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We propose that dark matter is not yet another new particle in nature, but that it is a remnant of quantum
gravitational effects on known fields. We arrive at this possibility in an indirect and surprising manner: by
considering retarded, nonlocal, and Lorentzian evolution for quantum fields. This is inspired by recent
developments in causal set theory, where such an evolution shows up as the continuum limit of scalar field
propagation on a background causal set. Concretely, we study the quantum theory of a massless scalar field

whose evolution is given not by the the d’Alembertian□, but by an operator e□ which is Lorentz invariant,

reduces to □ at low energies, and defines an explicitly retarded evolution: ðe□ϕÞðxÞ only depends on ϕðyÞ,
where y is in the causal past of x. This modification results in the existence of a continuum of massive
particles, in addition to the usual massless ones, in the free theory. When interactions are introduced, these
massive or off-shell quanta can be produced by the scattering of massless particles, but once produced, they
no longer interact, which makes them a natural candidate for dark matter.

DOI: 10.1103/PhysRevD.92.103504 PACS numbers: 95.35.+d, 11.10.Lm, 11.30.Cp

I. INTRODUCTION

The nature of dark matter is one of the most important
problems in modern physics. Almost a century after it was
hypothesized, though, our understanding of it is still limited
to its gravitational signature on luminous matter. It is often
assumed that dark matter is a newweakly interacting particle
which is just hard to detect. However, so far there has been no
conclusive direct or indirect detection in accelerators or
cosmological/astrophysical settings. In what follows, we
propose that dark matter is not yet another new particle in
nature, but that it is a remnant of quantum gravitational
effects on known fields. We arrive at this possibility in an
indirect and surprising manner: by considering retarded,
nonlocal, and Lorentzian evolution for quantum fields.
Concretely, we study the consequences of replacing the
d’Alembertian □ with an operator e□ which is Lorentz
invariant, reduces to□ at low energies, and defines a retarded
evolution: ðe□ϕÞðxÞ only depends on ϕðyÞ, where y is in the
causal past of x. Why is this type of evolution interesting,
what does it have to dowith quantumgravity, and howdoes it
lead to a proposal for the nature of dark matter?
The causal set theory approach to quantum gravity

postulates that the fundamental structure of spacetime is
that of a locally finite and partially ordered set [1]. Its
marriage of discreteness with causal order implies that
physics cannot remain local at all scales. This nonlocality
manifests itself concretely, for instance, when one seeks to
describe the wave propagation of a scalar field on a causal
set. It has been shown in this case that coarse graining the

quantum gravitational degrees of freedom leads to a non-
local field theory described by an operator exactly of the

type e□ [2–6]. There are reasons to suspect that this type of
nonlocality is not necessarily confined to the Planck scale,
and that it may have nontrivial implications for physics at
energy scales accessible by current experiments (see
Refs. [7,8] and references therein for implications of
nonlocality in the context of cosmology). It is then only
natural to wonder what a quantum field theory built upone□ would look like, especially that it may contain informa-
tion about the fundamental structure of spacetime.
Studying e□ is also interesting from a purely field-theoretic

perspective, since it forces us to relax one of the core
assumptions of quantum field theory: locality.Most nonlocal
and Lorentzian quantum field theories studied in the liter-
ature consider modifications of the type □ → fð□Þ. In this
paper, we consider explicitly retarded operators, which are
more generic and havemore interesting properties as a result.
For instance, the Fourier transform of e□ is generically
complex, which is a direct consequence of retarded evolu-
tion. In fact, this feature is at the heart of our proposal for the
nature of dark matter. It is also worth mentioning that
quantizing a field theory of the type described here is
nontrivial due to the absence of a local action principle.
This presents a technical challenge, fromwhich onemaygain
deeper insight into quantization schemes.
What is the relation between a quantum field theory

based on e□ and dark matter? Upon quantizing a free
massless scalar field ϕðxÞ with the classical equation of
motion e□ϕðxÞ ¼ 0, we find off-shell modes in the mode
expansion of the quantized field operator ϕ̂ðxÞ. These are
modes which do not satisfy any dispersion relation, unlike
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in usual local quantum field theory (LQFT) where every
Fourier mode with 4-momentum p is an on-shell quanta,
i.e. it satisfies p · p ¼ 0.1 This is equivalent to the statement
that the quantized field operator does not generically satisfy
the classical equation of motion: e□ ϕ̂ðxÞ ≠ 0. Note that an
off-shell mode of a massless scalar field has an effective
mass, and can be thought of as a massive quanta in itself.
We show that the off-shell modes can exist in “in” and
“out” states of scattering, and are different from virtual
particles which exist as intermediate states in Feynman
diagrams. When considering the interacting theory, we find
an extremely surprising result: the cross section of any
scattering process which contains one or more off-shell
particle(s)2 in the “in” state is zero. That is to say, on-shell
quanta can scatter and produce off-shell particles, but once
produced, off-shell particles no longer interact. It is this
behavior that makes these off-shell particles a natural
candidate for dark matter. The phenomenological story
would be that dark matter particles were produced in the
early Universe in this fashion: as off-shell modes of
quantum fields. This feature of the theory can be traced
back to the fact that e□ defines an explicitly retarded
evolution, which as mentioned previously, may be a
remnant of quantum gravitational degrees of freedom.
Our paper is organized as follows. In Sec. II, we start by

setting forth a series of axioms which any nonlocal,
retarded, and Lorentzian modification of □ at high
energies should satisfy. In Sec. III, we argue there is no
action principle for the theory of interest, which forces us
to carefully study, in Sec. IV, what quantization scheme
should be used. There, we argue that canonical quantiza-
tion and the Feynman path-integral approach do not work,
and explain why the Schwinger-Keldysh (also known as
the double path integral or in-in) formalism provides the
appropriate framework. Sections V and VI describe the
interacting theory, where we work out the modified
Feynman rules, find S-matrix amplitudes, and compute
cross sections for various examples and comment on the
time reversibility of the theory. Although a continuum
superposition of off-shell particles can in principle scatter
into on-shell modes, we argue why this is unlikely to
happen. The extension to massive scalar fields is dis-
cussed in Sec. VII. Section VIII concludes the paper.

II. MODIFIED D’ALEMBERTIAN: DEFINITION

In this section we study generic spectral properties of
nonlocal and Lorentzian modifications of the d’Alembertian
□. We focus on a class of operators e□ which defines an

explicitly retarded evolution: ðe□ϕÞðxÞ depends only on ϕðyÞ
with y in the causal past of x. As we will see, such operators
have interesting features which are absent in modifications
of the type fð□Þ. We start by setting forth a series of axioms
which a nonlocal, retarded, and Lorentzian modification of
□ at high energies should satisfy.
(1) Linearity:

e□ðaϕþ bψÞ ¼ ae□ϕþ be□ψ ; a; b ∈ C; ð1Þ
where ϕ and ψ are complex scalar fields and C
denotes the set of complex numbers.

(2) Reality: For any real scalar field ϕ, e□ϕ is also real.
Note that reality and linearity imply for any complex
scalar field ϕ that

ðe□ϕ�Þ ¼ ðe□ϕÞ�; ð2Þ

where � denotes complex conjugation.
(3) Poincaré invariance: Evolution defined by e□ is

Poincaré invariant. Consider a scalar field ϕðxÞ
which transforms to ϕ0ðxÞ ¼ ϕðΛ−1xÞ under a Poin-
caré transformation x → Λx. We require e□ to be
invariant under the action of Λ:

ðe□ϕ0ÞðxÞ ¼ ðe□ϕÞðΛ−1xÞ: ð3Þ

TakingΛ to be a spacetime translationΛðxÞ ¼ xþ a,
one finds that the eigenfunctions of e□ are plane
waves. To see this, let ϕðxÞ ¼ eip·x and define ψðxÞ≡
ðe□ϕÞðxÞ. It then follows from Eq. (3) that

e−ip·aψðxÞ ¼ ψðx − aÞ; ð4Þ
where we have used the linearity condition. Solutions
to the above equation are plane waves:

ψðxÞ ¼ e□eip·x ¼ BðpÞeip·x; ð5Þ
where BðpÞ is any function of the wave vector p.
Therefore, it follows from translational invariance that
eip·x is an eigenfunction of e□ with the corresponding
eigenvalue BðpÞ. Taking Λ to be a Lorentz trans-
formation, it can be shown that BðpÞ can only depend
on the the Lorentzian norm of p, i.e. p · p≡
ημνpμpν, and whether or not p is future or past
directed, i.e. sgnðp0Þ:

BðpÞ ¼ Bðsgnðp0Þ; p · pÞ: ð6Þ
Combining Eqs. (5) and (2) we find Bð−pÞ ¼ B�ðpÞ,
which using Eq. (6) is equivalent to

Bð−sgnðp0Þ; p · pÞ ¼ Bðsgnðp0Þ; p · pÞ�: ð7Þ
For a spacelike wave vector pμ, it is always possible
to find a coordinate system in which p0 ¼ 0. As a

1We use a signature of −þþþ for the Minkowski metric ημν.
Also, p1 · p2 ≡ ημνp

μ
1p

ν
2.

