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Thermofield dynamics is presented in terms of a path integral using coherent states, equivalently, using a
coadjoint orbit action. A field theoretic formulation in terms of fields on a manifoldM × ~Mwhere the two
components have opposite orientation is also presented. We propose formulating gravitational dynamics
for noncommutative geometry using thermofield dynamics, doubling the Hilbert space modeling the
noncommutative space. We consider 2þ 1 dimensions in some detail and since M and ~M have opposite
orientation, the commutative limit leads to the Einstein-Hilbert action as the difference of two Chern-
Simons actions.
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I. INTRODUCTION

It is well established by now that thermofield dynamics
(TFD) gives a natural framework to analyze time-dependent
processes at finite temperature [1,2]. But the formalism goes
beyond this limited context. It is ultimately a method for
describing mixed states as pure states in an enlarged Hilbert
space. Therefore, it is the natural theoretical framework for
physical contexts where entropy plays an important role.
And nowhere is entropy more central or more mysterious
than in gravity and so it is not surprising that the description
of states in a black hole background involves thermofield
dynamics [3–5].
While most discussions of TFD focus on algebraic

aspects of the formalism, or on detailed Feynman diagram
techniques, in this paper we will write a general path
integral for TFD in terms of functional integration over
unitary matrices. For simplicity, we will consider finite-
dimensional Hilbert spaces, with a large dimension taken at
the end. An alternate representation would be in terms of an
auxiliary fermion field. These representations of TFD are
interesting in their own right, but part of our motivation is to
apply this to gravity on noncommutative spaces [6,7].
The existence of entropy for empty gravitational back-

grounds such as de Sitter space suggests the idea of
assigning a set of states to space itself. In turn, this leads
to the notion of noncommutative or fuzzy spaces, since the
basic premise of the latter is that some smoothmanifolds can
be obtained as an approximation to a Hilbert space of states
as some parameter is taken to bevery large. (If we start with a
finite-dimensional Hilbert space, this parameter is usually
the dimension itself.) The possibility that gravity might
emerge from how this limit is taken was pointed out some
time ago [8]. What emerges naturally is Chern-Simons
gravity. Here we will argue that one can get the Einstein-
Hilbert action if the whole problem is set within TFD and
we assign gravitational fields of opposite chirality to the

physical system and the tilde system. In other words, our
basic suggestion is that one must double the Hilbert space
modeling the noncommutative geometry and construct
dynamics using thermofield dynamics. (The extension of
TFD for fields and the related diagrammatic perturbation
theory on a noncommutative space have been considered
before [9]. This is different from what we propose here.)
There are, of course, many alternate approaches to

gravity using noncommutative spaces going back to the
original suggestion by Connes, which leads to the spectral
action of Connes and Chamseddine [10]. Other approaches
include the use of a θ-deformed differential geometry, with
and without Drinfeld twists [11,12] and the emergence of
spacetime and gravity from matrix models [13]. (The
matrix model approach has similarities to ours, but is still
significantly different.)
There has also been more general interest in noncom-

mutative spaces. In fact, field theories on noncommutative
spaces have been an important topic of research for a long
time now [14]. Such spaces can arise as brane solutions in
certain contexts in string theory and in the matrix version of
M-theory [15]. Gauge theories on such spaces can describe
fluctuations of the brane solutions and this has also
contributed to interest about field theories on fuzzy and
noncommutative spaces.
Among noncommutative spaces, there is a subclass

which can be described by finite-dimensional matrices;
these are the fuzzy spaces and, by now, there are many
examples of such spaces [6,7]. When the dimension of the
matrices becomes large, these spaces tend to their smooth
versions in terms of both the geometry and the algebra of
functions on such spaces. For much of what we do in this
paper, we will use finite-dimensional Hilbert spaces, so the
discussion is within this class of spaces. A more general
starting point is possible, but we may note that the finite-
ness of entropy for the de Sitter universe suggests that the
use of a finite-dimensional Hilbert space to describe all
degrees of freedom is worthy of consideration as a basic
premise for physical theories. We also point out another*vpn@sci.ccny.cuny.edu
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facet of this, namely, entropy considerations are also very
suggestive of treating the event horizon as a fuzzy sphere
[16]. The idea that entropy may play a stronger role has also
been suggested recently, namely, that gravity itself can be
related to entropy and the first law of thermodynamics [17],
or from the first law for CFTs [18], or that it may be an
entropic force [19]. There is also a recent approach based
on a matrix model description of the N ¼ 4 supersym-
metric Yang-Mills theory which starts with a finite number
of states, see [20].
The time evolution of a single quantum system starting

from a given pure state can be expressed by a path integral
using coherent states or in terms of unitary matrices. The
relevant action is in the form of a coadjoint orbit action
[21]. In the next section, we rewrite TFD for a single
quantum system in a similar way. This requires a doubled
set of coherent states and the action relevant for this path
integral involves the trace over a matrix P which has the
eigenvalueþ1 for the systemunder consideration and−1 for
the tilde system. We can rephrase this in terms of an action
defined on a closed contour on a cylinder R × S1 with a
single winding around the S1 cycle. Multiple holonomies
around this cycle can be related to the Rényi entropy.
We then reexpress this in a more familiar form as the

functional integral of a field theory, the fields being two
fermions. The fermions are defined on two copies of a
suitable Kähler manifoldM with opposite orientation. The
fields are also coupled to a background field which is a
multiple of the Kähler form on M. A variant of this
formulation is to take the fields to be spinors and the action
to be the massless Dirac action. A limit c → ∞ has to be
taken at the end, where c plays the role of the speed of light
in the action. One can also generalize this to a multipartite
system by considering multiple copies of the fields.
In Sec. III, we discuss how these ideas may apply to

gravity, mostly in the setting of the three-dimensional (or
2þ 1 dimensional) case. A doubling of the Hilbert space
defining the fuzzy geometry is introduced. The basic
(Euclidean) symmetry under consideration is SUð2ÞL×
SUð2ÞR. While the time component of a gauge field for
this symmetry appears in the thermofield action, the spatial
components arise as auxiliary fields which give a simple
way to encode the symmetry in the largeN limit. These have
to be eliminated, i.e., a specific choice for these gauge fields
has to be made, at the end. One way to do this would be to
choose them as extrema of the action in the large N limit.
Gravitational field equations arise as this choice.
One of the basic suggestions in this paper is that, for the

doubled Hilbert space defining the geometry, the gauge
fields of, say, SUð2ÞL couple to one component while
the gauge fields of SUð2ÞR couple to the other, the tilde
part. The action in the large N limit becomes a Chern-
Simons action for the SUð2ÞL fields and a similar one for
the SUð2ÞR fields, with a crucial negative sign, for the
tilde part. The full action is thus the difference of two

Chern-Simons actions, which is equivalent to Einstein
gravity in three dimensions.
We close with a brief discussion of the Minkowski

signature and comments on comparison of the results with
the literature. A short appendix elaborates on the Hall effect
connection for one version of the TFD path integral.

