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We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the Λ cold
dark matter (ΛCDM) model on cosmological scales while simultaneously reproducing the modified
Newtonian dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have
a common origin, representing different phases of a single underlying substance. DM consists of axionlike
particles with mass of order eV and strong self-interactions. The condensate has a polytropic equation of
state P ∼ ρ3 giving rise to a superfluid core within galaxies. Instead of behaving as individual collisionless
particles, the DM superfluid is more aptly described as collective excitations. Superfluid phonons,
in particular, are assumed to be governed by a MOND-like effective action and mediate a MONDian
acceleration between baryonic matter particles. Our framework naturally distinguishes between galaxies
(where MOND is successful) and galaxy clusters (where MOND is not); due to the higher velocity
dispersion in clusters, and correspondingly higher temperature, the DM in clusters is either in a mixture of
superfluid and the normal phase or fully in the normal phase. The rich and well-studied physics of
superfluidity leads to a number of observational signatures: an array of low-density vortices in galaxies;
merger dynamics that depend on the infall velocity vs phonon sound speed; distinct mass peaks in bulletlike
cluster mergers, corresponding to superfluid and normal components; and interference patters in
supercritical mergers. Remarkably, the superfluid phonon effective theory is strikingly similar to that
of the unitary Fermi gas, which has attracted much excitement in the cold atom community in recent years.
The critical temperature for DM superfluidity is of order mK, comparable to known cold atom Bose–
Einstein condensates. Identifying a precise cold atom analog would give important insights on the
microphysical interactions underlying DM superfluidity. Tantalizingly, it might open the possibility of
simulating the properties and dynamics of galaxies in laboratory experiments.
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I. INTRODUCTION

The most clear-cut evidence for dark matter (DM) comes
from observations on the largest scales. The standard Λ cold
dark matter (ΛCDM) model, in which DM consists of
collisionless particles, does exquisitely well at fitting the
background expansion history, the detailed shape of micro-
wave background and matter power spectra, as well as the
abundance and mass function of galaxy clusters. On smaller
scales, however, the situation is murkier. As simulations and
observations of galaxies have improved, a number of
challenges have emerged for the CDM paradigm.
For starters, galaxies in our Universe are observed to be

remarkably regular, a fact embodied by various empirical
scaling relations. The most striking example is the baryonic
Tully–Fisher relation (BTFR) [1–4], which relates the
baryonic mass Mb to the asymptotic circular velocity vc

1:

Mb ∼ v4c : ð1Þ
Figure 1, reproduced from Ref. [6], shows excellent agree-
ment with remarkably little scatter in the high-mass end
comprised of star-dominated (dark blue circles) and gas-
dominated disk galaxies (light blue circles). On the theory
side, the standard collapse model predicts a scaling between
the total mass (dark plus baryonic) and circular velocity at
the virial radius:Mvir ∼ v3vir. Despite the different slope, this
is not a priori inconsistent with (1) since the translation from
virial parameters to observables can be mass dependent.
However, the real challenge for ΛCDM lies in explaining the
remarkably small level of scatter around this slope in the
high-mass end, as shown in Fig. 1. How can baryonic
feedback processes, which are inherently stochastic, result in
such a tight correlation across different galaxy types? Indeed,
recent hydrodynamical simulations [7] show considerably
larger scatter than observations [4].
Another set of challenges comes from dwarf satellite

galaxies in the Local Group. Dwarf satellites are highly
DM-dominated objects and thus well suited to detailed
tests of DM microphysics. As the old “missing satellite”
problem [8–10] has gradually been alleviated through the
discovery of ultrafaint dwarfs [11–14], new sharper

1The BTFR extends the old Tully–Fisher relation [5], relating
the optical luminosity to velocity asL ∼ v4c . Since the mass-to-light
ratio is not constant among different types of galaxies, the inferred
slope and scatter end up depending on the choice of band filter.
Replacing luminosity by total baryonic mass [1,2] (i.e., stars and
gas) reduces the scatter and extends the validity the scaling relation
over many decades in mass [4], as shown in Fig. 1.
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problems have emerged. Recent attempts at matching the
populations of simulated subhaloes and observed Milky
Way (MW) dwarf galaxies have revealed a “too big to fail”
problem [15,16]: the most massive dark halos are too dense
to host the brightest MW satellites. Even more puzzling is
the fact that the majority of the MW [17–20] and
Andromeda (M31) [21–23] satellites lie within vast planar
structures and are corotating within these planes.2 This is
puzzling for ΛCDM, though mechanisms have been pro-
posed [25–28].

A. MOND: Successes, challenges, and failures

A radical alternative is modified Newtonian dynamics
(MOND) [29–32], which proposes to replace DM with a

modification of the Newtonian force law. The force law is
standard at large acceleration (a≃ aN for aN ≫ a0) but
modified at low acceleration (a≃ ffiffiffiffiffiffiffiffiffiffi

aNa0
p

for aN ≪ a0).
This empirical force law has been remarkably successful at
explaining a wide range of galactic phenomena [6,33]. For
spiral galaxies, it predicts asymptotically flat rotation
curves and provides an excellent fit to detailed rotation
curves [33]. The critical acceleration a0 is the only free
parameter [apart from the Oð1Þ mass-to-light ratio for each
galaxy], with the best-fit value intriguingly of order the
present Hubble parameter:

a0 ≃ 1

6
H0 ≃ 1.2 × 10−8 cm=s2: ð2Þ

The BTFR is an exact consequence of this force law—deep
in the MOND regime (aN ≪ a0), a test particle will orbit
an isolated spherically symmetric source according to
v2c
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMba0

r2

q
, and hence

Mb ¼
v4c

GNa0
: ð3Þ

The vast planar structures seen around the MW and
Andromeda also find a plausible explanation in MOND,
as the result of tidal stripping during a flyby encounter
between these galaxies. With the MOND force law, this
encounter has been estimated to have occurred ∼10 Gyr
ago, with ≲55 kpc closest approach distance [34]. Unlike
in ΛCDM, where galaxies are surrounded by extended
DM halos and dynamical friction would cause a rapid
merger, in MOND there is only stellar dynamical friction,
and a merger can be avoided [35–37].
On the flip side, dwarf satellites, particularly the MW

dwarf spheroidals, have long posed a challenge for MOND
[38–42]. Five of the classical dwarfs are consistent with the
BTFR, but two (Draco and Ursa Minor) fall below it
[38,39]. Nearly all the ultrafaint dwarfs lie systematically
below the BTFR [43]. However, the derivation of the BTFR
in MOND assumes dynamical equilibrium, whereas the
discrepant dwarfs may be undergoing tidal disruption [43].
Moreover, velocity estimates for these objects are compli-
cated by interlopers [44]. On the other hand, MOND does
an excellent job at explaining the observed velocity dis-
persions in Andromeda’s dwarf satellites [45,46]. Finally,
globular clusters also pose a challenge for MOND [47].
MOND faces much more severe challenges on extra-

galactic scales. To reproduce the observed temperature
profile of galaxy clusters [48], one must invoke some form
of dark matter, either as massive neutrinos [49–51] and/or
cold dense gas clouds [52]. Relativistic versions of MOND,
such as the tensor-vector-scalar (TeVeS) theory [53–59]
and other related proposals [60–63] (see Ref. [64] for a
review), cannot match the cosmic microwave backbround
(CMB) power spectrum [65,66]. Without a significant dark

FIG. 1 (color online). The baryonic Tully–Fisher relation
(BTFR), reproduced from [6]. The dark blue points are stardomi-
nated galaxies; the light blue circles are gas dominated. The dashed
line has a slope of 3, corresponding to the ΛCDM prediction. The
dotted line has slope 4, in good agreement with the data.

2Phase-space correlated dwarfs have also been found around
galaxies beyond the Local Group [24].
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matter component, the baryonic oscillations in the matter
power spectrum tend to be far too pronounced [65,67].
Finally, numerical simulations of MONDian gravity with
massive neutrinos fail to reproduce the observed cluster
mass function [68,69].

B. DM-MOND hybrids

What we have learned is that MOND and CDM are
each successful in almost mutually exclusive regimes. The
ΛCDM model successfully explains the expansion and
linear growth histories, as well as the abundance of clusters,
but faces a number of challenges on galactic scales. MOND
does very well overall at explaining the observed properties
of galaxies, in particular the empirical scaling relations, but
it seems highly improbable that it can ever be made
consistent with the detailed shape of the CMB and matter
power spectra.
This has led various people to propose hybrid models

that include both DM andMOND phenomena [70–77]. For
instance, one of us recently proposed such a hybrid model,
involving two scalar fields [78]: one scalar field acts as DM,
and the other mediates a MOND-like force law. This model
enjoys a number of advantages compared to TeVeS and
other relativistic MOND theories. For starters, it only
requires two scalar fields, as opposed to the scalar and
vector fields of TeVeS. Second, unlike TeVeS, its predic-
tions on cosmological scales are consistent with observa-
tions, thanks to the DM scalar field. Finally, the model
offers a better fit to the temperature profile of galaxy
clusters.
The improved consistency with data does come at the

price of having two a priori distinct components—a
DM-like component and a modified-gravity component.
It would be much more compelling if these two compo-
nents somehow had a common origin. Furthermore, the
theory must be adjusted so as to avoid the coexistence of
DM-like and MOND-like behavior. This requires that the
parameters of the theory be mildly scale or mass dependent,
which adds another layer of complexity.

C. Unified approach: MOND phenomenon
from DM superfluidity

In this paper, along with its shorter companion [79], we
propose a unified framework for the DM and MOND
phenomena. The DM and MOND components have a
common origin, representing different phases of a single
underlying substance. This is achieved through the rich and
well-studied physics of superfluidity.3

There are two central ideas underlying this work. The first
idea is quite general, namely, that DM forms a superfluid
inside galaxies with a coherence length of order the size of

galaxies. As we will see, the phenomenon of DM super-
fluidity is quite generic if the DM particle is sufficiently light
and has sufficiently strong self-interaction. Specifically, as a
back-of-the-envelope calculation, we can estimate the con-
dition for the onset of superfluidity by ignoring interactions
among DM particles. With this simplifying approximation,
the requirement for superfluidity amounts to demanding that
the de Broglie wavelength λdB ∼ 1

mv of DM particles should
overlap. Using the typical velocity v and density of DM
particles in galaxies, this translates into an upper bound
m≲ 2 eV on the DM particle mass.
Another requirement for the Bose–Einstein condensate

is that DM thermalizes within galaxies. We assume that
DM particles interact through contact repulsive inter-
actions. Demanding that the interaction rate be larger than
the galactic dynamical time places a lower bound of
σ
m ≳ 0.1 cm2=g. This is just below the most recent con-
straint ≲0.5 cm2=g from galaxy cluster mergers [83],
though we will argue such constraints must be carefully
reanalyzed in the superfluid context.
Again ignoring interactions, the critical temperature for

DM superfluidity is Tc ∼mK, which intriguingly is com-
parable to known critical temperatures for cold atom gases;
e.g., 7Li atoms have Tc ≃ 0.2 mK. We will see that cold
atoms provide more than just a useful analogy—in many
ways, our DM component behaves exactly like cold atoms.
In cold atom experiments, atoms are trapped using mag-
netic fields; in our case, it is gravity that attracts DM
particles in galaxies.
The superfluid nature of DM dramatically changes its

macroscopic behavior in galaxies. Instead of behaving as
individual collisionless particles, the DM is more aptly
described as collective excitations, which at low energy are
just phonons. In the nonrelativistic regime and at lowest
order in derivatives, it is well known that superfluid
phonons are in general described by a scalar field θ
governed by the effective field theory (EFT) [84],

L ¼ PðXÞ; X ¼ _θ −mΦ −
ð ~∇θÞ2
2m

; ð4Þ

where Φ is the gravitational potential. In particular, the type
of superfluid, i.e., its equation of state, is uniquely encoded
in the choice of P.
Once we take seriously the idea that DM is a superfluid,

the only question is what kind of superfluid. The second
central idea underlying this work is that DM phonons are
described by the nonrelativistic MOND scalar action,

