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We study the spin 1=2 and spin 3=2 fermion fields in a thick braneworld scenario in six dimensions
called string-cigar model. This smooth stringlike model has a source that satisfies the dominant energy
condition and undergoes a Ricci flow. We propose a new coupling for the fermions with a background
gauge field which allows a smooth and normalized massless mode in the brane with positive tension. By
numerical methods the mass spectrum and the massive eigenfunctions are obtained. The Kaluza-Klein
massive tower exhibits the usual increasing pattern and, in this scenario, the coupling term does not allow
tachyonic Kaluza-Klein states. The brane core and the background gauge field alter the properties of the
massive KK tower, enhancing the amplitude of the massive states near the origin and changing the
properties of the analogue Schrödinger potential. Furthermore, we find massive modes as resonant states in
this scenario for both fermionic fields.
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I. INTRODUCTION

In the last years, the extra dimensions physics has
acquired a conspicuous prominency, mainly due to the
seminal models of large extra dimensions [Arkani-Hamed-
Dimopoulos-Dvali (ADD) model] [1] and the warped
compactification models (RS model) [2,3]. The Randall-
Sundrum (RS) model, for instance, brought to light again
the possibility of noncompact extra dimension [4]. These
braneworld models provide solutions for important prob-
lems of the high energy physics, as the gauge hierarchy
problem [1–3], the cosmological constant problem [5], and
the origin of dark matter [6].
Fields endowed with a bulk dynamics provide an explan-

ation for the brane stability by assuming a stable source
configuration, as a topological defect [7]. In 5D (or more
generically in codimension 1) models, a domain wall brane
is generated by a spontaneous symmetry breaking mecha-
nism which also provides a width and inner dynamics to the
brane [7]. Further, for bulk propagating fields reproduce the
4D physics, a massless Kaluza-Klein (KK) mode ought to
have a compact support (localized) around the brane, what
leads to a massless effective 4D action [8]. Nonetheless,
unlike the gravitational and scalar fields, the vector gauge
field has no localized massless mode [8], being required
a coupling with the dilaton field [8]. For the spin 1=2 and
3=2 fermions, the localization of the massless mode also
requires an additional coupling, usually a Yukawa coupling
[9–20]. The bulk dynamics and the additional coupling also
provide the existence of KKmassive resonant modes which
brings important phenomenological consequences [9–12].
Another approach to obtain a normalizable massless mode
for the gauge and fermionic fields in brane models with
positive tension is accomplished by changing of the
geometry structure for a Weyl geometry [21].

In six dimensions (or codimension 2), stationary brane-
world scenarios with axial symmetry are called stringlike
models [22,23]. The stringlike branes inherited this name
due to their resemblance to topological defects in (3þ 1),
as the cosmic strings [24]. Assuming a warped geometry
with regularity conditions, the gravity is localized in the
stringlike models whose source is a global defect [22], an
infinitely thin brane [23], or a local vortex [25]. The gauge
vector field is also localized without any other coupling but
the minimal gravitational coupling [26–28].
An important stringlike scenario is the Gherghetta-

Shaposhnikov (GS) model, whose bulk geometry is the
warped product between a thin brane and the two dimen-
sional disk [23]. This vacuum solution of the Einstein
equation with a negative cosmological constant traps gravity
and provides a smaller correction to the Newtonian potential
compared to the RS model [23]. Nonetheless, the GS model
does not satisfy the regularities conditions at the origin and
the dominant energy condition, as well [29].
Giovannini et al. found numerically a stringlike solution

wherein the source is a local Abelian vortex in the Einstein-
Maxwell-Higgs model [25]. This smooth and thick string-
like brane satisfies all the energy conditions and all the
regularity conditions [25]. The components of the stress-
energy tensor are concentrated around the origin for the
winding number n ¼ 0. For higher winding numbers, the
source is shifted from the origin [25]. Yet, only a numerical
solution for this model is known.
Stringlike models with gravitational higher derivatives

[30] were proposed and their cosmological features ana-
lyzed [31]. Braneworld models in 6D were also proposed
assuming nontrivial transverse manifolds. Carlos and
Moreno found a smooth stringlike solution with a cigarlike
shape [32] whereas Kehagias proposed a conical tear
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droplike transverse space to solve the cosmological con-
stant problem [33]. Silva and Almeida used a section of the
resolved conifold to build a thick stringlike brane that traps
the gravitational [34], scalar, and gauge fields [35]. Other
transverse manifolds include general Einstein spaces [36],
apple-shape [37], football shape [38], and others [39].
An analytical interior and exterior stringlike model was

proposed wherein the transverse manifold has a cigarlike
shape, the so-called string-cigar model [40]. The bulk
geometry is a warped product between a 3-brane and the
so-called cigar soliton, a stationary solution of the Ricci
which asymptotically converges to the 2D disk [41]. The
Ricci flow appears in string theory as a RG flow of the world
sheet [42] and this geometrical flux has also applications
topological massive gravity [43] and condensed matter [44].
The cigar shape provides a metric similar to that found

numerically by Giovannini et al. [25], which makes the
metric satisfy all the regularity conditions at the origin and
behave similar to the GS model at large distances [40].
Then, the string-cigar model can be regarded as a smooth
extension of the GS model [40]. Since a Ricci soliton is an
extension of the Einstein spaces, the string-cigar model
generalizes the 6D model in Ref. [36]. The Ricci flow in
the transverse space makes the source undergo a flux that
varies the brane-tensions and the bulk cosmological con-
stant [40]. As a result, the source satisfies all the energy
conditions and it has a bell-shaped core displaced from the
origin, as in Ref. [25].
The spin 1 and spin 2 bulk fields have been already studied

in the string-cigar background [45,46]. The massless modes
are localized at the brane core and they recover the usual
stringlike behavior at large distances [23,26]. The Kaluza-
Klein spectra are attained, showing an increasing behavior
for both fields, and the correspondent massive modes are
enhanced near the brane core [45,46]. Besides, resonant
massive states are present in the gravitational case [45].
A relevant question to address is how to include the

matter fields (fermions) in the thin and thick stringlike
models. Besides the spin 1=2 spinor which describes the
ordinary matter, another important fermion is the spin 3=2
gravitino field (superpartner of the graviton) that arises in
supergravity context and is a dark matter candidate [47].
Oda studied the localization of various spin fields in a thin
stringlike scenario [26,27]. As the vector gauge field in 5D,
the free spin 1=2 and 3=2 fermions can only be localized
(without additional interactions) on a stringlike defect with
the exponentially increasing warp factor (negative tension)
[27]. Xiao Liu et al. proposed to couple the fermions with a
Uð1Þ background gauge field by which the zero mode is
confined in the thin stringlike brane with positive tension
[48]. Parameswaran et al. analyzed the massless and
massive spectrum in a 6D supergravity model which
enables a finite mass gap even for an infinite extra
dimension [49]. Dantas et al. [50] obtained a normalized
massless mode for a fermion in a stringlike brane with a

transverse resolved conifold [34]. The depth of the potential
well and the high of the potential barrier evolves with the
resolution parameter [50]. However, although normaliz-
able, the massless mode is not well defined at the origin.
In this work, we propose a new coupling for the fermions

with a background gauge field which localizes the zero
mode in the string-cigar model. The thin-string limit is
considered, as well. Imposing suitable boundary conditions
to guarantee the self-adjointness of the spinor operators, a
normalized and everywhere well-defined massless mode is
obtained for both the thin string and string-cigar models. As
for the gravitational [45] and theUð1Þ [46] vector fields, we
find that the spin 1=2 field massless mode is shifted from
the origin and sets around the displaced brane core. The
mass spectrum is the same for both right-handed and left-
handed chiralities and it is free of tachyons. Further, the KK
spectrum has an increasing pattern which exhibits the usual
linear behavior of the Kaluza-Klein theories. For the Rarita-
Schwinger field (spin 3=2), the zero mode and massive
spectrum have minor changes when compared to those of
the spin 1=2. However, the amplitudes of the massive
eigenfunctions for the spin 3=2 are higher than those for the
spin 1=2. In comparison with the thin string-like model, the
core of the string-cigar brane enhances the massive modes
near the origin for both spin 1=2 and 3=2 fields. Besides, in
a Schrödinger approach, the spin 1=2 and 3=2 fields
possess identical behavior. Furthermore, the coupling also
enables the presence of resonant modes (massive modes
solutions having very large amplitude near the brane).
This paper is organized as follows: in Sec. II, we review

the features of the thin string and the string-cigar models.
We comment on the main properties of the gravity and
gauge fields in these models, which were developed in
Refs. [45] and [46], respectively. We also studied the
dynamics of the scalar field in these scenarios and show
that it is identical to the gravitational case [45]. In Secs. III
and IV, we study the localization of spin 1=2 and 3=2 fields.
Furthermore, the massive spectrum is obtained in both
cases. Concerning the resonant modes, we conclude that
the Schrödinger-like potentials are the same for both spin
1=2 and spin 3=2 cases. Thus the behavior of the resonant
modes are only studied in Sec. III D. In Sec. V, conclusions
and perspectives are outlined.