II. GENERALIZING THERMOFIELD DYNAMICS

A. Action and functional integral for
thermofield dynamics

We start by considering the thermal average of an
observable O at temperature β−1 defined by

hOi¼TrðρOÞ¼ 1

Z
Trðe−βHOÞ; Z¼Trðe−βHÞ: ð1Þ

The density matrix ρ corresponds to a mixed state. The
basic idea of thermofield dynamics is to represent the
average hOi as the expectation value of the operatorO for a
pure state. This will require a doubling of the Hilbert space
of states. It is easy to see that we cannot represent ρ as a
pure state without doubling, since ρ2 ¼ ρ for a pure state
and we have ρ2 ≠ ρ for the thermal density matrix and no
unitary transformation can change this property. If H
denotes the Hilbert space of states (which can and will
be taken to be finite dimensional for most of the dis-
cussion), then the Hilbert space for thermofield dynamics is
H ⊗ ~H, where ~H is a copy of H itself. A general state in
H ⊗ ~H is of the form jm; ~ni. The thermal vacuum is then
defined as [1]

jΩi ¼ 1ffiffiffiffi
Z

p
X
n

e−
1
2
βEn jn; ~ni: ð2Þ

We have used a basis of eigenstates of the Hamiltonian.
In jΩi the corresponding states from each Hilbert space
contribute to this sum. With this choice, it follows easily
that

hΩjOjΩi ¼ 1

Z

X
m;n

e−
1
2
βðEnþEmÞhmjOjnih ~mj ~ni

¼ 1

Z

X
n

e−βEnhnjOjni ¼ TrðρOÞ ð3Þ

where we have used the fact that O only acts on H, and
h ~mj ~ni ¼ δmn. The thermal average is thus expressed as the
expectation value over the pure state jΩi. Thermodynamic
entropy for ρ will arise as an entanglement entropy as we
restrict the description to just one component, namelyH, of
this doubled Hilbert space.
The tilde Hilbert space is usually chosen as a copy of the

dual space ofH, namelyH�. The motivation for this choice
is that time evolution in ~H is then given by −H, with the full
Hamiltonian being
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H
̬
¼ H − ~H ¼ H ⊗ 1 − 1 ⊗ H: ð4Þ

The state jΩi obeys H
̬
jΩi ¼ 0 and is independent of

time. Thus for a free bosonic field with single particle
energies ωk,

H
̬
¼

X
k

ωkða†kak − ~a†k ~akÞ: ð5Þ

It is possible to introduce a Bogolyubov transformation
from a, a†, ~a, ~a† to A, A† such that jΩi is defined by
AkjΩi ¼ 0 [2]. We will not go into this at this point.
A general density matrix ρ obeys the Liouville equation

i
∂ρ
∂t ¼ Hρ − ρH: ð6Þ

It is possible to construct an action whose variational
equation of motion is (6). This is given by

S ¼
Z

dtTr

�
ρ0

�
U†i

∂U
∂t −U†HU

��
ð7Þ

where ρ0 is the initial density matrix and U is a unitary
matrix on H. The dynamical variable in (7) is U and ρ is
defined as ρ ¼ Uρ0U†. Notice that (7) is in the form of a
coadjoint orbit action. It may be viewed as a general action
for a general quantum system and is very useful in
extracting effective actions for collective phenomena
[22]. It is particularly suited for semiclassical and large
N expansions. (A few papers which focus on this aspect, by
no means an exhaustive list, are [22,23].)
Our first goal is to construct a similar action for the

calculation of averages and correlators in the thermofield
state jΩi. Although we initiated the discussion using
ρ ¼ Z−1e−βH, the idea of thermofield states can be used
with any density matrix, so we will consider this more
general situation. We start by introducing a different
notation which will help to simplify the calculations. Let
fjnig denote a basis of states for the N-dimensional Hilbert
space, initially chosen to be finite-dimensional as men-
tioned in the introduction. It is convenient to represent these
in terms of coherent states which we denote by jzi (and a
similar set jwi for the tilde part). The states jni can then be
described using the coherent state wave functions hzjni ¼
ϕnðzÞ and hwjni ¼ χnðwÞ. (We use wave functions rather
than the states jzi, jwi since they will be more appropriate
for the path integral version.)
Explicitly, there are many ways to construct the coherent

states, for example, in terms of the rank r SUð2Þ repre-
sentations (with N ¼ rþ 1), or rank 1 representation of
UðNÞ, or using other subgroups of UðNÞ if the dimensions
are compatible. The coherent states may be viewed as
sections of an appropriate line bundle over a suitable Kähler
space M (of real dimension 2d) [which would be CP1 ¼
SUð2Þ=Uð1Þ for the SUð2Þ coherent states and CPN−1 for

the rank 1 U(N) coherent states]. Put another way, we
consider M as a phase space and choose the symplectic
structure to be a multiple of the fundamental Kähler form
on M and carry out quantization. In the Bargmann polari-
zation, which is most convenient for us, the wave functions
are holomorphic and correspond to the coherent states. For a
compact space of finite volume, the dimension of the Hilbert
space will be finite and will carry a representation of the
isometry group of the space, appropriately UðNÞ (for
CPN−1) or SUð2Þ (for CP1) as mentioned above. For the
case ofCPN−1, thewave functions for the basis of states is of
the form zk, k ¼ 1; 2;…; N, where zk are the homogeneous
coordinates; the local coordinates in one coordinate patch
would be zk=zN , k ¼ 1; 2;…; ðN − 1Þ. For the case of CP1

with local coordinates z, z̄ (for one coordinate patch), we get

ϕnðz; z̄Þ ¼
� ðrþ 1Þ!
n!ðr − nÞ!

�1
2 zn

ð1þ z̄zÞr=2 ; n ¼ 0; 1;…; r

ð8Þ

which obey
�
∂ z̄ þ

r
2

z
ð1þ z̄zÞ

�
ϕnðzÞ ¼ 0: ð9Þ

This is the holomorphicity condition appropriate to the space
CP1. We shall shortly return to the explicit formulas for
ϕnðzÞ and χnðwÞ, but for now, we observe that, for the
coherent states, we can choose an orthonormal basis with

Z
M

dμðz̄; zÞϕ�
nϕm ¼ δnm;

Z
M

dμðw̄; wÞχ�nχm ¼ δnm:

ð10Þ

[The integration measure is the phase volume; thus, for
example, dμ ¼ dzdz̄=ðπð1þ z̄zÞ2Þ, for CP1.] The thermo-
field state jΩi can then be represented as

jΩi ¼ χ�nð
ffiffiffi
ρ

p Þnmϕm: ð11Þ

Herewe take
ffiffiffi
ρ

p
to act on theϕ’s, i.e., onH. Thus

ffiffiffi
ρ

p
ϕ is an

element ofH. The action of an operatorO on jΩi is given by

OjΩi ¼ χ†
ffiffiffi
ρ

p
Oϕ ð12Þ

with the expectation value

hΩjOjΩi ¼
Z

ðϕ† ffiffiffi
ρ

p
χÞðχ† ffiffiffi

ρ
p

OϕÞ

¼
Z

ϕ�
að

ffiffiffi
ρ

p Þabχbχ�cð
ffiffiffi
ρ

p ÞcdðOϕÞd
¼ TrðρOÞ: ð13Þ

Our notation also makes explicit some of the well-known
properties of TFD, particularly its relation to C� algebras
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and the Tomita-Takesaki theory or the Haag-Hugenholtz-
Winnink version of the same [24]. (For a concise review of
this aspect of TFD, see [2].) A key result is the existence of
an antilinear operation J, referred to as the modular
conjugation, and a so-called modular operator Δ. These
obey the properties

Δ† ¼ Δ; Δ > 0; ΔjΩi ¼ jΩi;
J† ¼ J; J2 ¼ 1; JjΩi ¼ jΩi: ð14Þ

In our notation (12) for jΩi, these are given by Δ ¼ e−βH
̬

(for the thermal state ρ ¼ Z−1e−βH), and

Jϕ ¼ χ�; Jχ ¼ ϕ�; Jλϕ ¼ λ�χ�: ð15Þ

Thus

JjΩi ¼ Jðχ† ffiffiffi
ρ

p
OϕÞ ¼ ϕað

ffiffiffi
ρ

p Þ�abχ�b ¼ χ†
ffiffiffiffiffi
ρ†

q
ϕ ¼ χ†

ffiffiffi
ρ

p
ϕ

¼ jΩi ð16Þ

where we used the fact that ρ† ¼ ρ. All the properties (14)
can be easily verified.
We now turn to the time evolution of the states. For this

purpose, we will rewriteΩ in a slightly different notation as

Ωðz̄; ūÞ ¼
X
nm

ψnðūÞð
ffiffiffi
ρ

p Þnmϕmðz̄Þ: ð17Þ

Since we use the wave function representation for the states
from now on, we write Ω rather than jΩi. Also, we write ψ
in place of χ�. The time-evolved wave functions can be
represented as a path integral,

