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We investigate the Wightman function, the bulk-to-boundary propagator, the mean field squared, and the
vacuum expectation values of energy-momentum tensor for a scalar field in anti–de Sitter (AdS) spacetime,
in the presence of a brane perpendicular to the AdS boundary. On the brane the field operator obeys the
Robin boundary condition. The vacuum expectation values are decomposed into the boundary-free AdS
and brane-induced contributions. In this way, for points away from the brane, the renormalization is
reduced to the one in pure AdS spacetime. It is shown that at proper distances from the brane larger than the
AdS curvature radius the brane-induced expectation values decay as power law for both massless and
massive scalars. This behavior is in contrast to that for a plane boundary in Minkowski spacetime, with an
exponential decay for massive fields. For Robin boundary conditions different from Dirichlet and Neumann
ones, the brane-induced part in the energy density is positive near the brane and negative at large distances.
For the Dirichlet/Neumann boundary condition the corresponding energy density is negative/positive
everywhere. We show that, for a fixed value of the proper distance from the brane, near the AdS boundary,
the Neumann boundary condition is an “attractor” in the general class of Robin boundary conditions,
whereas the Dirichlet boundary condition is an attractor near the horizon.
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I. INTRODUCTION

Anti–de Sitter (AdS) spacetime is among the most
popular geometries in quantum field theory on curved
backgrounds. This interest is motivated by several reasons.
First of all, because of its high symmetry, many problems
are exactly solvable on AdS bulk and this may shed light
on the influence of a classical gravitational field on the
quantum matter in more general geometries. The impor-
tance of AdS spacetime as a gravitational background
increased by its natural appearance as a stable ground state
solution in extended supergravity and in string theories.
The AdS geometry has played a crucial role in two exciting
developments in theoretical physics of the last 20 years
such as the AdS=CFT correspondence and the braneworld
scenario. The first one, the AdS=CFT correspondence [1]
(see [2] for a review), represents a realization of the
holographic principle and relates string theories or super-
gravity in the AdS bulk with a conformal field theory living
on its boundary. It enables one to study conformal field
theory and nonperturbative quantum gravity at the same
time. The braneworld scenario (for reviews on braneworld
gravity see [3]) offers a new perspective on the hierarchy
problem between the gravitational and electroweak mass
scales. In the corresponding models, our world is

represented by a submanifold, a three-brane, embedded
in a higher-dimensional spacetime and the small coupling
of four-dimensional gravity is generated by the large
physical volume of extra dimensions.
The investigations of quantum effects both in AdS=CFT

and braneworld setups are of considerable interest in particle
physics and cosmology. An inherent feature in these setups is
the presence of boundaries and the fields that propagate in the
bulk will give Casimir-type contributions to the vacuum
expectation values of physical observables (for reviews of the
Casimir effect see [4]). In particular, in the braneworld
scenario, vacuum forces arise acting on the branes, which,
depending on the type of field and boundary conditions
imposed, can either stabilize or destabilize the braneworld.
The Casimir energy gives a contribution to both the brane and
bulk cosmological constants and, hence, has to be taken into
account in the self-consistent formulation of the correspond-
ing models. Motivated by these issues, the quantum vacuum
effects induced by branes in AdS bulk have received a great
deal of attention. The Casimir energy and the forces for
parallel branes are investigated both for scalar and fermionic
fields [5]. Local Casimir densities are discussed in [6].
Quantum vacuum effects in higher-dimensional generaliza-
tions of the AdS spacetimewith compact internal spaces have
been studied in [7]. The vacuum polarization induced by a
cosmic string in AdS spacetime is investigated in [8] for both
scalar and fermionic fields.
In most of the papers cited above the branes are

considered to be parallel to the AdS boundary. Recently,
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there have been some attempts to extend AdS=CFT
correspondence to the case with boundaries in the CFT
side [9]. In an effective description of the corresponding
holographic dual (AdS/BCFT correspondence) a boundary
is introduced in AdS bulk that crosses the AdS boundary
and is anchored at the boundary of CFT. In the construction
of [9], on the boundary in AdS bulk, the Neumann
boundary condition is imposed in the gravity sector.
Another class of problems with boundaries in the bulk
crossing the AdS boundary recently appeared related to a
geometric procedure for the evaluation of the entanglement
entropy in the context of the AdS=CFT correspondence
suggested in [10] (for an overview see [11]). In accordance
with this procedure, the entanglement entropy for a
bounded region in CFT with respect to its spatial comple-
ment is expressed in terms of the area of the minimal
surface in the bulk, anchored at the boundary of that region.
In quantum field theory, the boundaries in both AdS and
CFT will lead to the shifts in the expectation values of
physical quantities describing the properties of the vacuum.
These effects should be taken into account in discussions of
the stability of the corresponding models.
In the present paper, for a scalar quantum field with

general curvature coupling parameter, we consider an
exactly solvable problemwith a flat brane in AdS spacetime
perpendicular to its boundary. This model is a holographic
dual of boundary conformal field theory (BCFT) defined on
a half-space. In order to clarify the role of the boundary
condition, we impose on the field operator a general Robin
condition. Our main interest will be the changes in the
properties of the quantum vacuum induced by the presence
of the brane. The important quantities that characterize the
local properties of the vacuum are the expectation values of
the field squared and energy-momentum tensor. The latter
serves as a source in the right-hand side of semiclassical
Einstein equations and plays an important role in consid-
erations of the backreaction from quantum effects.
The organization of the paper is as follows. In the next

section we evaluate the positive-frequency Wightman
function and the bulk-to-boundary propagator. The corre-
sponding expressions are explicitly decomposed into the
boundary-free and brane-induced contributions. On the
basis of this, in Secs. III–IV we investigate the mean field
squared and the vacuum expectation value (VEV) of the
energy-momentum tensor. Various asymptotics for the
brane-induced contributions are discussed and the corre-
sponding results are compared with those for a Robin plate
in Minkowski spacetime. Section V summarizes the main
results of the paper.