PðXÞ ∼ ΛX
ffiffiffiffiffiffi
jXj

p
; ð5Þ

where Λ ∼meV to reproduce the MOND critical acceler-
ation.4 This choice corresponds to a particular superfluid,
with P ∼ ρ3. To mediate a MONDian force between
ordinary matter, a phonon must couple to the baryon density:

3For earlier attempts to unify the DM and MOND phenomena
through Bose-Einstein condensation see [80–82].
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Lint ∼
Λ
MPl

θρb: ð6Þ

From a particle physics standpoint, such a coupling is fairly
innocuous—it represents a soft explicit breaking of the
global Uð1Þ symmetry. In the superfluid interpretation,
however, where θ is the phase of a wave function, this
coupling picks out a preferred phase, which seems unphys-
ical. One possibility is that (6) follows from baryons
coupling to the vortex sector of the superfluid. This would
give rise to a cos θρb operator [86–88], thereby breaking the
continuous shift symmetry down to a discrete subgroup.
When expanded around the state at finite chemical potential
θ ¼ μt, such operators would give (6) to leading order, albeit
with an oscillatory prefactor.
Thus, through (5) and (6), phonons play a key role by

mediating a long-range force between ordinary matter par-
ticles. As a result, a test particle orbiting the galaxy is subject
to two forces: the (Newtonian) gravitational force and the
phonon-mediated force. Our postulate is that the phonon-
mediated force is MONDian, such that the DM superfluid
reproduces the empirical success of MOND in galaxies.
The fractional 3=2 power would be strange if (5)

described a fundamental scalar field. As a theory of
phonons, however, it is not uncommon to see fractional
powers in cold atom systems. For instance, the unitary Fermi
gas (UFG) [89,90], which has generated much excitement
recently in the cold atom community, describes a gas of cold
fermionic atoms tuned such that their scattering length
diverges [91,92]. The effective action for theUFGsuperfluid
is uniquely fixed by four-dimensional scale invariance at
lowest order in derivatives, LUFGðXÞ ∼ X5=2, which is also
nonanalytic [93].5

A hint on the nature of our condensate can be inferred
from the (grand canonical) equation of state PðμÞ, obtained
by working at finite chemical potential θ ¼ μt: P ∼ μ3=2.
Using standard thermodynamics, this implies a polytropic
equation of state:

P ∼ ρ3: ð7Þ
We can compare this to the viral expansion
P ¼ kBTρþ g2ðTÞρ2 þ g3ðTÞρ3 þ � � �, where the ρ term
describes an ideal gas, the ρ2 term describes two-body
interactions, the ρ3 term three-body interactions, etc. The
P ∼ ρ3 dependence in our case suggests that DM particles

have negligible two-body interactions and interact pri-
marily through three-body processes. It would be very
interesting to find explicit examples of such superfluids in
nature and study in more detail their microphysical
interactions.
As is familiar from liquid helium, a superfluid at finite

temperature (but below the critical temperature) is best
described phenomenologically as a mixture of two fluids
[96–98]: i) the superfluid, which by definition has vanish-
ing viscosity and carries no entropy and ii) the “normal”
component, comprised of massive particles, which is
viscous and carries entropy. The fraction of particles in
the condensate decreases with increasing temperature.
Thus, our framework naturally distinguishes between
galaxies (where MOND is successful) and galaxy clusters
(where MOND is not). Galaxy clusters have a higher
velocity dispersion and correspondingly higher DM tem-
perature. For m ∼ eV we find that galaxies are almost
entirely condensed, whereas galaxy clusters are either in a
mixed phase or entirely in the normal phase.
Assuming hydrostatic equilibrium with P ∼ ρ3, the

resulting DM halo density profile is cored, not surprisingly,
and therefore avoids the cusp problem of CDM.
Remarkably, for our parameter values (m∼eV,
Λ∼meV), the size of the condensate halo is ∼100 kpc
for a galaxy of Milky Way mass. In the inner region of
galaxies where rotation curves are probed, the DM con-
densate has a negligible effect on baryonic particles, and
their motion is dominated by the phonon-mediated MOND
force. In the outer region probed by gravitational lensing,
the DM condensate gives the dominant contribution to the
force on a test particle.
In the vicinity of individual stars, the phonon effective

theory breaks down, and the correct description is in terms
of normal DM particles. This is good news on two counts.
First, it is well known that the MONDian acceleration,
while giving a small correction to Newtonian gravity in the
Solar System, is typically too large to conform to planetary
orbital constraints. This usually requires introducing addi-
tional complications to the theory [99]. In our case, the
MONDian behavior is avoided entirely in the Solar System,
as DM behaves as ordinary particles. The second piece of
good news pertains to experimental searches of axionlike
particles. By allowing the usual axionlike couplings to
Standard Model operators, our DM particles can be
detected through the suite of standard axion experiments,
e.g., Ref. [100].
The superfluid interpretation has a number of observa-

tional consequences, discussed in detail in Secs. IX–XI,
which can potentially distinguish this scenario from ordi-
nary MOND and ΛCDM. We mention a few here:

(i) As is well known, a superfluid cannot rotate uni-
formly; when spun faster than a critical velocity, the
superfluid instead develops localized vortices. The
typical angular momentum of galactic haloes is well

4The possible connection between MOND and superfluidity
was mentioned briefly by Milgrom in Ref. [85]. We thank A.
Kosowsky for pointing this out to us.

5Similarly, in the quasistatic limit (_θ ¼ 0), our action ∼X3=2

becomes invariant under time-dependent spatial Weyl trans-
formations: hij → Ω2ð~x; tÞhij [94,95]. At lowest order in deriv-
atives, it is the unique action with this property. Intriguingly, the
SOð4; 1Þ global part of the 3D Weyl group coincides with the de
Sitter isometry group, which hints at a deep connection between
the MOND phenomenon and dark energy [95].
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above the critical velocity, giving rise to an array of
DM vortices permeating the galactic disk [101,102].
Unfortunately these have negligible energy density,
so their detection through gravitational lensing may
prove challenging. Substructure lensing may soon
be possible with the Atacama Large Millimeter
Array [103].

(ii) A key difference with ΛCDM is the merger rate of
galaxies. Applying Landau’s criterion for superflu-
idity, we find two possible outcomes depending on
the infall velocity. If the infall velocity is less than
the phonon sound speed, then the galactic conden-
sate halos will pass through each other with negli-
gible dissipation. In this case the merger time scale
will be much longer than in ΛCDM and involve
multiple encounters, as dynamical friction between
the superfluid halos will be negligible. If the infall
velocity is greater than the sound speed, the en-
counter will drive halos out of equilibrium and excite
DM particles out of the condensate. In this case
dynamical friction will lead to a rapid halo merger,
as in ΛCDM, and after some time, the merged halo
will thermalize and condense back to the superfluid
ground state.

(iii) The story is even richer for merging galaxy clusters,
such as the Bullet Cluster [104–106]. Here the
outcome not only depends on the infall velocity
but also on the relative fraction of the superfluid vs
normal components in the clusters. If the infall
velocity is subsonic, the superfluid components
should once again pass through each other with
negligible friction; however, the normal components
should be slowed down due to the significant self-
interaction cross section. In general, we therefore
expect that lensing maps of bulletlike systems
should display two features: i) mass peaks coinci-
dent with the cluster galaxies, due to the (non-
interacting) superfluid cores, and ii) another mass
peak coincident with the x-ray luminosity peak, due
to the (interacting) normal components. Remark-
ably, this picture is consistent with the lensing map
of the Abell 520 (MS0451+02) merging system
[107–110]. The Bullet Cluster is also consistent with
this picture if the subcluster (the “bullet”) is pre-
dominantly superfluid.

The idea of a Bose–Einstein DM condensate (BEC) in
galaxies has been studied before [101,102,111–123].6
There are important differences with the present work.
In BEC DM galactic dynamics are caused by the con-
densate density profile, similar to what happens in CDM,
with phonons being irrelevant. In our case, phonons play a

key role in generating flat rotation curves and explaining
the BTFR. Moreover, the equation of state is different: the
BEC DM is governed by two-body interactions and hence
has P ∼ ρ2, compared to ∼ρ3 in our case. This difference
only has a minor effect on the condensate density profiles,
but it does imply a different phonon sound speed. In
particular, for the Bullet Cluster the sound speed in BEC
DM is only cs ≲ 100 km=s, i.e., more than an order of
magnitude smaller than the bullet infall velocity. As a result
dissipation is important, which puts BEC DM in tension
with observations [127].

II. DARK MATTER CONDENSATION

For DM particles to Bose–Einstein condense in galaxies,
two conditions must be met. For the purpose of these initial
estimates, we shall treat DM as weakly interacting particles
for simplicity, leaving for future work a refined calculation
including interactions. The first condition is that the de
Broglie wavelength of DM particles λdB ∼ 1

mv be larger than
the mean interparticle separation l ∼ ðmρÞ1=3. This implies
an upper bound on the mass:

m≲
�
ρ

v3

�
1=4

: ð8Þ

We shall apply this bound at virialization, which marks the
initial moment when one can meaningfully talk about an
individual halo. From standard collapse theory, virialization
occurs when δρ

ρ ≃ 180. In terms of the present DM

cosmological density ρð0ÞDM ≃ 3 × 10−30 g=cm3, the density
at virialization is therefore

ρvir ¼ ð1þ zvirÞ3180ρð0ÞDM ≃ ð1þ zvirÞ35.4 × 10−28 g=cm3:

ð9Þ

Meanwhile, the velocity is related to the mass of the object
as usual by [128]

vvir ¼ 127

�
M

1012h−1M⊙

�
1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zvir
p

km=s: ð10Þ

Substituting these into (8), we obtain

m≲ 2.3ð1þ zvirÞ3=8
�

M
1012h−1M⊙

�
−1=4

eV: ð11Þ

Hence, light objects form a BEC, while heavy objects do
not. Figure 2 shows the BEC region as a function of mass
assuming zvir ¼ 2 for concreteness.
The second necessary condition for condensation is that

DM particles thermalize, with the temperature set by the
virial velocity. The interaction rate is given by [124]

6In the context of the QCD axion, it has been argued that
Bose–Einstein condensation can occur in galaxies [124,125],
though this has been disputed recently [126].
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Γ ∼N vρvir
σ

m
; ð12Þ

where

N ∼
ρvir
m

ð2πÞ3
4π
3
ðmvÞ3 ≃ 103ð1þ zvirÞ3=2

�
m
eV

�
−4 1012h−1M⊙

M

ð13Þ

is the Bose enhancement factor, i.e., of order 103 particles
for a massive galaxy.7 The interaction rate should be
compared to the dynamical time in galaxies,
tdyn ∼ 1ffiffiffiffiffiffiffiffiffiffi

GNρvir
p . Indeed, if the time scale for thermalization

is shorter than the halo dynamical time, the coherence
length for the condensate will be comparable to the size of
the halo. This is necessary in order for phonons to act
coherently across the galaxy. Putting everything together,
the condition Γtdyn ≳ 1 can be expressed as a lower bound
on the interaction cross section

σ

m
≳ ð1þ zvirÞ−7=2

�
m
eV

�
4
�

M
1012h−1M⊙

�
2=3

52
cm2

g
:

ð14Þ

Clearly the bound is most stringent for massive galaxies.
Taking M ∼ 1012h−1M⊙ and assuming zvir ¼ 2 for con-
creteness, we obtain

σ

m
≳
�
m
eV

�
4 cm2

g
: ð15Þ

We will see below that a mass of around 0.6 eV gives
appropriate size halos, in which case σ

m ≳ 0.1 cm2

g .
The lower end of this bound satisfies current constraints
[129–131] on the cross section of self-interacting dark
matter (SIDM) [132]. However, as we will see the phe-
nomenology of superfluid DM is considerably different
than SIDM, and each constraint much be carefully
revisited.
The resulting DM temperature is quite cold. The critical

temperature can be readily obtained assuming equiparti-
tion, kBTc ¼ 1

3
mv2c , where vc saturates (8). The result is in

the mK range:

Tc ¼ 6.5

�
eV
m

�
5=3

ð1þ zvirÞ2 mK: ð16Þ

The temperature in a given halo, in units of Tc, is

T
Tc

≃ 0.1
1þ zvir

�
m
eV

�
8=3

�
M

1012h−1M⊙

�
2=3

: ð17Þ

At finite but subcritical temperature, the system is phe-
nomenologically described as a mixture of condensate and
normal components. Neglecting interactions, the fraction of
condensed particles is [133]

Ncond

N
¼ 1 −

�
T
Tc

�
3=2

≃ 1 −
0.03

ð1þ zvirÞ3=2
�
m
eV

�
4 M
1012h−1M⊙

;

T ≤ Tc: ð18Þ

Figure 3 plots the condensate fraction as a function of halo
mass for zvir ¼ 0, for m ¼ 0.4, 0.6, and 0.8 eV. We see that
galaxies (M ≲ 1012h−1M⊙) are almost completely com-
prised of particles in the condensate, while massive clusters
(1014h−1M⊙ ≲M ≲ 1015h−1M⊙) can have a significant
fraction, if not all, of their particles in the normal phase.
It is worth noting that (18) only holds for free particles; one
expects the 3=2 power to change when including inter-
actions. For instance, the power is 3 for particles trapped in
a harmonic potential. We leave a careful calculation of the
condensate fraction including interactions to future work.
A few comments about cosmology are in order. Since

our DM particles are in the sub-eV mass range, they are
axionlike particles. They must be produced out of equi-
librium (e.g., through a phase transition) and remain
decoupled from normal matter throughout the history of
the universe. For instance, they can be generated through an
axionlike vacuum displacement mechanism: in the early
universe, the field is displaced from its minimum and starts
oscillating once H ≲m. In this scenario DM particles are
generated whenHi ∼m. The corresponding photon-baryon
temperature is

FIG. 2 (color online). Dependence of the BEC region (shaded)
on the DM mass m and the halo mass M, assuming zvir ¼ 2 for
concreteness.

7Strictly speaking, Eq. (12) is valid provided that Γ ≪ mv2
[124], which is easily satisfied in our case.
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Tbaryons
i ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
mMPl

p
; ð19Þ

which for m ∼ eV is 50 TeV, i.e., around the weak scale.
The velocity is initially relativistic, vi ≲ 1, and sub-
sequently redshifts as v ∼ 1=a.
It is easy to see that, as soon as it is generated

cosmologically, DM becomes a superfluid. Consider the
de Broglie wavelength condition (8). Since v ∼ 1=a and
ρ ∼ 1=a3 cosmologically, both sides of the inequality are
time independent. Hence, if (8) is satisfied at any time, it is
satisfied at all times. We can anchor this condition at
matter-radiation equality using the observational constraint
ρeq ≃ 10−19 g=cm3 ≃ 0.4 eV4. Since veq ≪ 1, it follows
that

m ∼ ρ1=4eq ≪
�
ρeq
v3eq

�
1=4

; ð20Þ

and hence the BEC condition is satisfied at all times.
Similarly it is easy to show that thermalization proceeds
efficiently, given the lower bound (15) on σ=m and the high
occupation number N ≫ 1.
Naturally DM is much colder on cosmological scales

than in collapsed structures. The temperature ratio T=Tc ¼
ðv=vcÞ2 is constant cosmologically, where vc ≡ ðρ=m4Þ1=3
saturates (8). Once again it is convenient to evaluate this at
matter-radiation equality:

�
T
Tc

�
cosmo

≃ v2eq

�
m
eV

�
8=3

: ð21Þ

Assuming vi ∼ 1 when Tbaryons
i ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
mMPl

p
, we have veq ¼

vi
ai
aeq

≃ eVffiffiffiffiffiffiffiffi
mMPl

p , and therefore

�
T
Tc

�
cosmo

≃ 10−28
�
m
eV

�
5=3

; ð22Þ

which is very cold indeed. In contrast we see from (17) that
T=Tc ranges from 10−6 in dwarf galaxies (M ∼ 106M⊙) to
10−2 in massive galaxies (M ∼ 1012M⊙). In other words,
cosmologically the DM superfluid can be described to an
excellent approximation as a T ¼ 0 superfluid. In collapsed
structures, finite-temperature effects can be significant. As
we will see, finite-temperature effects will be important in
stabilizing the MOND phenomenon in galaxies.

III. SUPERFLUID PHASE

Once DM condenses and forms a superfluid, the relevant
low-energy degrees of freedom are collective excitations in
the form of phonons. Superfluid phonons are the Goldstone
bosons for a spontaneously broken global Uð1Þ symmetry.
In the nonrelativistic regime, they are in general described
by a scalar field θ with effective action [93]

L ¼ PðXÞ; X ¼ _θ −mΦ −
ð ~∇θÞ2
2m

; ð23Þ

where Φ is the external gravitational potential, e.g., ΦðrÞ ¼
− GNMðrÞ

r for a spherical-symmetric static source. This
effective Lagrangian is exact at lowest order in derivatives,
with corrections suppressed by additional derivatives per
field. To describe phonons at constant chemical potential μ,
we expand

θ ¼ μtþ ϕ ⇒ X ¼ μ −mΦþ _ϕ −
ð ~∇ϕÞ2
2m

: ð24Þ

In the case of interest, our conjecture is that the DM
superfluid phonons are governed by the MOND action (5),

PðXÞ ¼ 2Λð2mÞ3=2
3

X
ffiffiffiffiffiffi
jXj

p
: ð25Þ

The square-root form is necessary to ensure that the action
makes sense for timelike field profiles and that the
Hamiltonian is bounded from below [64]. Note that the
effective action (25) is only well-defined away from X ¼ 0,
for both timelike and spacelike profiles. In Sec. VI we will
give a more fundamental derivation of the phonon action
starting from a complex scalar field with j∂Ψj6 interactions.
As we will see, in that example a condensate only forms for

2mjXj > Λ4
c

Λ2, for some cutoff scale Λc.
To mediate a MOND force, phonons must couple to the

baryon mass density ρb,

Lint ¼ −α
Λ
MPl

θρb; ð26Þ

FIG. 3 (color online). Fraction of DM particles in the con-
densate as a function of halo massM form ¼ 0.4, 0.6, and 0.8 eV,
assuming zvir ¼ 0.
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where α is a dimensionless parameter. (The relativistic
extension is more complicated and will be discussed in
Sec. VIII.) This operator explicitly breaks the shift symmetry
only at the 1=MPl level and is therefore technically natural.
From the superfluid perspective, Eq. (26) can arise if baryonic
matter couples to the vortex sector of the superfluid, giving
rise to operators ∼ cos θρb that preserve a discrete subgroup
of the continuous shift symmetry [86–88]. Expanding around
a state at finite chemical potential, ϕ ¼ θ − μt, this operator
would yield a coupling of the form (26) with an oscillatory
prefactor. For the purpose of the present work, we shall treat
(26) as an empirical term in our action necessary to obtain the
MOND phenomenon.
To summarize, our phonon theory depends on three

parameters: the particle mass m, the scale Λ, and the
coupling constant α. The latter two parameters can depend
on temperature, and thus on velocity, most naturally
through the ratio T=Tc. In particular they can assume
different values on cosmological scales (where T=Tc∼
10−28) than in galaxies (where T=Tc ∼ 10−6–10−2).
Specifically we will see in Sec. VII that α must be
∼10−4 smaller cosmologically, while Λ must be ∼104
larger, in order to obtain an acceptable cosmology. The
temperature dependence is therefore quite mild and can be
ignored over the velocity range spanned by galaxies. Until
Sec. VII it will be implicitly understood that α and Λ
assume their galactic values, ignoring any temperature
dependence. For galaxy phenomenology, we will find in
Sec. IV that these two parameters must be related in order
to reproduce the MOND critical acceleration:

α3=2Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a0MPl

p ≃ 0.8 meV ⇒ α≃ 0.86

�
Λ

meV

�
−2=3

:

ð27Þ

Hence, α ∼Oð1Þ for Λ ∼meV.

A. Condensate and phonon properties

The form of the phonon action (25) uniquely fixes the
properties of the condensate through standard thermody-
namics arguments. We work at finite chemical potential,
θ ¼ μt, setting the phonon excitations and gravitational
potential to zero. The pressure of the condensate is given as
usual by the Lagrangian density,

PðμÞ ¼ 2Λ
3

ð2mμÞ3=2: ð28Þ

This is the grand canonical equation of state P ¼ PðμÞ for
the condensate. Differentiating with respect to μ yields the
number density of condensed particles:

n ¼ ∂P
∂μ ¼ Λð2mÞ3=2μ1=2: ð29Þ

Combining these expressions and using the nonrelativistic
relation ρ ¼ mn, we find

P ¼ ρ3

12Λ2m6
: ð30Þ

This is a polytropic equation of state P ∼ ρ1þ1=n with index
n ¼ 1=2. In comparison, the standard DM BEC discussed
in the literature is described by P ∼ ρ2, corresponding to
n ¼ 1. We will see below that the halo profiles are none-
theless quite similar.
Let us now consider phonon excitations on top of this

condensate. Expanding (25) to quadratic order in phonon
perturbations ϕ ¼ θ − μt, once again neglecting the gravi-
tational potential, we obtain

Lquad ¼
Λð2mÞ3=2
4μ1=2

�
_ϕ2 −

2μ

m
ð ~∇ϕÞ2

�
: ð31Þ

The sound speed is

cs ¼
ffiffiffiffiffi
2μ

m

r
: ð32Þ

Expanding to higher order, we can identify the strong
coupling scale of the theory. A typical interaction term is
schematically of the form

Lhigher-order ⊃ Λm3=2μ3=2−n∂nϕn ∼ ðΛm3=2μ3=2Þ1−n
2∂nϕn

c;

ð33Þ

where ∂ stands for either ∂t or cs ~∇, and the canonical
variable is ϕc ∼ Λ1=2m3=4μ−1=4ϕ. The strong coupling
scale, identified as the scale suppressing higher-
dimensional operators, is

Λs ¼ ðΛm3=2μ3=2Þ1=4: ð34Þ

B. Halo profile

Given the equation of state (30), we can compute the DM
density profile of the condensate halo assuming hydrostatic
static equilibrium. Focusing on a static, spherically sym-
metric halo, the pressure and acceleration are related by

1

ρðrÞ
dPðrÞ
dr

¼ −
dΦðrÞ
dr

¼ −
4πGN

r2

Z
r

0

dr0r02ρðr0Þ: ð35Þ

Equivalently, since by definition ρ ¼ mn ¼ m dP
dX, this

equation can be written as
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dXðrÞ
dr

¼ −m
dΦðrÞ
dr

; ð36Þ

which automatically follows from the expression (24) for X
when phonon excitations are set to zero.
It is convenient to rewrite this equation in terms of

dimensionless variables Ξ and ξ, defined by

ρðrÞ ¼ ρ0Ξ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0
32πGNΛ2m6

r
ξ; ð37Þ

where ρ0 ≡ ρð0Þ is the central density. Differentiating (35)
with respect to r, and expressing the result in the new
variables, it is straightforward to obtain the n ¼ 1=2 Lane–
Emden equation8:

1

ξ2
d
dξ

�
ξ2

dΞ
dξ

�
¼ −Ξ1=2: ð39Þ

The boundary conditions are Ξð0Þ ¼ 1 and Ξ0ð0Þ ¼ 0. The
numerical solution, shown in Fig. 4, vanishes at

ξ1 ≃ 2.75; ð40Þ

which defines the size of the condensate:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0
32πGNΛ2m6

r
ξ1: ð41Þ

A simple analytical form that provides a good fit is
ΞðξÞ ¼ cos ðπ

2
ξ
ξ1
Þ, shown as the dashed curve in the figure.

