PHYSICAL REVIEW D 92, 103504 (2015)
Dark matter from spacetime nonlocality
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We propose that dark matter is not yet another new particle in nature, but that it is a remnant of quantum
gravitational effects on known fields. We arrive at this possibility in an indirect and surprising manner: by
considering retarded, nonlocal, and Lorentzian evolution for quantum fields. This is inspired by recent
developments in causal set theory, where such an evolution shows up as the continuum limit of scalar field
propagation on a background causal set. Concretely, we study the quantum theory of a massless scalar field
whose evolution is given not by the the d’ Alembertian [, but by an operator O which is Lorentz invariant,
reduces to [ at low energies, and defines an explicitly retarded evolution: (CJ¢)(x) only depends on ¢(y),
where y is in the causal past of x. This modification results in the existence of a continuum of massive
particles, in addition to the usual massless ones, in the free theory. When interactions are introduced, these
massive or off-shell quanta can be produced by the scattering of massless particles, but once produced, they

no longer interact, which makes them a natural candidate for dark matter.
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I. INTRODUCTION

The nature of dark matter is one of the most important
problems in modern physics. Almost a century after it was
hypothesized, though, our understanding of it is still limited
to its gravitational signature on luminous matter. It is often
assumed that dark matter is a new weakly interacting particle
which is just hard to detect. However, so far there has been no
conclusive direct or indirect detection in accelerators or
cosmological/astrophysical settings. In what follows, we
propose that dark matter is not yet another new particle in
nature, but that it is a remnant of quantum gravitational
effects on known fields. We arrive at this possibility in an
indirect and surprising manner: by considering retarded,
nonlocal, and Lorentzian evolution for quantum fields.
Concretely, we study the consequences of replacing the

d’Alembertian [1 with an operator [J which is Lorentz
invariant, reduces to [] at low energies, and defines a retarded

evolution: (CJ¢)(x) only depends on ¢(y), where y is in the
causal past of x. Why is this type of evolution interesting,
what does it have to do with quantum gravity, and how does it
lead to a proposal for the nature of dark matter?

The causal set theory approach to quantum gravity
postulates that the fundamental structure of spacetime is
that of a locally finite and partially ordered set [1]. Its
marriage of discreteness with causal order implies that
physics cannot remain local at all scales. This nonlocality
manifests itself concretely, for instance, when one seeks to
describe the wave propagation of a scalar field on a causal
set. It has been shown in this case that coarse graining the
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quantum gravitational degrees of freedom leads to a non-
local field theory described by an operator exactly of the

type [J [2-6]. There are reasons to suspect that this type of
nonlocality is not necessarily confined to the Planck scale,
and that it may have nontrivial implications for physics at
energy scales accessible by current experiments (see
Refs. [7,8] and references therein for implications of
nonlocality in the context of cosmology). It is then only
natural to wonder what a quantum field theory built upon

OJ would look like, especially that it may contain informa-
tion about the fundamental structure of spacetime.

Studying [1is also interesting from a purely field-theoretic
perspective, since it forces us to relax one of the core
assumptions of quantum field theory: locality. Most nonlocal
and Lorentzian quantum field theories studied in the liter-
ature consider modifications of the type O — f(0J). In this
paper, we consider explicitly retarded operators, which are
more generic and have more interesting properties as a result.

For instance, the Fourier transform of [J is generically
complex, which is a direct consequence of retarded evolu-
tion. In fact, this feature is at the heart of our proposal for the
nature of dark matter. It is also worth mentioning that
quantizing a field theory of the type described here is
nontrivial due to the absence of a local action principle.
This presents a technical challenge, from which one may gain
deeper insight into quantization schemes.

What is the relation between a quantum field theory

based on [J and dark matter? Upon quantizing a free
massless scalar field ¢(x) with the classical equation of

motion Clgp(x) = 0, we find off-shell modes in the mode

expansion of the quantized field operator ¢(x). These are
modes which do not satisfy any dispersion relation, unlike

© 2015 American Physical Society
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in usual local quantum field theory (LQFT) where every
Fourier mode with 4-momentum p is an on-shell quanta,
i.e.itsatisfies p - p = 0.' This is equivalent to the statement
that the quantized field operator does not generically satisfy

the classical equation of motion: [1¢(x) # 0. Note that an
off-shell mode of a massless scalar field has an effective
mass, and can be thought of as a massive quanta in itself.
We show that the off-shell modes can exist in “in” and
“out” states of scattering, and are different from virtual
particles which exist as intermediate states in Feynman
diagrams. When considering the interacting theory, we find
an extremely surprising result: the cross section of any
scattering process which contains one or more off-shell
pau“[icle(s)2 in the “in” state is zero. That is to say, on-shell
quanta can scatter and produce off-shell particles, but once
produced, off-shell particles no longer interact. It is this
behavior that makes these off-shell particles a natural
candidate for dark matter. The phenomenological story
would be that dark matter particles were produced in the
early Universe in this fashion: as off-shell modes of
quantum fields. This feature of the theory can be traced

back to the fact that [ defines an explicitly retarded
evolution, which as mentioned previously, may be a
remnant of quantum gravitational degrees of freedom.
Our paper is organized as follows. In Sec. II, we start by
setting forth a series of axioms which any nonlocal,
retarded, and Lorentzian modification of [J at high
energies should satisfy. In Sec. III, we argue there is no
action principle for the theory of interest, which forces us
to carefully study, in Sec. IV, what quantization scheme
should be used. There, we argue that canonical quantiza-
tion and the Feynman path-integral approach do not work,
and explain why the Schwinger-Keldysh (also known as
the double path integral or in-in) formalism provides the
appropriate framework. Sections V and VI describe the
interacting theory, where we work out the modified
Feynman rules, find S-matrix amplitudes, and compute
cross sections for various examples and comment on the
time reversibility of the theory. Although a continuum
superposition of off-shell particles can in principle scatter
into on-shell modes, we argue why this is unlikely to
happen. The extension to massive scalar fields is dis-
cussed in Sec. VII. Section VIII concludes the paper.