2In the quantum theory, an off-shell particle is a one-particle
quantum state with a well-defined (nonzero) mass and momen-
tum, i.e. a massive eigenstate of the Hamiltonian and momentum
operator.
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result, BðpÞ is real for spacelike p. For timelike
momenta, however, BðpÞ may be complex and its
imaginary part changes sign when p0 → −p0.
Most nonlocal modifications of □ considered in

the literature are of the form fð□Þ, in which case
BðpÞ is only a function of p · p. In this paper we
focus on a class of nonlocal operators for which BðpÞ
does depend on sgnðp0Þ, and find many interesting
consequences as a result.

(4) Locality at low energies: Since □ provides a good
description of nature at low energies, we requiree□ → □ in this regime. In other words, expanding
Bðsgnðp0Þ; p · pÞ for “small” values of p · p, we
require the leading-order behavior to be that
of □:

BðpÞ⟶p·p→0
− p · p: ð8Þ

Note that by a “small” value of p · p, we mean in
comparison to a scale which can be interpreted as the
nonlocality scale, implicitly defined through e□.

(5) Stability: We require that evolution defined by e□
is stable. This condition implies that BðpÞ, when
analytically continued to the complex plane of p,
only has a zero at p · p ¼ 0 [3].

(6) Retardedness: ðe□ϕÞðxÞ only depends on ϕðyÞ,
where y is in the causal past of x.

Let us briefly consider a class of operators which satisfy
all the aforementioned axioms. We shall let Λ denote the
nonlocality energy scale and define

Λ−2ðe□ϕÞðxÞ ¼ aϕðxÞ þ Λ4

Z
J−ðxÞ

fðΛ2τ2xyÞϕðyÞd4y; ð9Þ

where a is a dimensionless real number, J−ðxÞ denotes the
causal past of x, and τxy is the Lorentzian distance between
x and y:

τ2xy ¼ ðx0 − y0Þ2 − jx − yj2: ð10Þ

Examples of such operators have arisen in the causal set
theory program [2–6]. This operator is clearly linear, real,
Poincaré invariant and retarded. It is shown in Appendix A
that there are choices of a and f for which e□ is also
stable and has the desired infrared behavior (8). One such
choice is

fðsÞ ¼ 4

π
δðs − ϵÞ − e−s=2

4π
ð24 − 12sþ s2Þ;

a ¼ −2; ð11Þ

where ϵ is an infinitesimally small positive number.
The eigenvalues BðpÞ of e□ take the form (see

Ref. [3])

Λ−2BðpÞ ¼ lim
ϵ→0þ

gððpþ ipϵÞ · ðpþ ipϵÞ=Λ2Þ; ð12Þ

gðZÞ ¼ aþ 4πZ−1
2

Z
∞

0

fðs2Þs2K1ðZ1=2sÞds; ð13Þ

where pϵ is an infinitesimally small (pϵ · pϵ ¼ −ϵ2), time-
like, and future-directed (p0

ϵ > 0) wave vector. The analytic
structure of BðpÞ is shown in Fig. 1. Figure 2 shows the
behavior of BðpÞ as a function of p · p and sgnðp0Þ for the
choice of f and a given in Eq. (11).

III. CLASSICAL THEORY

How would such nonlocal and retarded evolution mani-
fest itself? To get a start on answering this question, we
modify the evolution of a massless scalar field ϕ coupled to
a source JðxÞ via □ → e□:

□ϕðxÞ ¼ JðxÞ → e□ϕðxÞ ¼ JðxÞ: ð14Þ

It is worth noting that the solutions of e□ϕðxÞ ¼ 0 are
identical to those of□ϕðxÞ ¼ 0. This follows from requiring
a stable evolution for e□ (see Ref. [3]). As we will see in
Sec. III B, however, the story changes when JðxÞ ≠ 0.

A. Absence of an action principle

It is natural to ask whether an action principle exists for
ϕ, whose variation would produce the nonlocal equation of
motion e□ϕðxÞ ¼ JðxÞ. One might propose to substitute □
with e□ in the action of a massless scalar field:

S½ϕ� ¼
Z

d4x

�
1

2
ϕðxÞe□ϕðxÞ − JðxÞϕðxÞ

�
: ð15Þ

FIG. 1. Analytic structure of BðpÞ in the complex plane of
Z ¼ p · p=Λ2.
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Requiring S½ϕ� to be stationary with respect to first-order
variations in ϕ we find3

1

2
ðe□þ e□TÞϕðxÞ ¼ JðxÞ; ð19Þ

where e□T is defined in Fourier space via

e□Teip·x ¼ BðpÞ�eip·x: ð20Þ

In the case of the retarded operator (9), for instance,e□TϕðxÞ is the right-hand side of Eq. (9) with the domain
of integration changed to the causal future of point x.

Therefore, Eq. (15) does not lead to a retarded equation of
motion.
Due to the absence of a local Lagrangian description,

quantizing a massless scalar field theory built upon e□ is
nontrivial. We shall address this problem in Sec. IV, where
we argue that the Schwinger-Keldysh quantization scheme
can still be used to obtain the desired nonlocal quantum
field theory.

B. Green’s function

The Green’s functions of □ and e□ are quite different,
especially in the ultraviolet where their spectra differ. One
important difference is that e□, unlike □, has a unique
inverse. Since e□ is a retarded operator by definition, it only
has a retarded Green’s function. Recall that □ has both a
retarded GRðx; yÞ and advanced GAðx; yÞ Green’s function

□xGR;Aðx; yÞ ¼ δð4Þðx − yÞ; ð21Þ

which satisfy the following “boundary conditions”:GRðx; yÞ
vanishes unless x≻y (x is in the causal future of y), and
GAðx; yÞ vanishes unless y≻x. The two Green’s functions
are related to one another via GAðx; yÞ ¼ GRðy; xÞ. In the
case of e□, the Green’s function is unique (just the retarded
one) and switching the arguments of the retarded Green’s
function does not produce another Green’s function. Let us
show why this is.
Let eGðx; yÞ denote the Green’s function associated

with e□:

FIG. 2. The Fourier transform BðpÞ ¼ gðp · p=Λ2Þ of e□ defined in Eq. (9), where a and f are given by Eq. (11).

3To see this, it is instructive to express the action in Fourier
space. Define the Fourier transform fðpÞ of fðxÞ via

fðxÞ ¼
Z

d4p
ð2πÞ4 fðpÞe

ip·x: ð16Þ

Then, it can be shown that

S ¼
Z

d4p
ð2πÞ4

�
ϕðpÞ� 1

4
ðBðpÞ þ BðpÞ�ÞϕðpÞ − ϕðpÞ�JðpÞ

�
:

ð17Þ

Requiring S to be stationary with respect to first-order variations
ϕðpÞ we find

1

2
ðBðpÞ þ BðpÞ�ÞϕðpÞ ¼ JðpÞ: ð18Þ
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e□x
eGðx; yÞ ¼ δð4Þðx − yÞ: ð22Þ

Note that eGðx; yÞ can be expressed as

eGðx; yÞ ¼ Z
d4p
ð2πÞ4

1

BðpÞ e
ip·ðx−yÞ: ð23Þ

The path of integration in the complex p0 plane is shown in
Fig. 3. This comes from the fact that e□ is a retarded
operator, so BðpÞ analytically continued to the complex p0

plane takes its value above the cut. When BðpÞ has no zeros
in the complex plane apart from at p · p ¼ 0, which is
guaranteed by the stability requirement, this choice of
contour ensures that eGðx; yÞ≡ eGRðx; yÞ is indeed retarded.
Switching the arguments of eGRðx; yÞ, we find

eGRðy; xÞ ¼
Z

d4p
ð2πÞ4

1

BðpÞ e
ip·ðy−xÞ ð24Þ

¼
Z

d4p
ð2πÞ4

1

Bð−pÞ e
ip·ðx−yÞ ð25Þ

¼
Z

d4p
ð2πÞ4

1

BðpÞ� e
ip·ðx−yÞ; ð26Þ

where in the second line we have changed integration
variables from p to −p. Then

e□x
eGRðy;xÞ¼

Z
d4p
ð2πÞ4

BðpÞ
BðpÞ� e

ip·ðx−yÞ ≠ δð4Þðx−yÞ; ð27Þ

since BðpÞ is generically complex. As we will see in the
sections to come, the fact that e□ has a unique inverse plays
a crucial role in the quantum theory of e□.

IV. QUANTUM THEORY

We wish to construct a quantum theory of a massless
scalar field ϕ whose classical limit reproduces the retarded
evolution induced by e□. The quantization scheme which
we believe is most suited in this case is the Schwinger-
Keldysh (or double path integral) formalism. In what
follows, we will first review the usual paths to quantization
(i.e. canonical quantization and the Feynman path integral)
and show why they fail in the case of a nonlocal and
retarded operator like e□. The goal of these discussions is to
make clear why we choose the Schwinger-Keldysh for-
malism to construct a quantum field theory based on e□.