The density profile is thus well approximated by

ρðrÞ≃ ρ0 cos

�
π

2

r
R

�
; r ≤ R: ð42Þ

The central density is related to the mass of the halo
condensate as follows [134]:

ρ0 ¼
3M
4πR3

ξ1
jΞ0ðξ1Þj

: ð43Þ

From the numerics we find Ξ0ðξ1Þ≃ −0.5. Substituting
(41), we can solve for the central density,

ρ0 ≃
�

MDM

1012M⊙

�
2=5

�
m
eV

�
18=5

�
Λ

meV

�
6=5

7 × 10−25 g=cm3:

ð44Þ

Meanwhile the halo radius is

R≃
�

MDM

1012M⊙

�
1=5

�
m
eV

�
−6=5

�
Λ

meV

�
−2=5

36 kpc: ð45Þ

Remarkably, for m ∼ eV and Λ ∼meV, we obtain DM
halos of realistic size. In the standard CDM picture, a halo
of mass MDM ¼ 1012M⊙ has a virial radius of ∼200 kpc.
In our framework, the condensate radius can in principle
be considerably smaller or larger depending on parameter
values. For concreteness, in the remainder of the analysis,
we will choose as fiducial values

m ¼ 0.6 eV; Λ ¼ 0.2 meV: ð46Þ

[From (27) this corresponds to α≃ 5=2.] This implies a
condensate radius of ∼125 kpc for a halo of mass
MDM ¼ 1012M⊙.
Through the relation ρ ¼ mn ¼ m dP

dX, the above density
profile fixes XðrÞ:

XðrÞ ¼ ρ2

8Λ2m5

≃ 10−6 eV

�
MDM

1012M⊙

�
4=5

�
m
eV

�
11=5

×

�
Λ

meV

�
2=5

cos2
�
π

2

r
R

�
: ð47Þ

In particular, the central density determines the chemical
potential,

FIG. 4 (color online). Numerical solution to the n ¼ 1=2 Lane–
Emden equation with boundary condition Ξð0Þ ¼ 1 and
Ξ0ð0Þ ¼ 0. The solution vanishes at ξ1 ≃ 2.75. The dashed line
is a simple approximate analytical form, ΞðξÞ ¼ cos ðπ

2
ξ
ξ1
Þ.

8The Lane–Emden equation for general n is

1

ξ2
d
dξ

�
ξ2

dΞ
dξ

�
¼ −Ξn: ð38Þ

Analytical solutions exist for n ¼ 0, 1, and 5 [134]. Other values
of n require numerical integration.

THEORY OF DARK MATTER SUPERFLUIDITY PHYSICAL REVIEW D 92, 103510 (2015)

103510-9



μ ¼ ρ20
8Λ2m5

; ð48Þ

which in turns determines the strong coupling scale (34):

Λs ¼
ρ3=40

83=8Λ1=2m3=2

≃meV

�
MDM

1012M⊙

�
3=10

�
m
eV

�
6=5

�
Λ

meV

�
2=5

: ð49Þ

Thus, the strong coupling scale, like Λ, is of order meV.
Finally, the gravitational potential ΦðrÞ ¼ m−1ðXðrÞ − μÞ
follows trivially from these relations.
A few comments are in order. First, we have neglected

the effect of halo rotation in this calculation. Slowly
rotating BEC with a polytopic equation of state can be
incorporated into a modified Lane–Emden equation [135].
However, we will see in Sec. X that rotating halos are
typically unstable to the formation of quantum vortices,
which carry the angular momentum. Second, R represents
the size of the superfluid “core,” not of the entire halo. In
reality we expect this core to be surrounded by DM
particles in the normal phase, most likely described by a
Navarro–Frenk–White (NFW) profile [136]. A careful
analysis would require numerical simulations, which is
beyond the scope of this paper. Third, the superfluid
scenario offers a simple, if not mundane, resolution to
the cusp-core and too big to fail problems [15,16]. The
density profile is cored and hence has a much lower central
density than in collisionless CDM simulations, in better
agreement with the inferred densities of MW dwarf
satellites.

IV. INCLUDING BARYONS:
PHONON-MEDIATED FORCE

In this section we derive the phonon profile in galaxies,
modeling the baryons as a static, spherically symmetric
localized source for simplicity. We first focus on the zero-
temperature analysis, where the Lagrangian is given by the
sum of (25) and (26). In this case we find two branches of
solutions, depending on the sign of X. The branch with
X > 0 has stable perturbations but does not admit a
MONDian regime. The branch with X < 0 does admit a
MONDian regime, where the phonon-mediated force
approximates the MOND force law over the scales probed
by galactic rotation curve observations, as desired.
However, perturbations on this branch are unstable.
Stability on the MOND branch can be restored by finite-
temperature effects, as we will show in Sec. IV B.

A. Zero-temperature analysis

Recall our zero-temperature phonon Lagrangian:

L ¼ 2Λð2mÞ3=2
3

X
ffiffiffiffiffiffi
jXj

p
− α

Λ
MPl

θρb: ð50Þ

In the static spherically symmetric approximation,
θ ¼ μtþ ϕðrÞ, the equation of motion reduces to

~∇ · ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjXj

p
~∇ϕÞ ¼ αρbðrÞ

2MPl
; ð51Þ

where XðrÞ ¼ μ −mΦðrÞ − ϕ02ðrÞ
2m . This can be readily

integrated:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjXj

p
ϕ0 ¼ αMbðrÞ

8πMPlr2
≡ κðrÞ: ð52Þ

The profile depends on the sign of X:
(i) X > 0 branch.—In this case the solution is

ϕ0ðrÞ ¼ ffiffiffiffi
m

p �
μ̂ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2 −

κ2

m2

r �1=2

;

μ̂≡ μ −mΦ; ð53Þ

where we have chosen the minus sign such that
ϕ0 → 0 whenMb → 0. Equivalently, the solution for
XðrÞ is

XðrÞ ¼ 1

2

�
μ̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2 −

κ2

m2

r �
: ð54Þ

As a check note that X → μ̂ for Mb → 0, which is
consistent with our equation (36) for the density
profile in the absence of baryons. More generally,
we can solve (54) for the gravitational potential:
μ̂ ¼ μ −mΦ ¼ X þ κ2

4m2X. Substituting into Pois-
son’s equation, we obtain

∇2

�
X þ κ2

4m2X

�
¼ −

m4Λ
M2

Pl

�
X
m

�
1=2

þ ρb
2MPl

;

ð55Þ

where we have used ρ ¼ m dP
dX for the condensate

matter density. In the absence of baryons, this
reduces to the Lane–Emden equation (39). In the
presence of baryons, it is easy to show that the
solution is qualitatively similar, with the only
notable difference being that the halo radius shrinks
with increasing baryonic mass, as expected from the
extra gravitational attraction due to baryons.

LASHA BEREZHIANI AND JUSTIN KHOURY PHYSICAL REVIEW D 92, 103510 (2015)

103510-10



(ii) X < 0 branch.—On this branch the solution is

ϕ0ðrÞ ¼ ffiffiffiffi
m

p �
μ̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2 þ κ2

m2

r �1=2

; ð56Þ

where we have dismissed a solution corresponding
to imaginary ϕ0. Equivalently, the solution for
XðrÞ is

XðrÞ ¼ 1

2

�
μ̂ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2 þ κ2

m2

r �
: ð57Þ

Unlike the X > 0 solution, this branch admits a
MONDian regime where κ ≫ μ̂, such that

ϕ0ðrÞ≃ ffiffiffiffiffiffiffiffiffi
κðrÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αMbðrÞ
8πMPlr2

s
: ð58Þ

In this limit the scalar acceleration on an ordinary
matter particle is

aϕðrÞ ¼ α
Λ
MPl

ϕ0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3Λ2

MPl

GNMbðrÞ
r2

s
: ð59Þ

To reproduce the MONDian result aMOND ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

GNMbðrÞ
r2

q
, we are therefore led to identify

α3=2Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a0MPl

p ≃ 0.8 meV

⇒ α≃ 0.86

�
Λ

meV

�
−2=3

; ð60Þ

which fixes α in terms of Λ through the critical
acceleration, as claimed earlier. That Λ is of order
the dark energy scale is a direct consequence of the
coincidence a0 ∼H0.
Repeating the steps that led to (55), in this case we

find

∇2

�
X −

κ2

4m2X

�
¼ −

m4Λ
M2

Pl

�
−X
m

�
1=2

þ ρb
2MPl

:

ð61Þ

This equation generically leads to unphysical halos,
with growing DM density as a function of r. The
origin of this instability can be seen at the level of
perturbations. Expanding (50) to quadratic order in
phonon perturbations φ ¼ ϕ − ϕ̄ðrÞ, we obtain

Lquad ¼ signðX̄ÞΛð2mÞ3=2
4

ffiffiffiffiffiffi
jX̄j

p
×

�
_φ2 − 2

ϕ̄0

m
φ0 _φ − 2

φ02

m

�
X̄ −

ϕ̄02

2m

�

−
2X̄
mr2

ð∂ΩφÞ2
�
: ð62Þ

The kinetic term _φ2 has the wrong sign for X̄ < 0.
To summarize, the X > 0 solution, given by (53), is

continuously connected to the homogeneous condensate in
the absence of baryons (Mb → 0) and has stable perturba-
tions. However, this branch does not admit a MONDian
regime. The X < 0 solution, on the other hand, does admit
an approximate MOND regime, but this branch has the
peculiarity that ϕ0 remains nonzero even in the Mb → 0
limit. Moreover, perturbations about this solution have a
wrong-sign kinetic term, indicating an instability. Below
we will show that this instability can be cured by finite-
temperature effects.

B. Finite-temperature effects

The DM condensate in actual galactic halos has nonzero
temperature, and hence we expect that the zero-temperature
Lagrangian (50) receives finite-temperature corrections in
galaxies. At finite subcritical temperature, the system is
described phenomenologically by Landau’s two-fluid
model: an admixture of a superfluid component, which
has zero viscosity, and a normal component, which is
viscous and carries entropy. The two components interact
with each other. Their relative fraction is a function of
temperature and hence the mass of the collapsed object, as
sketched in Fig. 3.
At lowest order in derivatives, the effective field

theory at finite temperature and finite chemical poten-
tial is [137]

LT≠0 ¼ FðX;B; YÞ: ð63Þ

It is a function of three scalar quantities. The scalar X,
already defined in (23), describes the phonon excita-
tions. The remaining scalars are defined in terms of the
three Lagrangian coordinates ψ Ið~x; tÞ, I ¼ 1, 2, 3 of the
normal fluid,9

B≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ∂μψ

I∂μψJ
q

;

Y ≡ uμð∂μθ þmδ0μÞ −m≃ μ −mΦþ _ϕþ ~v · ~∇ϕ; ð64Þ

9In Ref. [137], Y is defined in terms of the relativistic phonon
field Θ as Y ¼ uμ∂μΘ. To translate to the nonrelativistic descrip-
tion, we have substituted Θ ¼ mtþ θ and subtracted the mass
term.
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where uμ ¼ 1
6B ϵ

μαβγϵIJK∂αψ
I∂βψ

J∂γψ
K is the unit 4-

velocity vector, and in the last step for Y we have
taken the nonrelativistic limit uμ ≃ ð1 − Φ; ~vÞ. By con-
struction, these scalars respect the internal symmetries:
i) ψ I → ψ I þ cI (translations); ii) ψ I → RI

Jψ
J (rota-

tions); and iii) ψ I → ξIðψÞ, with det ∂ξI∂ψJ ¼ 1 (volume-

preserving reparametrizations).
Our goal is to seek a finite-temperature theory that

will generate a MONDian phonon profile (58) over the
scales probed by galactic rotation curve observations,
while having stable perturbations and a reasonable DM
density profile. There is much freedom in specifying finite-
temperature operators that will do the trick. The simplest
possibility is to supplement (50) with the two-derivative
operator

ΔL ¼ M2Y2 ¼ M2ðμ −mΦþ _ϕÞ2; ð65Þ

where in the last step we have specialized to the normal
fluid rest frame, ~v ¼ 0. This leaves the static profile (56)
unchanged; however, it does modify the quadratic
Lagrangian (62) by an amount ΔLquad ¼ M2 _φ2. This will
flip the sign of the kinetic term, and therefore cure the
ghost, if