II. MODIFIED D’ALEMBERTIAN: DEFINITION

In this section we study generic spectral properties of
nonlocal and Lorentzian modifications of the d’ Alembertian

[J. We focus on a class of operators O which defines an

'We use a signature of — + -+ for the Minkowski metric 77,,,.
Also, py - py = 1, Py P5-

In the quantum theory, an off-shell particle is a one-particle
quantum state with a well-defined (nonzero) mass and momen-
tum, i.e. a massive eigenstate of the Hamiltonian and momentum
operator.
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explicitly retarded evolution: (ﬁgb) (x) depends only on ¢(y)
with y in the causal past of x. As we will see, such operators
have interesting features which are absent in modifications
of the type f([J). We start by setting forth a series of axioms
which a nonlocal, retarded, and Lorentzian modification of
] at high energies should satisfy.

(1) Linearity:

ﬁ(adb +by) = all¢ + b0y, a,becC, (1)

where ¢ and y are complex scalar fields and C
denotes the set of complex numbers.

(2) Reality: For any real scalar field ¢, [¢ is also real.
Note that reality and linearity imply for any complex
scalar field ¢ that

(O¢*) = (Og)". (2)

where * denotes complex conjugation. _

(3) Poincaré invariance: Evolution defined by [ is
Poincaré invariant. Consider a scalar field ¢(x)
which transforms to ¢’(x) = ¢(A~'x) under a Poin-
caré transformation x — Ax. We require [] to be
invariant under the action of A:

(B4')(x) = (Op) (A" ). 3)

Taking A to be a spacetime translation A(x) = x + a,

one finds that the eigenfunctions of [ are plane
waves. To see this, let ¢p(x) = ¢’ and define y(x)=

(C¢)(x). It then follows from Eq. (3) that

ey (x) = yw(x —a), (4)

where we have used the linearity condition. Solutions
to the above equation are plane waves:

w(x) = Oer™ = B(p)e'r™, (5)

where B(p) is any function of the wave vector p.
Therefore, it follows from translational invariance that

e'P* is an eigenfunction of [] with the corresponding
eigenvalue B(p). Taking A to be a Lorentz trans-
formation, it can be shown that B(p) can only depend
on the the Lorentzian norm of p, ie. p:p=
NwP"p*, and whether or not p is future or past

directed, i.e. sgn(p°):
B(p) = B(sgn(p°).p - p). (6)
Combining Egs. (5) and (2) we find B(—p) = B*(p),
which using Eq. (6) is equivalent to
B(=sgn(p°).p- p) = B(sgn(p®).p-p)*.  (7)

For a spacelike wave vector p*, it is always possible
to find a coordinate system in which p® = 0. As a
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result, B(p) is real for spacelike p. For timelike
momenta, however, B(p) may be complex and its
imaginary part changes sign when p° — —p°.

Most nonlocal modifications of [ considered in
the literature are of the form f([J), in which case
B(p) is only a function of p - p. In this paper we
focus on a class of nonlocal operators for which B(p)
does depend on sgn(p?), and find many interesting
consequences as a result.

(4) Locality at low energies: Since L] provides a good
description of nature at low energies, we require
0 — O in this regime. In other words, expanding
B(sgn(p®), p- p) for “small” values of p-p, we
require the leading-order behavior to be that
of [

B(p)= —pp. (8)

Note that by a “small” value of p - p, we mean in
comparison to a scale which can be interpreted as the
nonlocality scale, implicitly defined through [1.
(5) Stability: We require that evolution defined by [
is stable. This condition implies that B(p), when
analytically continued to the complex plane of p,
only has a zero at p- p =0 [3].
(6) Retardedness: (O¢)(x) only depends on ¢(y),
where y is in the causal past of x.
Let us briefly consider a class of operators which satisfy
all the aforementioned axioms. We shall let A denote the
nonlocality energy scale and define

A ) = aplo) + 1 PR ATCT O

where a is a dimensionless real number, J~(x) denotes the
causal past of x, and 7, is the Lorentzian distance between
x and y:

Ty = (0 =y - [x -y (10)

Examples of such operators have arisen in the causal set
theory program [2—6]. This operator is clearly linear, real,
Poincaré invariant and retarded. It is shown in Appendix A

that there are choices of a and f for which [J is also
stable and has the desired infrared behavior (8). One such
choice is

—5/2

f) = 2o =) =
a=-2, (11)

(24 — 125 + 5?),

where € is an infinitesimally small positive number.