A. Canonical quantization

Let us consider the canonical quantization of a free
massless scalar field ϕ. The typical route to quantization is
as follows: start from an action principal for ϕ, derive the
Hamiltonian in terms of ϕ and its conjugate momentum,
impose equal-time commutation relations, and finally
specify the dynamics via the Heisenberg equation. There
is an equivalent approach, however, which defines the
theory with no reference to an action principle, using the
Klein-Gordon equation supplemented by the so-called
Peierls form of the commutation relations:

□ϕ̂ðxÞ ¼ 0; ð28Þ

½ϕ̂ðxÞ; ϕ̂ðyÞ� ¼ iΔðx; yÞ; ð29Þ

where Δðx; yÞ is the Pauli-Jordan function

Δðx; yÞ ¼ GRðx; yÞ −GAðx; yÞ
¼ GRðx; yÞ −GRðy; xÞ: ð30Þ

It is well known that Eq. (29) is entirely equivalent to, but
more explicitly covariant than, the more commonly seen
equal-time commutation relations (see e.g. Sec. C.2 of
Ref. [9]). Since Δðx; yÞ is the difference of two Green’s
functions, it satisfies the equation of motion:

□xΔðx; yÞ ¼ 0: ð31Þ
This is why Eqs. (28) and (29) are consistent with one
another: both the left- and right-hand sides of Eq. (29)
vanish when □x is applied.
It is tempting to build the quantum theory of e□ in a

similar fashion:

e□ ϕ̂ðxÞ ¼ 0; ð32Þ

½ϕ̂ðxÞ; ϕ̂ðyÞ� ¼ ieΔðx; yÞ≡ iðeGRðx; yÞ − eGRðy; xÞÞ: ð33Þ

In this case, however, eΔðx; yÞ does not satisfy the equation
of motion [e□x

eΔðx; yÞ ≠ 0] because eGRðy; xÞ is not a

FIG. 3. The integration path in the complex p0 plane which
defines the retarded Green’s function associated with e□.
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Green’s function of e□ [see Sec. III and Eq. (27)].
Therefore, the equation of motion (32) is not consistent
with the commutation relations (33).
It is worth noting that the root of this inconsistency is that

the Fourier transform BðpÞ of e□ is complex, which in turn
follows from the fact that e□ is retarded by definition. In
Sec. IV C we will arrive at a consistent quantum theory via
the Schwinger-Keldysh formalism, using which we also
build a Hilbert-space representation of the theory. There we
will see that the equation of motion (32) is given up in favor
of the commutation relations (33). As it turns out, the
degree to which Eq. (32) is violated depends on the
imaginary part of BðpÞ.

B. Feynman path integral

The Feynman path integral formalism requires a local
Lagrangian description for the scalar field ϕ. As was argued
in Sec. III A, however, this is not viable if one requires a
retarded equation of motion. Therefore, the Feynman path
integral formalism is also not suitable for quantizing this
theory.

C. Schwinger-Keldysh formalism

The Schwinger-Keldysh formalism has a natural way of
incorporating a retarded operator. In this approach an
amplitude [called the decoherence functional Dðϕþ;ϕ−Þ]
is assigned to a pair of paths (ϕþ;ϕ−), which are con-
strained to meet at the final time [ϕþðtf;xÞ ¼ ϕ−ðtf;xÞ].
The decoherence functional for a free massless scalar field
takes the form

Dðϕþ;ϕ−Þ ¼ Exp

�
i
Z

d4x
1

2
ϕq

□
Rϕcl þ 1

2
ϕcl

□
Aϕq

þ 1

2
ϕq□Kϕq

�
; ð34Þ

where

ϕcl ≡ 1ffiffiffi
2

p ðϕþ þ ϕ−Þ; ð35Þ

ϕq ≡ 1ffiffiffi
2

p ðϕþ − ϕ−Þ: ð36Þ

In Eq. (34), □R is the retarded d’Alembertian, □A ¼ ð□RÞ†
is the advanced d’Alembertian, and□K is an anti-Hermitian
operator which contains information about the initial wave
function [10].4 Any source term JðxÞ can be included by
adding −Jϕþ þ Jϕ− ¼ −

ffiffiffi
2

p
Jϕq to the integrand.

Any n-point function in this theory is given by

hϕðα1Þðx1Þ…ϕðαnÞðxnÞi

¼
Z

DϕþDϕ−ϕðα1Þðx1Þ…ϕðαnÞðxnÞDðϕþ;ϕ−Þ; ð37Þ

where αi ∈ fþ;−; q; clg. These correlation functions are
related to the correlation functions in Hilbert-space repre-
sentation by the following rule:

hϕþðx1Þ…ϕþðxnÞϕ−ðy1Þ…ϕ−ðymÞi
¼ h0jeT½ϕ̂ðy1Þ…ϕ̂ðymÞ�T½ϕ̂ðx1Þ…ϕ̂ðxnÞ�j0i ð38Þ

where TðeTÞ is the (anti-)time-ordered operator, and j0i is
the vacuum state of the free theory.
In order to come up with a quantum theory for a nonlocal

retarded operator, we replace □
R with e□ in Eq. (34) (and

□
K with e□K5).

1. Classical limit

Before going any further, let us take a look at the
classical limit of this theory. Performing Gaussian integrals
(in the presence of a source term), we get

hϕclðxÞi ¼ 1ffiffiffi
2

p
Z

d4yeGRðx; yÞJðyÞ; ð39Þ

hϕqðxÞi ¼ 0; ð40Þ
resulting in

hϕþðxÞi ¼ hϕ−ðxÞi ¼
Z

d4yeGRðx; yÞJðyÞ: ð41Þ

It shows that in the classical limit where the field is
represented by its expectation value, there is no difference
between ϕþ and ϕ− and both satisfy the retarded equation
of motion e□ϕ ¼ J.

2. Green’s functions

Let us consider the two-point correlation functions of
this theory in the absence of any source:

−ihϕclðxÞϕqðyÞi ¼ eGRðx; yÞ; ð42Þ

−ihϕqðxÞϕclðyÞi≡ eGAðx; yÞ ¼ eGRðy; xÞ; ð43Þ

−ihϕclðxÞϕclðyÞi≡ eGKðx;yÞ

¼−
Z

d4zd4weGRðx;zÞeBKðz;wÞeGAðw;yÞ;

ð44Þ
4The retarded and advanced d’Alembertians are defined via

GR;Að□R;AfÞ ¼ f for all suitable test functions f, where GR;A are
the integral operators associated with the retarded and advanced
Green’s functions GR;Aðx; yÞ.

5We still need to determine e□K . This has been done in
Sec. IV C 3.
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−ihϕqðxÞϕqðyÞi ¼ 0 ð45Þ

where eBKðx; yÞ is the kernel of e□K.6 Using the definition of
ϕq and ϕcl, we get

−ihϕþðxÞϕþðyÞi ¼ 1

2
½eGKðx; yÞ þ eGRðx; yÞ þ eGAðx; yÞ�;

ð46Þ

−ihϕ−ðxÞϕ−ðyÞi ¼ 1

2
½eGKðx; yÞ − eGRðx; yÞ − eGAðx; yÞ�;

ð47Þ

−ihϕ−ðxÞϕþðyÞi ¼ 1

2
½eGKðx; yÞ þ eGRðx; yÞ − eGAðx; yÞ�:

ð48Þ

Note that if this theory has an equivalent representation in
terms of field operator in a Hilbert space, then the above-
mentioned terms correspond to the time-ordered two-point
function, anti-time-ordered two-point function and two-
point function respectively [see Eq. (38)].
We require that the theory describes a free scalar field in

flat spacetime at its ground state. As a result, all n-point
correlation functions of this theory must be translation
invariant,

hϕðα1Þðx1Þ…ϕðαnÞðxnÞi ¼ hϕðα1Þðx1 þ yÞ…ϕðαnÞðxn þ yÞi:
ð49Þ

This condition requires that all operators e□, e□† and e□K

must be translation invariant. Consequently, we get

e□Keip·x ¼ eBKðpÞeip·x; ð50Þ

eGKðx; yÞ ¼ −
Z

d4p
ð2πÞ4

eGRðpÞeBKðpÞeGAðpÞeip·ðx−yÞ: ð51Þ

Note that e□K is an anti-Hermitian operator. It means eBKðpÞ
is a totally imaginary number [and eGKðpÞ≡−eGRðpÞeBKðpÞeGAðpÞ is also totally imaginary since eGRðpÞeGAðpÞ is real].