II. TWO-POINT FUNCTIONS

Let us consider a scalar field φðxÞ on the background of
a ðDþ 1Þ-dimensional AdS spacetime with the curvature
radius α. The corresponding line element will be taken in
the form

ds2 ¼ gikdxidxk ¼ e−2y=αημνdxμdxν − dy2; ð1Þ

where ημν ¼ diagð1;−1;…;−1Þ is the metric tensor for the
D-dimensional Minkowski spacetime, i, k ¼ 0, 1;…; D,
and μ, ν ¼ 0, 1;…; D − 1. For a field with the curvature
coupling parameter ξ the field equation has the form

ðgik∇i∇k þm2 þ ξRÞφðxÞ ¼ 0; ð2Þ
where ∇i is the covariant derivative operator and R is
the Ricci scalar. The latter is related to the curvature radius
as R ¼ −DðDþ 1Þ=α2. For special cases of minimally
and conformally coupled scalars one has ξ ¼ 0 and
ξ ¼ ξD ¼ ðD − 1Þ=ð4DÞ, respectively. By a coordinate
transformation z ¼ αey=α the line element (1) is written
in a conformally flat form ds2 ¼ ðα=zÞ2ηikdxidxk with
xD ¼ z and with the conformal factor ðα=zÞ2. In terms
of the coordinate z, the AdS boundary and the horizon
are presented by the hypersurfaces z ¼ 0 and z ¼ ∞,
respectively.
Our main interest in this paper is the VEVs of the field

squared and of the energy-momentum tensor in the
presence of a flat brane at x1 ¼ 0. In what follows, for
definiteness, we consider the region x1 ≥ 0. The boundary-
induced contributions in the VEVs of the field squared
and of the diagonal components of the energy-momentum
tensor are symmetric under the reflection x1 → −x1,
whereas the off-diagonal component hT1

Dib (see below)
changes the sign. On the brane we impose the Robin
boundary condition

ð1þ β∂1ÞφðxÞ ¼ 0; x1 ¼ 0; ð3Þ
with a constant coefficient β. The corresponding results for
Dirichlet and Neumann boundary conditions are obtained
as special cases corresponding to β ¼ 0 and β ¼ ∞. The
geometry under consideration presents a holographic
description of a BCFT living on the hypersurface z ¼ 0,
x1 ≥ 0. The Robin boundary condition naturally arises for
scalar bulk fields in braneworld models. The parameter β
encodes the properties of the brane. For example, in the
Randall-Sundrum braneworld models with the branes
parallel to the AdS boundary, this coefficient is expressed
in terms of the curvature coupling parameter and brane
mass terms for a scalar field [12].

A. Wightman function

The imposition of the boundary condition modifies the
spectrum for thevacuum fluctuations of quantum fields.As a
consequence, the VEVs of physical quantities are shifted
with respect to the VEVs in the boundary-free geometry.
The renormalized VEVs of bilinear combinations of the
field operator are obtained from the two-point functions after
an appropriate renormalization procedure. In this section,
we evaluate the positive-frequency Wightman function,
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Wðx; x0Þ ¼ h0jφðxÞφðx0Þj0i; ð4Þ

where j0i stands for the vacuum state. This function also
determines the response of Unruh-DeWitt-type particle
detectors interacting locally with a quantum field under
consideration (see, for instance, [13]). For the evaluation of
the Wightman function we employ the direct summation
approach over a complete orthonormal set ofmode functions
fφσðxÞ;φ�

σðxÞg, specified by a set of quantum numbers σ
and obeying the boundary condition (3). The corresponding
mode-sum formula reads

Wðx; x0Þ ¼
X
σ

φσðxÞφ�
σðx0Þ; ð5Þ

where
P

σ includes summation over discrete quantum
numbers and the integration over continuous ones.
In the problem under consideration, the mode functions

can be presented in the factorized form

φσðxÞ ¼ CzD=2JνðγzÞ cos½λx1 þ α0ðλÞ�eikx−iωt; ð6Þ

where x ¼ ðx2;…; xD−1Þ, k ¼ ðk2;…; kD−1Þ, k ¼ jkj, and

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2 þ γ2

q
: ð7Þ

In (6), JνðxÞ is the Bessel function with the order

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD=2Þ2 −DðDþ 1Þξþm2α2

q
: ð8Þ

For a conformally coupled massless scalar one has ν ¼ 1=2
and JνðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
π=2x

p
sin x. For imaginary ν the ground state

becomes unstable [14] and, in what follows, we assume that
this parameter is real. Note that in defining the modes (6)
we have imposed Dirichlet boundary condition on the AdS
boundary.
From the boundary condition (3) for the function α0ðλÞ

one finds

e2iα0ðλÞ ¼ iβλ − 1

iβλþ 1
: ð9Þ

For β > 0, in addition to the modes (6), there is a mode
with the dependence on the coordinate x1 in the form e−x

1=β

that describes a bound state. For this mode one has ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ γ2 − 1=β2

p
and there is a region in the space ðγ; kÞ

where the energy of the mode becomes imaginary. This
signals about the instability of the vacuum. Here, the
situation is essentially different from that for a plate in
Minkowski spacetime. In the latter geometry, for a massive
scalar field, under the condition β > 1=m, the bound state
has a positive energy and the vacuum is stable. In the
discussion below we assume that β < 0.