The eigenvalues B(p) of [ take the form (see
Ref. [3])
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FIG. 1. Analytic structure of B(p) in the complex plane of
Z=p-p/A\.

A=*B(p) = limg((p +ipe) - (p+ ipe)/A*),  (12)

9(Z) = a+4nz /oof(sz)szKl (Z'%s5)ds, (13)
0

where p, is an infinitesimally small (p, - p, = —€?), time-
like, and future-directed (p? > 0) wave vector. The analytic
structure of B(p) is shown in Fig. 1. Figure 2 shows the
behavior of B(p) as a function of p - p and sgn(p°) for the
choice of f and a given in Eq. (11).

III. CLASSICAL THEORY

How would such nonlocal and retarded evolution mani-
fest itself? To get a start on answering this question, we
modify the evolution of a massless scalar field ¢ coupled to

a source J(x) via O — [:
O (x) = J(x) » Dp(x) = J(x). (14)

It is worth noting that the solutions of Clg(x) =0 are
identical to those of [J¢p(x) = 0. This follows from requiring

a stable evolution for [J (see Ref. [3]). As we will see in
Sec. III B, however, the story changes when J(x) # 0.

A. Absence of an action principle

It is natural to ask whether an action principle exists for
¢, whose variation would produce the nonlocal equation of
motion (Jgh(x) = J(x). One might propose to substitute [J
with [ in the action of a massless scalar field:

sig1 = [ (3000800 - s0p) ). (15)
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FIG. 2. The Fourier transform B(p) = g(p - p/A*) of [J defined in Eq. (9), where @ and f are given by Eq. (11).

Requiring S[¢] to be stationary with respect to first-order
variations in ¢ we find®

1 ~ =~
S @+ EN6(x) = (), (19)
where O’ is defined in Fourier space via
O eirx = B(p)*e'P. (20)

In the case of the retarded operator (9), for instance,

0" ¢(x) is the right-hand side of Eq. (9) with the domain
of integration changed to the causal future of point x.

*To see this, it is instructive to express the action in Fourier
space. Define the Fourier transform f(p) of f(x) via

4
S = / (6217;))4 f(p)e™.

(16)

Then, it can be shown that

4
= / éﬁ[; [fzs(p)*f;(B(p) +B(p))b(p) - ()T ()|
(17)

Requiring $ to be stationary with respect to first-order variations
¢(p) we find

Therefore, Eq. (15) does not lead to a retarded equation of
motion.

Due to the absence of a local Lagrangian description,
quantizing a massless scalar field theory built upon O is
nontrivial. We shall address this problem in Sec. IV, where
we argue that the Schwinger-Keldysh quantization scheme
can still be used to obtain the desired nonlocal quantum
field theory.

B. Green’s function

The Green’s functions of (] and [J are quite different,
especially in the ultraviolet where their spectra differ. One

important difference is that [J, unlike [, has a unique
inverse. Since [ is a retarded operator by definition, it only
has a retarded Green’s function. Recall that [] has both a
retarded G (x, y) and advanced G*(x, y) Green’s function

(21)

which satisfy the following “boundary conditions™: G® (x, y)
vanishes unless x>y (x is in the causal future of y), and
G*(x,y) vanishes unless y>x. The two Green’s functions
are related to one another via G*(x,y) = GR(y, x). In the

O0,GR4(x,y) = 6% (x - y),

case of [, the Green’s function is unique (just the retarded
one) and switching the arguments of the retarded Green’s
function does not produce another Green’s function. Let us
show why this is.

Let G(x,y) denote the Green’s function associated
with O:
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FIG. 3. The integration path in the complex p° plane which
defines the retarded Green’s function associated with .

0,G(x.y) =¥ (x—y). (22)

Note that G(x,y) can be expressed as

é(x,y):/éﬂl;ﬁem(x—y)‘ (23)

The path of integration in the complex p° plane is shown in

Fig. 3. This comes from the fact that [J is a retarded
operator, so B(p) analytically continued to the complex p°
plane takes its value above the cut. When B(p) has no zeros
in the complex plane apart from at p - p =0, which is
guaranteed by the stability requirement, this choice of
contour ensures that G(x, y) = GX(x, y) is indeed retarded.
Switching the arguments of G*(x, y), we find

~R d4p 1 ip-(y—x
600 = | ity Y
— d“_p ! _eip(x=y)
-/ (22)* B(=p) (25)
— d'p ;eip-(x—y)
/ e BLy (26)

where in the second line we have changed integration
variables from p to —p. Then

= = d‘p B(p) ,
DXGR V,X :/ *e’p'<x_y> #5%W(x—y), 27
09= | Goeain] (x=y.  @7)
since B(p) is generically complex. As we will see in the
sections to come, the fact that [] has a unique inverse plays
a crucial role in the quantum theory of [J.
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IV. QUANTUM THEORY

We wish to construct a quantum theory of a massless
scalar field ¢ whose classical limit reproduces the retarded

evolution induced by [1. The quantization scheme which
we believe is most suited in this case is the Schwinger-
Keldysh (or double path integral) formalism. In what
follows, we will first review the usual paths to quantization
(i.e. canonical quantization and the Feynman path integral)
and show why they fail in the case of a nonlocal and

retarded operator like [J. The goal of these discussions is to
make clear why we choose the Schwinger-Keldysh for-

malism to construct a quantum field theory based on [.

