations related to the Navier-
Stokes equation and then we will present the requisite
derivations of subsequent sections.

1. Derivation regarding Navier-Stokes equation

The first thing to compute is the Lie derivative of the
object Nc

ab. This can be obtained starting from the first
principle, i.e., using an expression for Nc

ab in terms of Γa
bc

and then using Lie variation of the connection. This
immediately leads to

£vNa
bc ¼ Qad

be£vΓe
cd þQad

ce£vΓe
bd

¼ Qad
beð∇c∇dve þ Re

dmcvmÞ
þQad

ceð∇b∇dve þ Re
dmcvmÞ

¼ 1

2
ðδab∇c∇dvd þ δac∇b∇dvdÞ

−
1

2
ð∇b∇cva þ∇c∇bvaÞ −

1

2
ðRa

bmc þ Ra
cmbÞvm:

ðB1Þ
In the above expression the second term in the last line can
be written as

ð∇b∇cva þ∇c∇bvaÞ ¼ 2∂b∂cva þ 2Γa
bd∂cvd þ 2Γa

cd∂bvd

− 2Γd
bc∂dva þ vdð∂bΓa

cd þ ∂cΓa
bdÞ

− 2Γd
bcΓa

dev
e þ Γa

bdΓd
ceve

þ Γa
cdΓd

bev
e: ðB2Þ

In order to compute the Lie variation of Nc
ab along the

transverse direction we need the two objects £lNA
ur and

£lNA
BC. For the evaluation of £lN

A
ur the following identities

will be useful:
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ð∇b∇cla þ∇c∇blaÞAur ¼ 2∂u∂rlA þ 2ΓA
ud∂rld þ 2ΓA

rd∂uld − 2Γd
ur∂dlA þ vdð∂uΓA

rd þ ∂rΓA
udÞ

− 2Γd
urΓA

del
e þ ΓA

udΓd
reve þ ΓA

rdΓd
uele

¼ 2∂uβ
A þ 4αΓA

ur þ 2βBΓA
uB − 2βAΓr

ur þ ∂uΓA
ru þ ∂rΓA

uu − 2Γd
urΓA

du þ ΓA
udΓd

ur þ ΓA
rdΓd

uu ðB3Þ

and

ð∇b∇cla þ∇c∇blaÞAur þ ½ðRa
bmc þ Ra

cmbÞlm�Aur ¼ 2∂uβA þ 4αΓA
ur þ 2βBΓA

uB − 2βAΓr
ur þ ∂uΓA

ru þ ∂rΓA
uu − 2Γd

urΓA
du

þ ΓA
udΓd

ur þ ΓA
rdΓd

uu þ RA
uur

¼ 2∂uβ
A þ 2βBΓA

uB þ 2∂uΓA
ur

¼ ∂uβ
A þ βBqAC∂uqBC: ðB4Þ

While for £lNA
BC we have

ð∇b∇cla þ∇c∇blaÞABC þ ½ðRa
bmc þ Ra

cmbÞlm�ABC ¼ −2βAΓr
BC þ ∂BΓA

uC þ ∂CΓA
uB − 2Γd

BCΓA
ud þ ΓA

BdΓd
uC þ ΓA

CdΓd
uB

þ ∂uΓ̂A
BC − ∂CΓA

Bu þ ΓA
udΓd

BC − ΓA
CdΓd

uB þ ∂uΓ̂A
BC − ∂BΓA

Cu

þ ΓA
udΓd

BC − ΓA
BdΓd

uC

¼ −2βAΓr
BC þ 2∂uΓ̂A

BC: ðB5Þ

These are the expressions used to get the expressions in Sec. VII A. From the vector Ωa given in Eq. (96) we can calculate
the Lie variation along la leading to

£lΩn ¼ lm∂mΩn þΩm∂nlm ¼
�
0;
1

2
βAβ

A;
1

2
∂uβA

�
ðB6Þ

and equivalently,

£lΩn ¼ lm∂mΩn −Ωm∂mln ¼
�
0; 0;