The coefficient C in Eq. (6) is determined from the
orthonormality condition

Z
dDx

ffiffiffiffiffi
jgj

p
g00φσðxÞφ�

σ0 ðxÞ ¼
δσσ0

2ω
; ð10Þ

and is given by the expression

jCj2 ¼ 2γ

ð2παÞD−1ω
: ð11Þ

In (10), the integration with respect to x1 goes over
0 ≤ x1 < ∞.
Substituting the eigenfunctions (6) into the mode sum

(5), for the Wightman function one finds

Wðx;x0Þ¼W0ðx;x0Þþ
ðzz0ÞD=2

ð2παÞD−1

Z
dk

Z
∞

0

dγ
Z

∞

0

dλ
γ

ω

×JνðγzÞJνðγz0Þcos½λðx1þx10Þþ2α0ðλÞ�eikΔx−iωΔt;
ð12Þ

where Δx ¼ x − x0, Δt ¼ t − t0. Here,

W0ðx;x0Þ¼
ðzz0ÞD=2

2ð2παÞD−1

Z
dkD−1

×
Z

∞

0

dγ
γ

ω0

JνðγzÞJνðγz0ÞeikD−1ΔxD−1−iω0Δt ð13Þ

is the Wightman function in AdS spacetime in the absence
of the boundary at x1 ¼ 0 (for two-point functions in AdS
spacetime see [15,16]). In (13), xD−1 ¼ ðx1; x2;…; xD−1Þ,
kD−1 ¼ ðk1; k2;…; kD−1Þ and ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkD−1j2 þ γ2

p
. The

boundary-free Wightman function is expressed in terms
of the hypergeometric function as

W0ðx; x0Þ ¼
α1−Dfνðu−Þ
2D=2þνþ1πD=2 ; ð14Þ

where, for further convenience, we have introduced the
notation

fνðuÞ ¼
ΓðνþD=2Þ

Γðνþ 1ÞuνþD=2

× 2F1

�
Dþ 2νþ 2

4
;
Dþ 2ν

4
; νþ 1;

1

u2

�
; ð15Þ

and

u− ¼ 1þ ½ðΔzÞ2 þ ðΔxD−1Þ2 − ðΔtÞ2�=ð2zz0Þ: ð16Þ
Note that the quantitiy u− is expressed in terms of the
geodesic distance σðx; x0Þ between the points x and x0 by the
relation u−¼coshðσðx;x0Þ=aÞ for ðΔzÞ2þðΔxD−1Þ2>ðΔtÞ2
and by u−¼ cosðσðx;x0Þ=aÞ for ðΔzÞ2þðΔxD−1Þ2 < ðΔtÞ2.
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The second term on the right-hand side of Eq. (12) is induced by the brane at x1 ¼ 0. For the further transformation of this
part we write

cos½λðx1 þ x10Þ þ 2α0ðλÞ� ¼
1

2

X
j¼�1

ejiλðx1þx10Þ iβλ − j
iβλþ j

;

and rotate the integration contour over λ by angle jπ=2 for the term with ejiλðx1þx10Þ. After integration over the angular
part of k, the Wightman function is presented in the form

Wðx; x0Þ ¼ W0ðuÞ þ
α1−Dðzz0ÞD=2

ð2πÞD=2jΔxjD=2−2

Z
∞

0

dkkD=2−1JD=2−2ðkjΔxjÞ

×
Z

∞

0

dγγJνðγzÞJνðγz0Þ
Z

∞

0

dx coshðΔtxÞ e
−wðx1þx10Þ

w
βwþ 1

βw − 1
; ð17Þ

where w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2 þ γ2

p
.

The expression for the Wightman function is further
simplified for special cases of Dirichlet and Neumann
boundary conditions. The corresponding integral over k is
expressed in terms of the MacDonald function. Next, we
integrate over x, which again gives the MacDonald func-
tion. And finally, after the integration over γ, we come to
the expression

Wðx; x0Þ ¼ W0ðx; x0Þ∓ α1−DfνðuþÞ
2D=2þνþ1πD=2 ; ð18Þ

where upper/lower signs correspond to Dirichlet/Neumann
boundary conditions and

uþ ¼ 1þ ½ðΔzÞ2 þ ðx1 þ x10Þ2 þ jΔxj2 − ðΔtÞ2�=ð2zz0Þ:
ð19Þ

The quantity uþ is expressed in terms of the geodesic
distance between the points ðt; x1;x; zÞ and ðt0;−x10;x0; z0Þ.
The latter is the image point of ðt0; x10;x0; z0Þwith respect to
the brane.
For points away from the brane the local geometry is the

same as that for the AdS spacetime in the absence of
the brane. As a consequence of this, the divergences in the
VEVs of the blinear combinations of the field operator
(field squared, energy-momentum tensor) in the coinci-
dence limit come from the boundary-free part of the
Wightman function. Hence, with the decompositions
(17)–(18), the renormalization of those VEVs is reduced
to the ones in the boundary-free geometry.

B. Bulk-to-boundary propagator

By using the mode functions given above we can also
evaluate the bulk-to-boundary propagator that is among the
central objects in the AdS=CFT correspondence. The latter
is usually discussed in Euclidean signature. In terms of the
coordinate z, the corresponding line element is written as
ds2 ¼ ðα=zÞ2½ðdx1Þ2 þ ðdXÞ2 þ dz2�, where X ¼ ðX0;xÞ.

The solutions of the field equation, which obey the
boundary condition (3) and do not diverge in the limit
z → ∞, have the form

φEσðxÞ ¼ CEzD=2KνðγzÞ cos½λx1 þ α0ðλÞ�eiKX; ð20Þ

whereKνðxÞ is the Macdonald function and γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ λ2

p
.