A. Canonical quantization

Let us consider the canonical quantization of a free
massless scalar field ¢. The typical route to quantization is
as follows: start from an action principal for ¢, derive the
Hamiltonian in terms of ¢ and its conjugate momentum,
impose equal-time commutation relations, and finally
specify the dynamics via the Heisenberg equation. There
is an equivalent approach, however, which defines the
theory with no reference to an action principle, using the
Klein-Gordon equation supplemented by the so-called
Peierls form of the commutation relations:

Op(x) =0, (28)

~

[B(x). ¢()] = iA(xy). (29)

where A(x,y) is the Pauli-Jordan function

A(x,y) = G®(x,y) = G*(x,y)
= G®(x,y) = G*(y,x). (30)

It is well known that Eq. (29) is entirely equivalent to, but
more explicitly covariant than, the more commonly seen
equal-time commutation relations (see e.g. Sec. C.2 of
Ref. [9]). Since A(x,y) is the difference of two Green’s
functions, it satisfies the equation of motion:

O,A(x,y) =0. (31)

This is why Egs. (28) and (29) are consistent with one
another: both the left- and right-hand sides of Eq. (29)
vanish when [, is applied.

It is tempting to build the quantum theory of Oin a
similar fashion:

Og(x) =0, (32)

[P(x). p(v)] = iA(x.y) = i(G*(x.y) = G*(y.x)).  (33)

In this case, however, Z(x, y) does not satisfy the equation
of motion [[J,A(x,y) # 0] because G*(y,x) is not a
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Green’s function of [J [see Sec. III and Eq. (27)].
Therefore, the equation of motion (32) is not consistent
with the commutation relations (33).

It is worth noting that the root of this inconsistency is that

the Fourier transform B(p) of Ois complex, which in turn

follows from the fact that [ is retarded by definition. In
Sec. IV C we will arrive at a consistent quantum theory via
the Schwinger-Keldysh formalism, using which we also
build a Hilbert-space representation of the theory. There we
will see that the equation of motion (32) is given up in favor
of the commutation relations (33). As it turns out, the
degree to which Eq. (32) is violated depends on the
imaginary part of B(p).

B. Feynman path integral

The Feynman path integral formalism requires a local
Lagrangian description for the scalar field ¢. As was argued
in Sec. III A, however, this is not viable if one requires a
retarded equation of motion. Therefore, the Feynman path
integral formalism is also not suitable for quantizing this
theory.

C. Schwinger-Keldysh formalism

The Schwinger-Keldysh formalism has a natural way of
incorporating a retarded operator. In this approach an
amplitude [called the decoherence functional D(¢™, ¢7)]
is assigned to a pair of paths (¢, ¢~), which are con-
strained to meet at the final time [ (¢7,x) = ¢~ (¢, X)].
The decoherence functional for a free massless scalar field
takes the form

D(¢+7 ¢_) = Exp |:l / d4x%¢q|:|R¢Cl + %¢01DA¢4

! (34)
where
¢ = 7 (" +¢7), (35)
_ 1 + _ -
Pl = NG (" —¢7). (36)

In Eq. (34), IR is the retarded d’ Alembertian, (14 = (CIR)*
is the advanced d’ Alembertian, and [JX is an anti-Hermitian
operator which contains information about the initial wave
function [10].* Any source term J(x) can be included by

adding —J¢p* + J¢p~ = —/2J¢? to the integrand.

“The retarded and advanced d’Alembertians are defined via
GRA(ORA ) = f for all suitable test functions f, where G4 are
the integral operators associated with the retarded and advanced
Green’s functions G®4(x, y).

PHYSICAL REVIEW D 92, 103504 (2015)

Any n-point function in this theory is given by

(D (1)) (x,)
/ DG+ DY) (x,)...4) (x,) D" 7). (37)

where a; € {+, —, q. cl}. These correlation functions are
related to the correlation functions in Hilbert-space repre-
sentation by the following rule:

(@7 (k1)@ (x)p™ (31) -~ (V)
= (OT[h()-- ) TP(x)- - x)N0)  (38)
where T(T) is the (anti-)time-ordered operator, and |0) is

the vacuum state of the free theory.
In order to come up with a quantum theory for a nonlocal

retarded operator, we replace (1% with O in Eq. (34) (and
O with OF).

1. Classical limit

Before going any further, let us take a look at the
classical limit of this theory. Performing Gaussian integrals
(in the presence of a source term), we get

W) = - / dYGR(xey)IG).  (39)
(#9(x)) = 0. (40)

resulting in

@ () = (¢ (x)) = / dGR(e)I(y).  (a1)

It shows that in the classical limit where the field is
represented by its expectation value, there is no difference
between ¢ and ¢~ and both satisfy the retarded equation

of motion ﬁqﬁ =J.

2. Green’s functions

Let us consider the two-point correlation functions of
this theory in the absence of any source:

—ilF (P (0)) = G (), (42)

S d0) = G (y) = GROnx), (43)
il () (3) =G ()

—— [ @G 2B )G )

(44)

SWe still need to determine [JX. This has been done in
Sec. IV C 3.
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—i{¢?(x)$?(y)) =0 (45)

where BX (x, y) is the kernel of (0% © Using the definition of
@7 and ¢, we get

i () () =5 [0 (x,3) + G (x3) + G e
(46)

() (0)) = 365 ) = G (x.) = G (x.)
@)

(8 0)) = 5 [G¥(3) + G () = G ()
(48)

Note that if this theory has an equivalent representation in
terms of field operator in a Hilbert space, then the above-
mentioned terms correspond to the time-ordered two-point
function, anti-time-ordered two-point function and two-
point function respectively [see Eq. (38)].