ϕnðz̄; tÞ ¼
Z

½Dz�eiSðz;z̄;tjz0;z̄0Þϕnðz̄0; 0Þ ð18Þ

where Sðz; z̄; tjz0; z̄0Þ is the action for the coherent states
integrated from z0, z̄0 to z, z̄ over time t. For the full
thermofield state Ω we find

Ωðz̄; ū; tÞ ¼
Z

½DzDu�eiSðz;z̄;tjz0;z̄0Þei ~Sðu;ū;tju0;ū0ÞΩðz̄0; ū0; 0Þ:
ð19Þ

Thus a vacuum-to-vacuum amplitude has the form

F ¼
Z

½DzDu�Ω�ðz; uÞeiSðz;z̄;tjz0;z̄0Þei ~Sðu;ū;tju0;ū0ÞΩðz̄0; ū0Þ:
ð20Þ

In the operator notation

Z
ϕ�
kðzÞeiSðz;z̄;tjz

0;z̄0Þϕlðz̄0Þ ¼ hkje−iHztjli ð21Þ

where Hz is the Hamiltonian for the ðz; z̄Þ system. In other
words, in the coherent state basis,

eiSðz;z̄;tjz0;z̄0Þ ¼ hzje−iHztjz0i: ð22Þ

The amplitude F can therefore be written as

F ¼
X

ð ffiffiffi
ρ

p Þ�klhkje−iHztjaihlje−iHutjbið ffiffiffi
ρ

p Þab: ð23Þ

We choose Hu ¼ −HT , so that

F ¼ Trð ffiffiffi
ρ

p †e−iHt ffiffiffi
ρ

p
eiHtÞ: ð24Þ

If we introduce operators A, B in the ðz; z̄Þ sector (or onH),
we can write, for t > t1 > t2,

hAðt1ÞBðt2Þi ¼ Trð ffiffiffi
ρ

p
Uðt; t1ÞAUðt1; t2Þ

× BUðt2; 0Þ
ffiffiffi
ρ

p
U†ðt; 0ÞÞ: ð25Þ

In terms of a time contour, this may be represented as
shown in Fig. 1. This is not the more familiar Schwinger-
Bakshi-Mahanthappa-Keldysh (SBMK) closed time con-
tour [25]. That has insertion of ρ at t ¼ 0 and identity at
t ¼ T. For equilibrium cases, it is equivalent to the F given
here. If ρ is not the equilibrium choice, then there are
several amplitudes (with different physical meanings) one
can consider. We can define a more general state specified
by a matrix K as

ΩK ¼
X
nm

ψnðūÞKnmϕmðz̄Þ: ð26Þ

The SBMK contour is then obtained for the amplitude

F1ρ ¼
Z

½DzDu�Ω�
1ðz; uÞeiSðz;z̄;tjz

0;z̄0Þei ~Sðu;ū;tju0;ū0ÞΩρðz̄0; ū0Þ:
ð27Þ

This is the physically relevant amplitude (with insertions of
operators such as A, B as required) for time evolution of a
closed statistical system starting with a given ρ. However, if
we view the physical system under consideration as a
subsystem within a larger closed system which is in a pure
state which is an eigenstate of the total Hamiltonian, then
the amplitude (25) would be the relevant one.
We now turn to the action which will give the expected

behavior for the ðz; z̄Þ and ðu; ūÞ sectors. It is given by

FIG. 1. Time contours. The left side shows the contour for
Eq. (25) and the right side for Eq. (42).
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S ¼
Z

dt½ðiz̄k _zk − z̄kHklzlÞ þ ðiūk _uk þ ūkHT
klulÞ� ð28Þ

with the constraints

z̄kzk ¼ 1; ūkuk ¼ 1: ð29Þ

This action is easily quantized in terms of geometric
quantization. For the ðz; z̄Þ sector, the canonical one-form
and two-form are given by

A ¼ i
2
ðz̄kdzk − dz̄kzkÞ; ω ¼ idz̄k ∧ dzk: ð30Þ

The polarization condition on the wave functions can be
chosen as

∇zΨ ¼
� ∂
∂zk þ

z̄k
2

�
Ψ ¼ 0; ð31Þ

which leads to wave functions of the form

Ψ ¼ e−zkz̄k=2fðz̄Þ ð32Þ

with zk acting as ∂=∂z̄k on the the f’s. The constraint shows
that the f can have one power of z̄, which implies that
fðz̄Þ ∼ z̄k. There are exactly N states, giving the rank 1
representation of UðNÞ. The Hamiltonian operator is

H ¼ z̄kHkl
∂
∂z̄l : ð33Þ

We see that matrix elements of this Hamiltonian reproduce
Hkl. For the ðu; ūÞ sector, we again have Ψ¼expð−u·
ū=2ÞfðūÞ with uk acting as ∂=∂ūk. The Hamiltonian is

H ¼ −ūkHT
kl

∂
∂ūl ; hkjHjli ¼ −HT

kl: ð34Þ

The operation H → −HT represents charge conjugation in
the Lie algebra of UðNÞ. It is useful to define

zk ¼ ξk1; ūk ¼ wk ¼ ξk2; P ¼
�
1 0

0 −1

�
: ð35Þ

With a partial integration on the term involving the time
derivative of uk in (28), we can bring the action to the form

S ¼
Z

dt
X

α;β¼1;2

Pαβðiξ̄kβ _ξkα − ξ̄kβHklξlαÞ

¼
Z

dtTr½Pðiξ† _ξ − ξ†HξÞ�: ð36Þ

The variables zk, uk with the constraint (29) define (two
copies of)CPN−1, so it is useful to use a notation in terms of

group elements. Writing ξkα ¼ UðαÞ
k0 ¼ hkjUðαÞj0i, for two

unitary matrices UðαÞ, we find

S ¼
Z

dt½ðiUð1Þ† _Uð1Þ − Uð1Þ†HUð1ÞÞ00
− ðiUð2Þ† _Uð2Þ − Uð2Þ†HUð2ÞÞ00�: ð37Þ

The N states forming the fundamental representation of
SUðNÞ can be viewed as being generated from a highest
weight state, usually the vacuum, by the action of various
operators. Group theoretically, they can be constructed
from the elements hkjUj0i for a chosen state j0i. We have
explicitly included this in our notation. The action (37) is
close to the form (7), but the key difference is that it is the
difference of two actions of the form (7). In the same
notation, the state Ω can be written as

Ω¼ z̄k
ffiffiffi
ρ

p
klwl¼ ξ̄k1

ffiffiffi
ρ

p
klξl2¼h0jUð1Þ† ffiffiffi

ρ
p

Uð2Þj0i: ð38Þ

Although we have used coherent states to arrive at (37) and
(38), these results are no longer dependent on any specific
representation for the states. In terms of (38), we can
represent (20) as

F ¼
Z

½DU�eiSh0jUð2Þ†ðtÞÞ
ffiffiffiffiffi
ρ†

q
Uð1ÞðtÞj0i

× h0jUð1Þ†ð0Þ ffiffiffi
ρ

p
Uð2Þð0Þj0i ð39Þ

with S as given in (37) and ½DU� denotes functional
integration for the two copies of CPN−1.
In calculating F as in (20), or correlators as in (25),

effectively we have a closed time contour with insertions
of Ω at two points corresponding to t ¼ 0 and t ¼ T with
T → ∞ eventually. This suggests a neat way to rewrite these
results.Wewill use a complex time variable τ ¼ tþ iθ, with
the identification θ ∼ θ þ 2π, so that τ describes a cylinder
R × S1. Further we introduce a one-form