Now, the general solution of the field equation is pre-
sented as

φðXD;zÞ¼
zD=2

2ν−2ΓðνÞ
Z
dD−1Kdλγνφð0Þðλ;KÞKνðγzÞ

×cos½λx1þα0ðλÞ�eiKX; ð21Þ

whereXD ¼ ðx1;XÞ. By taking into account that for β < 0
the functions cos½λx1 þ α0ðλÞ� form a complete set we
can write

φð0Þðλ;KÞ¼ 1

2D−1πD

Z
dD−1X0

Z
∞

0

dx10φð0Þðx10;X0Þ

×cos½λx10 þα0ðλÞ�e−iKX0
: ð22Þ

Substituting this into (21) one finds the following relation,

φðXD;zÞ¼
Z

dD−1X0
Z

∞

0

dx10GðXD;X0
D;zÞφð0Þðx10;X0Þ;

ð23Þ
with the bulk-to-boundary propagator

GðXD;X0
D;zÞ ¼

23−νzD=2

ð2πÞDΓðνÞ
Z

dD−1K
Z

∞

0

dλγνKνðγzÞ

×cos½λx1þ α0ðλÞ�cos½λx10þ α0ðλÞ�eiKΔX;

ð24Þ

and ΔX ¼ X −X0. For small z, to the leading order,
from (23) one gets φðXD; zÞ ≈ zD=2−νφð0Þðx1;XÞ. In the
AdS=CFT correspondence, φð0Þðx1;XÞ≡ φð0ÞðXDÞ is
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interpreted as the source for a dual scalar operator. Note that the coefficient in (21) is chosen so that the expression
zD=2−νφð0ÞðXDÞ for the leading term is obtained.
The propagator (24) can be presented in the form

GðXD;X0
D; zÞ ¼ G0ðXD;X0

D; zÞ þ
21−νzD=2

ð2πÞDΓðνÞ
Z

dD−1K
Z

∞

−∞
dλγνKνðγzÞ

iβλ − 1

iβλþ 1
eiλðx1þx10ÞeiKΔX; ð25Þ

where

G0ðXD;X0
D; zÞ ¼

21−νzD=2

ð2πÞDΓðνÞ
Z

dDKDjKDjνKνðjKDjzÞeiKDΔXD

¼ π−D=2ΓðνþD=2ÞzνþD=2

ΓðνÞðjΔXDj2 þ z2ÞνþD=2 ; ð26Þ

with ΔXD ¼ XD −X0
D, is the bulk-to-boundary propaga-

tor in the geometry without the brane [17]. The second term
in the right-hand side of (25) is induced by the brane.
For Dirichlet and Neumann boundary conditions

the brane-induced contribution in (25) is evaluated as

∓G0ðXD;X
ð−Þ0
D ; zÞ, where Xð−Þ0

D ¼ ð−x10;X0Þ. This result
could be directly obtained by the image method. The bulk-
to-boundary propagator in these relatively simple special
cases has been discussed in [18].

III. MEAN FIELD SQUARED

The VEV of the field squared is obtained from the
Wightman function in the coincidence limit, x0 → x, and is
decomposed as

hφ2i ¼ hφ2i0 þ hφ2ib: ð27Þ

Here, hφ2i0 is the renormalized VEV in the boundary-free
AdS spacetime and hφ2ib is the contribution induced by the
brane. By using (17), for the brane-induced contribution
one has the expression

hφ2ib ¼
4α1−DzD

ð4πÞD=2ΓðD=2 − 1Þ
Z

∞

0

dkkD−3
Z

∞

0

dγγJ2νðγzÞ

×
Z

∞

0

dx
e−2wx

1

w
βwþ 1

βw − 1
; ð28Þ

withw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2 þ γ2

p
. As a consequence of the maximal

symmetry of AdS spacetime, the boundary-free part does
not depend on the spacetime point. This VEV has been
investigated in the literature [15–20]. Here, we are mainly
concerned with the boundary-induced part, given by (28).
For the further transformation of the brane-induced

contribution we introduce polar coordinates ðr; θÞ in the
plane ðk; xÞ. The integration over the angle θ is done
explicitly. Then we introduce polar coordinates ðw; θ0Þ
in the plane ðr; γÞ. Introducing a new integration variable
τ ¼ sin θ0, we get

hφ2ib ¼
ð4πÞð1−DÞ=2zD

ΓððD − 1Þ=2ÞαD−1

Z
∞

0

dwwD−1e−2wx
1 βwþ 1

βw − 1

×
Z

1

0

dττð1 − τ2ÞðD−3Þ=2J2νðzwτÞ: ð29Þ

For the integral over τ one has [21]
Z

1

0

dττð1 − τ2ÞðD−3Þ=2J2νðuτÞ ¼
ΓððD − 1Þ=2Þ

22νþ1
u2νFD=2

ν ðuÞ;
ð30Þ

with the notation

Fμ
νðuÞ ¼ 1F2ðνþ 1=2; νþ μþ 1=2; 2νþ 1;−u2Þ

Γðνþ μþ 1=2ÞΓðνþ 1Þ ; ð31Þ

where 1F2 is the hypergeometric function. So, for the
brane-induced contribution, one gets

hφ2ib¼
2−2ν−1α1−D

ð4πÞðD−1Þ=2

Z
∞

0

dxxDþ2ν−1e−2xx
1=zFD=2

ν ðxÞxβ=zþ1

xβ=z−1
:

ð32Þ
As is seen, the VEV depends on x1, β, z, in the form of
the dimensionless ratios x1=z and β=z. This property is a
consequence of the maximal symmetry of AdS spacetime.
Note that the ratio x1=z is the proper distance from the brane,
αx1=z, measured in units of the AdS curvature radius α.
In the case of Dirichlet and Neumann boundary con-

ditions we get

hφ2ib ¼ ∓ α1−DfνðuÞ
2D=2þνþ1πD=2 ; ð33Þ

where the notation

u ¼ 1þ 2ðx1=zÞ2 ð34Þ
is used. For these boundary conditions the VEVof the field
squared is a function of the proper distance from the brane
alone. As is seen from (32), for a fixed value of the proper
distance from the brane, αx1=z, near the AdS boundary,
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z → 0, the Neumann boundary condition is an “attractor” in
the general class of boundary conditions specified by the
parameter β, whereas the Dirichlet boundary condition is
an attractor near the horizon, corresponding to z → ∞.