3. Fixing eGK

From here on, we assume that there is a Hilbert-space
representation of this theory with a Hamiltonian evolution.
We will justify this assumption later by finding the
representation itself. In Appendix B we show that this
assumption leads to the following relation, when the
quantum system is in its ground state:

eGKðpÞ ¼ sgnðp0Þ½eGRðpÞ − eGAðpÞ�: ð52Þ

Note that Eq. (52) is nothing but the fluctuation dissipation
theorem (FDT) at zero temperature. This fixes the eigen-
values of e□K as follows:

eBKðpÞ ¼ 2iImBðpÞsgnðp0Þ: ð53Þ

4. Hilbert-space representation

We wish to find an equivalent Hilbert-space representa-
tion in terms of a field operator ϕ̂ðxÞ for this theory. As we
mentioned earlier, Eq. (48) is the two-point function of such
a representation,

Wðx; yÞ≡ h0jϕ̂ðxÞϕ̂ðyÞj0i ¼ hϕ−ðxÞϕþðyÞi; ð54Þ
where j0i is the ground state. If we use Eqs. (48) and (52),
we arrive at

Wðx; yÞ ¼
Z

d4p
ð2πÞ4

2Im½BðpÞ�θðp0Þ
jBðpÞj2 eip·ðx−yÞ; ð55Þ

where we call eWðpÞ≡ 2Im½BðpÞ�θðp0Þ
jBðpÞj2 . Since Wðx; yÞ is a

positive operator, Im½BðpÞ�θðp0Þ must be a non-negative
number. So, we further assume

sgnðIm½BðpÞ�Þ ¼ sgnðp0Þ: ð56Þ

Once this condition is satisfied, the field operator ϕ̂ðxÞ
and ground state j0i, defined to be

ϕ̂ðxÞ ¼
Z

d4p
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffieWðpÞ
q

ðâpeip·x þ â†pe−ip·xÞ; ð57Þ

½âp; âq� ¼ δð4Þðp − qÞ; ð58Þ

âpj0i ¼ 0 ∀ p; ð59Þ

yield the desired correlation functions.
Note that ap is only defined for timelike future-directed

p, because otherwise eWðpÞ is zero in the field expansion. It
means that all timelike future-directed (positive-energy)
momenta contribute to the field expansion (57).

5. Hamiltonian

By definition, the time evolution operator is the operator
that evolves ϕ̂ðxÞ in time,

ϕ̂ðt;xÞ ¼ Ûðt; t0Þϕ̂ðt0;xÞÛ†ðt; t0Þ: ð60Þ
It can be directly checked that

Ûðt; t0Þ ¼ e−iĤ0ðt−t0Þ; ð61Þ
6If δyðxÞ≡ δð4Þðx − yÞ, then ~BKðx; yÞ≡ ðe□KδyÞðxÞ. With this

definition, ðe□KϕÞðxÞ ¼ R
d4y ~BKðx; yÞϕðyÞ.
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Ĥ0 ¼
Z

d4pp0â†pâp; ð62Þ

gives the right time evolution.
State j0i defined in Eq. (59) is the ground state of this

Hamiltonian. Excited states (n-particle states) can be built
by acting a†’s on j0i,

jp1…pni ¼ â†p1
…â†pn j0i: ð63Þ

The excited state jpi represents a particle with energy p0

and momentum p7 where p0 is independent of p.8 This
shows that the theory contains a continuum of massive
particles with positive energy. The existence of a con-
tinuum of massive particles in the context of causal set
theory also has been pointed out in Ref. [11], although their
result is rather different in some other aspects.

6. Comparison to local evolution

At this point, it would be illustrative to consider the result
of this formalism for LQFT. In this case

BðpÞ ¼ BlocalðpÞ ¼ ðp0 þ iϵÞ2 − jpj2; ð64Þ
where ϵ is a small positive number taken to zero at the end
of the calculation. The two-point function is given by

eWðpÞ ¼ 2
ϵp0

ðp2Þ2 þ ðϵp0Þ2 θðp
0Þ ¼ 2πδðp2Þθðp0Þ: ð65Þ

As a result,

Wðx; yÞ ¼
Z

d4p
ð2πÞ4 2πδðp

2Þθðp0Þeip·ðx−yÞ; ð66Þ

ϕ̂ðxÞ ¼
Z

d4p
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πδðp2Þθðp0Þ

q
ðâpeip·x þ â†pe−ip·xÞ:

ð67Þ

The two-point function and field expansion are exactly the
ones we expected. Only on-shell particles (p · p ¼ 0)
contribute to the field expansion.
Here, we see one important difference between local and

retarded nonlocal evolution. In the local case, only on-shell
modes (p · p ¼ 0) contribute to the field expansion. As a
result, excited states of the theory consist of all on-shell
particles. In the nonlocal retarded case (where generically
Im½BðpÞ� ≠ 0), off-shell modes (p · p ≠ 0) also contribute
to the field expansion. Consequently, one expects the

existence of off-shell modes in “in” and “out” states of
scatterings in the interacting theory.
Let us investigate properties of eWðpÞ for a generic

nonlocal retarded operator. First of all, it is only nonzero for
timelike future-directed momenta. This means that only
timelike future-directed momenta contribute to the field
expansion and can exist in “in” and “out” states (particles
with timelike momentum and positive energy).
Considering that BðpÞ is only zero at p · p ¼ 0, eWðpÞ is

a finite number for all p · p ≠ 0 (we will see the signifi-
cance of this result in Sec. VI B). On the other hand, since
in the subspace of on-shell modes the e□ operator is exactly
the same as□, we conclude that eWðpÞ ¼ 2πδðp2Þθðp0Þ for
p · p ¼ 0. Therefore, eWðpÞ consists of a divergent part at
p · p ¼ 0 and a finite part for p · p ≠ 0. This means that
there are two different contributions to the field expansion
(57), one from on-shell modes that is the same as Eq. (67)
and one from off-shell modes which only exists in the case
of nonlocal retarded evolution

ϕ̂ðxÞ ¼
Z

d4p
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πδðp2Þθðp0Þ

q
ðâpeip·x þ â†pe−ip·xÞ

þ
Z
p2≠0

d4p
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffieWðpÞ
q

ðâpeip·x þ â†pe−ip·xÞ: ð68Þ

D. Sorkin-Johnston quantization

The Sorkin-Johnston (SJ) proposal defines a unique
vacuum state for a free massive scalar field in an arbitrarily
curved spacetime [12]. This proposal is a continuum
generalization of Johnston’s formulation of a free quantum
scalar field theory on a background causal set [13]. As is the
case for e□, canonical quantization does not admit an
obvious generalization for a causal set. The SJ quantization
scheme uses only the retarded Green’s function GRðx; yÞ to
arrive at the quantum theory. Since e□ also admits a retarded
Green’s function, one can apply the SJ prescription to arrive
at a free quantum field theory of the massless scalar field
we have been considering. In what follows, we will show
that the SJ proposal applied to e□ produces the same free
quantum theory as the Schwinger-Keldysh formalism,
provided condition (56) is met.
Consider the corresponding integral operator of the

kernel iΔðx; yÞ ¼ GRðx; yÞ −GRðy; xÞ:

ðiΔfÞðxÞ ¼
Z

iΔðx; yÞfðyÞd4y: ð69Þ

It can be shown that iΔ is Hermitian, which implies it has
real eigenvalues, and that its nonzero eigenvalues come in
positive and negative pairs:

ðiΔTpÞðxÞ ¼ λ2pTpðxÞ → ðiΔT�
pÞðxÞ ¼ −λ2pT�

pðxÞ: ð70Þ

7The momentum operator P̂≡ R
d4ppâ†pâp is the generator of

spacial translation.
8Note that these states are different from the usual states jpi

used in LQFT which describe a particle with momentum p and
energy jpj.
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We have assumed here that the eigenfunctions Tp form an
orthonormal basis of L2, which can always be achieved
since iΔ is Hermitian. The Sorkin-Johnston proposal is
then to define the two-point function to be the positive part
of iΔðx; yÞ in the following sense:

h0jϕ̂ðxÞϕ̂ðyÞj0i ¼
X
p

λ2pTpðxÞT�
pðyÞ: ð71Þ

Taking GRðx; yÞ to be the retarded Green’s function of e□
[see Eqs. (23) and (26)], we find

iΔeip·x ¼ 2ImðBðpÞÞ
jBðpÞj2 eip·x; ð72Þ

which using the SJ formalism then leads to the two-point
function

h0jϕ̂ðxÞϕ̂ðyÞj0i ¼
Z

d4p
ð2πÞ4

2ImðBðpÞÞ
jBðpÞj2 θðImðBðpÞÞÞeip·x:

ð73Þ

If condition (56) is satisfied, this two-point function is that
derived from the Schwinger-Keldysh formalism [see
Eqs. (55) and (56)]. It is reassuring that two different
paths to quantization, at least at the free level, lead to the
same theory.

V. INTERACTING FIELD THEORY

Let us now consider the interacting theory. We introduce
the interaction in the Hilbert-space representation by add-
ing a potential term to the free Hamiltonian as follows:

ĤðtÞ ¼ Ĥ0 þ
Z

d3xVðϕ̂ðt;xÞÞ: ð74Þ

Starting with a general initial wave function, one is able to
find the final state of the system by solving the Heisenberg
equation of motion in principle. However, in practice this is
a very hard task to do. So, we try to find the S-matrix
amplitudes perturbatively.
In order to do so, we can use the available machinery of

LQFT, and move to the interaction picture. Time evolution
in the interaction picture is given by

ÛI ¼ Te−i
R

d4xVðϕ̂IÞ ð75Þ

where ϕ̂I is the field in the interaction picture given by
Eq. (57). The perturbative expansion of ÛI yields S-matrix
amplitudes. Performing the calculations to find the S-matrix,
we come upwith modified Feynman rules for this theory.We
explain these modifications in the following two examples.