M ≳ Λm3=2ffiffiffiffiffiffi
jX̄j

p
∼ 0.5

�
1011M⊙
Mb

�
1=4

�
Λ

meV

�
1=2

�
r

10 kpc

�
1=2

m; ð66Þ

which, remarkably, is of order eV. Hence, for quite natural
values of M, this two-derivative operator can restore
stability. Furthermore, this operator gives a contribution
ΔP ¼ M2μ2 to the condensate pressure, which obliterates
the unwanted growth in the DM density profile mentioned
below (61). Instead, the pressure is positive far from the
baryons, resulting in localized, finite-mass halos.
As another example, consider the finite-temperature

Lagrangian,

PðX; TÞ ¼ 2Λð2mÞ3=2
3

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX − βYj

p
¼ 2Λð2mÞ3=2

3
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX − βðμ −mΦþ _ϕÞj

q
; ð67Þ

where we have once again focused on the normal fluid rest
frame. The dimensionless β parameter implicitly depends
(mildly) on T=Tc, though we will treat it henceforth as
constant. This is of course a more ad hoc form of finite-
temperature effects, but it has the advantage of facilitating
the analysis. As we will see, in order to reproduce the
MOND phenomenon with stable perturbations, we will
need

β ≥
3

2
; ð68Þ

in which case the quantity within absolute values is
negative definite.
First, consider the DM density profile in the absence of

baryons. Setting the phonons and gravitational potential to
zero, the pressure of the condensate is now given by

Pðμ; TÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p
Λ

3
ð2mμÞ3=2: ð69Þ

Thus, the density profile is identical to the zero-temperature
profile described in Sec. III B, modulo the replacement
Λ →

ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p
Λ. For instance, instead of (45) the halo radius

is now given by

RðTÞ≃
�

MDM

1012M⊙

�
1=5

�
m
eV

�
−6=5

�
Λ

meV

�
−2=5

× ðβ − 1Þ−1=536 kpc: ð70Þ

Including baryons, the static, spherically symmetric
scalar equation becomes

~∇ ·

�
ϕ02 þ 2mð2β

3
− 1Þμ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ02 þ 2mðβ − 1Þμ̂
p ~∇ϕ

�
¼ αρbðrÞ

2MPl
; ð71Þ

where μ̂ ¼ μ −mΦ was introduced in (53). This integrates
to

ϕ02 þ 2mð2β
3
− 1Þμ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ02 þ 2mðβ − 1Þμ̂
p ϕ0 ¼ κðrÞ: ð72Þ

This implies a cubic equation for ϕ02, the real root of which
does not have a particularly illuminating analytic form. For
concreteness we shall assume that β is strictly greater than
3=2. The solution then has the following behavior: suffi-
ciently close to the baryon source, such that ϕ02 ≫ mμ̂, the
solution approximates the MOND profile (58), ϕ0 ≃ ffiffiffi

κ
p

,
and therefore scales as 1=r. Far from the baryons, such that

ϕ02 ≪ mμ̂, the solution tends to ϕ0 ≃
ffiffiffiffiffiffiffi
3

2mμ̂

q ffiffiffiffiffiffiffiffi
β−1
2β−3

q
κ, which

approximately scales as 1=r2 since μ̂ is approximately
constant. To summarize, assuming β > 3=2 the phonon
profile is given by

ϕ0 ≃
8<
:

ffiffiffi
κ

p
∼ 1

r if r ≪ r⋆;ffiffiffiffiffiffiffi
3

2mμ̂

q ffiffiffiffiffiffiffiffi
β−1
2β−3

q
κ ∼ 1

r2 if r ≫ r⋆:
ð73Þ

The transition radius r⋆ delineating these regimes occurs
when κ ¼ mμ̂. It can be estimated by substituting the
definition of κ given in (52) and approximating μ̂ as
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constant, with the value set by the central density as in (48):
μ̂≃ ρ20=8Λ

2m5. The result is

r⋆ ≃
�

Mb

1011M⊙

�
1=10

�
MDM

Mb

�
−2=5

�
m
eV

�
−8=5

×

�
Λ

meV

�
−8=15

28 kpc: ð74Þ

For instance, with the fiducial parameters (46), the transition
radius for a MW-like galaxy with Mb ¼ 3 × 1011M⊙ and
cosmic DM-baryon ratio MDM

Mb
¼ ΩDM

Ωb
≃ 6 is r⋆ ≃ 70 kpc.

Figure 5 plots the numerical solution for ϕ0, assuming
β ¼ 2 and the parameter values listed above. The left panel
compares the scalar acceleration aϕ (solid curve) to the
MOND acceleration aMOND (dashed curve) as a function
of r. The right panel shows the two accelerations only
differing by a few percent, and hence the predicted rotation
curves are nearly identical to those of MOND. In particular,
the “asymptotic” velocity is indistinguishable from that
predicted by MOND (especially taking into account the
uncertainties in the mass-to-light ratio), and the BTFR
follows identically.
It remains to compare the scalar acceleration aϕ to the

Newtonian acceleration aDM due to the DM condensate
profile. As we are about to show, in the MOND regime
(r ≪ r⋆), the gravitational acceleration from the DM halo is
negligible compared to the scalar-mediated MOND accel-
eration. In the opposite regime (r ≫ r⋆), on the other hand,
the DM halo gives the dominant contribution to the force on
a test baryonic particle.
First, consider the regime r ≪ r⋆ where aϕ is approx-

imately MONDian. In this case we have ϕ02 ≃ κ ≫ mμ̂,
and hence the DM density profile is

ρDM ¼ ð2mÞ3=2mΛ
ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p ffiffiffiffiffiffi
jXj

p
≃ 2m2Λ

ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p ffiffiffiffiffiffiffiffiffi
κðrÞ

p
; ð75Þ

where we have made use of the substitution Λ →
ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p
Λ

mentioned earlier. Thus, ρDM ∼ 1=r, and the Poisson
equation can be straightforwardly integrated (ignoring

baryons) to obtain aDM ¼ m2Λ
ffiffiffiffiffiffi
β−1

p
2M2

Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κðrÞr2

p
, which is

constant. Comparing to the scalar acceleration
aϕ ≃ αΛ

MPl

ffiffiffiffiffiffiffiffiffi
κðrÞp

, we find

aDM
aϕ

¼
ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p
2α

m2r
MPl

∼ 0.4
r
r⋆

ðr ≪ r⋆Þ; ð76Þ

where in the last step we have assumed the parameter
values listed below (74) for concreteness. Hence, as
claimed, the gravitational acceleration due to the DM halo
is subdominant in the MONDian regime (r ≪ r⋆) and
becomes comparable to the scalar-mediated acceleration
around the transition radius r ∼ r⋆.
Consider now the opposite regime, r ≫ r⋆. In this case

we have X ≃ μ̂, and the DM halo approximates the Lane–
Emden density profile found in Sec. III B. The gravitational
acceleration is aDM ¼ 1

m jX0j ∼ X
mR, while the scalar accel-

eration is aϕ ≃ αΛ
MPl

ϕ0, with ϕ0 ≃
ffiffiffiffiffiffiffi
3

2mμ̂

q ffiffiffiffiffiffiffiffi
β−1
2β−3

q
κ. For the

parameter values listed below (74) and taking β ¼ 2 for
concreteness, their ratio is given by

aDM
aϕ

∼ 0.5

�
r
r⋆

�
2

ðr ≫ r⋆Þ: ð77Þ

Despite the crudeness of the estimate, this is remarkably
consistent with (76) for r ∼ r⋆. Hence, for r ≫ r⋆, the DM
halo gives the dominant contribution to the acceleration on
a test baryonic particle, as claimed earlier.
Let us check the stability of the phonon background.

Expanding (67) to quadratic order in perturbations
φ ¼ ϕ − ϕ̄ðrÞ, we obtain

FIG. 5 (color online). Left panel: The ϕ-mediated acceleration aϕ (solid curve) is compared to the deep-MOND acceleration aMOND

(dashed curve) for a MW-like galaxy (Mb ¼ 3 × 1011M⊙) with cosmological DM-to-baryon ratio MDM
Mb

¼ ΩDM
Ωb

≃ 6, and fiducial values
m ¼ 0.6 eV and Λ ¼ 0.2 meV. Right panel: The ratio of the two accelerations as a function of radius is less than a few percent.
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Lquad ¼
Λð2mÞ1=2

Z̄3=2

��
ðβ− 1Þμ̂þ

�
β

3
þ 1

�
ϕ̄02

2m

�
mðβ− 1Þ _φ2

2

−
�
ðβ− 1Þ

�
2β

3
− 1

�
μ̂þ

�
β

3
− 1

�
ϕ̄02

2m

�
ϕ̄0 _φφ0

−
�
ðβ− 1Þ

�
2β

3
− 1

�
μ̂2 þ 3ϕ̄02

2m
ðβ− 1Þμ̂þ ϕ̄04

2m2

�
φ02

−
��

2β

3
− 1

�
μ̂þ ϕ̄02

2m

�
Z̄ð∂ΩφÞ2

r2

�
; ð78Þ

where Z̄≡ ðβ − 1Þμ̂þ ϕ̄02
2m. The sign of the kinetic term is

healthy if β > 1. Moreover, the sign of the ð∂ΩφÞ2 term is
correct if β ≥ 3=2, which ensures there are no gradient
instabilities along the angular directions. Along the radial
direction, the sign of the φ02 is also correct if β ≥ 3=2. It is
then trivial to check by diagonalizing the kinetic matrix that
radial perturbations propagate with the correct signature,
i.e., they are free of ghosts or gradient instabilities. To
summarize, the phonon background is perturbatively stable
if β ≥ 3=2, as claimed earlier.
Note that, in the MOND regime (ϕ̄02 ≫ 2mμ̂), the

phonon sound speed is cs ∼ ϕ̄0=m, which is enhanced
compared to the sound speed (32) cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
computed

in the absence of baryons. When we discuss various
astrophysical probes below, we will nevertheless apply
Landau’s criterion for the onset of dissipative effects using
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
, keeping in mind that this is conservative

(since the actual sound speed is in fact larger).

V. VALIDITY OF EFT AND THE
SOLAR SYSTEM

Our background solution (56) involves large phonon

gradients, ϕ
02

2m ≫ μ, so naturally one should wonder whether
it lies within the regime of validity of the EFT. First, notice

that in terms of the superfluid velocity vs ≡ j ~∇ϕj=m and

sound speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
the MONDian regime ϕ02

2m ≫ μ
precisely corresponds to vs ≫ cs. It therefore violates
Landau’s criterion vs ≲ cs for the stability of superfluid
flow. This is of course not surprising—Landau’s criterion is
based on the stability of the superfluid against the creation
of collective excitations, whereas we wish to work in a
regime where baryons generate a large coherent phonon
background.
As a check on whether this is legitimate, we can compare

higher-derivative corrections to the leading-order PðXÞ
Lagrangian. Such corrections by definition involve more
than one derivative per field, and hence they can be
neglected as long as

ϕ00

Λsϕ
0 ∼

1

Λsr
≪ 1: ð79Þ

But since Λs ∼meV, as we have seen in (49), this condition
is trivially satisfied on astrophysical scales of interest. In
other words, the phonon profile generated by a galaxy,
while large relative to μ, is nevertheless very smooth on the
scale of the cutoff.
On the other hand, we should also verify that the local

superfluid velocity does not exceed the BEC critical
velocity,

vs ≪ vc ∼
�

ρ

m4

�
1=3

; ð80Þ

for otherwise the large phonon gradient will induce a local
loss of coherence of the condensate. Equivalently, Eq. (80)
can be understood as the requirement that the superfluid de
Broglie wavelength λ ∼ 1

mvs
is much larger than the inter-

particle separation l ∼ ðmρÞ1=3. To estimate vc, we use the

halo mass density ρ¼ð2mÞ3=2mΛ
ffiffiffiffiffiffijXjp ≃2m2Λ

ffiffiffi
κ

p
, where

in the last step we have assumed the MOND regime. This
gives

vc ≃ 0.025

�
Mb

1011M⊙

�
1=6

�
m
eV

�
−2=3

�
Λ

meV

�
2=9

�
kpc
r

�
1=3

:

ð81Þ

Meanwhile, the superfluid velocity is vs ¼ ϕ0=m≃ ffiffiffi
κ

p
=m,

which gives

vs ≃ 0.008

�
Mb

1011M⊙

�
1=2

�
m
eV

�
−1
�

Λ
meV

�
−1=3 kpc

r
:

ð82Þ

Thus, the criterion (80) can be expressed as a bound on the
distance from the galactic center:

r ≫ 0.2

�
Mb

1011M⊙

�
1=2

�
m
eV

�
−1=2

�
Λ

meV

�
−5=6

kpc: ð83Þ

This is satisfied down to the central regions of galaxies.
The condition (80) does have important ramifications for

the Solar System. It is well-known within the standard
MOND framework that the extra acceleration aϕ, albeit
small compared to the Newtonian acceleration in the
solar system, gives an unacceptably large correction to
Newtonian gravity, in conflict with bounds from tests of
gravity. One possible way out is to suitably modify PðXÞ at
large X, but this requires fine-tuning [64]. Another pos-
sibility is to introduce a suitable higher-derivative Galileon
operator [99], but this has the obvious disadvantage of
complicating the theory.
In our superfluid picture, we are naturally immune to this

problem because the local phonon gradient generated by
the Sun is so large that (80) is violated throughout the Solar
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System. Indeed, the superfluid velocity (82) due to the Sun
(Mb ¼ M⊙) is

v⊙s ≃ 5

�
m
eV

�
−1
�

Λ
meV

�
−1=3 AU

r
; ð84Þ

where r now represents the distance from the Sun.
Meanwhile, the BEC critical velocity (81) is set by the
Milky Way Galaxy (Mb ¼ 3 × 1011M⊙) evaluated at the
location of the Solar System (∼8 kpc from the Galactic
center):

vMW
c ≃ 0.02

�
m
eV

�
−2=3

�
Λ

meV

�
2=9

: ð85Þ

The criterion (80) can be expressed as a bound on the
distance from the Sun:

r ≫ 250

�
m
eV

�
−1=3

�
Λ

meV

�
−5=9

AU; ð86Þ

which is larger than the Solar System.
The fact that (80) is violated in the solar system means

that the BEC loses its coherence, and the condensate is
replaced by a phase of normal DM. Hence, the usual
worries about MOND and local tests of gravity do not
apply in our case. Furthermore, since our DM behaves as
ordinary particles in the solar system, this is good news for
direct detection experiments. By allowing the usual axion-
like couplings to Standard Model operators, our DM
particles can be detected through the suite of standard
axionlike particle searches, e.g., Ref. [100].

VI. RELATIVISTIC COMPLETION

It is well known that a superfluid can be described in the
weak-coupling regime as a theory of a self-interacting
complex scalar field with global Uð1Þ symmetry. The
conserved charge associated with this symmetry is the
total number of particles. A superfluid corresponds to a
state which spontaneously breaks the global Uð1Þ and has
finite charge density under this symmetry.
In this section we give an explicit example of such a

theory that admits a condensate with the P ∼ μ3=2 equation
of state. After integrating out the radial mode, the resulting
action for the phase to leading order in derivatives will be
exactly given by (25), with the desired square root. The first
theory that comes to mind is a scalar with hexic inter-
actions, L ¼ −j∂μΦj2 −m2jΦj2 − λjΦj6. As shown in the
Appendix, this gives PðXÞ ∼ X3=2, exactly the desired
fractional power for MOND. However, the sign is wrong.
For a stable potential (λ > 0), one is restricted to X > 0,
and hence spatial gradients can never dominate, and the
MOND regime is inaccessible. The MOND regime is only
possible for λ < 0, but this branch is of course unstable.

Instead we will consider the following theory:

L ¼ −
1

2
ðj∂μΦj2 þm2jΦj2Þ

−
Λ4

6ðΛ2
c þ jΦj2Þ6 ðj∂μΦj2 þm2jΦj2Þ3: ð87Þ

The scale Λc is introduced to ensure that the theory admits
a Φ ¼ 0 vacuum. The MOND regime corresponds to
jΦj2 ≫ Λ2

c , as we will see shortly. Notice the absence of
a quartic term ðj∂μΦj2 þm2jΦj2Þ4. It is possible to include
such a term provided its coefficient is not too large, as we
will see toward the end of the section.
For our purposes it suffices to focus on the nonrelativistic

regime. Making the field redefinition

Φ ¼ ρeiðθþmtÞ; ð88Þ

and taking the nonrelativistic limit, it is straightforward to
arrive at

L ¼ −
1

2
ðð ~∇ρÞ2 − 2mρ2XÞ

−
Λ4

6ðΛ2
c þ ρ2Þ6 ðð

~∇ρÞ2 − 2mρ2XÞ3: ð89Þ

The power of ρ in the denominator of the second term
guarantees the MOND scaling symmetries [94,95]: assum-
ing that spatial gradients dominate, and taking the MOND
limit ρ ≫ Λc, the action is invariant under the spatial
scaling

hij → Ω2hij; ρ → Ω−1=2ρ: ð90Þ

The effective theory of the Goldstone mode is obtained
by integrating out ρ. To leading order in the derivative

expansion, we can ignore ð ~∇ρÞ2 contributions. In this limit
the equation for ρ becomes algebraic:

2mXρ½ðΛ2
c þ ρ2Þ7 þ Λ4ð2mXÞ2ρ4ðΛ2

c − ρ2Þ� ¼ 0: ð91Þ

The MOND regime corresponds to ρ ≫ Λc. Indeed, in this
limit the solution is

ρ2 ≃ Λ
ffiffiffiffiffiffiffi
2m

p
ðX2Þ1=4 ¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjXj

p
: ð92Þ

Substituting this back into (89) gives, to leading order in
derivatives,

L≃ 2Λð2mÞ3=2
3

X
ffiffiffiffiffiffi
jXj

p
: ð93Þ

This agrees with the MOND phonon action (25).
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The regulator scale Λc implies that the MOND regime

is restricted to ρ≳ Λc, i.e., jXj≳ Λ4
c

2mΛ2. Using (59), this
corresponds to

aϕ ≳ Λc

α2Λ
a0: ð94Þ

Observationally the MOND regime works quite well down
to ∼a0=10, so this puts an upper bound on Λc. By choosing
Λc a factor of a few smaller than Λ, the predicted break-
down could occur around the acceleration scale of the
MW dwarf spheroidals, which are well known to pose a
challenge for MOND [38–42].
We can straightforwardly generalize the analysis to

include a quartic term. To fast track the discussion, let
us immediately write the answer in terms of polar variables,

L ¼ −
1

2
ðð ~∇ρÞ2 − 2mρ2XÞ

þ gΛ2

2ðΛ2
c þ ρ2Þ3 ðð

~∇ρÞ2 − 2mρ2XÞ2

−
Λ4

6ðΛ2
c þ ρ2Þ6 ðð

~∇ρÞ2 − 2mρ2XÞ3; ð95Þ

where g is dimensionless. The power of ρ in the denominator
of the new term is once again chosen such that (90) is a
symmetry when ρ ≫ Λc and spatial gradients dominate.
Focusing on this regime for simplicity, the equation ofmotion
for ρ is a quadratic equation for ρ4. Choosing the branch such
that the answer reduces to (92) as g → 0, we find

ρ2 ≃ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gmX þ 2mjXj

�
1þ g2

4

�
1=2

s
: ð96Þ

Upon substituting into (95), the action for the Goldstone will
of course be different than (93) butwill reduce to it in the limit
of large X. What matters ultimately is that the Lagrangian for
the Goldstone has the same sign as (93), for both X positive
and negative. It is easy to show that this is the case for

g2 <
4

3
: ð97Þ

Clearly the analysis can be generalized even further by
including higher-order terms, ðj∂μΦj2 þm2jΦj2Þn, with
n ≥ 4, provided they respect the scaling symmetry (90) in
the appropriate limit. Their coefficients will be similarly
constrained.

VII. COSMOLOGY

In this section we study the cosmology of the DM
superfluid. As mentioned toward the end of Sec. II, the
simplest genesis scenario is through a vacuum

displacement mechanism, with DM being generated at a
time when Hi ∼m corresponding to a baryon-photon
temperature of order 50 TeV. The DM is initially very
cold, and it rapidly reaches thermal equilibrium with itself
but is decoupled from ordinary matter to the first
approximation.
To obtain an acceptable background cosmology and

linear perturbation growth, we will see that the Λ and α
parameters of the phonon EFTmust assume different values
cosmologically than in galaxies. This is not unreasonable, as
argued in Sec. III, since these parameters are expected to
depend on T=Tc, and this ratio is ∼22 orders of magnitude
smaller cosmologically than in galaxies. Furthermore, we
have already invoked finite-temperature effects in galaxies
in Sec. IV B to ensure stability of the MOND regime. We
will denote the cosmological values by Λ0 and α0.

A. Equation of state

The first thing to check is whether the condensate has
sufficiently small pressure to act as dust. Recall from (30)
our condensate equation of state:

w ¼ P
ρ
¼ ρ2

12Λ2
0m

6
: ð98Þ

The sound speed of linear fluctuations is identical, c2s ¼ w.
At sufficiently low density (ρ ≪ Λ0m3), the superfluid
behaves as dust, whereas at high density (ρ ≫ Λ0m3), it
behaves as a relativistic component. At the very least, we
should impose that w ≪ 1 at matter-radiation equality.
Since w ∼ 1=a6, and correspondingly cs ∼ 1=a3, imposing
weq ≪ 1 will ensure that DM behaves to a very good
approximation as dust throughout the matter-dominated
era. Substituting the known value ρeq ≃ 0.4 eV4, this puts a
lower bound on Λ0:

Λ0 ≫ 0.1

�
m
eV

�
−3

eV: ð99Þ

In particular Λ0 ≫ 0.5 eV for our fiducial value
m ¼ 0.6 eV. This is roughly 4 orders of magnitude larger
than the fiducial value Λ ¼ 0.2 meV assumed in galaxies.
This can be achieved, for instance, if Λ depends on
temperature as

ΛðTÞ ¼ Λ0

1þ κΛðT=TcÞ1=4
; κΛ ∼ 104: ð100Þ

B. Coupling to baryons

The above equation of state was derived ignoring the
coupling to baryons. We now rectify this and derive the
phonon cosmological evolution sourced by the baryonic
density. Setting θ ¼ θðtÞ, the phonon action given by (25)
and (26) becomes
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L ¼ 2Λ0ð2mÞ3=2
3

a3 _θ3=2 − α0
Λ0

MPl
a3θρb: ð101Þ

Varying with respect to θ gives the equation of motion

d
dt
ðð2mÞ3=2a3 _θ1=2Þ ¼ −

α0
MPl

a3ρb: ð102Þ

Since a3ρb ¼ const., we can integrate straightforwardly:
ð2mÞ3=2 _θ1=2 ¼ − α0

MPl
ρbtþ C

a3, where C is an integration
constant. In the nonrelativistic approximation, the energy
density is ρ ¼ mn ¼ mΛ0ð2mÞ3=2 _θ1=2, and hence

ρ ¼ −
α0Λ0

MPl
mtρb þ ρdust; ð103Þ

where ρdust ¼ mΛ0C=a3. This term is recognized as the
dust contribution studied in the (baryon-free) analysis of
Sec. VII A. Note that the nonrelativistic approximation
breaks down when _θ ∼m, corresponding to ρ ∼m3Λ0,
which from (98) is precisely when pressure becomes non-
negligible.
In the matter-dominated era, t ∼ a3=2, the baryonic

contribution ∼ρbt redshifts as 1=a3=2, whereas the second
term redshifts as usual as ρdust ∼ 1=a3. For the superfluid to
behave as ordinary dust, the second term should dominate
over the first all the way to the present time:

α0Λ0

MPl
mt0

ρb
ρdust

≲ 1: ð104Þ

Substituting the age of the universe t0 ¼ 13.9 × 109 yrs≃
6 × 1032 eV−1, and assuming a DM-to-baryon ratio of
ρdust=ρb ¼ 6, we obtain

α0 ≲ 2.4 × 10−5
eV2

Λ0m
≪ 2.4 × 10−4

�
m
eV

�
2

; ð105Þ

where the last step follows from (99). In particular, α0 ≪
10−4 for our fiducial value m ¼ 0.6 eV. This is roughly 4
orders of magnitude smaller than the value α ¼ 2.5
obtained in galaxies by matching to MOND. This can
be achieved, for instance, if α depends on temperature as

αðTÞ ¼ α0ð1þ καðT=TcÞ1=4Þ; κα ∼ 104: ð106Þ

Note that, while ΛðTÞ and αðTÞ both depend on temper-
ature, the scale Λ0 ∼ αΛ appearing in the phonon-baryon
coupling (26) is nearly temperature independent.