The VEVof the field squared for a plate in Minkowski
spacetime is obtained from (32) in the limit α → ∞ for a
fixed value of the coordinate y. In this case, in the leading
order, one has ν ≈mα and z ≈ α. Introducing in (32) a
new integration variable w ¼ x=α, we see that in the limit
under consideration both the order and the argument of the
function FD=2

ν ðαwÞ ≈ FD=2
ν ðνw=mÞ are large. The corre-

sponding uniform asymptotic expansion can be obtained by
making use of the relation (30) and the expansion for the
Bessel function. In this way it can be seen that for w < m
the function FD=2

ν ðνw=mÞ is exponentially suppressed for
large ν and the dominant contribution to the integral
for hφ2ib comes from the region w > m. In this region,
for ν ≫ 1, to the leading order one gets

FD=2
ν ðνw=mÞ ≈ 22ν½1 − ðm=wÞ2�D=2−1ffiffiffi

π
p

ΓðD=2Þðνw=mÞ2νþ1
: ð35Þ

Substituting this into the expression for the field squared,

we find hφ2ib ≈ hφ2iðMÞ
b with

hφ2iðMÞ
b ¼ ð4πÞ−D=2

ΓðD=2Þ
Z

∞

m
dxe−2xx

1ðx2 −m2ÞD=2−1 xβ þ 1

xβ − 1

ð36Þ
being the corresponding VEV for a plate in Minkowski
spacetime (for the VEVs in the geometry of a single and two
parallel Robin plates in Minkowski spacetime, see [22]).
The general expression of the field squared, given by

(32), is simplified in the asymptotic regions. At small
proper distances from the brane, compared with the AdS
curvature radius, one has x1=z ≪ 1 and the dominant
contribution in (32) comes from large values of x. For
these values one has the asymptotic expression

Fμ
νðxÞ ≈ 22νx−2ν−1ffiffiffi

π
p

ΓðμÞ ; x ≫ 1; ð37Þ

and from (32), in the leading order, we find

hφ2ib ≈ ðz=αÞD−1hφ2iðMÞ
b jm¼0: ð38Þ

If, in addition, x1=jβj ≪ 1, one gets

hφ2ib ≈
ΓððD − 1Þ=2Þ
ð4πÞðDþ1Þ=2

�
z
αx1

�
D−1

: ð39Þ

For the Dirichlet boundary condition, β ¼ 0, the leading
term in the asymptotic expansion near the brane is given by
(39) with the opposite sign. Note that, for a fixed value x1,
the expression in the right-hand side of (39) provides the
leading term near the AdS horizon, z → ∞. As is seen, for

x1 ≠ 0, the brane-induced VEV diverges on the horizon
as zD−1.
At large proper distances from the brane compared with

the AdS curvature radius, x1=z ≫ 1, the dominant con-
tribution in (32) comes from small values of x. By taking
into account that

FD=2
ν ðxÞ ≈ 1

ΓððDþ 1Þ=2þ νÞΓð1þ νÞ ; x ≪ 1; ð40Þ

and assuming that jβj=x1 ≪ 1 to the leading order one gets

hφ2ib ≈ −
α1−DΓðD=2þ νÞ

2πD=2Γð1þ νÞð2x1=zÞDþ2ν
: ð41Þ

For the Neumann boundary condition, β ¼ ∞, the leading
term coincides with (41) with the opposite sign. Note that
the decay of the boundary-induced contribution at large
distances from the brane, as a function of the proper
distance αx1=z, is a power law for both massless and
massive fields. This is in clear contrast with the case of the
problem in Minkowski bulk (for a similar feature for a
Robin boundary in de Sitter spacetime see [23]). In the
latter geometry the boundary-induced VEV [see (36)]
decays as 1=ðx1ÞD−1 for a massless field and is exponen-
tially suppressed (as e−2mx1) for a massive field. From (41)
it follows that, for a given x1, the brane-induced contribu-
tion in the VEV of the field squared vanishes on the
AdS boundary as zDþ2ν. Note that the quantity αx1=z is
the proper distance from the brane measured by an
observer with a fixed value of the coordinate x1. This
observer is at rest with respect to the brane. The geodesic
distance σðx; x0Þ between the points x ¼ ðt; 0;x; zÞ and
x0 ¼ ðt; x1;x; zÞ is given by the relation coshðσðx; x0Þ=αÞ ¼
1þ ðx1=zÞ2=2. At large distances from the brane one
gets ðx1=zÞ2 ¼ eσðx;x0Þ=α.
In Fig. 1 we have plotted the brane-induced contribution

in the VEVof the field squared for D ¼ 4 conformally (left
panel) and minimally (right panel) coupled scalar fields, as
a function of the proper distance from the brane (measured
in units of the AdS curvature radius). The numbers near the
curves correspond to the values of the ratio β=z. The dashed
lines correspond to Dirichlet and Neumann boundary
conditions. The graphs are plotted for mα ¼ 0.5. A feature
obtained from the asymptotic analysis above is seen: the
Neumann boundary condition is an attractor in a general
class of Robin conditions for points near the brane, whereas
the Dirichlet boundary condition is an attractor at large
distances.