II. THE STRING-CIGAR BRANEWORLD

Consider a six dimensional spacetime M6 where the
3-brane M4 can be embedded. Assuming an axially
symmetric and static bulk M6, the braneworld scenario
is called a stringlike model [22,23,25,51]. A general metric
for the string-like model takes the form [22,23,25,51]

ds26 ¼ FðrÞημνdxμdxν þ dr2 þHðrÞdθ2; ð1Þ

where 0 ≤ r ≤ rmax and θ ∈ ½0; 2πÞ are the radial and the
angular coordinates, respectively. The radial component
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can extend to infinity, i.e., rmax → ∞. In order to guarantee
that the scalar and the extrinsic curvatures are finite at the
origin, it is usual to impose the regularity conditions
[22,23,25]

Fð0Þ¼ ð
ffiffiffiffiffiffiffiffiffiffi
HðrÞ

p
Þ0r¼0¼ 1; and F0ð0Þ¼Hð0Þ¼ 0; ð2Þ

where the primes denote derivatives with respect to r.
Performing the change of coordinate [52]

zðrÞ ¼
Z

r

0

F−1
2ðr0Þdr0; ð3Þ

the metric (1) can be cast in the conformal form [52]

ds26 ¼ FðzÞðημνdxμdxν þ dz2 þ βðzÞdθ2Þ; ð4Þ

where βðzÞ ≔ HðzÞ
FðzÞ.

Let us assume that the bulk dynamic is governed by
the Einstein-Hilbert action with bulk cosmological constant
Λ [22,23,25,51]:

Sg ¼
Z
M6

�
1

2κ6
R − Λþ Lm

� ffiffiffiffiffiffi
−g

p
d6x; ð5Þ

where κ6 ¼ 8π=M4
6,M

4
6 is the six-dimensional bulk Planck

mass and Lm is the matter Lagrangian for the source of the
geometry. From the matter Lagrangian Lm we define the
stress-energy tensor

T ¼ TMNdxM ⊗ dxN; ð6Þ

where the stress-energy tensor components are defined by
[22,23,25,51].

TMN ¼ 2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp
LmÞ

∂gMN : ð7Þ

The Einstein-Hilbert action provides the Einstein equation
for the bulk [22,23,25,51]:

RMN −
1

2
RgMN ¼ −κ6ðΛgMN þ TMNÞ: ð8Þ

An axisymmetric and static anstaz for the stress-energy
tensor has the form [22,23,25,51].

T ¼ t0ðrÞ
�
e0 ⊗ e0 þ

X3
i¼1

ei ⊗ ei

�

þ trðrÞer ⊗ er þ tϕðrÞeϕ ⊗ eϕ: ð9Þ

Using the metric ansatz (1) and the stress-energy ansatz (9),
the bulk Einstein equation (8) yields to the system of
equations

3

2

�
F0

F

�0
þ 3

2

�
F0

F

�
2

þ 3

4

F0

F
H0

H
þ 1

4

�
H0

H

�
2

þ 1

2

�
H0

H

�0

¼ −κ6ðΛþ t0ðrÞÞ; ð10Þ

3

2

�
F0

F

�
2

þ F0

F
H0

H
¼ −κ6ðΛþ tρðrÞÞ; ð11Þ

2

�
F0

F

�0
þ 5

2

�
F0

F

�
2

¼ −κ6ðΛþ tθðrÞÞ; ð12Þ

A. Thin stringlike model

In the Gherghetta-Shaposhnikov (GS) model, a vacuum
solution of the system of Einstein equations (10) was found
[23]. Assuming that F0

F ¼ H0
H ¼ 0, the metric functions are

given by [23]

FðrÞ ¼ e−cr; HðrÞ ¼ R2
0FðrÞ; ð13Þ

where R0 is an arbitrary length scale and the constant c is
related to the bulk cosmological constant by [23]

c2 ¼ −
2

5
κ6Λ: ð14Þ

Hence, the cosmological constant must be negative and the
bulk is an AdS6 spacetime [23]. Since the functions in
Eq. (13) are vacuum solutions, the GS model represents an
infinitely thin stringlike braneworld which is an extension
of the Randall-Sundrum (RS) metric to six dimensions.
For the thin stringlike metric, i.e., FðrÞ ¼ e−cr and

HðrÞ ¼ R2
0FðrÞ, the conformal coordinate can be found

to be [52]

zðrÞ ¼ 2

c
ðecr2 − 1Þ: ð15Þ

Note that zðr ¼ 0Þ ¼ 0 and z0ðrÞ > 0 in Eq. (15). Then, the
conformal coordinate zðrÞ is still a Gaussian radial coor-
dinate which measures the distance from a point in the
transverse manifold to the origin. Using the conformal
coordinate z in Eq. (15), the metric factors have the form

FðzÞ ¼ 4

c2
1

ðzþ 2
cÞ2

; HðzÞ ¼ R2
0FðzÞ: ð16Þ

Furthermore, the hierarchy problem between the four-
dimensional Planck mass (M4) and the bulk Planck mass
(M6) is solved in this scenario [23,40], and these masses are
related by the following equation
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M2
P ¼ 2πM4

6

Z
rmax

r0¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðrÞ

p
F−1ðr0Þdr0

¼ 2πR0

3c
ð1 − e

3crmax
2 Þ: ð17Þ

The relation between the bulk and brane Planck energies
can be rewritten using only the ratio between the bulk
cosmological constant and the string tension [23].
For fluctuations of the metric (1) in the form [23,25,40]

ds26 ¼ FðrÞðημν þ hμνÞdxμdxν þ dr2 þHðrÞdθ2; ð18Þ

satisfying the traceless gauge ∇μhμν ¼ 0, the linearization
of the Einstein equations (8) yields the equation for the
gravitational perturbation [23,40]

□6hμν ¼ ∂Að ffiffiffiffiffiffiffiffi
−g6

p
ηAB∂BhμνÞ ¼ 0: ð19Þ

Performing the Kaluza-Klein decomposition hμνðx; r; θÞ ¼
~hμνðxÞ

P∞
n;l¼0 ϕn;lðrÞeilθ [23,40] and imposing the free

wave dependence on the 3 − brane □4
~hμνðxÞ ¼

m2 ~hμνðxÞ [23,25,40], the radial component of the graviton
equation of motion takes the general form [23,25,40]

�
∂2
r þ 2P∂r þ

�
m2

n;l

F
−
l2

H

��
ϕn;lðrÞ ¼ 0; ð20Þ

where

PðrÞ ¼ F0

F
þ 1

4

H0

H
¼ 5

4

F0

F
þ 1

4

β0

β
: ð21Þ

The graviton radial equation for the thin stringlike model
has the explicit form [23]

ϕ00
m −

5

2
cϕ0

m þ ðm2
0 − l2=R2

0Þecrϕm ¼ 0: ð22Þ

From the Eq. (2), we impose the boundary conditions
[23,25,40]

ϕ0ð∞Þ ¼ ϕ0ð∞Þ ¼ 0: ð23Þ

The radial graviton equation (22) together with the boun-
dary conditions (23) forms a Sturm-Liouville problem
[23,25,40]. For m ¼ 0 and s-wave solution (l ¼ 0), the
localized massless mode solution is obtained as [23]

~ϕm¼0ðrÞ ¼
ffiffiffiffiffiffiffiffi
3c
2R0

s
e−

3
4
cr; ð24Þ

where ~ϕm ¼ e−
3
4
crϕm¼0 [23].