We require that the theory describes a free scalar field in
flat spacetime at its ground state. As a result, all n-point
correlation functions of this theory must be translation
invariant,

(B (1)) (3,)) = () (51 +9). . (3, 4 7).
(49)

This condition requires that all operators 00, O and OF
must be translation invariant. Consequently, we get

OFeirs — BX (p)eir, (50)

G () = = [ GE G DB ()G (e (s1)

Note that (¥ is an anti-Hermitian operator. It means BX (p)
is a totally imaginary number [and G* (p) = -G*(p)B* (p)
G*(p) is also totally imaginary since G*(p)G*(p) is real).

3. Fixing GX
From here on, we assume that there is a Hilbert-space
representation of this theory with a Hamiltonian evolution.
We will justify this assumption later by finding the
representation itself. In Appendix B we show that this
assumption leads to the following relation, when the
quantum system is in its ground state:

°If 6, (x) = 6@ (x — ), then B¥ (x,y) = (0%5,)(x). With this
definition, (0%¢)(x) = [ d*yBX (x,y)¢(y).

PHYSICAL REVIEW D 92, 103504 (2015)
G*(p) = sgn(p)[G*(p) — G*(p)]. (52)

Note that Eq. (52) is nothing but the fluctuation dissipation
theorem (FDT) at zero temperature. This fixes the eigen-

values of CIX as follows:
BX(p) = 2iImB(p)sgn(p"). (53)

4. Hilbert-space representation

We wish to find an equivalent Hilbert-space representa-
tion in terms of a field operator ¢(x) for this theory. As we
mentioned earlier, Eq. (48) is the two-point function of such
a representation,

W(x.y) = (0l¢(x)p(»)|0) = (¢~ ()" (v)).  (54)

where |0) is the ground state. If we use Egs. (48) and (52),
we arrive at

oy [ dp 2mBPIOPY) iy
W) = [ G 5o ’

(55)

_ 2m[B(p)}0(p")
- [BO)P

positive operator, Im[B(p)]@(p®) must be a non-negative

number. So, we further assume

where we call W(p) . Since W(x,y) is a

sgn(Im[B(p)]) = sgn(p?). (56)

Once this condition is satisfied, the field operator ¢(x)
and ground state |0), defined to be

4 ~ . .
i) = [ B W a,er +ajern. (57

P> aq] = 5(4)(17 - ‘I)’ (58)

a,l0)=0 V p. (59)

[a

yield the desired correlation functions.
Note that a,, is only defined for timelike future-directed

p, because otherwise W(p) is zero in the field expansion. It
means that all timelike future-directed (positive-energy)
momenta contribute to the field expansion (57).

5. Hamiltonian

By definition, the time evolution operator is the operator
that evolves ¢(x) in time,

¢(1.x) = U(1.10)(19. x) U (1. 10). (60)
It can be directly checked that

U(t,1y) = emifloli=t0) (61)
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H, _/d4pp apa,. (62)

gives the right time evolution.

State |0) defined in Eq. (59) is the ground state of this
Hamiltonian. Excited states (n-particle states) can be built
by acting a’’s on |0),

’plpn> = aj’l "‘&;r’n

). (63)

The excited state |p) represents a particle with energy p°
and momentum p7 where p° is independent of p.8 This
shows that the theory contains a continuum of massive
particles with positive energy. The existence of a con-
tinuum of massive particles in the context of causal set
theory also has been pointed out in Ref. [11], although their
result is rather different in some other aspects.

6. Comparison to local evolution

At this point, it would be illustrative to consider the result
of this formalism for LQFT. In this case

B(p) (P°+ie) —Ipl.  (64)

where € is a small positive number taken to zero at the end
of the calculation. The two-point function is given by

= Blocal(p) =

0(p°) = 2z8(p*)0(p°). (65)

As a result,

4
W(x,y) = / (6217:;42%5(p2)9(p0)ei1"("_)’), (66)

4
P(x) = / (621”’)72 278(p?)0(p°) (a e’ + aje™'r).

(67)

The two-point function and field expansion are exactly the
ones we expected. Only on-shell particles (p-p =0)
contribute to the field expansion.

Here, we see one important difference between local and
retarded nonlocal evolution. In the local case, only on-shell
modes (p - p = 0) contribute to the field expansion. As a
result, excited states of the theory consist of all on-shell
particles. In the nonlocal retarded case (where generically
Im[B(p)] # 0), off-shell modes (p - p # 0) also contribute
to the field expansion. Consequently, one expects the

"The momentum operator P= f d*ppaa » 1s the generator of
spacial translation.