A. Example 1: 2-2 scattering p1p2 → q1q2 in λ
4!ϕ

4 theory

The scattering amplitude Sq1q2;p1p2
is given by

Sq1q2;p1p2
¼ hq1q2jTe−i

R
d4x λ

4!
ϕ̂4
I jp1p2i: ð76Þ

To first order in λ, it yields

Sq1q2;p1p2
¼ −i

λ

4!

Z
d4xhq1q2jϕ̂4

I ðxÞjp1p2i

¼ −iλ
ð2πÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieWðp1Þ eWðp2Þ eWðq1Þ eWðq2Þ
q

δð4Þ

×

�X
p −

X
q

�
; ð77Þ

where we have substituted for ϕ̂I from Eq. (57). It is
interesting to note that Eq. (77) is time-reversal invariant.
In the transition from local to retarded nonlocal propa-

gation, here we see the first change in the scattering
amplitudes. The values assigned to each external line have

changed from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πδðp2Þθðp0Þ

p
to

ffiffiffiffiffiffiffiffiffiffiffiffieWðpÞ
q

. Note that here

the scattering amplitude is computed in the basis of the
4-momentum jpi which is different from the 3-momentum
basis jpi of LQFT.

B. Example 2: 2-2 scattering p1p2 → q1q2 in λ
3!ϕ

3 theory

In this case, Sq1q2;p1p2
is given by

Sq1q2;p1p2
¼ hq1q2jTe−i

R
d4x λ

3!
ϕ̂3
I jp1p2i: ð78Þ

To second order in λ, it yields

Sq1q2;p1p2
¼ 1

2

�
−iλ
3!

�
2
Z

d4xd4yhq1q2jTϕ̂3
I ðxÞϕ̂3

I ðyÞjp1p2i

¼ −iλ2

ð2πÞ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieWðp1Þ eWðp2Þ eWðq1Þ eWðq2Þ

q
δð4Þ

×

�X
p−

X
q

�
× ½eGFðp1þp2Þþ eGFðp1−q1Þþ eGFðp1−q2Þ�:

eGFðpÞ ¼ θðp0Þ
BðpÞ þ θð−p0Þ

B�ðpÞ is the time-ordered two-point func-

tion (46) in Fourier space. In the transition from the local to
the nonlocal operator, here we see another change in the
scattering amplitude. The values assigned to each internal
line have changed to the new value for the Feynman
propagator eGFðpÞ.
From these examples, it is obvious how scattering

amplitudes can be computed in this theory. For any
Feynman diagram only the values assigned to external
lines and internal lines have changed. Note that the
amplitude of some diagrams in LQFT is zero, as a result
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of energy-momentum conservation, while in this theory
they are not. For example in LQFT λϕ3 theory, the
amplitude assigned to Fig. 4 is zero, because the sum of
two (nonparallel) null vectors cannot be a null vector.
However, in this theory there is a continuum of massive
particles, and for example two on-shell particles can
interact and produce one off-shell particle.

VI. FROM SCATTERING AMPLITUDE TO
TRANSITION RATE

At this point, we want to find the rate of a process using
the S-matrix amplitudes. In Sec. VI B we have shown that if
one (or more) of the incoming particles is off shell, then the
differential transition rate of such scattering is zero. It
means that in order to have a nonzero transition rate (and
cross section), all of the incoming particles must be on
shell. This is the most distinctive property of off-shell
particles: the cross section of any scattering with off-shell
particles is zero.
For now consider the scattering from state jαi ¼

jp1…pNα
i to jβi ¼ jq1…qNβ

i where all the incoming

particles are on shell, p2
i ¼ 0. Assuming that the inter-

actions happen inside a box with volume V (see Ref. [14]),
the differential transition rate is given by

dΓ ¼ 2πNαþ1

�ð2πÞ3
V

�
Nα−1 1

Ep1
…EpNα

δð4Þ
�X

pi −
X

qi

�

× j eMβαj2d4q1…d4qNβ
; ð79Þ

where Epi
¼ jpij and

Sβα ¼ −2πiδð4Þ
�X

pi −
X

qi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieWðp1Þ… eWðpNα
Þ

q eMβα:

ð80Þ

In the case of 2-2 scattering, the differential cross section is
given by

dσ ¼ dΓ
u
V

¼ π2ð2πÞ4
Ep1

Ep2
u
δð4Þ

�X
pi −

X
qi

�
j eMβαj2d4q1d4q2;

ð81Þ

where

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1:p2Þ2 − p2

1p
2
2

p
p0
1p

0
2

ð82Þ

is the speed of particle 1 in the frame of reference of particle
2 (and vice versa) and u

V is the flux of incoming particles.

A. p1p2 → q1q2 cross section in λ
4!ϕ

4

As an example, we will find the cross section of p1p2 →
q1q2 where p2

i ¼ 0. Using Eq. (77) and the definition (80),
to first order in λ

eM ¼ λ

ð2πÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieWðq1Þ eWðq2Þ

q
: ð83Þ

As a result, the cross section is given by

dσ ¼ λ2

4ð2πÞ4jp1 · p2j
eWðq1Þ eWðq2Þδð4Þ

× ðp1 þ p2 − q1 − q2Þd4q1d4q2: ð84Þ

Let us constrain the outgoing particles to be only on shell
q2i ¼ 0. In this case eW functions in Eq. (84) pick up a delta
function and one can check that Eq. (84) for outgoing on-
shell particles results in the usual cross section of λϕ4 in
LQFT. However, if we constrain (at least) one of the
outgoing particles to be off shell with a fixedmass, the cross
section becomes zero. The cross section over outgoing off-
shell particles is only nonzero when the integration over the
continuum mass is also performed. We see the significance
of this in the next section when considering the scattering of
off-shell particles. Due to the contribution of off-shell
states, the total cross section (84) is increased compared
to the local theory.

B. Off-shell particles and cross section

In order to calculate the cross section of any scattering
involving incoming off-shell particles, we make use of the

FIG. 4. The amplitude of this diagram in LQFT is zero, because
of the energy-momentum conservation; two massless particles
cannot produce a massless particle. However, in our theory there
is a continuum of massive particles and the amplitude of this
scattering is generically nonzero.
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fact that off-shell particles can be thought as a continuum of
massive particles.
This can be done by expressing the two-point function as

a sum over massive two-point functions:

Wðx; yÞ ¼
Z

∞

0

dμ2ρðμ2Þ

×
Z

d4p
ð2πÞ4 2πθðp

0Þδðp2 þ μ2Þeip·ðx−yÞ; ð85Þ

where ρð−p2Þ ¼ eWðpÞ
2π for p0 > 0. Note from Eq. (68) that

ρðμ2Þ ¼ δðμ2Þ þ eρðμ2Þ where eρ is a finite function. In other
words,

Wðx; yÞ ¼
Z

d4p
ð2πÞ4 2πθðp

0Þδðp2Þeip·ðx−yÞ

þ
Z

∞

0

dμ2eρðμ2Þ Z d4p
ð2πÞ4 2πθðp

0Þδ

× ðp2 þ μ2Þeip·ðx−yÞ: ð86Þ

In order to make everything more similar to LQFT, we
discretize the mass parameter to get

Wðx; yÞ ¼
Z

d4p
ð2πÞ4 2πθðp

0Þδðp2Þeip·ðx−yÞ þ
X∞
j¼1

Δμ2eρðμ2jÞ
×
Z

d4p
ð2πÞ4 2πθðp

0Þδðp2 þ μ2jÞeip·ðx−yÞ; ð87Þ

where μ2j ¼ jΔμ2. Equation (87) is the same as Eq. (86) in
the limit Δμ2 → 0.
The following field operator will yield the above two-

point function:

ϕ̂ðxÞ ¼
Z

d3p

ð2πÞ3=2
1ffiffiffiffiffiffiffiffi
2jpjp ðâp;0eip·x þ c:c:Þjp0¼jpj

þ
X∞
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δμ2eρðμ2jÞq

×
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffi
2Ep;μj

p ðâp;μjeip·x þ c:c:Þ

where

Ep;μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

q
; ð88Þ

½âp;μi ; â†q;μj � ¼ δð3Þðp − qÞδμi;μj ; ð89Þ

âp;μj0i ¼ 0 ð90Þ

and the state jp; μi≡ â†p;μj0i is a one-particle state with
momentum p, mass μ and energy Ep;μ.
From now on, consider a concrete example of 2-2

scattering with λ
4!
ϕ̂4 interaction and incoming particles

with definite mass and momentum. The idea behind this
proof can be generalized to more complicated examples.
Up to first order in λ

hp1; m1;p2; m2jŜjq1; μ1;q2; μ2i

¼ −
iλ

ð2πÞ2 δ
ð4Þ
�X

p −
X

q

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY2
i¼1

ðΔμ2Þ2ρðμ2i Þρðm2
i Þ

4Eqi;μiEpi;mi

vuut : ð91Þ

In Eq. (91), if any of the particles were on shell (say
μ1 ¼ 0), we should set Δμ2ρðμ21Þ ¼ 1; otherwise ρ is
replaced by eρ.
The differential cross section is given by

dσ ¼ ð2πÞ−2λ2 ðΔμ
2Þ4ρðμ21Þρðμ22Þρðm2

1Þρðm2
2Þ

16uEp1;m1
Ep2;m2

Eq1;μ1Eq2;μ2

× δð4Þðp1 þ p2 − q1 − q2Þd3p1d3p2: ð92Þ

In order to get the total cross section, we should also sum
over the mass parameter in the phase space of outgoing
particles. In the (mass) continuum limit this means