A ¼ −i
�
Hdtþ i

2π
log ρdθ

�
: ð40Þ

The contour of integration C is then taken as starting at
ðt; θÞ ¼ ð0; 0Þ going to ð0; πÞ to ðT; πÞ to ðT; 2πÞ ∼ ðT; 0Þ to
(0,0), as shown in the second figure in Fig. 1. This goes

around S1 once. We then consider the Pe
H
C
A, where P

denotes path-ordering alongC. For the segments along the t
direction, we can use (22) to obtain the action as before. For
the segments (0,0) to ð0; πÞ and ðT; πÞ to ðT; 2πÞ along the
imaginary time direction, we get factors of

ffiffiffi
ρ

p
. For this, we

use the same result as (22) with ði=2Þ log ρ in place of the
Hamiltonian H. Thus

eiSðw;z0;πÞ ¼ hwje1
2
log ρjz0i: ð41Þ
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Notice that the factor
R
U† _Udτ is insensitive to whether we

integrate along real or imaginary directions. We also takeH
to be independent of θ so thatHðat θ ¼ πÞ ¼ Hðat θ ¼ 0Þ.
With this result, we can write the path integral for thermo-
field dynamics as

FJ ¼
Z

½DU�exp
�I

C
ð−U† _UþU†AUÞ00þ

I
AJþBJ0

�

ð42Þ
where we have also introduced sources which facilitate the
insertion of operatorsA,B, etc. Setting J ¼ J0 ¼ 0 gives the
vacuum to vacuum transition amplitude. In operator nota-
tion, this is given by

FðCÞ ¼ TrPe
H
C
A: ð43Þ

Thus FðCÞ is the Wilson loop integral for the connection
(40) taken along the contourCwhichwinds once around the
S1 direction of the cylinder. Consider now a small defor-
mation of the contour C → C0 at a point τ0 along the path.
Evidently

FðC0Þ − FðCÞ ¼ TrP exp

�Z ð0;2πÞ

τ0

�
FσP exp

�Z
τ0

ð0;0Þ

�

ð44Þ
where σ ¼ δt ∧ δθ is the infinitesimal area between C0 and
C at τ0. The curvature F is given by

F ¼ 1

2π

∂
∂t log ρþ i

∂H
∂θ þ i

2π
½log ρ; H�: ð45Þ

In our case,∂H=∂θ ¼ 0 and∂ρ=∂t ¼ 0. (Wehave insertions
of the same ρ at t ¼ 0 and t ¼ T.) Thus, the curvature F
vanishes if ½ρ; H� ¼ 0. For the equilibrium casewhere this is
obtained, we can do deformation of the contour C reducing
FðCÞ to a simple holonomy of the connection (40) around
the S1 direction of the cylinder R × S1. (This is without
insertions of operators; for correlators there will be a
nontrivial segment along the t direction.)
We can go further and consider multiple windings

around the S1 component of the cylinder. We can consider
windings inserted at any value of t, defining WðC; n; tÞ ¼
FðCþ CnðtÞÞ where Cþ CnðtÞ corresponds to the contour
C with extra n windings around S1 at the point t. Thus the
Rényi entropy is defined in terms of the holonomy as

S ¼ −
1

n − 1
log WðC; n; tÞ. ð46Þ

Since thermofield dynamics uses pure states, entropy must
be defined in terms of the basic observables of the
formalism. For the vacuum amplitude, i.e., in the absence
of insertions of operators on the real time line, the

holonomy is the only observable we have and hence
Eq. (46) gives the natural definition.

B. A field theoretic representation

We have represented thermofield dynamics in (39) as a
functional integral over group elements. There are other
equivalent ways of representing it, one of which is as the
functional integral of a field theory. This is will prove
useful as well. The basic idea is that the quantum system
can be viewed as the one-particle sector of a field theory.
The time evolution matrix element (21) can be written as

hkje−iHtjli ¼ h0jake−iHta†l j0i ¼ h0jTakðtÞa†l ð0Þj0i

¼ N
Z

½dada��eiSakðtÞa†l ð0Þ; ð47Þ

S ¼
Z

dt½a�kði∂0Þak − a�kHklal� ð48Þ

and N is the standard normalization factor,

N −1 ¼
Z

½dada��eiS: ð49Þ

Further, we can introduce a ðz; z̄Þ-dependent field (on M)
given by ψðz; z̄; tÞ ¼ P

kakzk, ψ
†ðz; z̄; tÞ ¼ P

ka
†
kz̄k. (We

use ψ� when we integrate over the c-number versions
of these fields in the functional integral.) The diagonal
coherent state representation of operators also allows us to
introduce Hðz; z̄Þ such that

Hkl ¼
Z
M

dμðz; z̄Þz̄kHðz; z̄Þzl: ð50Þ

The action (48) can thus be written as

S ¼
Z

dtdμðz; z̄Þ½ψ�ði∂0Þψ − ψ†Hðz; z̄Þψ :� ð51Þ

The part of the action (36) with the negative eigenvalue for
P can be represented in a similar way, with a field ϕ, ϕ†.
The fields ψ , ψ� (and ϕ, ϕ�) are restricted since ψ is

holomorphic and ψ� is antiholomorphic. Thus the func-
tional integration over these fields has also to be suitably
restricted. A convenient way to extend the functional
integration over all fields and still restrict the dynamics
to holomorphic ψ’s is to use the Landau level trick. We take
ψ to describe a charged particle on M with a background
magnetic field which is constant in a suitable basis. This
can be done by taking the field to be proportional to the
Kähler two-form ω on M and consider the action
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S ¼
Z

dtdμðz; z̄Þ
�
ψ�

�
i∂0 − A0ðz; z̄Þ þ

D2 þ E0

2m

�
ψ

�

ð52Þ
where Di ¼ ∇i − iAi is the gauge and Levi-Civita covar-
iant derivative on ψ and dðAidxiÞ ¼ nω for some
parameter n. E0 is the lowest eigenvalue of −D2.
Further, A0ðz; z̄Þ ¼ Hðz; z̄Þ is the Hamiltonian of the
original theory. m is a parameter which we will take
to be zero eventually. The Hamiltonian for ψ is H0 þ A0,
with

H0 ¼ −
D2 þ E0

2m
: ð53Þ

The eigenstates of H0 are the Landau levels,the lowest of
which obeys a holomorphicity condition, and has zero
eigenvalue since we subtracted E0 (which is the lowest
eigenvalue of −D2). The higher states are not holomor-
phic, but will decouple as m → 0. The dynamics will
thus be restricted to the lowest state which corresponds to
holomorphic ψ’s. Finally, we introduce

Ωðψ�;ϕ�Þ ¼
Z
M

dμðz; z̄Þdμðw; w̄Þψ�ðzÞϕ�ðwÞzk
ffiffiffi
ρ

p
klwl:

ð54Þ

Collecting these results together, we conclude that ther-
mofield dynamics is given by

F ¼ N
Z

½dψdψ�dϕdϕ��eiSΩ�ðtÞΩð0Þ; ð55Þ

S ¼
Z

dtdμðz; z̄Þ
�
ψ�

�
i∂0 − A0ðz; z̄Þ þ

D2 þ E0

2m

�
ψ

− ϕ�
�
i∂0 − A0ðz; z̄Þ þ

D2 þ E0

2m

�
ϕ

�

¼
Z

dt
Z
M

dμðz; z̄Þψ�
�
i∂0 − A0ðz; z̄Þ þ

D2 þ E0

2m

�
ψ

þ
Z

dt
Z

~M
dμðz; z̄Þϕ�

�
i∂0 − A0ðz; z̄Þ þ

D2 þ E0

2m

�
ϕ:

ð56Þ
As usual, N −1 is given by the integral of eiS over all
fields. In the second line of (56) we take ~M to have the
orientation opposite to that of M. The fields may be
taken to be bosonic, but it will turn out to be more
convenient to take them as fermionic fields.
A simple extension will give a generalization of this

result to a multipartite system with identical components.
Going back to (48), we take the states to be of the form
jki ¼ jαIi ∈ H1 ⊗ H2 and define a set of fermion fields
ψ I ¼

P
αaαIzα. The action may now be written as

S ¼
Z

dt
Z
M

dμðz; z̄Þψ�
I

�
i∂0δIJ − ðA0ðz; z̄ÞIJ þ

D2 þ E0

2m
δIJ

�
ψJ

þ
Z

dt
Z

~M
dμðz; z̄Þϕ�

I

�
i∂0δIJ − ðA0ðz; z̄ÞÞIJ þ

D2 þ E0

2m
δIJ

�
ϕJ: ð57Þ

We may interpret the labels I, J as corresponding to some
internal symmetry or degrees of freedom.
There is one more improvement we can do on this

formula. If M × R admits spinors, we can replace the
action by the Dirac type action

S ¼
Z

dt
Z
M

dμðz; z̄ÞΨ̄IðiγμDμÞIJΨJ

þ
Z

dt
Z

~M
dμðz; z̄ÞΦ̄IðiγμDμÞIJΦJ ð58Þ

where Ψ and Φ are spinors, γμ are the standard Dirac
matrices, and Ψ̄ ¼ Ψ†γ0, Φ̄ ¼ Φ†γ0. The Hamiltonian for
Ψ=Φ now has the form H0 þ A0 with H0 ¼ −iγ0γiDi. The
eigenstates of H0 are again Landau levels; there are zero
modes for H0 which satisfy a holomorphicity condition.
The other levels are separated by a gap of order of the
magnetic field ∼cnω, where c plays the role of the speed of
light for the action (58), relating ∂=∂t and ∂=∂x. Taking

c → ∞ all the nonzero eigenstates decouple.1 (We assume,
as usual, that the negative energy levels are all filled.) The
degeneracy of states is controlled by nω and remains finite
in this limit. There is also another limit we can take,
namely, n → ∞; in this case, not only the nonzero levels
decouple, the degeneracy of the zero modes also tends to
infinity. This is equivalent to an expansion in inverse
powers of the background field.

C. A quick summary

A quick recapitulation of the results in this section will
be useful. We have expressed thermofield dynamics for a
single quantum system as a functional integral over a
unitary group, the action for which is given in (37). This
action involves the trace over a matrix P which has the
eigenvalue þ1 for the system under consideration and −1

1This is not the usual nonrelativistic limit since we have set the
mass to zero in (58).
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for the tilde system. Equivalently, one can use an action
defined on a closed contour on a cylinder R × S1 with one
winding around the S1 cycle. Multiple holonomies around
this cycle can be related to the entropy.
One can also express thermofield dynamics as field

theoretic functional integral with two fields defined on two
copies of a suitable Kähler manifold with opposite ori-
entation. The fields are subject to a background field which
is a multiple of the Kähler form on the manifold M. The
fields can be taken to be spinors and the action to be the
massless Dirac action, with a limit c → ∞ at the end, where
c plays the role of the speed of light in the action.
Additional degrees of freedom can be incorporated by
considering multiple copies of the fields, with, generally, a
non-Abelian symmetry acting on them.

III. GRAVITY FROM NONCOMMUTATIVE
SPACES

A particularly interesting situation to which the fore-
going analysis can be applied is a formulation of gravity
using noncommutative or fuzzy spaces. The relevance of
fuzzy spaces starts with the question: What if we quantized
gravity? In that case, we would have a Hilbert space of
states, and the continuous manifold description would be
obtained as an approximation for large number of degrees
of freedom. This is clearly the realm of noncommutative
geometry or fuzzy spaces.
A scenario for implementing this idea would be as

follows. We can model noncommutative spaces in terms
of the lowest Landau level of a quantum Hall system
[26,27]. For example, we can think of the complex
projective space CPk as SUðkþ 1Þ=UðkÞ. It is thus
possible to consider uniform background fields on CPk

which are valued in the algebra of UðkÞ and which are
proportional to the curvatures of CPk. Single particle wave
functions in this background will fall into SUðkþ 1Þ
multiplets. The lowest such set of states can be represented
by holomorphic wave functions. Put another way, these
wave functions are sections of a holomorphic UðkÞ bundle
on CPk. They form an N-dimensional Hilbert space H1

which may be viewed as a model for the fuzzy version CPk
F

of the differential manifold M ¼ CPk. Functions on the
fuzzy space are N × N matrices viewed as linear trans-
formations onH1. In the large N limit, we recover the usual
commutative algebra under pointwise multiplication of
functions on CPk. This limit can be analyzed by using
classical functions (on CPk) to represent operators and
using � products to represent operator products.
The isometry group for CPk is SUðkþ 1Þ. Hence,

background fields valued in the algebra of UðkÞ amount
to connections and curvatures for (at least part of) the
isometry group. Thus these background fields, since they
correspond to gauging the isometries, can be viewed as
describing gravitational degrees of freedom. An action for

these fields, which may be derived from (57) or (58) [or
from (A6)], would thus be a gravitational action.
This point of view regarding gravity was suggested many

years ago [8]. The action used in that case was (7) or (A4),
not the thermofield case with both positive and negative
eigenvalues for P. Simplifying it using � products of CPk

led to the Chern-Simons term for the UðkÞ-valued gauge
fields as the leading term in the action. However, there were
several points which were not clear at that stage. A priori,
since we start with H1, the choice of modeling this as CPk

F
is arbitrary. The leading CS term which emerges in the large
N limit, being topological, is not sensitive to the metrical
details of CPk, but the subleading ones are. Further, for
gravity on a 2k-dimensional spatial manifold (þ time), we
need gauge fields valued in the algebra of the corresponding
Poincaré group (or de Sitter group, including a cosmological
constant), with the gauge fields corresponding to the trans-
lations being the frame fields and those for the Lorentz
transformations giving the spin connection. Thus, with
Euclidean signature, we need SOð2kþ 2Þ rather than
UðkÞ. Finally, it was not clear how one could get Einstein
gravity rather than CS gravity. With the thermofield
approach, one can improve on some of these problems.
In this paper, we make two basic suggestions. The first is

that in discussing gravity using the largeN limit of a Hilbert
space H1, we should use thermofield dynamics. This is
motivated by the well-founded expectation that entropy
should play an important role in gravity and that thermo-
field dynamics, which can incorporate entropy within a
formalism of pure states, is therefore a natural framework.
We thus double the Hilbert space toH1 ⊗ H�

1. The large N
approximation of these spaces by a manifold M will
introduce gauge fields corresponding to the frame fields
and spin connection of M. Our second suggestion is that
these gauge fields for the physical system and the tilde
system should be considered as parity conjugates of each
other. This is related to the fact that the orientation of the
manifold used to define the states, say in (57) or (58), is
reversed for the tilde system. Equivalently, this emerges
from the matrix P in (A6). With this choice, the action, as
we will see below, leads to Einstein gravity rather than
Chern-Simons gravity.
Some of the key ingredients are then the following.
(1) We need a Hilbert space H which carries a repre-

sentation of a group G. The latter will eventually
become the isometry group of the continuous
spacetime M ×R which will emerge as we take
the limit of some parameter θ → 0. (θ could be
∼N−α, for some α > 0.) G ¼ UðkÞ for the discus-
sion given above, but could be more general, and, in
fact, will be SOð4Þ for the case of three-dimensional
Euclidean gravity.