1

2
∂uβ

A

�
: ðB7Þ

Also,

DmΘm
a ¼ ∂BΘB

A þ ∂C ln
ffiffiffi
q

p
ΘC

A − Γ̂C
ABΘB

C

¼ 1

2
∂BðqBC∂uqACÞ þ

1

2
qCD∂C ln

ffiffiffi
q

p ∂uqAD −
1

2
qBD∂uqCDΓ̂C

AB: ðB8Þ

Using these results we finally obtain

qna£lΩn þDmΘm
a þ ΘΩa −DaðΘþ αÞ ¼ 1

2
∂uβA þ ∂B

�
1

2
qBC∂uqAC

�
þ 1

2
qCD∂uqAD∂C ln

ffiffiffi
q

p
−
1

2
qBD∂uqCDΓ̂C

AB

þ ∂u ln
ffiffiffi
q

p 1

2
βA − ∂A∂u ln

ffiffiffi
q

p
− ∂Aα: ðB9Þ

In raising the free index of the above equation the following identities can be useful:

− qCDqAB∂uqBC∂D ln
ffiffiffi
q

p ¼ ∂uðqAD∂D ln
ffiffiffi
q

p Þ − qAD∂u∂D ln
ffiffiffi
q

p ðB10aÞ

∂uðqAD∂D ln
ffiffiffi
q

p Þ − qAB∂uqCF∂CqBF − qAB∂DðqCD∂uqBCÞ ¼ −∂uðqBCΓ̂A
BCÞ þ qCF∂uqAB∂CqBF − qAB∂DqCD∂uqBC

¼ −∂uðqBCΓ̂A
BCÞ ðB10bÞ

qABqCD∂uqEDΓ̂E
BC ¼ Γ̂A

FC∂uqCF − qAB∂CqBF∂uqCF: ðB10cÞ
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Moreover we also have

Rablaqbc ¼ RuA ¼ GuA ¼ 1

2
∂uβA − ∂Aαþ 1

2
qBC∂u∂BqCA þ

1

2
∂BqBC∂uqAC − ∂u∂A ln

ffiffiffi
q

p

þ 1

2
βA∂u ln

ffiffiffi
q

p þ 1

2
qBC∂uqAC∂B ln

ffiffiffi
q

p
−
1

2
qBD∂uqCDΓ̂C

AB: ðB11Þ

It can be checked that this expression coincides exactly with Eq. (104) in Sec. VII A as it should.
To bring out the physics associated with the Noether current and its various projections, we compute the Noether

potential and hence the Noether current completely in GNC for the vector ξa. To start with we provide all the components of
the tensor ∇aξb, which are

ð∇aξbÞuu ¼ −r∂uα; ð∇aξbÞur ¼ αþ r∂rα; ð∇aξbÞru ¼ −α − r∂rα; ðB12Þ

ð∇aξbÞuA ¼ r∂Aα − r∂uβA; ð∇aξbÞAu ¼ −r∂Aα; ð∇aξbÞrA ¼ −
1

2
βA −

1

2
r∂rβA; ðB13Þ

ð∇aξbÞrr ¼ 0; ð∇aξbÞAr ¼
1

2
βA þ 1

2
r∂rβA;

ð∇aξbÞAB ¼ 1

2
∂uqAB þ 1

2
rð∂AβB − ∂BβAÞ; ð∇aξbÞBA ¼ 1

2
∂uqAB −

1

2
rð∂AβB − ∂BβAÞ: ðB14Þ

Then components of the Noether potential Jab ¼ ∇aξb −∇bξa have the following expression:

Juu ¼ 0; Jur ¼ 2αþ 2r∂rα; JuA ¼ 2r∂Aα − r∂uβA; ðB15Þ

JrA ¼ −βA − r∂rβA; JAB ¼ rð∂AβB − ∂BβAÞ: ðB16Þ

The upper components of the Noether potential can be obtained as

Juu ¼ 0; Jur ¼ −2α − 2r∂rα − rβAβA − r2βA∂rβA; ðB17Þ

JuA ¼ −βA − rqAB∂rβB; Jrr ¼ r3βAβBð∂AβB − ∂BβAÞ; ðB18Þ

JrA ¼ 2rqAB∂Bα − rqAB∂uβB − 2r2αqAB∂rβB − r3β2qAB∂rβB − r2qABβCð∂BβC − ∂CβBÞ þ 2r2βA∂rα − r3βAβB∂rβB;