C. Velocity-dependent critical acceleration

An immediate corollary of ΛðTÞ and αðTÞ being temper-
ature dependent is that the critical acceleration,

a0 ∼ α
ðαΛÞ2
MPl

; ð107Þ

also depends on temperature. More precisely, since the
product αΛ is constant to a first approximation, the
temperature dependence of a0 is governed by α. In
particular, in light of (105), we obtain

acosmo
0 ≪ 10−4a0; ð108Þ

where a0 is the typical MOND value (2) in galaxies. Given
this strong suppression of a0, it follows that gravity is
highly Newtonian on cosmological scales.
Another consequence is that there is no longer a

universal value for the MOND critical acceleration in
galaxies, and instead a0 is predicted to depend on the
velocity dispersion. The functional dependence is model
dependent of course, but the generic trend is that a0
decreases with decreasing velocity. Intriguingly, this trend
has been noted in the data—low-surface brightness galaxies
tend to prefer a lower value of a0 [138].

VIII. GRAVITATIONAL LENSING

In the context of TeVeS [54], the absence of DM in
galaxies forces one to assume a rather complicated
coupling between the scalar field ϕ and matter fields
in order to reproduce acceptable gravitational lensing. For
starters, one supplements the theory with a 4-vector field
Aμ, which is unit timelike gμνAμAν ¼ −1. Then the non-
relativistic scalar-matter interaction Lcoupling ¼ − αΛ

MPl
ϕρb

is covariantized by coupling matter fields to an effective
metric gTVSμν , defined in terms of the Einstein-frame metric
gμν via

gTVSμν ¼ e−
2αΛ
MPl

ϕgμν − 2AμAν sinh
2αΛ
MPl

ϕ

≃ gμν −
2αΛ
MPl

ϕðgμν þ 2AμAνÞ: ð109Þ

In the weak-field, quasistatic regime, gμν takes the usual
form: g00 ¼ −ð1þ 2ΦÞ, g0i ¼ 0, and gij ¼ ð1 − 2ΦÞδij.
To this order we can ignore perturbations in the vector
field, i.e., Aμ ¼ ð1; 0; 0; 0Þ, such that

ds2TVS ≃ −
�
1þ 2

�
Φþ αΛ

MPl
ϕ

��
dt2

þ
�
1 − 2

�
Φþ αΛ

MPl
ϕ

��
d~x2; ð110Þ

where Φ is of course sourced by baryons only:

∇2Φ ¼ 4πGNρb: ð111Þ
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This line element is exactly of the General Relativity
form, albeit in terms of a shifted gravitational potential
Φþ αΛ

MPl
ϕ. Hence, the mass inferred from lensing obser-

vations matches the mass inferred from dynamical mea-
surements. The TeVeS metric (109) was of course
precisely engineered for this purpose. Specifically, the
equality of gravitational potentials in (110) traces back to
the precise factor of 2 in the combination gμν þ 2AμAν

appearing in (109). This relative factor is not protected by
any symmetry.
In our case the story is simpler on two counts. First, there

is no need to postulate an additional vector field. The
normal fluid component already provides us with a timelike
vector field uμ, as discussed in Sec. IV B. Second, the DM
in galaxies contributes to lensing, and hence the TeVeS
factor of 2 can be generalized,

~gμν ≃ gμν −
2αΛ
MPl

ϕðγgμν þ ð1þ γÞuμuνÞ; ð112Þ

with γ ¼ 1 corresponding to the TeVeS tuning. Working in
the rest frame of the normal fluid, this gives in the weak-
field limit

d~s2 ≃ −
�
1þ 2

�
Φþ αΛ

MPl
ϕ

��
dt2

þ
�
1 − 2

�
Φþ γ

αΛ
MPl

ϕ

��
d~x2; ð113Þ

where Φ is now sourced by both baryonic and dark matter:

∇2Φ ¼ 4πGNðρb þ ρDMÞ: ð114Þ

Hence, the lensing signal will arise from a combination of
the γ term in (113) and the DM condensate density profile
shown in Fig. 4. Determining the allowed range of γ will
require a detailed comparison with lensing observations,
which is beyond the scope of this paper. What is clear is that
there should be considerably more freedom than in TeVeS.
It may even be that γ ¼ −1 is allowed, in which case the
coupling to matter would reduce to a simple conformal
coupling.
In most of our discussion so far, we have assumed

fiducial parameter values (46) such that the condensate
radius is of order the virial radius, e.g., R ∼ 125 kpc for
MDM ¼ 1012M⊙ compared to 200 kpc for the virial radius.
By choosing other parameter values, however, we can
consider smaller condensate radii, in which case the
condensate core will be surrounded by an envelope of
DM particles in the normal phase, presumably with a NFW
density profile. In that case the lensing signal could result
primarily from the NFW envelope. This deserves a dedi-
cated analysis, which will appear elsewhere.

IX. MERGING CLUSTERS: THE BULLET AND
THE COUNTER-BULLET

The “Bullet” Cluster 1E0657-57 [104–106] shows lens-
ing peaks displaced from the gas and centered around the
galaxy distribution. This is expected in CDM; the halos
are made up of weakly interacting dark matter particles that
fly past each other, together with the galaxies, while the
baryonic plasma is slowed down by ram pressure and ends
up spatially segregated from the halos. By now observers
have identified over 30 such merging systems [83,139].
Galaxy clusters in the present context are composed,

either partially or fully, of DM particles in the normal
phase. Hence, we also expect lensing peaks displaced from
the gas, due to the DM component. An important consid-
eration is the constraint this imposes on the self-interaction
cross section of the DM [131,140]. The tightest constraint
comes from a recent analysis of ∼30merging systems [83]:

σ

m
≲ 0.5

cm2

g
: ð115Þ

At face value there is a window for which this is consistent
with our lower bound (15) for DM condensation in
galaxies. However, we think that the constraint (115) is
not as stringent in our case. Indeed, Eq. (115) was derived
assuming a single DM component, whereas the two-fluid
mixture makes for a much richer situation. The hetero-
geneous nature of merging systems, with different inter-
actions among their components, can result in a
significantly weaker bound in our case.10 Specifically,
we expect the superfluid components to pass through each
other with negligible dissipation if the relative velocity is
subsonic,

vinfall ≲ cs: ð116Þ

Using (32) and (47), and assuming the fiducial parameter
values (46) for concreteness, it is straightforward to show
that cs ≃ 1400 km=s for the subcluster (Msub ≃ 1014M⊙),
while cs ≃ 3500 km=s for the main cluster (Mmain≃
1015M⊙), assuming a significant fraction of their mass is
condensed. These values are comparable to the estimate of
∼2700 km=s for the relative velocity [142,143], indicating
that dissipative processes between the superfluid cores
should be suppressed.11

In general our framework predicts two distinct features
that should appear simultaneously in the lensing maps of
bulletlike merging systems: i) mass peaks coincident with
the cluster galaxies, due to the (noninteracting) superfluid
cores, and ii) another mass peak, approximately coincident

10This loophole was also exploited recently with ultrastrongly
interacting DM [141].

11This is unlike BEC DM, where the critical velocity is only
≃100 km=s [127].
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with the x-ray luminosity peak, due to the (interacting)
normal components. Interestingly, this is consistent with
the complex mass structure of the “train wreck” Abell 520
( MS0451þ 02) merging system [107–110], often hailed
as a counterexample to the Bullet Cluster. Aside from the
“bulletlike” lensing peaks around bright galaxies segre-
gated from the gas, this system also exhibits a puzzling
“dark core” overlapping the x-ray gas without corre-
sponding bright galaxies. In the context of SIDM, the
cross section required to explain this feature is incon-
sistent with the bullet bound (115) [110]. In our case,
however, the dark core is naturally explained as due the
normal DM components.12 Intriguingly, even in the case
of the Bullet Cluster, the combined strong and weak
lensing map reveals a significant mass peak coincident
with the x-ray gas [106].
Another way that (15) and (115) can be satisfied

simultaneously is if the cross section is velocity dependent.
This is in fact expected for dark atoms, since the cross
section between ordinary atoms is generally a rich function
of velocity [145] due to various atomic resonances. Such
velocity dependence may imply a suppressed cross section
in clusters, where the typical virial velocity is ∼10 times
larger than in galaxies. A velocity-dependent cross section
was proposed in the SIDM context to simulateously
match the inferred profiles of dwarf galaxies and galaxy
clusters [146–150].

X. VORTICES

As is well known, a superfluid cannot rotate uniformly.
When spun faster than a critical angular velocity, the
superfluid develops quantum vortices that carry the angular
momentum [151]. In the context of BEC dark matter,
vortex formation was initially considered in Ref. [101] and
studied in detail subsequently in Ref. [152]. For the purpose
of this paper, we shall content ourselves with simple
dimensional analysis along the lines of Ref. [101].
We can immediately convince ourselves that our halos

rotate much faster than critical velocity. The critical angular
velocity for vortex formation in a vessel of radius R is, up to
a logarithm factor [151],

ωcr ∼
1

mR2
∼ 10−41 s−1; ð117Þ

where we have assumed a halo radius R ∼ 100 kpc and
massm ∼ eV. On the other hand, the angular frequency of a
DM halo of density ρ is ω ∼ λ

ffiffiffiffiffiffiffiffiffi
GNρ

p
, where λ≡ LE1=2

GNM5=2 is

the so-called spin parameter, while L and E are the total
angular momentum and energy of the halo, respectively.
From CDM simulations one finds 0.01≲ λ≲ 0.1.

Substituting a typical density of order ρ ∼ 10−25 g=cm3,
we find

ω ∼ 10−18λ s−1: ð118Þ
Hence, ω ≫ ωcr, and vortex formation is unavoidable.
The line density of vortices can also be readily estimated,

σv ∼mω ∼ 102λ AU−2: ð119Þ
In a galactic halo of radius R ∼ 100 kpc, this means
Nv ∼ 1023 vortices in total. Their core radius is of order
the healing length ξ, which is estimated as

ξ ∼
1

mcs
∼mm; ð120Þ

where we have assumed a halo of mass M ∼ 1012M⊙ and
used the fiducial parameters (46). Thus, the core radius is
an order of magnitude or so larger than the average
interparticle separation in galaxies.
It would be interesting to study whether these vortices

can be detected observationally, for instance through
gravitational lensing. This may prove challenging, since
their kinetic energy per unit volume is tiny:
Δρ ∼ ω

m ρ ∼ 10−33λρ. Substructure lensing may soon be
possible with the Atacama Large Millimeter Array [103].

XI. OTHER ASTROPHYSICAL CONSEQUENCES

In this section we speculate on various astrophysical
implications of superfluid DM. For the purpose of this
initial paper, our discussion will be quite qualitative,
leaving a more careful analysis to the future.

(i) Galaxy mergers.—A very interesting question is
what happens during galaxy mergers. Following
Landau’s criterion for superfluidity, the merger
dynamics depend on the infall velocity vinfall com-
pared to the phonon sound speed cs within halos.
The sound speed in a given halo is generally of order
of the virial velocity. For instance, for our fiducial
parameter values (46), we find cs ≃ 220 km=s in a
1012M⊙ halo. If the infall velocity is ultrasonic,
vinfall ≳ cs, the encounter will drive halos out of
equilibrium, exciting DM particles out of the con-
densate. As in ΛCDM, dynamical friction will lead
to a rapid halo merger, and after some time the
merged halo will thermalize and condense back to
the superfluid state. If the infall velocity is subsonic
vinfall ≲ cs, on the other hand, the merger time scale
will be much longer and involve multiple encoun-
ters, as dynamical friction between the superfluid
halos will be negligible. This is similar to what
happens in MOND [35,37].