(2) The Hilbert space will have three components,H1 ⊗
H2 ⊗ H3 with states of the form jα; a; Ii, whereH3

refers to any matter system of interest. For gravity, as
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a first approximation, we will not need to consider
excitations of the matter system, which means that
we can restrict the matter fields to the ground state.
In this case, the states inH will be taken to be of the
form jα; a; 0i corresponding to a representation
R1 ⊗ R2 of G with the transformation

jα; a; 0i0 ¼ gð1Þαβ g
ð2Þ
ab jβ; b; 0i: ð59Þ

We will consider R2 to be a fixed representation,
and take the dimension of R1 to be very large to
approximate H1 by a continuous manifold. In the
case of an infinite dimensional representation R1, we
take a limit of the highest weight vector to approxi-
mate to a continuous manifold. R1 must be a highest
weight representation to define symbols and �
products. These representations have to be unitary
as required by quantum mechanics.
It is possible to reduce the product R1 ⊗ R2 in

terms of irreducible representations but this will not
be important for us. (A priori, one could consider
different groups G1 and G2 acting on H1 and H2,
respectively. We have no good argument to exclude
this, except that the minimal way is to use the
same group.)

(3) To define the functions representing operators and �
products, we will need a set of wave functions.
These will be obtained by quantizing the Kähler
space G=H for some suitable H ∈ G. This will also
define R1 (andH1). Gauge fields will emerge as part
of the the procedure for the large N limit.

Given this structure, it is possible to simplify the trace of
an operator, say, TrðiHÞ. It gives a Chern-Simons form
of the appropriate dimension. For a spatial manifold M of
dimension 2k, the action (A6) will simplify as the integral
of a Chern-Simons (2kþ 1)-form with gauge group G,
more precisely as the difference of Chern-Simons actions
for the two chiralities. The gauge fields on the continuous
spacetime are introduced to express the unitary trans-
formations on H in terms of G transformations on the
continuum M ×R. In a sense, these gauge fields define
the small θ (or large N) limit we are taking. The natural
question then is whether we can choose them in some
optimal fashion. As the optimization requirement, we
extremize the limit of the action (A6) with respect to Aμ.
These optimization conditions are to be considered as the
equations of motion for gravity.
Equivalently, we can use the field theoretic action (58)

with the spinor fermionic fields of the form Ψi;0ðz; z̄; tÞ,
Φi;0ðz; z̄; tÞ. The gauge fields are matrices of the form

Aab ¼ Aidxiδab þ ðAμÞabdxμ ð60Þ

where dðAidxiÞ ¼ nω and ðAμÞab are valued in the Lie
algebra of G; they are matrices in the representation R2.

We now show how these ideas can be applied to gravity
in three dimensions. In three Euclidean dimensions, it is
well known that Einstein gravity can be formulated as a
Chern-Simons theory [28]. This is true for Minkowski
signature as well, but we will first discuss the Euclidean
case. For this, we will use the generators of SOð4Þ in the
spinor representation, with 4 × 4 Hermitian γ matrices. The
translation generators Pa and the rotation generators Sab are
defined as

Pa ¼
γ3γa
2il

; Sab ¼
1

4i
ðγaγb − γbγaÞ;

a; b ¼ 0; 1; 2:
ð61Þ

Here l is a quantity with the dimensions of length which is
related to the cosmological constant. The action is then
given by

S ¼ −
l

32πG

Z
Tr

�
γ5

�
AdAþ 2

3
A3

��
: ð62Þ

The gauge field A is built of the frame field ea ¼ eaμdxμ and
the spin connection ωab ¼ ωab

μ dxμ as

A ¼ −iPaea −
i
2
ωabSab: ð63Þ

The trace has the property that it gives a pairing between the
Pa and Sbc only,

Trðγ5PaSbcÞ ¼
1

l
ϵabc: ð64Þ

This pairing, rather than the usual Cartan metric of SOð4Þ,
is crucial in being able to write Einstein gravity as a Chern-
Simons theory. In fact, simplifying (62) using (63), (64)
gives

S ¼ 1

16πG

Z
d3x det e

�
R −

3

2l2

�
: ð65Þ

Since the SOð4Þ generators split into two chiral SOð3Þ’s
corresponding to the subspaces with γ5 ¼ 1 and γ5 ¼ −1,
i.e., SOð4Þ ∼ SOð3ÞL × SOð3ÞR, we see that the pairing
(64) can indeed be reproduced by the thermofield action as
we take P to be proportional to γ5. This is precisely what
we propose to do.
We will now show how this action can be obtained from

thermofield dynamics. For this purpose, we can use the
formulation (58) in terms of spinor fields, but it is more
illuminating to first see how the action (62) or (65) emerges
from (A6) in the large N limit. The N-dimensional space
H1 can be taken to correspond to a representation of SUð2Þ.
Since SUð2Þ=Uð1Þ ¼ CP1, we can think of these states as
describing fuzzy CP1. The states are thus of the form jα; ii,
where for i ¼ 1, 2, we have an action of SUð2Þ given by
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jα; ii → hðsÞαβhijjβ; ji ð66Þ

where hðsÞαβ denotes the spin-s representation and hij is the
spin-1

2
representation of SUð2Þ. This SUð2Þ will form the

SUð2ÞL ∼ SOð3ÞL in SOð4Þ. A similar choice of states will
be made for the tilde sector, with SUð2ÞR ∼ SOð3ÞR instead
of SUð2ÞL ∼ SOð3ÞL.
Since we do not consider excitations for the matter part,

the intermediate states jki are of the form jβ0i and we can
take Uβα ≡ hβ0jUjα0i to be a unitary matrix. (Elements
such as hβJjUjα0i, J ≠ 0, will correspond to transitions
from the matter vacuum to excited states of matter.) Further,
we must count all states inH1 ⊗ H2, i.e., Pþ is the identity.
The action (A6) then simplifies as

S ¼ −
Z

dt½TrðiA0ÞL − TrðiA0ÞR�: ð67Þ

Focusing on the left chirality part first, the states jαi which
correspond to a spin-s representation of SUð2ÞL, with
N ¼ 2sþ 1, s ¼ n=2, where n is a positive integer, can be
taken as arising from the quantization of CP1 viewed as a
phase space, with the symplectic two-form nωK , where ωK
is the Kähler two-form on CP1. In extracting the large N
limit, we can replace operators by their symbols which are
the classical functions corresponding to them. If Â is an
operator acting on states of the form jα; ii, the symbol for Â
is defined as

ðÂÞik ¼ Aik ¼ h−s; ijhðsÞ†ÂhðsÞj − s; ki ð68Þ

where j − si is the highest weight state of the spin-s
representation. As a 2 × 2 matrix, h may be explicitly
parametrized as

h ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z̄z

p
�

1 z

−z̄ 1

��
eiθ=2 0

0 e−iθ=2

�
ð69Þ

where z, z̄ are coordinates for one coordinate patch of CP1.
hðsÞ in (68) is the spin-s representative of h in (69). Notice
that the symbol is independent of θ and is a function on
CP1. It is also a 2 × 2 matrix. We now define differential
operators on SUð2Þ by

Rah ¼ hta ð70Þ

where ta, a ¼ 1, 2, 3, form a basis for the Lie algebra of
SUð2Þ, ta ¼ σa=2 for the 2 × 2 representation. Explicitly in
terms of the group parameters φi [like z̄, z, θ in (69)],

Ra ¼ iðE−1Þia
∂
∂φi ; h−1dh ¼ −itaEa

i dφ
i: ð71Þ

Because of the highest weight condition for the states in
(68), hj − s; ki obeys a holomorphicity condition,

ðR1 − iR2Þhj − s; ki ¼ R−hj − s; ki ¼ ht−j − s; ki ¼ 0:

ð72Þ

The symbol or the classical function corresponding to an
operator product Â B̂ is given by

ðÂ B̂Þik ¼ h−s; ijh†Â B̂ hj − s; ki
¼

X
a;j

h−s; ijh†Âhja; jiha; jjh†B̂hj − s; ki

¼ AijBjk þ
XN−1

r¼1

h−s; ijh†Âhj − sþ r; ji

× h−sþ r; jjh†B̂hj − s; ki

¼ AijBik þ
XN−1

r¼1

�ðN − 1 − rÞ!
r!ðN − 1Þ!