ðB19Þ

JAB ¼ −rβAqBCðβC þ r∂rβCÞ þ rβBqACðβC þ r∂rβCÞ þ rqACqBDð∂CβD − ∂DβCÞ: ðB20Þ

Using the above components of the Noether potential, the components of the Noether current can be obtained as

JuðξÞ ¼ −4∂rα − β2 − 2α∂r ln
ffiffiffi
q

p
−

1ffiffiffi
q

p ∂Að
ffiffiffi
q

p
βAÞ; ðB21Þ

JrðξÞ ¼ 2α∂u ln
ffiffiffi
q

p þ 2∂uα; ðB22Þ

JAðξÞ ¼ 1ffiffiffi
q

p ∂uð
ffiffiffi
q

p
βAÞ þ qAB∂uβB − 2qAB∂Bα: ðB23Þ

Note that kaJaðξÞ ¼ −JuðξÞ, qabJbðξÞ ¼ JAðξÞ, and finally laJaðξÞ ¼ JrðξÞ. As we will see all of them match with our
desired expressions. Also in the stationary limit we have ∂uα ¼ ∂uβA ¼ ∂uqAB ¼ 0, which in particular tells us that Jr ¼ 0.
Hence in the static limit the Noether current is on the null surface since its component along ka [which is −laJaðξÞ]
vanishes. Also in this case we have
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ð∇b∇cξ
a þ∇c∇bξ

aÞAur þ ½ðRa
bmc þ Ra

cmbÞξm�Aur ¼ ∂uΓA
ru þ ∂rΓA

uu − Γd
urΓA

du þ ΓA
rdΓd

uu þ RA
uur

¼ 2∂uΓA
ur ¼ −∂uβ

A ðB24Þ

as well as

ð∇b∇cξ
a þ∇c∇bξ

aÞABC þ ½ðRa
bmc þ Ra

cmbÞξm�ABC ¼ ∂BΓA
uC þ ∂CΓA

uB − 2Γd
BCΓA

ud þ ΓA
BdΓd

uC þ ΓA
CdΓd

uB þ ∂uΓ̂A
BC

− ∂CΓA
Bu þ ΓA

udΓd
BC − ΓA

CdΓd
uB þ ∂uΓ̂A

BC − ∂BΓA
Cu þ ΓA

udΓd
BC − ΓA

BdΓd
uC

¼ 2∂uΓ̂A
BC: ðB25Þ

Using these two results we arrive at

£ξNA
ur ¼

1

2
∂uβ

A; ðB26Þ

£ξNA
BC ¼ 1

2
δAB∂CΘþ 1

2
δAC∂BΘ − ∂uΓ̂A

BC: ðB27Þ

These are the expressions used in Sec. VII A.

2. Derivation regarding spacetime evolution

We need to consider the object lagij£lNa
ij in GNC. This in turn requires us to obtain expressions for £lNr

ur and £lNr
AB.

Then using the identity for Lie variation of Nc
ab we can obtain both the Lie variations. For that purpose we have