(ii) Reduced dynamical friction.—The overall reduction
in dynamical friction due to the superfluid nature of

12It has been argued that the contradictory nature of the
Bullet and counter-Bullet can also be explained in the BEC
DM context [144].
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the DM halo alleviates a number of minor problems
with CDM. Instead of being slowed down by
dynamical friction, galactic bars in spiral galaxies
should achieve a nearly constant velocity, as favored
by observations [153]. This effect has been pointed
out in BEC DM [115,154] and MOND [37].
Reduced dynamical friction would also help with
the M81 group of galaxies—see Ref. [155] and
references therein.
Another interesting system is the Fornax dwarf

spheroidal.13 Five satellite globular clusters orbit
Fornax close enough that they should lie within their
host’s DM halo, assuming an NFW profile. If so,
however, dynamical friction should have caused the
globular clusters to rapidly fall toward the center of
Fornax [156,157]. In reality Fornax shows no sign of
such mergers. A possible explanation in ΛCDM is
that Fornax’s DM halo is cored, with the globular
clusters orbiting on the periphery [158]. In our case,
the situation is unclear, due to two competing
effects. On the one hand, dynamical friction within
Fornax’s superfluid DM halo should be reduced, as
already mentioned. On the other hand, dynamical
friction with stars is enhanced in MOND, thereby
reducing the merger time [159]. This will require a
detailed study.

(iii) Dark-bright solitons.—Given the large coherence
length of the BEC, galaxies in the process of
merging should exhibit interference patterns (so-
called dark-bright solitons) that have been observed
in counterflowing BECs at supercritical velocities,
e.g., Ref. [160]. This effect has been studied to some
extent in ultralight BEC DM [161]. It would be
interesting to estimate the spatial extent and lifetime
of the fringes to see whether they are potentially
observable. It is intriguing to speculate that this can
offer an alternative mechanism to generate the
spectacular shells seen around elliptical gal-
axies [162].14

(iv) Vast planar structures.—The vast planar structures
seen in the Local Group [17–23] and beyond [24]
find a possible explanation in our scenario, similar to
that proposed in MOND [18]. Namely, the planar
structures around the MWand Andromeda would be
the result of tidal stripping during a flyby encounter
between these galaxies. In particular, most of their
satellite galaxies would be tidal dwarfs. With the
MOND force law, it has been estimated that the MW
and Andromeda had a flyby encounter∼10 Gyr ago,
with ≲55 kpc closest approach distance [34]. In
ΛCDM, such a past encounter, while in principle
possible, would have disastrous consequences:

dynamical friction between the extended halos
would cause a rapid merger of the MW and M31.
In MOND, however, there is only stellar dynamical
friction, and a merger can be avoided [35–37].
Similarly, in our case dynamical friction is sup-
pressed among DM particles if the infall velocity is
subsonic, as mentioned before.

(v) Globular clusters and tidal dwarfs.—It is well
known that globular clusters contain a negligible
amount of DM. Indeed, their observations are well
fitted by taking only the baryonic mass into account
and assuming Newtonian gravity. This poses a
problem for MOND [47]. Our case is clearly differ-
ent, since the presence of a significant DM compo-
nent is necessary for the MOND phenomenon to
occur. To the extent that whatever mechanism (e.g.,
tidal stripping) responsible for DM removal in
ΛCDM is also effective in our case, our model
predicts DM-free (and therefore MOND-free) globu-
lar cluster dynamics.

Another puzzle comes from tidal dwarfs—
“recycled” galaxies that form in the tidal material
created by merging spirals. Standard theory tells us
that tidal dwarfs should be devoid of dark matter
[163–165]. An initial analysis of three such objects
around NGC5291 [166] showed a dynamical mass
discrepancy of about 2–3 times the visible mass,
which could be in the form of cold baryonic gas
[166]. Furthermore, these objects were initially
thought to be consistent with the BTFR [167].
However, a recent reanalysis of these objects and
three new candidate tidal dwarfs argues that the
inferred dynamical mass is consistent with the
observed baryonic mass, and that consequently these
objects deviate from the BTFR [168]. This recent
analysis, while potentially problematic for MOND,
is consistent with the superfluid framework—we
expect negligible amount of DM superfluid to be
tidally stripped, the resulting tidal dwarfs should be
DM-free and hence MOND-free (just like globular
clusters)."

(vi) Triaxial DM halos.—A key prediction of collision-
less CDM simulations is the ellipticity of DM
halos [169], which is borne out by lensing ob-
servations. Lensing mass reconstruction of galaxy
clusters often requires an elliptical DM clump
around the brightest central galaxy. On the other
hand, DM self-interactions tend to isotropize the
DM distribution, resulting in more spherical halos.
To match the ellipticity of galaxy cluster MS2137-
23 inferred from strong lensing observations,
Ref. [129] claimed an even tighter bound than
(115), though recent SIDM simulations find con-
sistent halo morphology for cross sections as large
as ∼cm2=g [170].

13We thank Lam Hui for pointing this out to us.
14We thank Ravi Sheth for suggesting this idea to us.
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Since superfluids have surface tension, the
superfluid core surrounding the brightest central
galaxy should be highly isotropic. The source of
ellipticity must be the subdominant normal DM
component. The normal-normal self-interaction
cross section ∼0.1 cm2=g is consistent with the
observational bound [170]. However, since the
normal component only makes up a small fraction
of the total DM mass in the central region of
galaxy clusters, the rate of self-interaction is
considerably smaller, and much larger cross sec-
tions are therefore allowed. This clearly deserves
further study. Interestingly, the ellipticity has been
observed to decrease toward the center of clusters
(r≲ 16 kpc) [171], consistent with a highly spheri-
cal superfluid core.

XII. DISCUSSION

In this paper we proposed a novel theory of DM
superfluidity that reconciles the stunning success of
MOND on galactic scales with the triumph of the
ΛCDMmodel on cosmological scales. The DM component
consists of self-interacting axionlike particles which are
generated out of equilibrium and remain decoupled from
baryons throughout the history of the universe. Provided
that its mass is sufficiently light and its self-interactions are
sufficiently strong, the DM can thermalize and form a
superfluid in galaxies, with critical temperature of order
∼mK. The superfluid phonon excitations are assumed to be
described by a MOND-like action and mediate a MONDian
acceleration on baryonic matter. Superfluidity only occurs
at sufficiently low temperature, or equivalently within
sufficiently low-mass objects. This naturally distinguishes
between galaxies (where MOND is successful) and galaxy
clusters (where MOND is not); due to the larger velocity
dispersion in clusters, DM has a higher temperature and
hence is either in a mixture of superfluid and normal phase
or fully in the normal phase.
The superfluid interpretation makes the well-known

nonanalytic nature of the MOND scalar action much more
natural. The phonons of the unitary Fermi gas, which has
attracted much excitement in the cold atom community
recently [89], are also governed by a nonanalytic kinetic
term (with 5=2 power instead of 3=2 for our DM super-
fluid). The DM condensate equation of state P ∼ ρ3

suggests that our superfluid arises from three-body inter-
actions. It would be fascinating to find precise cold atom
systems with the same equation of state as our DM
condensate. Practically this would yield important insights
on the microphysical interactions that give rise to this
particular superfluid. Tantalizingly, it might allow labora-
tory simulations of the properties and dynamics of galaxies.
The rich physics of superfluidity leads to a number of

observational signatures that can potentially distinguish
our scenario from ordinary MOND and/or standard

ΛCDM: numerous low-density vortices in galaxies; merger
dynamics depending on the infall velocity vs phonon sound
speed; distinct mass peaks in bulletlike cluster mergers,
corresponding to superfluid and normal components; and
interference patters in supercritical mergers. Studying these
observables with numerical simulations promises to be
fascinating.
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APPENDIX: WHY Φ6 FAILS TO GIVE MOND

In this Appendix we show that a complex scalar field with
hexic interactions yields a phonon action with the desired
3=2 power but with the wrong sign to give the MOND
phenomenon. Our starting point is the relativistic action

L ¼ −j∂μΦj2 −m2jΦj2 − λ

3
jΦj6: ðA1Þ

This theory is invariant under global Uð1Þ symmetry, with
the associated conserved charge being the number of
particles. Making the replacement Ψ ¼ Φeimt and taking
the nonrelativistic limit, the theory becomes

L ¼ i
2
ðΨ∂tΨ� −Ψ�∂tΨÞ − j ~∇Ψj2

2m
−

λ

24m3
jΨj6: ðA2Þ

The equation of motion is a nonlinear Schrödinger equation,

−i∂tΨþ
~∇2
Ψ

m
−

λ

8m3
jΨj4Ψ ¼ 0: ðA3Þ

This equation possesses the following homogeneous
background solution which describes the BEC at zero
temperature:

Ψ0 ¼
ffiffiffiffiffiffiffi
2m

p
veiμt; ðA4Þ

where μ≡ λv4
2m is the chemical potential. Meanwhile, v is

related to the number density of particles in the condensate,
n ¼ 2mv2, which in turn is the Noether charge density of the
spontaneously broken Uð1Þ symmetry.
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To study the spectrum of perturbations around (A4), we
can expand as follows:

Ψ ¼
ffiffiffiffiffiffiffi
2m

p
ðvþ ρÞeiðμtþϕÞ; ðA5Þ

where ρ is the perturbation of the order parameter, while ϕ
is the Goldstone boson.15 Substituting into (A2) we obtain

L ¼ −ð ~∇ρÞ2 þ 2mðvþ ρÞ2
�
μþ _ϕ −

ð ~∇ϕÞ2
2m

�

−
λ

3
ðvþ ρÞ6: ðA6Þ

The low-energy spectrum of the theory can be deduced as
usual by linearizing the equations of motion and computing
the characteristic determinant. The analysis shows there is
one dynamical degree of freedom in the spectrum, with
dispersion relation16

ω2 ¼ λv4

m2
k2 þOðk4Þ: ðA7Þ

Thus, λ > 0 is necessary for stability.
The effective theory of the Goldstone can be obtained by

integrating out ρ. To leading order in the derivative

expansion, the ð ~∇ρÞ2 term can be ignored, with the
resulting action

L ¼ 4

3
m

�
μþ _ϕ −

ð ~∇ϕÞ2
2m

��
2m
λ

�
μþ _ϕ −

ð ~∇ϕÞ2
2m

��1=2

:

ðA8Þ
As a consistency check, let us linearize the theory and
compare the result to the dispersion relation (A7). The
quadratic Lagrangian for ϕ reduces to

Lquad ¼ m

�
2mμ

λ

�
1=2

�
1

2μ
_ϕ2 −

1

m
ð ~∇ϕÞ2

�
: ðA9Þ

Perturbations are stable for μ > 0, which is guaranteed
by λ > 0. Taking into account the explicit expression (A4)
for the chemical potential, we recover the dispersion
relation (A7).
Notice that (A8) looks very similar to (25). It involves

the correct fractional power needed for the MOND action.
Unfortunately, because of the requirement λ > 0, the
gradient term can never dominate over μ, and the
would-be MOND regime is inaccessible. One may be
tempted to focus on λ < 0 instead, since in that case the
limit of large gradients appears to be well defined.
Moreover, we even obtain the correct equation of state
for the condensate when we set ϕ ¼ 0, taking into account
that μ=λ > 0. However, according to (A9) the perturba-
tions around the condensate have a ghostlike kinetic term
for μ < 0. The physical origin for this instability is very
simple—λ < 0 corresponds to an attractive interaction
between bosons, and hence the homogeneous BEC is
unstable against collapse.
In contrast the theory with j∂Φj6 interactions studied

in Sec. VI precisely gives the phonon theory (25) and
has stable perturbations around the homogeneous BEC
background.
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