IV. VACUUM ENERGY DENSITY AND STRESSES

Having the Wightman function and the mean field
squared, the VEV of the energy-momentum tensor is
evaluated by making use of the formula
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hTiki¼ lim
x0→x

∂i∂ 0
kWðx;x0Þ

þ½ðξ−1=4Þgik∇l∇l−ζ∇i∇k−ζRik�hφ2i; ð42Þ

where Rik ¼ −Dgik=α2 is the Ricci tensor for AdS space-
time. In defining the right-hand side of this formula we have
used the expression for the energy-momentum tensor for a
scalar field that differs from the standard one (given, for
example, in [13]) by a term that vanishes on the solutions of
the field equation (see [24]). Similar to the VEVof the field
squared, the vacuum energy-momentum tensor is decom-
posed into boundary-free and boundary-induced parts:

hTiki ¼ hTiki0 þ hTikib: ð43Þ
As a consequence of the maximal symmetry of boundary-
free AdS spacetime and the vacuum state under consider-
ation, one has hTiki0 ¼ const · gik. Hence, the corresponding
vacuum energy-momentum tensor is completely determined
by its trace. The boundary-free energy-momentum tensor
hTiki0 is well investigated in the literature (see, for instance,
[16]) and in what follows we are concerned with the brane-
induced contribution, hTikib.
For the covariant d’Alembertian acted on the brane-

induced part of the field squared we find

∇l∇lhφ2ib¼−
2−2ν−1α−D−1

ð4πÞðD−1Þ=2

×
Z

∞

0

dxxe−2xx
1=zβx=zþ1

βx=z−1
B̂ðxÞxDþ2νFD=2

ν ðxÞ;

ð44Þ

with the differential operator

B̂ðxÞ ¼ ∂2
x −

D − 1

x
∂x þ 4: ð45Þ

By making use of the expressions for the boundary-
induced contributions in the Wightman function and in the

VEV of the field squared, Eq. (32), from (42) for the
diagonal components in the region x1 > 0 one gets (no
summation over i ¼ 0, 1;…; D)

hTi
iib ¼ −

ð4πÞð1−DÞ=2

22νþ1αDþ1

Z
∞

0

dxxe−2xx
1=z βx=zþ 1

βx=z − 1

× ½AixDþ2νFD=2þ1
ν ðxÞ þ B̂iðxÞxDþ2νFD=2

ν ðxÞ�;
ð46Þ

with the notations

Ai ¼ 1=2; i ¼ 0; 2;…; D − 1;

A1 ¼ 0; AD ¼ 1 −D
2

; ð47Þ

and

B̂iðxÞ ¼
ξ1
4
B̂ðxÞ þ ξ

x
∂x −

ξD
x2

; i ¼ 0; 2;…; D − 1;

B̂1ðxÞ ¼
ξ1
4
B̂ðxÞ þ ξ

x
∂x −

ξD
x2

− ξ1;

B̂DðxÞ ¼
1

4
B̂ðxÞ − ξ

D
x
∂x þ ξ1 þ

D2ξ −m2α2

x2
: ð48Þ

Here and in what follows, we use the notation ξ1 ¼ 4ξ − 1.
The diagonal components are symmetric under the reflec-
tion x1 → −x1 with respect to the brane: they are given by
the expression (46) with x1 replaced by jx1j. The vacuum
stresses along the directions parallel to the brane are equal
to the energy density. This property is a consequence of the
invariance with respect to the Lorentz boosts along those
directions.
In addition to the diagonal components, the vacuum

energy-momentum tensor has off-diagonal components
hT1

Dib ¼ hTD
1 ib. For the latter one gets
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FIG. 1 (color online). The boundary-induced part in the VEVof the field squared versus the proper distance from the brane for D ¼ 4
conformally (left panel) and minimally (right panel) coupled scalar fields withmα ¼ 0.5. The numbers near the solid curves correspond
to the values of the ratio β=z and the dashed curves are for the Dirichlet and Neumann boundary conditions.
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hT1
Dib ¼

ð4πÞð1−DÞ=2

22ναDþ1

Z
∞

0

dxe−2xx
1=z βx=zþ 1

βx=z − 1

��
1

4
− ξ

�
x∂x − ξ

�
xDþ2νFD=2

ν ðxÞ: ð49Þ

This off-diagonal component changes the sign under the
reflection x1 → −x1. Similar to the case of the field
squared, the mean energy-momentum tensor depends on
the coordinates x1, z, and on the parameter β in the form of
the ratios x1=z and β=z. The first of these is the proper
distance from the brane measured in units of the curvature
radius α. Note that for the derivatives appearing in (46) and
(49) one has the relations

∂x½xDþ2νFD=2
ν ðxÞ� ¼ xDþ2ν−1½FD=2

ν ðxÞ þ 2FD=2−1
ν ðxÞ�;

∂2
x½xDþ2νFD=2

ν ðxÞ� ¼ 2xDþ2ν−2½3FD=2−1
ν ðxÞ þ 2FD=2−2

ν ðxÞ�:
ð50Þ

Here, we have used the formula ∂z½zb1F2ða;bþ1;2a;zÞ� ¼
bzb−11F2ða;b;2a;zÞ with a ¼ νþ 1=2.
By using the expressions given above, we can see that

the boundary-induced contributions obey the trace relation

hTi
iib ¼ Dðξ − ξDÞ∇l∇lhφ2ib þm2hφ2ib: ð51Þ

In particular, the brane-induced part is traceless for a
conformally coupled massless field. The trace anomalies
are contained in the boundary-free part only. As an addi-
tional check for the expressions given above, we can see
that the covariant continuity equation ∇khTk

i ib ¼ 0 is
obeyed. For the geometry under consideration the latter
is reduced to the following relations:

∂1hT1
1ib þ ∂DhTD

1 ib −
Dþ 1

z
hTD

1 ib ¼ 0;