1

2
ðδab∇c∇dld þ δac∇b∇dldÞrur ¼

1

2
∂uΘþ ∂uα ðB28Þ

ð∇b∇cla þ∇c∇blaÞrur ¼ 2∂uα ðB29Þ
�
−
1

2
ðRa

bmc þ Ra
cmbÞlm

	
r

ur
¼ 0 ðB30Þ

ð∇b∇cla þ∇c∇blaÞrAB ¼ α∂uqAB −
1

2
qCD∂uqAC∂uqBD ðB31Þ

�
−
1

2
ðRa

bmc þ Ra
cmbÞlm

	
r

AB
¼ −

1

2
α∂uqAB þ 1

2
∂2
uqAB −

1

4
qCD∂uqAC∂uqBD: ðB32Þ

This immediately leads to

£lNr
ur ¼

1

2
∂2
u ln

ffiffiffi
q

p
; ðB33Þ

£lNr
AB ¼ −α∂uqAB þ 1

2
∂2
uqAB: ðB34Þ

Combining all the pieces and using the resultsΘ ¼ ∂u ln
ffiffiffi
q

p
andΘAB ¼ ð1=2Þ∂uqAB, which is the only nonzero component

of Θab [44], we finally obtain

lagij£lNa
ij ¼ 2£lNr

ur þ qAB£lNr
AB

¼ −2α∂u ln
ffiffiffi
q

p þ 2∂2
u ln

ffiffiffi
q

p
−
1

2
∂uqAB∂uqAB

¼ 2∂uαþ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi
q

p d2
ffiffiffi
q

p
du2

−
2ffiffiffi
q

p d
du

ð ffiffiffi
q

p
αÞ; ðB35Þ
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which can also be obtained from a completely different viewpoint. For the sake of completeness we will illustrate the
alternative methods as well. For the null vector la in the adapted GNC system we have

ðlc∇claÞu ¼ αþ rβ2 þOðr2Þ; ðlc∇claÞr ¼ r∂uαþ 2rα2 þOðr2Þ;
ðlc∇claÞA ¼ rαβA þ rqCA∂CαþOðr2Þ: ðB36Þ

Hence on the r ¼ 0 surface, we have κ ¼ α, as well as ~κ ¼ −ð1=2Þka∇al2 ¼ α. Now we will use the Raychaudhuri
equation to get Rablalb and hence the Lie variation term. In this case we have du ¼ dλ, thus the Raychaudhuri equation
reduces to the following form [see Eq. (A19)]:

la∇aðΘþ 2αÞ ¼ ∇cðla∇alcÞ −∇alb∇bla − Rablalb: ðB37Þ

Where the Θþ 2α term comes from ∇ili. Then we have

∇cðla∇alcÞ ¼ ∂cðla∇alcÞ þ la∇alc∂c ln
ffiffiffi
q

p

¼ 2α2 þ α∂u ln
ffiffiffi
q

p þ 2∂uα: ðB38Þ

Thus nonzero components of Bab ¼ ∇alb are as follows:

Bur ¼ α; BrA ¼ 1

2
βA; BAC ¼ 1

2
∂uqAC: ðB39Þ

From which it can be easily derived that, BabBba ¼ 2α2 − ð1=4Þ∂uqAB∂uqAB. Thus we obtain

Rablalb ¼ −∂uΘþ 2α2 þ Θα − BabBba

¼ αΘ −
1

2
qAB∂2

uqAB −
1

4
∂uqAB∂uqAB

¼ αΘ −
1ffiffiffi
q

p ∂2
u

ffiffiffi
q

p þ ð∂u ln
ffiffiffi
q

p Þ2 − ΘabΘab; ðB40Þ

where Θab has the only nonzero component to be ΘAB ¼ ð1=2Þ∂uqAB. For the GNC null normal la, the Noether current
vanishes, such that Lie variation of Na

bc turns out to have the following expression:

lagij£lNa
ij ¼ −2Rablalb

¼ 2∂uαþ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi
q

p d2
ffiffiffi
q

p
du2

−
2ffiffiffi
q

p d
du

ð ffiffiffi
q

p
αÞ: ðB41Þ

The components of Sab ¼ ∇alb þ∇bla in GNC are as follows:

Suu ¼ 2r∂uα − 4rα2 þOðr2Þ; Sur ¼ 2αþ 2r∂rαþ rβ2 þOðr2Þ;
SuA ¼ −rβB∂uqAB þ 2r∂Aα − 2rαβA þOðr2Þ; Srr ¼ 0;

SrA ¼ βA þ r∂rβA − rβC∂rqCA þOðr2Þ;
SAB ¼ ∂uqAB þ 2rα∂rqAB þ rðDAβB þDBβAÞ þOðr2Þ: ðB42Þ