For m ≠ 0, the massive modes has the form [23]

ϕmðρÞ ¼ e
5
4
cρ

�
B1J5=2

�
2m
c

e
1
2
cρ

�
þ B2Y5=2

�
2m
c

e
1
2
cρ

��
;

ð25Þ
where B1 and B2 are arbitrary constants and
m ¼ m2

0 − l2=R2
0. The exponential dependence reveals that

the massive modes are not localized on the brane [23].
Applying the boundary conditions (23) on the massive
modes (25), the graviton mass spectrum in the GS model
was found as [23]:

mn ≃ c

�
n −

1

2

�
π

2
e−

c
2
rmax ; ð26Þ

where rmax is a finite radial distance cutoff. The gravita-
tional massless mode is localized in the brane and the
contribution from the nonzero modes provides a small
correction to the Newton’s law on the 3 − brane [23].
The vector gauge field was also studied in the string-like

models [26–28,35,46,49,53,54]. Starting with action

Sspin−1 ¼
Z ffiffiffiffiffiffi

−g
p

gMNgRSFMNFRSd6x; ð27Þ

where FMN ¼ ∇MAN −∇NAM, the equation of motion
is [26–28]

1ffiffiffiffiffiffi−gp ð∂S
ffiffiffiffiffiffi
−g

p
gSMgRNFMNÞ ¼ 0: ð28Þ

Imposing the gauge conditions [26–28] ∂μAμ ¼ Aθ ¼ 0

and Ar ¼ Arðr; θÞ, the Maxwell equations read
[26,27,35,46] �

ημν∂μ∂ν þ
F
H
∂2
θ

�
Ar ¼ 0; ð29Þ

∂r

�
F2ffiffiffiffi
H

p ∂θAr

�
¼ 0; ð30Þ

�
ημν∂μ∂ν þ

F
H
∂2
θ þ

1ffiffiffiffi
H

p ∂rðF
ffiffiffiffi
H

p ∂rÞ
�
Aλ ¼ 0: ð31Þ

Using the Kaluza-Klein decompositions AμðxM; r; θÞ ¼P∞
n;l¼0A

ðn;lÞ
μ ðxμÞρnðrÞeilθ and ArðxM; r; θÞ ¼P∞

l¼0A
ðlÞ
μ ðxμÞϱðrÞeilθ, the radial dependence of the gauge

field on the brane for l ¼ 0 is governed by the Sturm-
Liouville equation [35,46]

�
∂2
r þ

�
2P −

F0

F

�
∂r þ

m2
n

F

�
ρnðrÞ ¼ 0; ð32Þ

which can be rewritten as
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ρ00nðrÞ þ
�
3

2

F0

F
þ 1

2

β0

β

�
ρ0nðrÞ þ

m2
n

F
ρnðrÞ ¼ 0; ð33Þ

where βðr; cÞ ¼ Hðr; cÞ=Fðr; cÞ. For the thin-string model,
the radial equation (33) has the explicit form [26,27]

ϕ00
m −

3

2
cϕ0

m þ ðm2
0 − l2=R2

0Þecρρm ¼ 0: ð34Þ

Unlike the vector gauge field in the RS model, in the thin
stringlike model the gauge field has a massless mode of
form [26,27]

ρ0ðrÞ ¼
ffiffiffiffiffiffiffiffi
5c
2R0

s
e−

c
2
r; ð35Þ

which is normalizable [26,27]. The massive modes have the
form [26,27]

ρmðrÞ¼ e
3
4
cr

�
B1J3=2

�
2m
c
e
1
2
cr

�
þB2Y3=2

�
2m
c
e
1
2
cr

��
; ð36Þ

and then, are nonlocalizable [26,27]. Imposing the same
boundary conditions (23), a linearly increasing KK gauge
spectrum was found [26,27]

mn ¼
c
2
nπe−

c
2
rmax : ð37Þ

Finally, for a minimally coupled scalar field, the action
[26,27,34]

Sspin−0 ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p
gMN∂MΦ∂NΦd6x; ð38Þ

provides the equation of motion

1ffiffiffiffiffiffi−gp ∂M½
ffiffiffiffiffiffi
−g

p
gMN∂NΦ� ¼ 0: ð39Þ

Using the general stringlike metric (1) in Eq. (39), we have

�
ημν

F
∂μ∂ν þ

∂rðF2H
1
2∂rÞ

F2H
1
2

þ ∂2
θ

H

�
Φ ¼ 0: ð40Þ

Using the KK decomposition Φðxμ; r; θÞ ¼ 1ffiffi
π

p φðxμÞ×P∞
n;l¼0 χnðrÞeilθ and ημν∂μ∂νφðxμÞ ¼ m2φðxμÞ, the

Eq. (39) yields the radial Sturm-Liouville equation

�
∂2
r þ 2PðrÞ∂r þ

�
m2

n;l

F
−
l2

H

��
χnðrÞ ¼ 0: ð41Þ

Note that this equation is the same for the gravitational case
(20), thus for s-wave solution, both zero mode and as the
KK spectrum are given by the results of the graviton

[27,34,40,45]. This behavior between spin 0 and spin 2
modes is also verified in five dimensional scenarios [55].
Despite the good results of the thin stringlike model

described above, the regularity conditions (2) at the origin
and the dominant energy conditions are not satisfied for this
model [25,29]. This issue arises due to the metric being
only an exterior solution of the Einstein equations.
Although it is possible to consider an interior and exterior
solution separately using the junctions conditions to match
the solutions, the thin string limit (where the width of the
core vanishes and only the exterior solution remains) is
known to present the same problems [29]. As a matter of
fact, Giovannini et al. have found numerically an interior
and exterior stringlike solution of the Einstein equations
satisfying all the regularity and energy conditions whose
source is an Abelian vortex in the Einstein-Maxwell-Higgs
model. Nonetheless, the analytical expression of the sol-
ution is yet unknown.

B. String-cigar model

An analytical interior and exterior smooth extension of
the GS model, called the string-cigar model, was proposed
in Ref. [40]. The thin stringlike GS model is built from the
warped product between the 3 − brane and two dimen-
sional disc D2 of radius R0, whose metric has the form

ds2D2 ¼ dr2 þ R2
0dθ

2: ð42Þ

The constancy of the radius prevents the GS model from
satisfying the Hð0Þ ¼ 0 and ð ffiffiffiffi

H
p Þ0 ¼ 1 conditions.

In the Ref. [40], a regular transverse manifold C2 with
metric

ds2C2 ¼ dr2 þ 1

c2
tanh2ðcrÞdθ2 ð43Þ

was proposed. Note that asymptotically, the metric (43)
converges to the D2 metric (42), for R0 ¼ 1=c. At the
origin, the effective radius tanhðcrÞ=c vanishes. Hence, the
transverse manifold C2 has a cigarlike behavior.
Indeed, the transverse space C2 is a stationary solution of

the geometric Ricci flow according to [40–42]

∂gab
∂c ¼ −2RabðcÞ; ð44Þ

where c can be regarded as a metric parameter and Rab is
the Ricci tensor. The metric solution (43) is a Ricci flow
solution called cigar soliton [40,41]. The Ricci flow (44)
defines a family of smooth geometries depending on the
parameter c [40]. Using the cigar soliton C2 as the trans-
verse manifold, a stringlike model was proposed as [40]

FðrÞ ¼ e−½cr−tanh ðcrÞ�; ð45Þ
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and

HðrÞ ¼ βðrÞFðrÞ; ð46Þ

where βðrÞ ¼ 1
c2 tanh

2ðcrÞ. Since this stringlike model has a
cigar transverse manifold, it was named string-cigar model.
We plot in Fig. 1 the metric functions for the thin stringlike
and for the string-cigar models. It can be seen that, for
large r, both models possess similar behaviors. Therefore,
the string-cigar model recovers the thin string-like limit
asymptotically. At the origin, the string-cigar model
satisfies all the regularity conditions [40].
From the Einstein equations (10), the components of

the stress-energy tensor corresponding to the string-cigar
braneworld are [40]

t0ðr; cÞ ¼
c2

κ6

�
7sech2crþ 13

2
sech2cr tanh cr −

5

2
sech4cr

�
ð47Þ

trðr; cÞ ¼
c2

κ6

�
5sech2crþ 2sech2cr tanh cr −

5

2
sech4cr

�
ð48Þ

tθðr; cÞ ¼
c2

κ6

�
5sech2crþ 4sech2cr tanh cr −

5

2
sech4cr

�
:

ð49Þ

The components are non-negative t0; tr; tθ ≥ 0 and satisfy
the dominant energy condition, i.e., t0 ≥ jtrj; jtθj. We plot
in Fig. 2 the energy density t0 for different values of the
parameter c. The position of the maximum of the energy-
density evinces that the brane core is shifted from the
origin, as for the Abelian vortex model for higher winding
number [25].

Since the stress-energy tensor components have a com-
pact support around the origin, the string-cigar geometry
can be regarded as an interior and exterior thick stringlike
solution of the Einstein equations (10). Once the source
evolves with the Ricci flow parameter c, the string-cigar
model reflects changes that both the brane source and the
bulk cosmological constant undergo [40]. For instance,
due to the tanhðcrÞ and sechðcrÞ terms, the stress-energy
components vanish when c → ∞ and we recover the thin
GS model.
In the string-cigar model, the relation between the bulk

and the brane energy scales, given by Eq. (17), reads [40]

M2
4 ¼

2πM4
6

c

Z
∞

0

e−
3
2
ðcr−tanhðcrÞÞ

tanhðcrÞ dr: ð50Þ

Then, in order to guarantee thatM4 ≫ M6, the parameter c
must be small [40].
The localization of gravity and Uð1Þ vector gauge field

in the string-cigar braneworld was performed in Refs. [40]
and [46], respectively.
The radial graviton equation has the form [40]

ϕ00
m þ c

�
−
5

2
tanh2ðcρÞ þ sech2ðcρÞ

tanhðcρÞ
�
ϕ0
m

þ eðcρ−tanh ðcρÞÞ
�
m2

n −
l2c2

tanh2ðcρÞ
�
ϕm ¼ 0: ð51Þ

Note that asymptotically, tanhðcrÞ ¼ 1 and sechðcrÞ ¼ 0,
then the graviton equation in the string-cigar model has
the same form of the thin stringlike GS model [40].
Nevertheless, near the origin, the effects of the brane core
change the behavior of the gravitons. In fact, its massless
mode is given by [40]

~ϕm¼0ðrÞ ¼ N1F
3
4ðrÞβ1

8ðrÞ; ð52Þ

FIG. 1. Warp factors for c ¼ 0.9. The thick lines correspond to
the string-cigar geometry, while the thin lines to the GS model
with R0 ¼ 8.0.