�
ðRrþAÞijðRr

−BÞjk

¼ ðA � BÞik: ð73Þ

The right -and side of this equation defines the � product
which starts off with the matrix product of the functions A,
B followed by additional terms involving derivatives. As N
becomes large, these derivative terms are suppressed by
powers of N. Another useful result is that the trace of an
operator Â can be expressed in terms of the integral of its
symbol as

TrðÂÞ ¼
Z

dμTrA: ð74Þ

The remaining trace on the right-hand side is just over the
matrix elements of the 2 × 2 matrix A.
Starting from the Hilbert space, the action (A6) has a

“gauge invariance” corresponding to the transformation

U → gU; A → gAg−1 þ _gg−1: ð75Þ

For a gauge transformation with g close to the identity, we
can write g ≈ 1 − Φ and (75) simplifies as

Â → Â − ∂0Φ̂ − Â Φ̂þΦ̂ Â; ð76Þ

where ∂0 ¼ ∂=∂t and we use the hat notation to emphasize
that all quantities are still operators. We can represent (76)
in terms of the symbols as

A → A − ∂0Φ −A � Φþ Φ �A: ð77Þ

This transformation still has the full content of the trans-
formation at the level of operators. The symbols A and Φ
are functions of the coordinates of M ¼ CP1 ×R (R is for
the time variable), and are also 2 × 2 matrices. For an
explicit realization of this transformation it is convenient
to introduce a set of auxiliary quantities Aμdxμ which is a
one-form on M such that an ordinary continuum gauge
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transformation of Aμ with parameter Λ induces the trans-
formation (77). In other words we seek functions

A0 ¼ A0ðA0; AiÞ; Φ ¼ ΦðΛ; A0; AiÞ ð78Þ

such that

A0→A0þ∂0Λþ½A0;Λ�
Ai→Aiþ∂iΛþ½Ai;Λ�

�
⇒A0þ∂0ΦþA0�Φ−Φ�A0:

ð79Þ

The fact that this can be done is the essence of the Seiberg-
Witten transformation [29]. A0 may be considered as the
continuum version of A while Ai, the spatial components,
are additional auxiliary variables. The choice of these Ai is
part of how the large N limit is taken. Our approach will
be to optimize this choice by the equations of motion
following from the large N limit of the action.
The solution for (78) is straightforward, although some-

what involved algebraically and reads [30]

A0¼A0þ
Pab

2n
½∂aA0Ab−Aa∂bA0þFa0Ab−AaFb0�þ���;

Φ¼ΛþPab

2n
ð∂aΛAb−Aa∂bΛÞþ���;

Pab≡1

2

�
gab

2π
þiðω−1

K Þab
�
: ð80Þ

While we do not explicitly display the matrix labels, it
should be kept in mind that these are all 2 × 2 matrices and
matrix products are assumed. Taking the trace and using
(74) we get

Z
dtTrA ¼ −

1

4π

Z
Tr

�
ðaþ AÞdðaþ AÞ þ 2

3
ðaþ AÞ3

�

ð81Þ
where a is the connection for ωK, i.e., ωK ¼ da. The result
is the integral of a Chern-Simons term, expanded around a
as a background. It is useful to think of aþ A as the
connection of interest, in this case SUð2ÞL valued. The
dependence on the choice of CP1 with its ωK as a
background to expand around is irrelevant once we get
to (81). The background is thus only an auxiliary step in
arriving at this result. There are higher terms, with more
derivatives and so on, which do retain the dependence on
the metrical details of the background. These are negligible
for slowly varying Aμ; some of the terms will also cancel
out when we include the SUð2ÞR sector.
The final result of simplifying (A6) would thus be

S ¼ −
1

4π

Z �
Tr
�
AdAþ 2

3
A3

�
L
− Tr

�
AdAþ 2

3
A3

�
R

�
:

ð82Þ

The A’s are connections for SUð2ÞL and SUð2ÞR and this
result reproduces the Euclidean gravitational action (62),
apart from an overall factor of ðl=8GÞ. This overall
degeneracy factor is important and, in this approach, has
to come from several copies of the fields we have used.
We have used the action (A6) as it makes more trans-

parent the role of the spatial components of A as part of how
the large N limit is taken. We can also obtain the result (82)
from the action (58) by integrating out the spinor fields. In
the present case, we have M ¼ CP1 is two-dimensional.
We take the fermions to be in the spin-1

2
representation of

SUð2Þ, i.e., the indices I, J takes values 1,2. The fermions
Ψ are coupled to the SUð2ÞL gauge fields while Φ couple to
SUð2ÞR fields. We have a field theory of Dirac fermions in
2þ 1 dimensions and it is well known that the effective
action, upon integrating out the fermions, is the Chern-
Simons action. Since the fields Φ are defined on M with
the orientation reversed, the Chern-Simons action gener-
ated by these fields will be the negative of the one generated
by Ψ. The result, once again, is the action (82). In fact,
being a field theory, the action (58) is much easier to use in
practice as there are familiar diagrammatic techniques for
evaluating the effective action.
We have considered the Euclidean signature so far. The

spinor field version of the action, namely, (58), can be
easily continued to Minkowski signature, with the gauge
fields being valued in the Lie algebra of SOð2; 1ÞL
and SOð2; 1ÞR.

IV. DISCUSSION

A number of comments are in order at this point.
We have carried out the calculations in Sec. III for

Euclidean signature. While this is not relevant for the
differential form, the trace in the Chern-Simons action over
the gauge fields which are written as matrices correspond-
ing to the spin-1

2
representation of SUð2ÞL and SUð2ÞR is

sensitive to the signature. A continuation to Minkowski
signature would involve SOð2; 1Þ representations, which in
the interest of unitarity, should be chosen as infinite
dimensional. Defining the trace is then rather tricky.
However, the formulation of TFD in terms of the fermionic
field theory, as in (57), (58) avoids this problem. Taking the
fields in (58) to be SOð2; 1Þ spinors, we have a standard
fermionic field theory and we expect that this will be
consistent with unitarity.
There are many papers analyzing 2þ 1 dimensional

gravity, starting with the Chern-Simons formulation and
considering the evaluation of the partition function
[31–33]. All these lead to strong hints of the underlying
string origin of the action. This may very well be the case,
but since we are obtaining the Chern-Simons action only
in the large N limit, it is not clear how to compare our
work with these developments. However, we may note the
following. We have used a rank n representation of SUð2Þ
with n → ∞ to approximate the two-dimensional spatial
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manifold. In Minkowski signature, we should presumably
use a representation of SOð2; 1Þ. But we may also consider
using a coadjoint orbit of the Virasoro group [which
contains a suitable SOð2; 1Þ ∼ SLð2;RÞ] to construct a
noncommutative version of the two-manifold [34]. In that
case, the analogue of the large N limit would be the limit of
large central charge. Indeed this is the limit considered in
[32] to compare 2þ 1 dimensional gravity and string
theory. Further elaboration of this connection has to be
left to future work at this stage.
Finally, we may note that the spectral action of Connes