Note that these states are different from the usual states |p)
used in LQFT which describe a particle with momentum p and

energy [pl.
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3Rl

existence of off-shell modes in “in
scatterings in the interacting theory.
Let us investigate properties of W(p) for a generic
nonlocal retarded operator. First of all, it is only nonzero for
timelike future-directed momenta. This means that only
timelike future-directed momenta contribute to the field
expansion and can exist in “in” and “out” states (particles
with timelike momentum and positive energy).
Considering that B(p) is only zero at p - p = 0, W(p) is
a finite number for all p - p # 0 (we will see the signifi-
cance of this result in Sec. VI B). On the other hand, since

and “out” states of

in the subspace of on-shell modes the 0 operator is exactly
the same as [, we conclude that W(p) = 2z6(p?)6(p°) for
p - p = 0. Therefore, W(p) consists of a divergent part at
p-p =0 and a finite part for p - p # 0. This means that
there are two different contributions to the field expansion
(57), one from on-shell modes that is the same as Eq. (67)
and one from off-shell modes which only exists in the case
of nonlocal retarded evolution

(2 278(p )Q(p )(@,e?* + ape=r)
/ \/ (a,e’”™ + ajpe='r¥).  (68)
2#0

D. Sorkin-Johnston quantization

The Sorkin-Johnston (SJ) proposal defines a unique
vacuum state for a free massive scalar field in an arbitrarily
curved spacetime [12]. This proposal is a continuum
generalization of Johnston’s formulation of a free quantum
scalar field theory on a background causal set [13]. As is the

case for Ij canonical quantization does not admit an
obvious generalization for a causal set. The SJ quantization
scheme uses only the retarded Green’s function Gg(x, y) to

arrive at the quantum theory. Since O also admits a retarded
Green'’s function, one can apply the SJ prescription to arrive
at a free quantum field theory of the massless scalar field
we have been considering. In what follows, we will show

that the SJ proposal applied to 0 produces the same free
quantum theory as the Schwinger-Keldysh formalism,
provided condition (56) is met.

Consider the corresponding integral operator of the
kernel iA(x,y) = Gg(x,y) — Gg(y, x):

(Af)(x) = / A (. y)f()dy. (69)

It can be shown that iA is Hermitian, which implies it has
real eigenvalues, and that its nonzero eigenvalues come in
positive and negative pairs:
; 2
(I6Ty)(x) = BTy(x) >

(iAT})(x) = =23Ty(x). (70)
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We have assumed here that the eigenfunctions 7, form an

orthonormal basis of L2, which can always be achieved
since iA is Hermitian. The Sorkin-Johnston proposal is
then to define the two-point function to be the positive part
of iA(x,y) in the following sense:

(0l (x) Zﬂ (71)

Taking G (x. y) to be the retarded Green’s function of [J
[see Egs. (23) and (26)], we find

_ 2m(B(p)) .
ineirs = ABLP)) iy (72)

which using the SJ formalism then leads to the two-point
function
d'p 2Im(B(p)) ,

2o Bpp (M

(73)

0IB()()10) = /

If condition (56) is satisfied, this two-point function is that
derived from the Schwinger-Keldysh formalism [see
Egs. (55) and (56)]. It is reassuring that two different
paths to quantization, at least at the free level, lead to the
same theory.

V. INTERACTING FIELD THEORY

Let us now consider the interacting theory. We introduce
the interaction in the Hilbert-space representation by add-
ing a potential term to the free Hamiltonian as follows:

A(t) = Ho + / BxV (1, %)). (74)

Starting with a general initial wave function, one is able to
find the final state of the system by solving the Heisenberg
equation of motion in principle. However, in practice this is
a very hard task to do. So, we try to find the S-matrix
amplitudes perturbatively.

In order to do so, we can use the available machinery of
LQFT, and move to the interaction picture. Time evolution
in the interaction picture is given by

U[ Te —lfd xV( (/), (75)

where ¢, is the field in the interaction picture given by
Eq. (57). The perturbative expansion of /; yields S-matrix
amplitudes. Performing the calculations to find the S-matrix,
we come up with modified Feynman rules for this theory. We
explain these modifications in the following two examples.

PHYSICAL REVIEW D 92, 103504 (2015)

A. Example 1: 2-2 scattering p;p, — ¢14; in £ ¢* theory

The scattering amplitude S, ,, , ,, 1S given by

—i 4xi,”}
S = (quqo|Te™ T p p). (76)

9192,P1P2

To first order in 4, it yields

S‘Il’!z»/’nl’z = _147 d4x<q1q2|g?§‘}(x)|p1p2>
—il ~ ~ = —
= N4 W(Pl)W(Pz)W(41)W(Q2)5(4)
(27)

<(Xr-Xa). (77

where we have substituted for z?), from Eq. (57). It is
interesting to note that Eq. (77) is time-reversal invariant.

In the transition from local to retarded nonlocal propa-
gation, here we see the first change in the scattering
amplitudes. The values assigned to each external line have

changed from /275(p?)0(p°) to \/W(p). Note that here

the scattering amplitude is computed in the basis of the
4-momentum |p) which is different from the 3-momentum
basis |p) of LQFT.

B. Example 2: 2-2 scattering pyp, — ¢14; in 4 ¢* theory

In this case, S, 4, 5, p, 1S given by

—i 4xi,hi
S = (quqo|Te™ TS p o). (78)

9192,P1P2

To second order in 4, it yields

1 /=id\?2 N o
Sqlqz-pmz =5 (?) /d4xd4y<q1q2|T¢?(x)¢;(y)p1p2>

_ip —
= s VW) W(02) W) W (2)0

(5

X [6F<P1 +p2) + (N;F(m

-q)+G (p1—q)].