FIG. 2. Energy density of the string-cigar braneworld for
different values of c. Its maximum indicates the position of
the core of the brane.
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where N1 is a normalization constant. The massless
graviton mode (52) satisfies the boundary conditions
(23) and asymptotically behaves as the GS massless mode.
Further, the zero mode has its peak shifted from the origin,
as the energy density [40].
The massive modes as solutions of the Eq. (20) was

studied in detail in Ref. [45], where the complete Kaluza-
Klein spectrum and the corresponding eigenfunctions were
attained. Asymptotically, the massive KK states have a
similar behavior of the thin GS model while near the
origin, the brane core interaction enhance their amplitude
compared with in the GS model. The resonant states were
also found as solutions of the analogue Schrödinger
equation [45]. In the string-cigar model, the graviton
massive spectrum, obtained numerically, has a linear
behavior, as for the GS model [45].
Since the radial equation for the scalar field is the same

of the graviton, the analysis of the massive modes for the
scalar field in the string-cigar braneworld is identical to the
gravitational field presented in Ref. [45].
For the vector gauge field, the radial equation reads [46]

ρ00n þ c

�
−
3

2
tanh2crþ sech2cr

tanh cr

�
ρ0n þ eðcr−tanh crÞm2

nρn ¼ 0:

ð53Þ

Asymptotically, the gauge KK equation (53) has the same
form of that for the thin stringlike model. The localized
massless solution of the Eq. (53) in the string-cigar scenario
were found in Ref. [46] as

~ρm¼0ðrÞ ¼ N2F
1
2ðrÞβ1

4ðrÞ; ð54Þ

where N2 is a normalization constant. It is interesting to
compare the massless mode of the bosonic and fermionic
fields. We insert a comparative plot of massless modes of
gravity, Eq. (52), vector field, (54), and fermionic fields
in Sec. IV.
The massive solutions of Eq. (32) for the string-cigar

was studied in Ref. [46]. The well-known linear increasing
behavior for m ≪ c was obtained. As for the gravitational
case [45], the massive eigenfunctions behave as the thin
stringlike modes asymptotically and they are influenced by
the core of the brane near the origin. However, resonant
states were not found [46].
The similarity between Kaluza-Klein modes of the spin 0

and spin 2 fields is expected. This behavior is present in the
thin string-like model as inferred by Oda in Ref. [27].
Besides, the same feature occurs for the spin 1=2 and spin
3=2 cases, which will be discussed in Secs. III and IV.

III. SPIN 1=2 FERMIONS

Consider the action on curved space background for bulk
massless spin 1

2
fermions [27,48,49,56]:

S61=2 ¼
Z ffiffiffiffiffiffi

−g
p

Ψ̄iΓMDMΨd6x; ð55Þ

where ΓM ¼ ξMM̄Γ
M̄ are the curved Dirac matrices defined

from the flat Dirac matrices ΓM̄ through the vielbeins
gMN ¼ ξM̄Mξ

N̄
NηM̄ N̄ . These matrices obey the Clifford algebra

fΓM;ΓNg ¼ þ2gMN18. Here, DM is the gauge covariant
derivative given by [48,49]

DM ¼ ∂M þ ΩM − iqAM; ð56Þ

where ΩM ¼ 1
4
ηP̄ N̄ξM̄N ½∂Mξ

N
P̄ þ ΓN

MQξ
Q
P̄ �ΓM̄ΓN̄ is the spin

connection and AM ¼ AμðxÞx̂þ AθðrÞθ̂ is a cylindrically
symmetric background gauge vector field. We remark that
here, AM is not related to the dynamical field AM of the
previous section.
The nonvanishing terms of the spin connection are

Ωμ ¼
1

4

F0ðrÞffiffiffiffiffiffiffiffiffiffi
FðrÞp Γμ̄Γr̄ and Ωθ ¼

1

4

H0ðrÞffiffiffiffiffiffiffiffiffiffi
HðrÞp Γθ̄Γr̄: ð57Þ

Substituting Eqs. (56) and (57) in the action (55) in the
background metric given by Eq. (1), we obtain the Dirac
equation:

ΓMDMΨ ¼
�
F−1

2Γμ̄ð∂μ − iqAμðxÞÞ þ Γr̄

�
∂r þ

F0

F
þ H0

4H

�

þH−1
2Γθ̄ð∂θ − iqAθðrÞÞ

�
Ψ ¼ 0: ð58Þ

We will now choose the usual Weyl spinor and
gamma matrices representation on six dimensional models

]27,48–50,56,57 ]:

Ψðx; r; θÞ ¼
�
ψ4

0

�
; ð59Þ

Γμ̄ ¼
�

0 γμ̄

γμ̄ 0

�
; Γr̄¼

�
0 γ5

γ5 0

�
; Γθ̄ ¼

�
0 −γθ

γθ 0

�
:

ð60Þ
Due to the metric sign convention ð−;þ;þ;þ;þ;þÞ the γμ
matrices in Weyl representation become:

γ0 ¼ −iσ1 ⊗ 12; γi ¼ −σ2 ⊗ σi;

γ5 ¼ σ3 ⊗ 12; γθ ¼ i14; ð61Þ

where σi are Pauli matrices and 1 is the identity matrix. In
this convention, the matrix γ0 is anti-Hermitian, while the
others are Hermitian. The γ5 is such that γ5ψR;L ¼ �ψR;L.
The Dirac operator acts as γμð∂μ − iqAμÞψ ¼ mψ . Other
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representations can be directly deduced from the general
forms of the Ref. [58] for signature ðþ;−;−;−;−;−Þ.
Now, let us perform a Kaluza-Klein decomposition on

ψ4 in the form

ψ4ðx;r;θÞ¼
1ffiffiffiffiffiffi
2π

p
X
n;l

½ψRn;l
ðxÞαRn;l

ðrÞþψLn;l
ðxÞαLn;l

ðrÞ�eilθ:

ð62Þ

Using Eqs. (59), (60), and (62) for the s-wave solution
[27,48,57], the Dirac equation (58) turns to the following
chiral coupled equations8<

:
½∂r þ PðrÞ þWðrÞ�αRn

ðrÞ ¼ − mnffiffiffiffiffiffiffi
FðrÞ

p αLn
ðrÞ

½∂r þ PðrÞ −WðrÞ�αLn
ðrÞ ¼ mnffiffiffiffiffiffiffi

FðrÞ
p αRn

ðrÞ; ð63Þ

where

PðrÞ ¼ F0ðrÞ
FðrÞ þ

H0ðrÞ
4HðrÞ

¼ −c
�
5

4
tanh2ðcrÞ − 2sech2ðcrÞ coth ðcrÞ

�
ð64Þ

and

WðrÞ ¼ q
AθðrÞffiffiffiffiffiffiffiffiffiffi
HðrÞp ¼ cq

AθðrÞ
tanh ðcrÞ e

1
2
½cr−tanh ðcrÞ�: ð65Þ

A. Spin 1=2 zero mode

For m ¼ 0, the expressions (63) decouple in two first
order differential equations which solutions are

α0Rn;Ls
ðrÞ ¼ C0 exp

�
−
Z
r0
ðP �WÞdr0

�
; ð66Þ

where C0 is a normalization constant.
In order for the zero-mode to be localized and free of

singularities at the origin, we impose the orthogonality
condition Z

∞

0

jαRn;Ls
ðrÞj2dr0 ¼ δRn;Ls

: ð67Þ

This condition implies that limr→∞α
0
R;LðrÞ ¼ 0.