∂1hT1
Dib þ ∂DhTD

Dib −
D
z
hTD

Dib þ
1

z

XD−1

k¼0

hTk
kib ¼ 0: ð52Þ

The Minkowskian limit for the VEVs of the energy-
momentum tensor is considered in a way similar to that for
the VEV of the field squared. By using the asymptotic
expression (35), to the leading order for the diagonal
components we get (no summation over i) hTi

iib≈hTi
iiðMÞ
b ,

where for a plate in Minkowski spacetime one has
(see [22])

hTi
iiðMÞ
b ¼ −

ð4πÞ−D=2

ΓðD=2Þ
Z

∞

m
due−2xx

1 βuþ 1

βu − 1
ðu2 −m2ÞD=2−1

× ½4ðξ − ξDÞu2 −m2=D�; ð53Þ

for i ¼ 0, 2;…; D and hT1
1iðMÞ

b ¼ 0. For the leading term in
the off-diagonal component we find

hT1
Dib ≈−

2ð4πÞ−D=2

ΓðD=2Þα
Z

∞

0

duue−2ux
1 βuþ 1

βu− 1
ðu2−m2ÞD=2−2

× ½Dðξ− ξDÞu2þð1=4− 2ξÞm2�; ð54Þ

and it vanishes in the Minkowskian limit. Note that for the
normal stress one has hT1

1ib ¼ Oð1=α2Þ. For a conformally
coupled massless field, the Minkowskian limit of the VEV
of the energy-momentum tensor vanishes for a single plate.
In the case of Dirichlet and Neumann boundary con-

ditions it is convenient to evaluate the VEVof the energy-
momentum tensor by using the formula (42) with the
Wightman function from (18). For the boundary-induced
contributions in the diagonal components we find (no
summation over i)

hTi
iib ¼ � π−D=2α−D−1

2D=2þνþ1
½ĈiðuÞ −Dξ�fνðuÞ; ð55Þ

where, as before, the upper/lower sign corresponds to the
Dirichlet/Neumann boundary condition and u is defined in
accordance with (34). In (55), ĈiðuÞ are the second order
differential operators defined by the expressions (i ¼ 0,
2;…; D − 1)

ĈiðuÞ¼ξ1ðu2−1Þ∂2
uþ

�
4ξ−2þ

�
Dþ1

2
ξ1−

1

2

�
ðu−1Þ

�
∂u;

Ĉ1ðuÞ¼ξ1ðu−1Þ2∂2
uþ

�
Dþ1

2
ξ1−

1

2

�
ðu−1Þ∂u;

ĈDðuÞ¼2ξ1ðu−1Þ∂2
uþ

�
4ξ−2þD

2
ξ1ðu−1Þ

�
∂u; ð56Þ

with ξ1 ¼ 4ξ − 1. For the off-diagonal component one gets

hT1
Dib ¼ � 2α−D−1x1=z

2D=2þνþ1πD=2 ½ξ1ðu− 1Þ∂2
u þ ð2ξ− 1Þ∂u�fνðuÞ:

ð57Þ
The second derivatives in (55) and (57) can be excluded by
using the differential equation for the function fνðuÞ. The
latter is obtained by using the definition (15) and the
equation for the function 2F1. In this way we can see that

½ðu2 − 1Þ∂2
u þ ðDþ 1Þu∂u þD2=4 − ν2�fνðuÞ ¼ 0: ð58Þ

As an additional check, by making use of (58), it can be
shown that the VEVs (55) and (57) obey the trace
relation (51).
Let us consider the asymptotic behavior of the vacuum

energy-momentum tensor near the brane and at large
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distances for the general case of the Robin boundary
condition. For points near the brane, x1=z ≪ 1, the dom-
inant contribution to the integral in (46) comes from large
values of x. The corresponding asymptotic of the function
Fμ
νðxÞ was given by (37). Assuming that x1=jβj ≪ 1, in the

leading order we find (no summation over i ¼ 0, 2;…; D)

hTi
iib ≈

2DðξD − ξÞΓððDþ 1Þ=2Þ
πðDþ1Þ=2ð2αx1=zÞDþ1

;

hT1
1ib ≈ −

DðξD − ξÞΓððD − 1Þ=2Þ
4πðDþ1Þ=2ð2αx1=zÞD−1 ; ð59Þ

for the diagonal components and

hT1
Dib ≈

DðξD − ξÞΓððDþ 1Þ=2Þ
πðDþ1Þ=2αð2αx1=zÞD ; ð60Þ

for the off-diagonal component. For the Dirichlet boundary
condition (β ¼ 0) the asymptotic expressions are given
by (59)–(60) with the opposite signs. For fixed x1, the
expressions in (59)–(60) give the leading terms near
the AdS horizon. In particular, from (59) it follows that
the energy density diverges on the horizon as zDþ1. Note
that in the evaluation of the total energy induced by the
brane, Eb ¼

R
dDx

ffiffiffiffiffijgjp hT0
0ib, an additional factor 1=zDþ1

comes from the volume element.
At large distances from the brane, x1=z ≫ 1, the main

contribution to the integrals in (46) and (49) comes from
the region near the lower limit of the integration. Assuming
that jβj=x1 ≪ 1, for the diagonal components we get
(no summation over i)

hTi
iib ≈

α−D−1BiΓðD=2þ νÞ
πD=2ΓðνÞð2x1=zÞDþ2ν

; ð61Þ

where Bi ¼ ðξ − 1=4ÞðDþ 2νÞ þ ξ for i ¼ 0;…; D − 1,
and BD ¼ −DB0=ð2νÞ. For the off-diagonal component
one finds

hT1
Dib ≈

2α−D−1B0ΓðD=2þ νþ 1Þ
πD=2Γð1þ νÞð2x1=zÞDþ2νþ1

: ð62Þ

As is seen, at large distances the off-diagonal component is
suppressed by an additional factor x1=z. For the Neumann
boundary condition, β ¼ 0, the asymptotics at large dis-
tances are given by the expressions (61)–(62) with the
opposite signs. As in the case of the field square, at large
distances one has a power-law decay instead of an
exponential one for the problem with a massive field in
Minkowski bulk. From (61)–(62) it follows that, for fixed
x1, the diagonal components vanish on the AdS boundary
as zDþ2ν. The integrand in the expression for the total
energy induced by the brane, Eb, near the horizon behaves
like z2ν−1 and the integral over z converges at z ¼ 0
for ν > 0.
Figure 2 displays the boundary-induced part in the VEV

of the energy density for the cases of D ¼ 4 conformally
(left panel) and minimally (right panel) coupled scalar
fields as a function of the ration x1=z (proper distance from
the brane measured in units of the AdS curvature radius).
The dashed lines correspond to Dirichlet and Neumann
boundary conditions. The numbers near the solid curves
correspond to the values of the ratio β=z. The graphs are
plotted for mα ¼ 0.5.