Thus the trace at r ¼ 0 leads to S ¼ 4αþ 2∂u ln
ffiffiffi
q

p
. Thus we arrive at the following expression [see Eq. (A36)]:

lagij£lNa
ij ¼ 2∂uðΘþ 2αÞ − ∂bSrb − Γr

bcS
bc − Src∂c ln

ffiffiffi
q

p
: ðB43Þ

Then the upper components of Sab necessary for the above computation are the following:
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Sur ¼ Sur þ rβASrA ¼ 2αþ 2r∂rαþ 2rβ2 þOðr2Þ;
Srr ¼ 2r∂uαþ 4rα2 þOðr2Þ;
SrA ¼ 4αrβA þ 2rqAB∂Aα − 2rαβA þOðr2Þ: ðB44Þ

The mixed components leads to nothing new so we have not presented them. From Eq. (B43) the expression for Lie
derivative can be obtained as

lagij£lNa
ij ¼ 2∂uðΘþ 2αÞ − ∂uSru − ∂rSrr − ∂ASrA þ 4α2 þ 2ΘabΘab − 2αΘ

¼ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
ΘÞ − 2αΘþ 4∂uαþ 4α2 − 4∂uα − 4α2

¼ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi
q

p d
dλ

ð ffiffiffi
q

p
ΘÞ − 2αΘ ðB45Þ

which exactly matches with Eq. (B41). The same can be ascertained for Eq. (B40) by computing Rablalb on the null
surface i.e. in the r → 0 limit, directly leading to

Rablalb ¼ Ruu ¼ ∂aΓa
uu − ∂uΓa

ua þ Γa
uuΓb

ab − Γa
ubΓb

ua

¼ ∂uΓu
uu þ ∂rΓr

uu þ ∂AΓA
uu − ∂2

u ln
ffiffiffi
q

p þ Γu
uu∂u ln

ffiffiffi
q

p
− Γa

ubΓb
ua

¼ 2α2 − ∂2
u ln

ffiffiffi
q

p þ α∂u ln
ffiffiffi
q

p
− Γu

ubΓb
uu − Γr

ubΓb
ur − ΓA

ubΓb
uA

¼ −∂2
u ln

ffiffiffi
q

p þ α∂u ln
ffiffiffi
q

p
− ΘabΘab ðB46Þ

which under some manipulations will match exactly with Eq. (B40). Then in GNC we obtain in identical fashion, the
following expression for heat density:

S ¼ ∇ilj∇jli − ð∇iliÞ2
¼ ð2α2 − ð1=4Þ∂uqAB∂uqABÞ − ðΘþ 2αÞ2
¼ −2α2 − 4αΘ − Θ2 þ ΘabΘab: ðB47Þ

This on integration over the null surface leads to

1

8π

Z
dud2x

ffiffiffi
q

p
S ¼ 1

8π

Z
dud2x

ffiffiffi
q

p ðΘabΘab − Θ2Þ − 1

4π

Z
dud2x

ffiffiffi
q

p
α2 − 4

Z
d2xTds: ðB48Þ

Let us now write the integral form of Rablalb, for that we note the integration measure to be dud2x
ffiffiffi
q

p
. Thus on integration

with proper measure and (1=8π) factor leads to

1

8π

Z
dud2x

ffiffiffi
q

p
Rablalb ¼ −

1

8π

Z
dud2x

ffiffiffi
q

p
D −

1

8π

dA⊥
dλ

����
2

1

þ
Z

d2xTsj21 −
Z

d2xsdT ðB49Þ

which can be written in a slightly modified manner as

1

8π

Z
dud2x

ffiffiffi
q

p
Rablalb ¼ −

1

8π

Z
dud2x

ffiffiffi
q

p
D −

1

8π

dA⊥
dλ

����
2

1

þ
Z

d2xTds: ðB50Þ

Also the Lie variation term (with all the surface contributions kept) on being integrated over the null surface we obtain
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1