G (p) = % + Hé*(};)) is the time-ordered two-point func-
tion (46) in Fourier space. In the transition from the local to
the nonlocal operator, here we see another change in the
scattering amplitude. The values assigned to each internal
line have changed to the new value for the Feynman
propagator G(p).

From these examples, it is obvious how scattering
amplitudes can be computed in this theory. For any
Feynman diagram only the values assigned to external
lines and internal lines have changed. Note that the
amplitude of some diagrams in LQFT is zero, as a result
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h

+

D2

FIG. 4. The amplitude of this diagram in LQFT is zero, because
of the energy-momentum conservation; two massless particles
cannot produce a massless particle. However, in our theory there
is a continuum of massive particles and the amplitude of this
scattering is generically nonzero.

of energy-momentum conservation, while in this theory
they are not. For example in LQFT /A¢® theory, the
amplitude assigned to Fig. 4 is zero, because the sum of
two (nonparallel) null vectors cannot be a null vector.
However, in this theory there is a continuum of massive
particles, and for example two on-shell particles can
interact and produce one off-shell particle.

VI. FROM SCATTERING AMPLITUDE TO
TRANSITION RATE

At this point, we want to find the rate of a process using
the S-matrix amplitudes. In Sec. VI B we have shown that if
one (or more) of the incoming particles is off shell, then the
differential transition rate of such scattering is zero. It
means that in order to have a nonzero transition rate (and
cross section), all of the incoming particles must be on
shell. This is the most distinctive property of off-shell
particles: the cross section of any scattering with off-shell
particles is zero.

For now consider the scattering from state |a) =
|p1.-.pn,) 10 |B) =1q1...qn,) where all the incoming

particles are on shell, p? = 0. Assuming that the inter-
actions happen inside a box with volume V (see Ref. [14]),
the differential transition rate is given by

27)3 ] Na=1 1
dT = 27! [( ) ] EE, st <Zpi—zq,->
No

4 P1
(79)

X |Mﬂa|2d4ql "'d4qN/j’

where E, = |p;| and

PHYSICAL REVIEW D 92, 103504 (2015)

Spa = —2mis™ <Z Pi— Z 611) \/W(Pl )'-'W(pN{,)Mﬁa'

(80)

In the case of 2-2 scattering, the differential cross section is
given by

dr
dG = e
v
n?(2m)* ~
= EiE)uéw (Z bi— Z Cli> |M/}a|2d4CI1d4CI27
P17P2
(81)
where
2_ 2,2
= V(P1p2)” = pips (82)

pip}

is the speed of particle 1 in the frame of reference of particle
2 (and vice versa) and y; is the flux of incoming particles.

A. p1p> = q14; cross section in 2 ¢*

As an example, we will find the cross section of p;p, —
q19> where p? = 0. Using Eq. (77) and the definition (80),
to first order in A

= s W(a) Wia) (83)
As a result, the cross section is given by
2 ~ ~
do = 20 ol W(q1)W(g)6™
X (p1+p2—q1 — p)d*q1d*q. (84)

Let us constrain the outgoing particles to be only on shell

g? = 0. In this case W functions in Eq. (84) pick up a delta
function and one can check that Eq. (84) for outgoing on-
shell particles results in the usual cross section of A¢* in
LQFT. However, if we constrain (at least) one of the
outgoing particles to be off shell with a fixed mass, the cross
section becomes zero. The cross section over outgoing off-
shell particles is only nonzero when the integration over the
continuum mass is also performed. We see the significance
of this in the next section when considering the scattering of
off-shell particles. Due to the contribution of off-shell
states, the total cross section (84) is increased compared
to the local theory.

B. Off-shell particles and cross section

In order to calculate the cross section of any scattering
involving incoming off-shell particles, we make use of the
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fact that off-shell particles can be thought as a continuum of
massive particles.

This can be done by expressing the two-point function as
a sum over massive two-point functions:

W(x,y) = /0 " dko(?)

d*p )
x / LD o m(p)5(p? 4+ p2)er ), (85)
(27)

where p(—p?) = %}f) for p® > 0. Note from Eq. (68) that

p(p?) = 8(u?) + p(u?) where p is a finite function. In other
words,

W) = éﬂ’; 226(p")3(p2)e o)

) _ d4
+ [T | S 2m0(0")0

x (p? + u?)etr ), (86)

In order to make everything more similar to LQFT, we
discretize the mass parameter to get

4

d'p 0 2 12N ip-(x-y)
x <2ﬂ)42ﬂ9(p )8(p?* + pj)e'? Y, (87)

70(p°)8(p?)e )+ " ApPp(?)
=

where y5 = jAu?. Equation (87) is the same as Eq. (86) in
the limit Ay — 0.

The following field operator will yield the above two-
point function:

3 _ d3p 1 ~ ip-x
¢(X) = Wm (Clp,()e + C.C.) |p(]:|p|

+) 0/ Ar(3)
=1
d’p s o
| e o o)

where
Ep,=1\/P*+ 4 (88)
[&Pqﬂi’ a:;’ﬂj] = 5(3)<p - q)(sﬂivﬂj’ (89)

ap ,|0) =0 (90)

PHYSICAL REVIEW D 92, 103504 (2015)

and the state |p, ) = aj},|0) is a one-particle state with
momentum p, mass y and energy E ,.