X
Δμ2ρðm2

i Þ →
Z

dm2
i ρðm2

i Þ ð93Þ

which absorbs two factors of Δμ2 in Eq. (92); however,
there are two remaining factors of Δμ2. If the incoming
particles (even one of them) are off shell, since ρðμ2Þ is a
finite number, in the limit Δμ2 → 0, the cross section
becomes zero. This means that the (total) transition rate of
scattering with off-shell particles with fixed mass is zero.
The cross section is only nonzero when both of the
incoming particles are on shell.
This is, in fact, consistent with what we have found in the

previous section. There, we have shown that the transition
rate of on-shell → off-shell is nonzero, only when the
integration over mass of the off-shell particles is performed.
In fact, the scattering transition rate of on-shell particles to
off-shell particles with fixed masses is zero. Since the
theory is time-reversal invariant, this suggests that the
scattering transition rate of off-shell particles with fixed
masses must be zero too, consistent with what we have
found here.
This also means that an initial state with a suitable

continuum superposition of off-shell masses can scatter
into on-shell modes (time reverse of the process of on-shell
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scattering into off-shell). However, as we argue in the next
section, these states are fine-tuned and generally we do not
expect to find the system in these superpositions.

C. Off-shell→on-shell scattering: continued

In the previous section, we showed that the transition
rate of scattering with off-shell particle(s) is zero.
However, a suitable continuum superposition of off-shell
particles can scatter nontrivially. In this section, we want
to explain this point to a greater extent and argue that it
is unlikely to find the system in these superpositions.
We will not go through the details of the calculations
since they are not essential to our argument in this
section.
We make use of the following toy model theory that

mimics many properties of the proposed nonlocal
theory:

L ¼ 1

2
ψ0□ψ0 þ

XN
i¼1

1

2
ψmi

ð□ −m2
i Þψmi

− λψ4;

ψ ≡ ψ0 þ
XN
i¼1

giffiffiffiffi
N

p ψmi
: ð94Þ

This is a theory of one massless scalar field (playing the
role of on-shell modes) in addition to N massive scalar
fields (playing the role of off-shell modes) and we are
interested in the N → ∞ limit of the theory (λ and gi’s are
coupling constants and do not scale with N). The
advantage of working with this theory is that while its
behavior is very similar to the nonlocal theory, Eq. (94) is
a local quantum field theory and possibly more compre-
hensible to the reader. The interaction term in Eq. (94) is
designed in a way that interactions with massive (off-
shell) fields are suppressed by a factor of

ffiffiffiffi
N

p
and in the

N → ∞ limit their interactions become negligible. On the
other hand, the number of off-shell fields goes to infinity.
In what follows, we explain that this theory imitates many
properties of off-shell and on-shell particles in the non-
local theory.

First, let us define the following quantities: σ ~p1 ~p2
m1m2→μ1μ2 is

the scattering cross section of two particles with masses and
momenta m1; ~p1 and m2; ~p2 into two particles with masses

μ1 and μ2 (ψμ1 and ψμ2) and σ ~p1 ~p2
m1m2

is the total scattering
cross section of two particles with masses and momenta
m1; ~p1 and m2; ~p2.
Consider the scattering of two ψ0 particles into two final

particles. If we restrict the two final particles to be massive
(off-shell fields with fixedmasses), then the scattering cross
section in the N → ∞ limit goes to zero. However, if we
sum over all massive final states (all off-shell particles), the
total cross section is nonzero. In fact, for different final
states the corresponding cross sections scales with N as
follows:

σ ~p1 ~p2

00→00 ∝ N0;

σ ~p1 ~p2

00→0m ∝
1

N
; m ≠ 0;

σ ~p1 ~p2

00→m1m2
∝

1

N2
; m1; m2 ≠ 0:

While the interactions with individual massive fields are
suppressed, the number of massive states scales with N. In
this way, the total scattering cross section of two initial
massless particles into two massive final states, summed
over all masses, is finite and nonzero (the same scaling
works for scattering into one massless and one massive
particle).
On the other hand, any scattering with (at least) one

massive initial state results in a zero cross section. For
example, the following total scattering cross sections
(summed over all final states) scale with N as

σ ~p1 ~p2

0m ∝
1

N
; m ≠ 0; ð95Þ

σ ~p1 ~p2
m1m2

∝
1

N2
; m1; m2 ≠ 0; ð96Þ

and they vanish in the N → ∞ limit.
As we showed, massive particles in this theory [Eq. (94)]

mimic the properties of off-shell states in the nonlocal
theory; they can be produced by the scattering of massless
states, while the reverse process (scattering of massive
states into massless) does not happen.
However, the theory is (obviously) time-reversal invari-

ant and massive → massless scatterings must take place.
This is indeed true, but as we demonstrate here the initial
massive state that scatters nontrivially must be a super-
position of different masses. Consider state γ, a super-
position of M different masses, scattering off a massless
particle. Then, the total transition probability Γ0γ scales as

Γ0γ < A
M
N

ð97Þ

where A has no dependence on M and N (see Appendix C
for proof). This transition probability is nonzero in the
N → ∞ limit, only when M also scales with N.
So, massive → massless scattering indeed happens.

However, the massive state that scatters nontrivially must
be a superposition of (infinitely) many different masses and
in this sense is fine-tuned. It is similar to an egg that
smashes into pieces upon falling on the ground; the reverse
process of pieces assembling into an egg can in principle
happen, but it is very unlikely.
In this sense, we expect the off-shell to on-shell scatter-

ing in the nonlocal theory to be negligible. In principle this
transition can happen, but it is very implausible. The
essence of our reasoning in this section is based on
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thermodynamical arguments and although it is not a
complete proof, we hope that we have provided enough
evidence to show that off-shell → on-shell scattering is
very unlikely. Definitely, further quantitative studies are
needed to augment (or disprove) our claim. Perhaps, a good
starting point is to consider the toy model theory (94), since
it shares a lot of properties with the nonlocal theory.

VII. EXTENSION TO MASSIVE SCALAR FIELDS

Throughout this paper, we only considered the modifi-
cation of a massless scalar field. But what about massive
scalar fields? One may suggest replacing □ with e□ in the
equation of motion of a massive scalar field as follows:

ðe□ −M2ÞϕðxÞ ¼ JðxÞ ð98Þ
and follow similar steps of quantization. However, this
method does not work. If M is a real number, then there is
no mode satisfying Eq. (98) in the absence of J. In other
words, there are no on-shell modes.
Another way is to chooseM to be a complex number such

that for a timelike future-directedmomentump,BðpÞ ¼ M2.
In this case, the mass of an on-shell mode is given by
m2 ≡ −p2. However, e□ −M2 is no longer a real operator
and the solution to Eq. (98) generically cannot be real.
The extension to massive scalar fields can be done by

considering the following observation. All of the properties
in the massless case can be read from the analytic structure
of BðpÞ in Fig. 1. Massless modes are on shell because
there is a simple zero at p2 ¼ 0 and there are off-shell
modes for timelike momenta because there is a cut for
timelike momenta in Fig. 1.
In this way, the extension to the massive case seems

much simpler. □ −m2 must be replaced with e□m whose
eigenvalues BmðpÞ satisfy the following:
(1) There is only one simple zero at p2 ¼ −m2. Also

limp2þm2→0
BmðpÞ
p2þm2 ¼ −1 to get the correct local limit.

(2) The cut must be only on momenta with higher
masses p2 < −m2. Otherwise, in the quantum
theory, there are off-shell modes with masses smaller
thanmwhich makes the on-shell mode unstable (on-
shell modes can always decay into off-shell modes
with less mass).

(3) ImBmðpÞ ≥ 0 for p0 > 0.
Conditions 4 and 5 in Sec. II and Eq. (56) must be replaced
by the above-mentioned conditions. One easy way to come
up with such an operator is to make use of the existing
operator BðpÞ in the massless case, and consider it as a
function of p2 and sgnðp0Þ. Then,

BmðpÞ ¼ Bðp2 þm2; sgnðp0ÞÞ ð99Þ
has all the desired properties (this also has been shown
in Ref. [11]).