Nonetheless, since

−
Z
r0
PðrÞdr0 ¼ 5

4

�
cr− tanhðcrÞþ2

5
ln

�
tanhðcrÞ

c

��
ð68Þ

is nonconvergent, the AθðrÞ function presented in Eq. (65)
has to be adjusted in order to overcome this drawback.
Assuming that

WðrÞ ¼ −λPðrÞ; ð69Þ

where λ is a dimensionless coupling constant, the right-
handed zero mode becomes

α0RðrÞ ¼ C0 exp

�Z
r0
dr0ðλ − 1ÞP

�

¼ C0Fðλ−1ÞðrÞH1
4
ðλ−1ÞðrÞ: ð70Þ

For λ ¼ 0 this expression is the same obtained in Ref. [27]
which is non-normalizable.
Using the explicit expressions of the warp factors in

Eq. (45) for string-cigar, the zero mode and the gauge
angular component are given, respectively, by

α0RðrÞ¼C0

�
tanhðcrÞ

c

�ðλ−1Þ
2

exp

�
5

4
ð1−λÞ½crþ tanhðcrÞ�

�
ð71Þ

and

AθðrÞ ¼
λ

q

�
5

4
tanh3ðcrÞ − 2sech2ðcrÞ

�
e−

1
2
½cr−tanh ðcrÞ�: ð72Þ

In the absence of the coupling (λ ¼ 0), the massless mode
is not localized in the brane. For λ > 1, the zero mode is
normalizable, but only for λ > 3 its derivative is continuous
and null at the origin. From these restrictions over λ, we
find the following boundary conditions8<

:
α0R;Lð0Þ ¼ lim

r→∞
α0R;LðrÞ ¼ 0

∂r½α0R;LðrÞ�r¼0
¼ lim

r→∞
∂r½α0R;LðrÞ� ¼ 0:

ð73Þ

We plot the fermionic zero mode and the gauge angular
term in Figs. 3 and 4, respectively. In both cases, the
coupling constant λ controls the amplitude, whereas the

FIG. 3. Plot of the right-handed fermionic zero mode for
c ¼ 0.5 in the string-cigar model.
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geometric parameter c regulates their distribution over
the radial extra-dimension. The displacement of the zero
mode from the origin is an important result present in
expression (71). This feature is closely related to the fact
that the brane core is not placed at r ¼ 0 [40]. This zero
mode has a similar profile to that of the energy density of
the string-cigar model [40]. Note, in Fig. 3, that the zero
mode satisfies the homogeneous boundary conditions (73)
provided that λ > 3.
In order to confine the massless left-handed fermions

we would have to make λ → −λ in the Eq. (69) with the
same restriction jλj > 3. Therefore, only one massless
chiral mode can be trapped in the brane. This is a
well-known result in five warped dimensional models
[11,12,14,18–20].
It is interesting to note at this point that Refs. [27,48]

use a less restrictive imposition on the radial component
α0R;LðrÞ in the form

I1
2
¼
Z

∞

0

Î1
2
ðrÞdr0 ¼

Z
∞

0

ffiffiffiffiffiffi
−g

p
F−1

2ðrÞjα0Rn;Ls
ðrÞj2dr0 ¼ δRs;Ln

;

ð74Þ

which comes from the effective action S0effðx; r; θÞ [27,48]
using Eqs. (55) and (62), namely

S0eff ¼
Z

∞

−∞
ψ̄ðxÞiγμ½∂μ þ iqAμðxÞ�ψðxÞd4x0

×
Z

∞

0

Î1
2
ðrÞdr0

Z
2π

0

dθ
2π

: ð75Þ

However, if we adopt only the condition above, the spinor
in the string-cigar scenario will be exposed to singularities,
while for the condition (67), these singularities vanish.
Besides, the Eq. (74) is satisfied too.

B. Spin 1=2 massive modes

In order to study the massive modes, let us decouple the
system of first-order differential equations (63) performing
the conformal change of variable zðrÞ given by Eq. (3)
which turns the coupled first-order differential equations
system (63) to

ð∂2
z þ 2 ~P∂z þ ½ ~P2 − ~W2 þ ð _~P � _~WÞ�ÞαRn;Ln

ðzÞ
¼ −m2

nαRn;Ln
ðzÞ; ð76Þ

where

~P ¼ PðzÞ
ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
; ~W ¼ WðzÞ

ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
: ð77Þ

Here, the overdots mean derivatives with respect to z and
the þ, − sign stands for the right and the left chirality,
respectively.
The decoupled system of two second-order equa-

tions (76) is composed by independent Sturm-Liouville
problems for each chirality. Thus, we can analyze the
dynamics for the chiralities independently. However, due to
the involved form of the metric components (45), the
conformal coordinate zðrÞ in Eq. (3) cannot be achieved
analytically in general for the string-cigar geometry. The
functions PðzÞ and WðzÞ (and their derivatives) must be
constructed from a numerical integral of Eq. (3). In order to
avoid the cumulative round-off errors in the forthcoming
analysis, we will study the Eq. (76) in the r coordinate,
where the metric functions are already defined. It turns out
that returning to the r coordinate, the second-order system
(76) is still decoupled, and it can be written as

α00Rn;Ln
ðrÞ þ

�
3f þ 1

2
g

�
α0Rn;Ln

ðrÞ

þ
�ð1∓λÞ

8
½5f2 þ fgþ 10f0 þ 2g0�

þ ð1 − λ2Þ
�
5

4
f þ g

4

�
2
�
αRn;Ln

¼ −
m2

n

F
αRn;Ln

ðrÞ ð78Þ

where

fðrÞ ¼ F0ðrÞ
FðrÞ and gðrÞ ¼ β0ðrÞ

βðrÞ : ð79Þ

1. Thin string

For the thin stringlike model (f ¼ −c, and g ¼ 0), the
Sturm-Liouville KK equation (78) reduces to

α00Rn;Ln
ðrÞ − 3cα0R;LðrÞ þ

5c2

8

�
ð1∓λÞ þ 5

2
ð1 − λ2Þ

�
αRn;Ln

ðrÞ

¼ −mnecrαRn;Ln
ðrÞ: ð80Þ

FIG. 4. Plot of the gauge angular component for the string-cigar
model.
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For λ ¼ 0 (absence of the coupling), the Sturm-Liouville
equation (80) turns to

α00R;LðrÞ − 3cα0R;LðrÞ þ
35

16
c2αR;LðrÞ ¼ −mnecrαRn;Ln

ðrÞ;
ð81Þ

and the solutions have the form

αR;L¼A1
R;Le

3cr
2

�
J�1

2

�
2m
c
e
cr
2

�
þB1

R;LY�1
2

�
2m
c
e
cr
2

��
; ð82Þ

where A1
R;L, B

1
R;L are integration constants. It is worthwhile

to mention that the massive modes depend on the Bessel
functions of order μR;L ¼ � 1

2
, while the graviton has order

5=2 (25) [23] and the gauge vector field has order 3=2
(33) [27,28].
Moreover, unlike the graviton, gauge vector field, and

scalar field, the fermionic massless mode for λ ¼ 0 in not
localized on the thin stringlike brane [27]. In fact, for
m ¼ 0 in (81), the massless solution has the form

α0R;L ¼ A0
R;Le

p1cr þ B0
R;Le

p2cr; ð83Þ

where p1;2 ¼ 12� ffiffiffiffiffiffi
109

p
8

and A0
R;L, B0

R;L are integration
constants.
For λ ≠ 0, we write the solution as

αR;L¼AR;Le
3cr
2

�
JμR;L

�
2m
c
e
cr
2

�
þBR;LYμR;L

�
2m
c
e
cr
2

��
; ð84Þ

where AR;L, BR;L are integration constants and

μR;L ¼ ð5λ� 1Þ=2 ð85Þ

are the orders of the Bessel functions. The massive modes
in Eq. (84) bears a resemblance with those found in 5D for
massive fermions [59], where the mass, as the gauge
coupling λ here, controls the order of the Bessel functions.
We plot in the figure 5 the analytical right-handed solution
(84) for different values of λ. Note that the gauge coupling
distances the massive modes from the brane.
Unlike the massless mode, the massive eigenfunctions

(84) are not trapped in the thin stringlike brane due to the
exponential and the Bessel functions. Nevertheless, in order
to satisfy the boundary conditions, the order of the Bessel
function ought to be μR > 7 and μL > 8. The coupling
allows the Bessel functions order to be integer or half-
integer. For λ even the order μR;L is half-integer whereas for
λ odd μR;L is an integer. Although the coupling constant λ
can be any real number, the Bessel functions of irrational
order suffers from branch issues and then, henceforward,
we shall be concerned with the rational λ only. A note-
worthy feature is that the massive modes are related by

μR ¼ μL þ 1. An interesting reason for this symmetry will
be shown in the next section through the Schrödinger
approach.
Applying the boundary conditions (73) in the

massive modes (84) at the origin and at some cutoff
distance r ¼ rmax, for m ≪ c we obtain the conditions
BR;L ¼ 0 and

JμR;L

�
2m
c

e
crmax

2

�
¼ 0: ð86Þ

From the roots of the Bessel function (86), we find that the
KK massive spectrum mn is discrete and it behaves as the
series [60]

mn ≈
cπ
2
e−

crmax
2

�
nþ 2μR;L − 3

4
þ μR;L

2

ð2 − μR;LÞ
ðnþ 2μR;L−3

4
Þπ2

þO
�
1

n2

��
: ð87Þ

The KK spectrum (87) exhibits an increasing behavior,
as expected [27]. For large n, the spectrum behaves
linearly whereas for small n the Oð1nÞ terms in the series
(87) changes the rate of increasing of the masses. The mass
gap between the massless and the first massive mode is
given by

Δ ¼ m0 ≈
cπ
2
e−

crmax
2 ; ð88Þ

which vanishes for an infinite radial coordinate. Then, for
an infinite radial extra dimensions, there is no mass gap
between the massless mode and the massive KK tower, as
usual in warped compactified models [2,23,27].