[10] is not the same as what we have, but there is some
similarity. A key result for the spectral action is that the
Wodzicki residue of the inverse square of the Dirac operator
gives the Einstein action; see in particular Kastler’s article
in [10]. In our case, we are considering odd dimensional
spacetimes. However, the action is basically related to the
Dirac action given in (58). The main points of difference
are that we have two sets of spinor fields which are
naturally obtained in thermofield dynamics, and that they
carry opposite chiralities in terms of coupling to gravita-
tional degrees of freedom. Further, we are evaluating the
effective action in a limit corresponding to c → ∞ or we are
taking the limit where only the lowest modes of the Dirac
Hamiltonian of (58) are included. Whether this is related in
some fashion to the Wodzicki residue is not clear.
Another point of clarification is the following. There are

two ways to think of gravity on noncommutative spaces.
We may consider the continuum description as an approxi-
mation, with a noncommutative operator version at short
distances or at finite N. In this case, one has the full set of
dynamical fields for gravity at all levels [10–13]. An
alternative is to consider gravity as being trivial at the
fundamental level only emerging in the continuum limit.
This would be more in the spirit of gravity as an entropic
phenomenon [17–19]. In our case, the spatial components
of the gauge field were introduced in (79) to provide a
simple realization of the gauge transformation property
(77), with their values set to what is given by extremizing
the continuum action. Thus there is no dynamics for these
components if we stay at the level of the starting action (67)
or (A6), making this approach closer to [17–19].
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APPENDIX: A GENERALIZATION OF (37)

The action for the functional integral for thermofield
dynamics was given in (37) for a single quantum system.
The fermion field version of that was given in (56) and
generalized to a multipartite system with identical

components in (57), (58). Here we want to consider the
direct generalization of (37) and its relation to theHall effect.
If we consider several systems which are distinct, the

generalization is simple. We must have a unitary matrix U
for each system and the action is simply a sum of actions of
the form (37). The more interesting case is when we have
identical subsystems; each subsystem may be a boson or a
fermion. The latter is what is relevant for noncommutative
geometry. In that case, we have a Hilbert space H, say,
of dimension N. States in this H replace the notion of
points on a manifold. All ofH must be included to account
for the total volume of the manifold. For the purpose of
time evolution, it is then useful to think of the space as a
state in the N-fold tensor product H ⊗ H � � � ⊗ H. To
avoid double counting, the choice of state in each compo-
nent H must be distinct. The simplest way to implement
this is to take the totally antisymmetrized state in
H ⊗ H � � � ⊗ H, i.e., an N-fermion state.
An analogy with a quantum Hall system is very useful

for this situation. Consider a quantum Hall system in the
lowest Landau level with one-particle states jαi,
α ¼ 1; 2;…; N. To be general, we assume that the fermion
can have multiple internal states, such as spin degrees of
freedom. (In the context of noncommutative geometry, this
could correspond to degrees of freedom of matter.) We use
labels I, J, etc. for the latter, so that states may be
represented as jki ¼ jαIi which span a Hilbert space H.
Let M be the dimension of this space. We consider the
dynamics of a droplet of n fermions starting out in one spin
state, say, I ¼ 0. The many-body Hilbert space will consist
of suitably antisymmetrized states in the n-fold tensor
product H ⊗ H ⊗ � � � ⊗ H. Let N denote the dimension
of this Fock space, N ¼ M!=ððM − nÞ!n!Þ. Let us say that
we are considering the first n states, i.e., jα0i,
α ¼ 1; 2;…; n, to be filled. This means that if we write
a fermionic field operator ψðxÞ ¼ P

kakfkðxÞ, where fkðxÞ
are the single particle wave functions, the droplet is given
by the state a†10a

†
20 � � �a†n0j0i or by the density matrix

ρ ¼ a†10a
†
20 � � � a†n0j0ih0jan0 � � � a20a10: ðA1Þ

The possible transformations of this configuration, includ-
ing time evolution, are given by an element of UðN Þ. We
have a single pure state chosen byρ in (A1), so a path integral
for the time evolution of this state would have the action (7),
with integration over all UðtÞ ∈ UðN Þ modulo transforma-
tions which leave ρ invariant. The relevant action is thus

S¼
Z

dt

�X
fkg

iðU†Þ1020���n0;k1k2���knð _UÞk1k2���kn;1020���n0

−
X
fklg

ðU†Þ1020���n0;k1k2���knHk1k2���kn;l1l2���lnðUÞl1l2���ln;1020���n0
�
:

ðA2Þ
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This is the general situation for the case with all sorts of
many-body interactions. However, if the Hamiltonian and
other observables of interest only involve singe-particle
operators, i.e., they are of the form C ¼ a†kCklal, then the
action simplifies. The possible transformations will cor-
respond to unitary transformations of the form Ukl ∈
UðMÞ acting on the single particle states, U being of the
form eiC. The states in the n-body Hilbert space may be
viewed as corresponding to an irreducible representation
of the group UðMÞ obtained as the totally antisymmetrized
product of n copies of the fundamental representation of
UðMÞ. Thus we can simplify (7) by restricting to
UðMÞ ∈ UðN Þ. In this case the elements of U are given
by the Slater determinant,

ðUÞk1k2���kn;1020���n0 ¼
1ffiffiffiffiffi
n!

p

�������
Uk110 Uk120 � � � Uk1n0

Uk210 Uk220 � � � Uk2n0

� � �

�������
:

ðA3Þ

It is easily seen that the action (A2) simplifies to

S ¼
Z

dtTr½PþðiU† _U −U†HUÞ�

¼
Z

dt
Xn
α¼1

½ihα0jU†jkihkj _Ujα0i

− hα0jU†jkiHklhljUjα0i�; ðA4Þ

Pþ ¼
Xn
α¼1

jα0ihα0j: ðA5Þ

Notice that P is not a density matrix; it is a representa-
tion, at the level of the one-particle Hilbert space, of the
density matrix for the pure state (A1) of the droplet of n
fermions. (It was this version of the action which was
used in [22,23].) In this expression, we do not yet have
the part with the negative eigenvalues of P since the
tilde system is not included. It is easy to see that the
tilde system will have a similar path integral, with
the eigenvalues of P being −1. The complete action
for the thermofield dynamics of this system is then

S ¼
Z

dt
Xn
α¼1

½ihα0jU†jkihkj _Ujα0i

− hα0jU†jkiHklhljUjα0i�

−
Z

dt
Xn
α¼1

½ihα0j ~U†jkihkj _~Ujα0i

− hα0j ~U†jkiHklhlj ~Ujα0i�: ðA6Þ

When applying this to noncommutative geometry, we
should take n ¼ N.
Here is a curiosity in this formulation: In the path integral,

we also have the functional integration over CPN−1; this
corresponds to the integration over ðUÞk1k2���kn;1020���n0 at each
instant of time. In restricting the action to UðMÞ trans-
formations with P as in (A4), a part of this integration
becomes trivial. The leftover integration is over the
Grassmannian space UðMÞ=UðnÞ ×UðM − nÞ. This gives
a factor of V at each instant of time, where V is defined byZ

dμðCPN−1Þ¼V
Z

dμðUðMÞ=UðnÞ×UðM−nÞÞ: ðA7Þ
Exponentiating these factors we get an additional term in S
which is

ΔS ¼
Z

dt
ϵ
logV: ðA8Þ

Here we are considering dividing the interval of time
integration into segments of length ϵ, with ϵ → 0 eventually.
This extra factor may be thought of as an additional entropy
factor arising from the fact that we are restricting the
observables to a smaller set, namely, to those of the one-
particle type. [It is also similar to the terms with δð0Þ factor
that one encounters in field theories when making a change
of field variables upon exponentiating the Jacobian of the
transformation.]
After this discussion, it should be clear that (A6), apart

from the extra term (A8), is indeed the required generali-
zation once the tilde system is included.
This generalization to several systems can also be

phrased as a contour integral, with the action

SC ¼ i
I
C
dt

Xn
α¼1

ðU† _U −U†AUÞα0α0: ðA9Þ
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