VIII. CONCLUSION

In this paper, we studied the physical consequences of a
causal nonlocal evolution of a massless scalar field. We
started by modifying the d’Alembertian to a causal non-
local operator at high energies. Quantization of a free field
showed that the field represents a continuum of massive
particles. In fact, there were two sets of modes: on-shell
modes (massless particles) and off-shell modes (massive
particles).
The Feynman rules for the perturbative calculation of

S-matrix amplitudes were discussed. The most important
result (in our opinion) is the fact that the cross section of
any scattering with off-shell particles is zero. This suggests
that although these modes exist and probably can be
detected by other means, there is no way of detecting
them through scattering experiments. This property opens
up the possibility that dark matter particles might be just the
off-shell modes of known matter. Finally, we extended this
formalism to massive scalar fields.
Throughout this paper we only considered scalar field

theories, but how about other types of fields? The extension
to other types of fields, such as a vector field, is not as
straightforward as for scalar fields. Incorporating gauge
symmetry in the theory is another important issue. Whether
causal Lorentzian evolution can be extended to vector fields
(and other types of fields rather than scalars) can be the
subject of future studies.
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APPENDIX A: EXISTENCE AND
EXAMPLES OF e□

Here we will show there are operators e□which satisfy all
the axioms introduced in Sec. II. In fact, we will outline a
procedure for constructing such operators.
We shall consider the following operator:

Λ−2ðe□ϕÞðxÞ¼ aϕðxÞþΛ4

Z
J−ðxÞ

fðΛ2τ2xyÞϕðyÞd4y; ðA1Þ

where Λ denotes the nonlocality energy scale, a is a
dimensionless real number, J−ðxÞ denotes the causal past
of x, and τxy is the Lorentzian distance between x and y

τ2xy ¼ ðx0 − y0Þ2 − jx − yj2: ðA2Þ
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It may be shown that

e□eip·x ¼ BðpÞeip·x; ðA3Þ

BðpÞ ¼ Λ2egðp=ΛÞ; ðA4Þ

egðzÞ ¼ aþ
Z
Jþð0Þ

fððy0Þ2 − jyj2Þe−iz·yd4y; ðA5Þ

where as usual x · y ¼ ημνxμyν. Evaluating egðzÞ amounts to
computing the Laplace transform of a retarded, Lorentz-
invariant function, which has been done in Ref. [15].
It follows from their result that

egðzÞ ¼ gðz · zÞ; ðA6Þ

gðZÞ ¼ aþ 4πZ−1
2

Z
∞

0

fðs2Þs2K1ðZ1=2sÞds; ðA7Þ

where an infinitesimal timelike and future-directed imagi-
nary part ought to be added to z on the right-hand side of
Eq. (A6) (see Ref. [3] for more details).

1. IR conditions

The infrared condition (8) is equivalent to satisfying

gðZÞ⟶Z→0
− Z: ðA8Þ

In Ref. [3], a framework was developed to determine what
constraints Eq. (A8) places on a and f, for some specific
choices of f which arise in causal set theory. Generalizing
that methodology in a straightforward manner, we find that
Eq. (A8) is true if and only if the following conditions are
satisfied: Z

∞

0

fðs2Þs2kþ1ds ¼ 0; k ¼ 0; 1; 2 ðA9Þ
Z

∞

0

fðs2Þs5 ln sds ¼ −
4

π
; ðA10Þ

aþ 2π

Z
∞

0

fðs2Þs3 ln sds ¼ 0: ðA11Þ

2. From BðpÞ to e□
It is often desirable to constrain the behavior of BðpÞ,

as opposed to e□ directly. For instance, as is argued in
Sec. IV C 4, the quantum theory is well behaved only when
the imaginary part of BðpÞ (for timelike and future-directed
p) is always positive. The question then becomes: are there
any choices of a and f which allow for this possibility,
provided the IR conditions (A9)–(A11) are satisfied?
To answer this question, we turn the problem around.

Given a choice of BðpÞ, we reconstruct a and f and then
ask if the IR conditions are met.
It can be shown that for x > 0 (see e.g. 10.27.9 and

10.27.10 of Ref. [15])

gð−x2 − iϵÞ ¼ gRð−x2 − iϵÞ þ igIð−x2 − iϵÞ; ðA12Þ

gRð−x2 − iϵÞ ¼ aþ 2π

x

Z
∞

0

fðs2Þs2Y1ðxsÞds; ðA13Þ

gIð−x2 − iϵÞ ¼ −
2π2

x

Z
∞

0

fðs2Þs2J1ðxsÞds: ðA14Þ

We can now use the following orthonormality conditions of
Bessel functions (see e.g. 1.17.13 of Ref. [15]) to express f
in terms of egI:

δðx − exÞ ¼ x
Z

∞

0

tJ1ðxtÞJ1ðextÞdt: ðA15Þ

Doing so yields

fðs2Þ ¼ fgðs2Þ þ hðs2Þ; ðA16Þ

fgðs2Þ ¼ −
1

2π2s

Z
∞

0

gIð−x2 − iϵÞx2J1ðsxÞdx; ðA17Þ

where h satisfies for all xZ
∞

0

hðs2Þs2J1ðxsÞds ¼ 0: ðA18Þ

This means that specifying egIð−x2 − iϵÞ fixes f up to any
part for which the right-hand side of Eq. (A14) vanishes. One
example of a nontrivial function which satisfies Eq. (A18) is
the delta function: hðxÞ ¼ δþðxÞ≡ δðx − ϵÞ, where ϵ is an
arbitrarily small positive real number.
We can now express the IR conditions in terms of gI

and h:Z
∞

0

hðs2Þs2kþ1ds −
1

2π2

Z
∞

0

gIð−x2 − iϵÞx2

×
Z

∞

0

dss2kJ1ðxsÞ ¼ 0; ðA19Þ
Z

∞

0

hðs2Þs5 ln sds − 1

2π2

Z
∞

0

gIð−x2 − iϵÞx2

×
Z

∞

0

dss4J1ðxsÞ ln s ¼ −
4

π
; ðA20Þ

aþ 2π

Z
∞

0

hðs2Þs3 ln sds − 1

π

Z
∞

0

gIð−x2 − iϵÞx2

×
Z

∞

0

dss2J1ðxsÞ ln s ¼ 0: ðA21Þ
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The above integrals over s are not absolutely convergent, so
we use the usual trick:Z

∞

0

dsJ1ðxsÞe−δs⟶δ→0 1

x
; ðA22Þ

Z
∞

0

dss2J1ðxsÞe−δs⟶δ→0 3δ

x4
; ðA23Þ

Z
∞

0

dss4J1ðxsÞe−δs⟶δ→0 −45δ
x6

; ðA24Þ

Z
∞

0

dss2J1ðxsÞ ln se−δs⟶δ→0 − 2x−3; ðA25Þ

Z
∞

0

dss4J1ðxsÞ ln se−δs⟶δ→0
16x−5: ðA26Þ

Having the delta function example in mind, we shall require
h to satisfy for all k ¼ 1; 2Z

∞

0

hðs2Þs2kþ1ds ¼ 0;
Z

∞

0

hðs2Þs2kþ1 ln sds ¼ 0;

ðA27Þ

Also, we assume that the following integrals converge:����
Z

∞

0

gIð−x2 − iϵÞx−kdx
���� < ∞; k ¼ 1; 2; 3; 4 ðA28Þ

����
Z

∞

0

gIð−x2 − iϵÞx−k ln xdx
���� < ∞ k ¼ 2; 4: ðA29Þ

The IR conditions then reduce toZ
∞

0

gIð−x2 − iϵÞxdx ¼ π2
Z

∞

0

hðuÞdu; ðA30Þ

Z
∞

0

gIð−x2 − iϵÞx−3dx ¼ π

2
; ðA31Þ

Z
∞

0

gIð−x2 − iϵÞx−1dx ¼ −
π

2
a: ðA32Þ

Note that the only nontrivial condition to satisfy is
Eq. (A30), since Eq. (A31) just fixes the normalization
of gI and Eq. (A32) determines a. Note that for positive
gIð−x2 − iϵÞ which is required by consistent quantum
theory, a must be a negative number.
If h is taken to be zero, then gI ought to change sign,

which leads to a quantum theory with an unbounded
Hamiltonian. We note that the class of operators which
arise in causal set theory in Ref. [3] all have h ¼ 0, and
therefore this feature.