FIG. 5. Massive mode in the thin stringlike (GS) scenario
for m ¼ 0.50. The values of the parameters were
AR ¼ BR ¼ 1.5 × 10−3, λ ¼ 5.0, and c ¼ 0.5.
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2. String-cigar model

For the string-cigar model, where

fðrÞ ¼ −ctanh2ðcrÞ and gðrÞ ¼ 2c
sechðcrÞ
tanh ðcrÞ ; ð89Þ

the eigenvalue problem (78) is quite complex to be studied
analytically. Then, we employ numerical methods to find
the mass spectrum mn and the correspondent eigenfunc-
tions. The numerical integration of the Eq. (78) was
performed using the matrix method [61] based on finite
differences with second order truncation error. To avoid the
singularity in r ¼ 0 and the overflow errors provided by the
exponential functions for large r, we discretized the domain
r ∈ ½0.01; 13.00� into an uniform grid with constant step
size h ¼ 0.01.
We plot the lowest mass eigenvalues in Fig. 6 for λ ¼ 7.0

and different values of the geometric parameter c, which is
related to the bulk Planck mass [40]. Note that the spectrum
is monotonically increasing, as expected from the Kaluza-
Klein theories. This regime is valid for m ≪ c [26].
Further, heavier masses will be acceptable as c increases.
Moreover, the growth rate of mn is slightly lower for the
first indexes n. This is in accordance with Eq. (87). It is
worthwhile to mention that, although we treat both chir-
alities left and right in Eq. (78) in an independent way, the
relation among the eingenstates reveals that, regardless the
massless mode, the left and right spectrum are the same.
In Figs. 7 and 8, we present the eigenfunctions for c ¼

0.5 and for λ ¼ 5.0 and 9.0, respectively. Near the brane,
they behave as Bessel functions of integer ð> 2Þ order
which increases with λ. Since the string-cigar model
recovers the thin-string one asymptotically, it is expected
that the eigenfunctions have the same behavior for large r
[40]. Note that this occurs when compared with Figure 5.

Moreover, the core of the string-cigar brane amplifies the
massive modes near the origin. This behavior occurs for the
gravitational [45] and gauge [46] fields. This is the first
stimulus for searching resonant modes. In the next section,
we will present the formalism concerning resonant states.

C. Schrödinger approach

The equality of right and left spectra and the relation
between the eingenfunctions result from an underlying
symmetry which is manifested in the Schrödinger
approach. Indeed, performing the change of variable

αR;LðzÞ ¼ exp
�
−
Z
z0
~PðzÞdz0

�
~αR;LðzÞ; ð90Þ

in Eq. (76), we obtain a Schrödinger-like equation as

½−∂2
z þ VR;LðzÞ� ~αR;LðzÞ ¼ m2 ~αR;LðzÞ; ð91Þ

FIG. 6. Mass spectrum for λ ¼ 7.0 in the string-cigar model.
Note that heavier masses will be acceptable when the bulk Planck
mass increases. Moreover, the growth rate is slightly lower for the
first indexes.

Right Chirality

Left Chirality

FIG. 7. Normalized eigenfunctions for c ¼ 0.5 and λ ¼ 5.0 in
the string-cigar model. The masses eigenvalues were obtained as
mR ¼ 0.4024 and mL ¼ 0.4025.

Right Chirality

Left Chirality

FIG. 8. Normalized eigenfunctions for c ¼ 0.5 and λ ¼ 9.0 in
the string-cigar model. The masses eigenvalues were obtained as
mR ¼ 0.4593 and mL ¼ 0.4586.
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where

VR;LðzÞ ¼ ~W2ðzÞ � ∂z
~W: ð92Þ

For the thin stringlike brane, the analogue potential has
the form

VR;LðzÞ ¼
5λ

2

�
5λ

2
∓1

�
1

ðzþ 2
cÞ2

: ð93Þ

For λ > 0.4, there is a potential barrier at the origin for both
chiralities. Since the potential vanishes asymptotically,
there is no mass gap for an infinite radial coordinate, as
we found using the Sturm-Liouville approach in Sec. III B.
Defining the variable

x ≔ m

�
zþ 2

c

�
; ð94Þ

the Schrodinger-like equation for the thin stringlike model
reads

�
−∂2

x þ
�
5λ

2

�
5λ

2
∓1

�
1

x2

�
− 1

�
~αR;LðxÞ ¼ 0; ð95Þ

whose solution can be written as

~αR;LðxÞ ¼ NR;L
ffiffiffi
x

p ½JμR;LðxÞ þ AR;LYμR;LðxÞ�: ð96Þ

Equation (96) is only another form of the massive KK state
given by Eq. (84).
The structure of the potential (92) enables us to rewrite

the Schrödinger-like equation as the system of equations

HR ~αRðzÞ ¼ m2 ~αRðzÞ; HL ~αLðzÞ ¼ m2 ~αLðzÞ; ð97Þ

where the Hamiltonians operator HR;L can be factorized
into

HR ¼ A†A; HL ¼ AA† ð98Þ

and

AðzÞ ≔ d
dz

þ ~WðzÞ: ð99Þ

For the thin stringlike model, the first-order differential
operator AðzÞ writes

AðzÞ ¼ d
dz

− 5
λ

2

1

ðzþ 2
cÞ
: ð100Þ

The analogue Hamiltonian operators in Eq. (97) form an
analogue supersymmetric quantum mechanics structure. In
fact, defining the analogue charge operators [62]

Q ¼
�
0 0

A 0

�
; Q† ¼

�
0 A†

0 0

�
ð101Þ

which are nilpotent, i.e., Q2 ¼ Q†2 ¼ 0, and also defining
the SUSY-like Hamiltonian [62]

H ¼
�
HR 0

0 HL

�
ð102Þ

we obtain the SUSY-like quantum mechanics algebra [62]

H ¼ fQ;Q†g; ð103Þ

and ½Q;H� ¼ ½Q;H� ¼ 0. The Hamiltonians HR;L are
related by H†

L ¼ HR and are called Hamiltonian super-
partners whereas ~W is known as the superpotential [11,62].
One remarkable feature of the SUSY-like system (98) is

that the massive KK spectrum is the same for the both
chiralities [9–11]. Indeed, consider a massive eigenfunction
~αRðzÞ of the right-handed Hamiltonian HR (97) with mass
mR. Define the function

~αL ≔
1

mR
A ~αR: ð104Þ

Applying the left-handed Hamiltonian HL on the
function ~αL, we find that HL ~αLðzÞ ¼ m2

R ~αLðzÞ, i.e., ~αL
is a left-handed eigenfunction with the same mass of ~αR.
Defining [62]

~αR ≔
1

mL
A† ~αL; ð105Þ

we have HR ~αRðzÞ ¼ m2
L ~αRðzÞ, i.e., ~αR is a right-handed

eigenfunction with the same mass of ~αL. Therefore, for
each right-handed eigenfunction ~αR exists a left-handed
eigenfunction ~αL with the same mass and vice versa.
The SUSY-like structure of the Hamiltonians HR;L also

guarantees that the spectrum is bounded from below. In
fact, multiplying any of the Hamiltonians HR;L by the dual
eigenfunction ~αR;L, respectively, we obtain ∥A ~αR;L∥2 ¼
m2∥ ~αR;L∥2, and hence, m ≥ 0. The absence of tachyonic
(negative norm) KK modes guarantees the stability of the
spectrum. Further, it also enables us to employ a probabi-
listic approach to find the resonant modes, as we will
discuss in the next section.
The Hamiltonian factorization and the absence of neg-

ative norm states allow us to reduce the problem to find the
ground state from a second-order differential equation to a
first-order differential equation. In fact, for the right-handed
massless mode HR ~α

0
R ¼ 0 ⇒ ∥A ~α0R∥ ¼ 0, and thereby,

A ~α0R ¼ 0, whereas for the left-handed massless mode ~α0L,
HL ~α

0
L ¼ 0 ⇒ A† ~α0L ¼ 0. Thus, the massless modes ~α0R;L

satisfy the equation
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_~α0R;L � ~WðzÞ ~α0R;L ¼ 0; ð106Þ

whose solution is given by

~α0R;L ¼ e∓
R

z

0
~Wðz0Þdz0 ; ð107Þ

By Eq. (107), only one chiral massless mode is normal-
izable, i.e., localizable. Using the change of dependent
variable Eq. (90), we obtain the expression (66) for the
massless mode. Then, for λ > 0, only the right-handed
massless mode is localized on the brane.