V. CONCLUSION

We have investigated quantum effects induced by a flat
brane for a scalar field in background of AdS spacetime.
The brane is perpendicular to the AdS boundary and the
field operator obeys the Robin boundary condition on it.
We consider a free field theory in AdS spacetime and all the
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FIG. 2 (color online). The vacuum energy density induced by a brane as a function of the proper distance measured in units of the AdS
curvature radius. The graphs are plotted for D ¼ 4 conformally (left panel) and minimally (right panel) coupled scalar fields with
mα ¼ 0.5. Dashed curves correspond to Dirichlet and Neumann boundary conditions and the numbers near the solid curves are the
values of the ratio β=z.
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information on the vacuum state is contained in the two-
point functions. As such a function, the positive-frequency
Wightman function is chosen, which also determines the
response of the Unruh-DeWitt-type particle detectors. We
have provided an expression for the Wightman function in
which the contribution induced by the brane is explicitly
separated from the pure AdS one and is given by the second
term in the right-hand side of (17). This allows one to
reduce the renormalization procedure for the local VEVs, at
points away from the brane, to the one in AdS spacetime in
the absence of the brane. The latter problem is well
discussed in the literature. The expression for the
Wightman function is further simplified in special cases
of Dirichlet and Neumann boundary conditions and is
given by (18). For a fixed value of the proper distance from
the brane, near the AdS boundary, the Neumann boundary
condition is an attractor in the general class of Robin
boundary conditions, whereas the Dirichlet boundary con-
dition is an attractor near the horizon. We have also
evaluated the bulk-to-boundary propagator that plays an
important role in the discussions of the AdS=CFT corre-
spondence. Similar to the case of the Wightman function,
the corresponding expression is decomposed into the
boundary-free and brane-induced contributions.
As an important characteristic of the quantum vacuum,

in Sec. III we have studied the mean field squared. The
brane-induced contribution in this VEV is presented in the
form (32) where the function Fμ

νðxÞ is defined by (31). This
contribution depends on the coordinates x1, z and on the
paramater β in the Robin boundary condition in the form of
the ratios x1=z and β=z. This property is a consequence of
the maximal symmetry of AdS spacetime. For Dirichlet and
Neumann boundary conditions the integral in (32) is
expressed in terms of the hypergeometric function and
the corresponding formula simplifies to (33). As an addi-
tional check of the results derived, we have shown that in
the limit α → ∞ the corresponding expression for a Robin
plate in Minkowski spacetime is obtained. The boundary-
induced VEV diverges on the brane with the leading term
given by (39) for non-Dirichlet boundary conditions. For
the Dirichlet boundary condition the leading term has the
opposite sign. For points near the brane, the influence of the
gravitational field on the VEV is small and the leading term
coincides with that in Minkowski spacetime. The influence
of gravity is crucial at the proper distances from the brane
larger than the AdS curvature radius. In this limit, for non-
Neumann boundary conditions the leading term in the
corresponding asymptotic expansion has the form (41). For
the Neumann boundary condition the same expression is
obtained with the opposite sign. For AdS bulk the decay of
the boundary-induced contribution at large distances from
the brane is a power law for both massless and massive

fields. This is in clear contrast with the case of the problem
in Minkowski spacetime, where the boundary-induced
VEV for a massive field decays exponentially. For a given
x1, the brane-induced contribution in the VEV of the field
squared vanishes on the AdS boundary as zDþ2ν and
diverges on the horizon like zD−1.
Another important quantity, characterizing the vacuum

fluctuations in the presence of the brane, is the VEVof the
energy-momentum tensor. The boundary-induced contri-
butions in the diagonal components are given by (46). The
vacuum stresses along the directions parallel to the brane
are equal to the energy density. In addition to the diagonal
components the vacuum energy-momentum tensor has an
off-diagonal component defined by the expression (49).
The formulas for the components of the vacuum energy-
momentum tensor are further simplified for the cases of
Dirichlet and Neumann boundary conditions [see (55) and
(57)]. We have explicitly checked that the brane-induced
parts obey the trace relation (51) and the covariant con-
servation equation. The latter is reduced to the relations
(52). In the limit of large values for the AdS curvature
radius, to the leading order, for the energy density and
parallel stresses we obtain the corresponding result in
Minkowski bulk. In this limit, the off-diagonal component
and the normal stress behave like hT1

Dib ∝ 1=α and
hT1

1ib ∝ 1=α2. For proper distances from the brane smaller
than the AdS curvature radius, with an additional
assumption that x1=jβj ≪ 1, the leading terms in the
asymptotic expansion over the distance are given by
(59)–(60) for non-Dirichlet boundary conditions. For the
Dirichlet boundary condition the leading asymptotic is
given by the same expressions with the opposite sign. The
leading terms vanish for a conformally coupled field and in
this case the divergences on the brane are weaker. At large
proper distances from the brane and for non-Neumann
boundary conditions, the diagonal components of the
vacuum energy-momentum tensor decay like ðz=x1ÞDþ2ν

and the off-diagonal component behaves as ðz=x1ÞDþ2νþ1.
In the case of Neumann boundary condition the asymp-
totics have the opposite sign. For fixed x1, the diagonal
components decay on the AdS boundary as zDþ2ν and
diverge on the horizon as zDþ1.
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