16π

Z
dud2x

ffiffiffi
q

p
×lagij£lNa

ij

¼ 1

8π

Z
dud2x

ffiffiffi
q

p
Dþ 1

8π

dA⊥
dλ

����
2

1

−
Z

d2x

�
α

2π

�
d

� ffiffiffi
q

p
4

�

¼−
Z

d2xTdsþ 1

8π

Z
dud2x

ffiffiffi
q

p
Dþ 1

8π

dA⊥
dλ

����
2

1

: ðB51Þ

To calculate Lie variation for ξa we need to calculate
∇aξb þ∇bξa ¼ Sab. This tensor has the following
components:

Suu ¼ −2r∂uα; Sur ¼ 0; SuA ¼ −r∂uβA;

Srr ¼ 0; SrA ¼ 0; SAB ¼ ∂uqAB: ðB52Þ
Thus in the null limit obtained from the relation r → 0, we
arrive at the result that all the components of Sab vanish
except for the SAB components. If we want to satisfy the
Killing condition for ξa on the null surface we would
require ∂uqAB ¼ 0. From the above relations it is clear that
∇aξ

a ¼ Θ. Moreover we also have

κ ¼ −kbξa∇aξ
b ¼ −Γb

ackbξaξc ¼ Γu
uu ¼ α; ðB53aÞ

~κ ¼ −
1

2
kb∇bξ2 ¼ 1

2
∂rð−2rαÞ ¼ −α: ðB53bÞ

which shows that for ξa, κ ¼ ~κ. Thus even without the
condition ∂uqAB ¼ 0, we arrive at the relation κ ¼ −~κ ¼ α.
Moreover Lie variation of Na

bc along ξ
a can be obtained by

computing the following objects:

1

2
ðδab∇c∇dξ

d þ δac∇b∇dξ
dÞrur ¼

1

2
∂uΘ ðB54Þ

ð∇b∇cξ
a þ∇c∇bξ

aÞrur ¼ −2∂uα ðB55Þ
�
−
1

2
ðRa

bmc þ Ra
cmbÞξm

	
r

ur
¼ 0 ðB56Þ

ð∇b∇cξ
a þ∇c∇bξ

aÞrAB ¼ −α∂uqAB −
1

2
qCD∂uqAC∂uqBD

ðB57Þ

�
−
1

2
ðRa

bmc þ Ra
cmbÞξm

	
r

AB
¼ −

1

2
α∂uqAB þ 1

2
∂2
uqAB

−
1

4
qCD∂uqAC∂uqBD

ðB58Þ

which can be used to obtain the Lie variation term
associated with ξa as

lagij£ξNa
ij ¼ 2∂uαþ 2ðΘabΘab − Θ2Þ þ 2ffiffiffi

q
p ∂2

u
ffiffiffi
q

p

¼ 2ffiffiffi
q

p ∂uðα ffiffiffi
q

p Þ þ lagij£lNa
ij: ðB59Þ

Then using the momentum Πab ¼ ffiffiffi
q

p ½Θab − qabðΘþ κÞ�
conjugate to the induced metric qab from Eq. (A43) we
immediately arrive at

−qab£ξΠab ¼ ffiffiffi
q

p
lagij£ξNa

ij −
d2

ffiffiffi
q

p
dλ2

: ðB60Þ

These expressions are used to obtain Eq. (86). Also the
variational principles in this context are

Q1 ¼
Z

dλd2x
ffiffiffi
q

p �
−

1

8π
Rablalb þ Tablalb

�

¼
Z

dλd2x
ffiffiffi
q

p �
1

8π
Dþ Tablalb

	

−
Z

d2xTdsþ 1

8π

dA⊥
dλ

����
2

1

; ðB61aÞ

Q2 ¼
Z

dλd2x
ffiffiffi
q

p �
1

16π
lagij£ξNa

ij þ Tablalb

	

¼
Z

dλd2x
ffiffiffi
q

p �
1

8π
Dþ Tablalb

	

þ
Z

d2xsdT þ 1

8π

dA⊥
dλ

����
2

1

: ðB61bÞ

These are the expressions used in Sec. VII C.
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