D. Resonant modes

In spite of the fact that Kaluza-Klein massive modes are
not localized at the brane, some massive states can exhibit a
relatively large amplitude near the brane [11]. These states,
known as resonant modes, can be obtained by the quantum
mechanical analog structure of the massive modes [9]. The
resonant modes occur for potentials that exhibit a potential
well near the brane and for masses m2 up to the maximum
value of the potential barrier [9,10].
In order to solve the Schröedinger-like equation (95), we

need to construct the potential function (92). For this, we
calculated the warp factors and the gauge angular ansatz in
the z-variable from the numerical integral of Eq. (3) using
spline interpolation. We plot in Figs. 9 and 10 the potential
functions for both chiralities. Note that there is a potential
well allowing the existence of bound states. The potential
has the usual volcano shape. To find solutions of the
Schrödinger-like equation (95) with the highest amplitudes
near the brane (in comparison with its values far from the
defect), we used the resonance method [11]. The relative
probability PR;LðmÞ to find a particle with mass m in a
narrow range 2ϵ around the position z̄ of the minimum of
the potential well may be defined as [11,12]

PR;LðmÞ ¼ 1R
zmax
zmin

j ~αR;LðzÞj2dz
Z

z̄þϵ

z̄−ϵ
j ~αR;LðzÞj2dz; ð108Þ

where zmin and zmax stand to the domain limits. To perform
calculations near the minimum of the potential well, we
adjusted ϵ ¼ 0.1.
We carried out the numerical integration of the

Schrödinger-like equation (95) for the potential function
(92) into Eq. (108) using the Numerov algorithm [63] for a
large sample of the parameters c and λ. The distribution
PR;LðmÞ exhibited peaks that may be referred as resonant
modes [11]. In Figs. 11 and 12, we plot the function
PR;LðmÞ for c ¼ 0.5. For the left-handed case, there are
very sharp peaks when λ ¼ 4.0 and λ ¼ 5.0, while for the
right-handed one, when λ ¼ 4.0 and λ ¼ 6.0. However,
only the first peak in PL represents a resonance. To verify
this, we solved the Schrödinger-like equation for the
masses corresponding to each peak in the distribution

FIG. 9. Potential function for both chirality for c ¼ 0.5 and
λ ¼ 5.0. The thick lines correspond to the string-cigar model,
while the thin lines, to the GS one.

FIG. 10. Potential function for both chirality for c ¼ 0.5 and
λ ¼ 9.0. The thick lines correspond to the string-cigar model,
while the thin lines, to the GS one.

FIG. 11. Plot of the probability distribution PR;LðmÞ for c ¼
0.5 (Left chirality) in the string-cigar model.
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PR;LðmÞ. The wave functions are plotted in Figs. 13 and 14.
Note that the solution ~αLðzÞ for λ ¼ 4.0 has the smallest
oscillation far from the brane, which characterizes a
resonant mode [11]. Although the peaks in the distributions
PRðmÞ and PLðmÞ occur for masses very close (for λ ¼ 4.0
when c ¼ 0.5), only the left-handed case has a resonant
feature.
Similar results were obtained for other values of c. In

general, the coupling constant λ determines the existence of
a resonant mode, while the geometric parameter c controls
the “position” of the resonant peaks (i.e., the resonant
mass). This is an expected result for a fixed λ, since varying
the geometrical parameter c, which corresponds to change
the Planck scale cutoff, different masses will be accepted as
a resonant state. In a five dimensional thick brane scenario,
the resonance of fermionic modes was also studied
in Ref. [18].

IV. SPIN 3=2 FERMIONIC FIELD

In this section, we perform the confinement of the Rarita-
Schwinger bulk field (spin 3=2). First, we start from the
following action [27,48]:

S63=2 ¼
Z ffiffiffiffiffiffi

−g
p

Ψ̄MiΓ½MΓNΓP�DNΨPd6x; ð109Þ

where square brackets denote the antisymmetrization. Its
equation of motion has the form

Γ½MΓNΓP�DNΨP ¼ 0: ð110Þ

From now on, we will use the shorter notation ΓMNP to
denote the product of matrices.
For this spin 3=2 field, the covariant derivative gains an

additional term of affine connection when compared to the
spin 1=2 field (56), namely

DMΨN ¼ ð∂M þΩM − iqAMÞΨN − ΓP
MNΨP: ð111Þ

The nonvanishing terms of Eq. (111) with the gauge
imposition Ψθ ¼ Ψr ¼ 0 [48] are

DμΨν ¼
�
∂μ þ

1

4

F0

F
ΓμΓr − iqAμ

�
Ψν; ð112Þ

DμΨr ¼ −
1

2

F0

F
Ψμ; DrΨμ ¼

�
∂r −

1

2

F0

F

�
Ψμ; ð113Þ

DθΨμ ¼
�
∂θ þ

1

4

H0

H
ΓθΓr − iqAθ

�
Ψμ: ð114Þ

Similarly to the decomposition of spin 1=2 in Eq. (59),
the Refs. [27,48,57] exhibit the 4D Rarita-Schwinger
vector-spinor in the form

FIG. 12. Plot of the probability distribution PR;LðmÞ for c ¼
0.5 (Right chirality) in the string-cigar model.

FIG. 13. Normalized solutions of the Schröedinger-like equa-
tion in the string-cigar model for the masses corresponding to the
peaks in the probability distribution. Left and right-handed
solutions for λ ¼ 4.0.

FIG. 14. Normalized solution of the Schröedinger-like equation
in the string-cigar model for the mass corresponding to the second
peak in the probability distribution in Fig. 11. This is the left-
handed solution for λ ¼ 5.0 and m ¼ 1.387.
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Ψμðx; r; θÞ ¼
�
ψ ð4Þ
μ

0

�
: ð115Þ

Here the spinor 3=2 assumes the KK decomposition:

ψ ð4Þ
μ ðx; r; θÞ ¼ 1ffiffiffiffiffiffi

2π
p

X
n;l

½ψμRn;l
ðxÞuRn;l

ðrÞ

þ ψμLn;l
ðxÞuLn;l

ðrÞ�eilθ; ð116Þ
where the 4D section is constrained by ∂μψμ ¼ γμψμ ¼ 0

[27,48] and γμνρð∂ν − iqAνÞψρR;L ¼ mγμνψνL;R [64].
Then, with these restrictions, the nonvanished terms of

ΓMNPDNΨP are

ΓρμνDμΨν ¼ Γρμνð∂μ − iqAμÞΨν þ
F0

F
ΓνρΓrΨν; ð117Þ

ΓρμrDμΨr ¼ −
1

2

F0

F
ΓρμrΨμ;

ΓρrμDrΨμ ¼ Γρrμ

�
∂r −

1

2

F0

F

�
Ψμ; ð118Þ

ΓρθμDθΨμ ¼ Γρθμð∂θ − iqAθÞΨμ þ
H0

4H
ΓμρΓrΨμ: ð119Þ

Thus, writing the gamma matrices in the flat form
(ΓM ¼ ξMM̄Γ

M̄) and dropping down some indexes, for
l ¼ 0, the equation of motion (110) with Eqs. (117)–(119)
becomes8>><
>>:

h
∂r þ

	
PðrÞ − F0

2F



þWðrÞ

i
uRn

ðrÞ ¼ − mnffiffiffiffiffiffiffi
FðrÞ

p uLn
ðrÞh

∂r þ
	
PðrÞ − F0

2F



−WðrÞ

i
uLn

ðrÞ ¼ mnffiffiffiffiffiffiffi
FðrÞ

p uRn
ðrÞ;

ð120Þ

with PðrÞ defined in Eq. (64) and WðrÞ in (65). We
conclude that Eq. (120) is similar to the spin 1=2 case
presented in Eq. (63) with the additional term − F0