Let us work out a complete example in four dimensions.
Let

gIð−x − iϵÞ ¼ Ax2e−x=2; hðxÞ ¼ αδþðxÞ ðA33Þ
where A and α are real constants. It can then be shown
using Eqs. (A30)–(A32)

A ¼ π

2
; α ¼ 4

π
; a ¼ −2: ðA34Þ

It then follows from Eq. (A17) that

fgðsÞ ¼ −
e−s=2

4π
ð24 − 12sþ s2Þ: ðA35Þ

Therefore

fðsÞ ¼ 4

π
δþðsÞ − e−s=2

4π
ð24 − 12sþ s2Þ: ðA36Þ

3. Stability from positivity of gI

We have required that evolution defined by e□ should be
stable. Instabilities are in general associated with “unstable
modes,” and in line with Ref. [3], we shall use this as our
criterion of instability. More specifically, we take such a
mode to be a plane wave eip·x satisfying the equation of
motion e□eip·x ¼ 0, with the wave vector p possessing a
future-directed timelike imaginary part (i.e. p ¼ pR þ ipI

where pI · pI < 0 and p0
I > 0). It was shown in Ref. [3]

that the necessary and sufficient condition for avoiding
unstable modes is

gðZÞ ≠ 0; ∀ Z ≠ 0 and Z ∈ C: ðA37Þ

On the other hand, we argued in Sec. IV C 4 that for
consistency reasons we need to assume ImBðpÞ > 0 for
p0 > 0 which implies gðZÞ has a positive (negative)
imaginary part under (above) the cut in Fig. 1.
Here, we show that the stability condition and positivity

of gIð−x2 − iϵÞ (see Appendix A 2) are consistent, and
additionally the latter is a sufficient condition for stability.
In order to prove it, we make the following assumptions:
(1) gðZÞ has a simple zero at Z ¼ 0. IR conditions on

gðZÞ [Eq. (A8)] guarantee this assumption.
(2) gðZÞ has a positive (negative) imaginary part under

(above) the cut.
We prove this by counting the number of zeros of g inside
contour C ¼ C1 þ C2 þ C3 þ C4 in Fig. 5.
If N and P are the number of zeros and poles of g,

respectively, inside the contour C (taken to be counter-
clockwise), thenZ

C
dZ

g0ðZÞ
gðZÞ ¼ −2πiðN − PÞ: ðA38Þ
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Let us evaluate the left-hand side of Eq. (A38) for each
contour separately.
(1) C1: According to Eq. (A7), gðZÞ approaches the

constant value of a < 0 (see Appendix A 2) for large
Z. In fact, gðZÞ → aþOð 1

ZnÞ for some positive value
of n (which depends on the function f). This means
for a ≠ 0, Z

C1

dZ
g0ðZÞ
gðZÞ ¼ 0: ðA39Þ

(2) C2 & C4: Since the values of g above and under the
cut are complex conjugate of each other, the con-
tribution from these diagrams can be added together
to getZ
C2þC4

dZ
g0ðZÞ
gðZÞ ¼ 2iIm

Z
0

−∞
dx

g0ðxþ iϵÞ
gðxþ iϵÞ

¼ 2iIm ln

�
gð0þ iϵÞ

gð−∞þ iϵÞ
�
; ðA40Þ

where ϵ is an infinitesimal positive number.
If we define gðZÞ ¼ rgðZÞeiφgðZÞ, the right-hand

side of Eq. (A40) (apart from the factor of 2i)
measures how much φg rotates from Z ¼ −∞þ iϵ
to Z ¼ 0þ iϵ. Since Imgðxþ iϵÞ < 0 on the whole
negative real line, ln ½gðxþ iϵÞ� is definable on one
Riemann sheet. Combining this result with gð−∞þ
iϵÞ ¼ a < 0 and gð0þ iϵÞ ¼ −iϵ, we getZ

C2þC4

dZ
g0ðZÞ
gðZÞ ¼ iπ: ðA41Þ

(3) C3: IR conditions require that close to Z ¼ 0,
gðZÞ ¼ −Z. This means

Z
C3

dZ
g0ðZÞ
gðZÞ ¼

Z
C3

1

Z
¼ −iπ: ðA42Þ

Adding the values of all the contours and considering the
fact that gðZÞ is finite everywhere (P ¼ 0), we conclude
that the number of zeros of g in the complex plane of Z
(inside contour C) is zero. Since there is no zero on the
negative real line [Imgðxþ iϵÞ ≠ 0], there is no zero of g in
the complex plane of Z except the one at Z ¼ 0. Therefore,
stability has been proven.

APPENDIX B: FDT

Here, we present the proof of Eq. (52).9 Let us start with
the following definitions:

iΔðx; yÞ≡ ½ϕ̂ðxÞ; ϕ̂ðyÞ�; ðB1Þ

Gð1Þðx; yÞ≡ hfϕ̂ðxÞ; ϕ̂ðyÞgi; ðB2Þ

Wþðx; yÞ≡ hϕ̂ðxÞϕ̂ðyÞi; ðB3Þ

W−ðx; yÞ≡ hϕ̂ðyÞϕ̂ðxÞi; ðB4Þ

GFðx; yÞ≡ −ihTϕ̂ðxÞϕ̂ðyÞi; ðB5Þ

where fg is the anticommutator and hi shows the expect-
ation value in a quantum state. If we define

GRðx; yÞ≡ Δðx; yÞHðx≻yÞ; ðB6Þ

GAðx; yÞ≡ −Δðx; yÞHðx≺yÞ; ðB7Þ

where H is the Heaviside function:Hðx≻yÞ ¼ 1 if x≻y and
otherwise 0. We get the following relations:

iΔðx; yÞ ¼ Wþðx; yÞ −W−ðx; yÞ
¼ i½GRðx; yÞ −GAðx; yÞ�; ðB8Þ

Gð1Þðx; yÞ ¼ Wþðx; yÞ þW−ðx; yÞ; ðB9Þ

GAðx; yÞ ¼ GRðy; xÞ; ðB10Þ

GFðx; yÞ ¼ 1

2
½GRðx; yÞ þGAðx; yÞ� − i

2
Gð1Þðx; yÞ: ðB11Þ

For a translational invariant system, the value of all the
two-point functions depend only on spacetime separation.
This will allow us to define the following Fourier transform
with respect to time:

FIG. 5. The integration path in the complex Z plane. The closed
contour is taken to be counterclockwise.

9Most of the content of this appendix is taken from Ref. [16].

MEHDI SARAVANI AND SIAVASH ASLANBEIGI PHYSICAL REVIEW D 92, 103504 (2015)

103504-16



Aðω;x;x0Þ≡
Z

dtAðt;x; t0;x0Þe−iωðt−t0Þ: ðB12Þ

Now, let us assume that the quantum system is in a thermal
state with temperature T ¼ 1

β. It requires that

W�ðt;x; t0;x0Þ ¼ W∓ðtþ iβ;x; t0;x0Þ; ðB13Þ
resulting in the following relation in Fourier space:

Wþðω;x; yÞ ¼ eβωW−ðω;x; yÞ: ðB14Þ
Using Eq. (B8), we get

Wþðω;x; yÞ ¼ iΔðω;x; yÞ
1 − e−βω

; ðB15Þ

W−ðω;x; yÞ ¼ −
iΔðω;x; yÞ
1 − eβω

: ðB16Þ

On the other hand since GRðt; x; t0; x0Þ ¼ GAðt0; x; t; x0Þ, in
Fourier space they are complex conjugate. As a result,

ImGFðω;x; yÞ ¼ −
1

2
ReGð1Þðω;x; yÞ

¼ −
1

2
½Wþðω;x; yÞ þW−ðω;x; yÞ�

¼ −
1

2
iΔðω;x; yÞ coth

�
βω

2

�
ðB17Þ

where Im and Re are the imaginary part and real part
respectively and in the second line we have used the
positivity of the two-point function Wþ [giving that
Wþðω;x; yÞ and W−ðω;x; yÞ are real].
With the assumption that this field theory in the Hilbert-

space representation has an equivalent representation in
terms of a double path integral, the time-ordered two-point
function is given by Eq. (46). In Fourier space, it reads

GFðω;x;yÞ¼ 1

2
½GKðω;x;yÞþGRðω;x;yÞþGAðω;x;yÞ�:

ðB18Þ

GKðω;x;yÞ is a totally imaginary number andGRðω;x;yÞþ
GAðω;x;yÞ is a real number. As a result,

GKðω;x; yÞ ¼ 2iImGFðω;x; yÞ: ðB19Þ

Combining Eqs. (B8), (B17), and (B19) we arrive at

GKðω;x; yÞ ¼ coth

�
βω

2

�
½GRðω;x; yÞ − GAðω;x; yÞ�;

ðB20Þ

which reduces to Eq. (52) at zero temperature.

APPENDIX C: QUANTUM TRANSITION

We start by proving a simple theorem for any quantum
system. Consider a quantum-mechanical system in the
(normalized) initial state jαi that evolves in time and the
probability of finding the system at a later time tf in the state
jβii is called Pi, and assume jβii’s are orthonormal:

Pi ¼ jhβijUjαij2 ðC1Þ

where U is the time evolution operator.
Now, consider a (normalized) state jβi as a superposition

of jβii states:
jβi ¼

X
i

cijβii;X
i

jcij2 ¼ 1: ðC2Þ

The probability P of measuring the system at time tf in the
state jβi is given by

P ¼ jhβjUjαij2: ðC3Þ

Then,

P ¼ jhβjUjαij2

¼
����Xi

c�i hβijUjαi
����2

≤
�X

i

jcij2
��X

i

jhβijUjαij2
�

¼
X
i

Pi ðC4Þ

where we have used the triangular inequality in the second
line. So P is bounded from above by

P
iPi.

Now, let us get back to the scattering of a massless particle
with state γ, a superposition of M different masses, in
Sec. VI C. We already have shown [see Eq. (95)] that
Γ0mi

defined as the transition probability of a massless
particle scattering with a massive particle (mass mi) scales
with N as

Γ0mi
¼ Ai

N
ðC5Þ

where Ai depends on the momentum of the particles but is
independent of N. Using Eq. (C4) for the transition
probabilities, we conclude that

Γ0γ ≤
X
i

Ai

N
≤ A

M
N

ðC6Þ

where A is the maximum of the Ai’s.
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