2F.
Now, we use the same Aθ fixed in Eq. (72), which

implies that theWðrÞ ¼ −λPðrÞ of Eq. (69) holds. Then, in
order to obtain a normalized squared modulus solution, the
massless-mode of right-handed spin 3=2 takes the form

u0RðrÞ ¼ C0 exp
�Z

r0
dr0

�
ðλ − 1ÞP −

F0

2F

��

¼ C0Fðλ−1
2
ÞðrÞH1

4
ðλ−1ÞðrÞ; ð121Þ

where C0 is a normalization constant. Afresh, for λ ¼ 0, the
expression (121) is the same obtained in Ref. [27] which is
non-normalizable. Moreover, the radial effective action for
spin 3=2 is the same of the spin 1=2 case presented in
Eq. (74). Note that there is a correlation between the
massless modes in Eqs. (121) and (71) of the form

u0R;LðrÞ ¼ F−1
2α0R;LðrÞ: ð122Þ

This change promotes a small increase of the amplitude
of the zero mode for the spin 3=2. We plot in Fig. 15 the
massless mode of the Rarita-Schwinger field (121) and
compare with Eq. (71).
At this point, we have the expressions of the massless

modes for the gravitational and scalar fields in Eq. (52),
Uð1Þ gauge field in (54), spin 1=2 fields in (71), and spin
3=2 in (121). We verified that for λ ¼ 2 the zero mode of
fermionic fields shares a similar profile to the bosonic
fields. A comparative plot is made in Fig. 16.
Using the explicit expressions of the warp factors in

Eq. (45) for string-cigar, the zero mode of spin 3=2 field can
be written as

M
as

sl
es

s
M

od
e

FIG. 15. Comparative plot of right-handed zero mode of
spinorial fields in the string-cigar model. Filled lines corresponds
to Rarita-Schwinger field, while dashed ones, to spin 1=2 field.
The values for lambda was set to 7 (broader) and 12 (sharper).
The geometric parameter was set c ¼ 0.5 in both cases.

Spin

Spin

Spin and
Spin

FIG. 16. Comparative plot of the massless modes of bosonic
and fermionic fields in the string-cigar model for c ¼ 0.50 and
λ ¼ 2.0 (in the fermionic case). The derivative of the spinorial
fields are indefinite at origin promoting similarity with the
bosonic fields.
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u0RðrÞ ¼ C0

�
tanh ðcrÞ

c

�ðλ−1Þ
2

× exp

�
1

4
ð3 − 5λÞ½crþ tanh ðcrÞ�

�
: ð123Þ

Likewise the spin 1=2 case, for the existing of a zero mode
(which vanishes at the origin) is required that λ > 1, but
only for λ > 3 there is a normalizable mode with its
derivatives null at the origin. Moreover, for the left-handed
massless modes is required that λ → −λ and only one chiral
mode is allowable to exist in the brane as well.

A. Spin 3=2 massive modes

Using the conformal radial coordinate z (3), we decouple
Eq. (120) in following two second order differential
equations:

�
∂2
z þ2

�
~PðzÞ−

_F
2F

�
∂zþ

�
ð1∓λÞ _~PðzÞ−∂z

�
_F
2F

�

þð1−λ2Þ ~P2ðzÞ−
~PðzÞ _F
F

þ
�

_F
2F

�2��
uR;L¼−m2uR;LðzÞ;

ð124Þ

where ~PðzÞ ¼ ffiffiffiffi
F

p
PðzÞ.

Returning to the original variable r, Eq. (124) turns to�
∂2
r þ

�
2f þ g

2

�
∂r þ

�ð1∓λÞ
8

½5f2 þ fgþ 10f0 þ 2g0�

þ ð1 − λ2Þ
�
5

4
f þ g

4

�
2

−
�
5

4
f2 þ fg

4
þ f0

2

���
uR;LðrÞ

¼ −
m2

F
uR;LðrÞ: ð125Þ

Minor changes are noted comparing the expressions
(125) and (78). In the numerical solution of the Sturm-
Liouville problem for the Rarita-Schwinger field we
verified that the mass spectrum is indistinguishable of that
presented in Fig. 6. Furthermore, the only difference arises
in the eigenfunctions. The amplitudes for the spin 3=2 are
higher than the spin 1=2 case. This can be seen in Fig. 17.
We intend to perform an analytical study of the spin 3=2
massive modes in GS model in a future work.

B. Schrödinger approach for spin 3=2

Performing a change of the depend variable of Eq. (124)
in the form

uR;LðzÞ ¼ exp

�
−
Z
z0

�
~PðzÞ −

_F
2F

�
dz0

�
~uR;LðzÞ; ð126Þ

in the Eq. (124), we obtain a Schrödinger-like equation as

½−∂2
z þ V3=2

R;LðzÞ� ~uR;LðzÞ ¼ m2 ~uR;LðzÞ; ð127Þ

where

V3=2
R;LðzÞ ¼ λ2 ~P2ðzÞ∓λ∂z

~P ¼ ~W2ðzÞ � ∂z
~W: ð128Þ

The spin 3=2 Schrödinger-like equation (128) has the
same expression of the spin 1=2 field (92), since the change
of variables eliminates the multiplicative factor in the first
order derivative term of uR;L in Eq. (124). As shown in
Sec. III C, the form of the potential (128) bears a SUSY-like
symmetry that guarantees the equality of the KK massive
spectra for both chiralities and the absence of tachyonic KK
states.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have studied the Dirac field in the 6D
thick string-cigar braneworld. The string-cigar model is a
thick stringlike scenario which satisfies all the regularity
and energy conditions. The thin string limit was also
analyzed. We considered spin 1=2 and 3=2 (Rarita-
Schwinger) bulk fields. We made a brief review of the
localization of the gravitational and gauge bulk fields. We
also studied the scalar field and we have shown that it has
identical behavior to that of the gravitational field [45].
Awell-known feature of fermions in a stringlike brane is

that, unlike the gravitational, scalar, and gauge fields, it is
not possible to trap free fermions with a decreasing warp
factor. Due to this fact, we proposed a suitable gauge
coupling for the fermions with a background gauge field to
confine both spin 1=2 and spin 3=2 fermions in the brane
with positive tension.
Imposing suitable boundary conditions to guarantee the

self-adjointness of the spinor operators, a normalized and
everywhere well-defined massless mode is obtained for

R
ig

ht
ei

ge
nf

un
ct

io
ns

Spin

Spin

FIG. 17. Comparative plot of normalized right-handed eigen-
functions for spinorial fields for λ ¼ 5.0 and c ¼ 0.5 in the string-
cigar model. The closest mass eigenvalues values were found as
m1=2 ¼ 0.4024 and m1=2 ¼ 0.4016.
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both the thin string and string-cigar models depending on
the strength of the coupling constant λ. This is valid both
for spin 1=2 as for spin 3=2 case. The massless modes have
a shape similar to the energy-momentum components of the
source of the string-cigar model, whose core is displaced
from the origin. This shift of the core is a characteristic of
stringlike branes whose source is a vortex for higher
winding numbers [25,65]. Moreover, there is a tiny increase
in the amplitude of the Rarita-Schwinger zero mode in
comparison with spin 1=2 field.
By means of numerical methods, we have obtained the

spectrum and KK eigenfunctions. The absence of tachyonic
states and the equality of the massive spectrum for the right
and the left chiralities is ensured by the supersymmetric
quantum mechanics structure of the analogue potential. For
m ≪ c, the spectrum exhibits the usual behavior of the
Kaluza-Klein theories. Further, we verified that the mass
spectrum of the spin 1=2 and 3=2 fields are indistinguish-
able. For the massive modes, the gauge coupling constant
plays a similar role with the bulk mass for 5D fermions
[59]. The massive eigenfunctions behave like those of the
thin stringlike asymptotically. Near the core of the brane,
the massive modes are enhanced. This behavior is also
present in the gravitation [45] (and, consequently scalar)
and vectorial [46] cases. Further, the amplitudes for the spin
3=2 are higher than the spin 1=2 case in whole domain.
Although the KK modes are not localized on the brane,

some massive states may exhibit a resonant profile. The
search of these states was performed by means of the
resonance method. We found peaks in the probability
distribution relating to states which wave functions have
very high amplitudes near the brane. Apart this feature, the
oscillation of the wave function must be as small as
possible to characterize a resonant state. The numerical
solutions of the Schrödinger-like equation showed that this

occurs for a specific left-handed mode. Thus, only fermions
with one chirality is allowed to interact with the brane as a
resonant state. An important result is that the coupling
parameter allows the existence of a resonance peak. The
geometric parameter c determines the magnitude of the
resonant mass which is consistent with the fact that it is
related to the Planck scale cutoff. Besides, in the
Schrödinger approach, the spin 1=2 and 3=2 fields share
an identical structure, which prevents tachyonic KK modes
for both fields.
Finally, we made a comparative of the normalized

massless modes for the bosonic and fermionic fields. For
a specific value of the gauge coupling, all the field have
similar shapes.
For future works, we intend to study numerically the KK

modes, as well as the resonant states, of the spin 1=2 and
3=2 fermions in a warped resolved conifold [50]. This
scenario provides a geometric flow that controls the
singularity at the origin in the quantum analogue potential.
Moreover, we intend to study the properties of gauge
coupling term for l ≠ 0 waves and its influence over the
massless and the KK modes.
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