From now on, consider a concrete example of 2-2
scattering with 41!&34 interaction and incoming particles
with definite mass and momentum. The idea behind this
proof can be generalized to more complicated examples.
Up to first order in A

<P1,ml;Pz,m2|S|Q1,ﬂ1;‘lz,ﬂz>
il

=" 54 —
it (S r-X0)

(Alf)zp(u?)ﬂ(m?)

4E(li i EPi Jm;

o1

=

In Eq. (91), if any of the particles were on shell (say
u1 =0), we should set Au’p(u3) =1; otherwise p is
replaced by p.

The differential cross section is given by

ap (M) p (i) p(U3)p(m?)p(m3)
16UE,, 1o Ep, myEquni E

2,112~ q1,H

x 89 (py + py — 41 — 42)d>p1d’p2. (92)

do = (27)

Q2.4

In order to get the total cross section, we should also sum
over the mass parameter in the phase space of outgoing
particles. In the (mass) continuum limit this means

> auplont) ~ [ dniplon?) (93)

which absorbs two factors of Ag? in Eq. (92); however,
there are two remaining factors of Ay’. If the incoming
particles (even one of them) are off shell, since p(u?) is a
finite number, in the limit Au> — 0, the cross section
becomes zero. This means that the (total) transition rate of
scattering with off-shell particles with fixed mass is zero.
The cross section is only nonzero when both of the
incoming particles are on shell.

This is, in fact, consistent with what we have found in the
previous section. There, we have shown that the transition
rate of on-shell — off-shell is nonzero, only when the
integration over mass of the off-shell particles is performed.
In fact, the scattering transition rate of on-shell particles to
off-shell particles with fixed masses is zero. Since the
theory is time-reversal invariant, this suggests that the
scattering transition rate of off-shell particles with fixed
masses must be zero too, consistent with what we have
found here.

This also means that an initial state with a suitable
continuum superposition of off-shell masses can scatter
into on-shell modes (time reverse of the process of on-shell
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scattering into off-shell). However, as we argue in the next
section, these states are fine-tuned and generally we do not
expect to find the system in these superpositions.

C. Off-shell—on-shell scattering: continued

In the previous section, we showed that the transition
rate of scattering with off-shell particle(s) is zero.
However, a suitable continuum superposition of off-shell
particles can scatter nontrivially. In this section, we want
to explain this point to a greater extent and argue that it
is unlikely to find the system in these superpositions.
We will not go through the details of the calculations
since they are not essential to our argument in this
section.

We make use of the following toy model theory that
mimics many properties of the proposed nonlocal
theory:

1 |
_ 2 o
L= EWODWO + IE:I El/’mi(D m; )y, — A,

N
9i
W=yt LS (94)
N

This is a theory of one massless scalar field (playing the
role of on-shell modes) in addition to N massive scalar
fields (playing the role of off-shell modes) and we are
interested in the N — oo limit of the theory (4 and g;’s are
coupling constants and do not scale with N). The
advantage of working with this theory is that while its
behavior is very similar to the nonlocal theory, Eq. (94) is
a local quantum field theory and possibly more compre-
hensible to the reader. The interaction term in Eq. (94) is
designed in a way that interactions with massive (off-
shell) fields are suppressed by a factor of v/N and in the
N — oo limit their interactions become negligible. On the
other hand, the number of off-shell fields goes to infinity.
In what follows, we explain that this theory imitates many
properties of off-shell and on-shell particles in the non-
local theory.

First, let us define the following quantities: o552 ., 4, is
the scattering cross section of two particles with masses and
momenta m,, p, and m,, p, into two particles with masses
puy and py (p, and y, ) and o/,\72, is the total scattering
cross section of two particles with masses and momenta
my, ﬁl and my, 272.

Consider the scattering of two yr, particles into two final
particles. If we restrict the two final particles to be massive
(off-shell fields with fixed masses), then the scattering cross
section in the N — oo limit goes to zero. However, if we
sum over all massive final states (all off-shell particles), the
total cross section is nonzero. In fact, for different final
states the corresponding cross sections scales with N as
follows:

PHYSICAL REVIEW D 92, 103504 (2015)

P1P2 0
000—00 X N7,

5 3 1
P1P2

Co0mom & N m #0,

P17 my, ni ?é 0.

000—m;m, & W ’

While the interactions with individual massive fields are
suppressed, the number of massive states scales with N. In
this way, the toral scattering cross section of two initial
massless particles into two massive final states, summed
over all masses, is finite and nonzero (the same scaling
works for scattering into one massless and one massive
particle).

On the other hand, any scattering with (at least) one
massive initial state results in a zero cross section. For
example, the following total scattering cross sections
(summed over all final states) scale with N as

.

o’ N’ m # 0, (95)
pipn L

dm]mz X m, my, ny Sé O, (96)

and they vanish in the N — oo limit.

As we showed, massive particles in this theory [Eq. (94)]
mimic the properties of off-shell states in the nonlocal
theory; they can be produced by the scattering of massless
states, while the reverse process (scattering of massive
states into massless) does not happen.

However, the theory is (obviously) time-reversal invari-
ant and massive — massless scatterings must take place.
This is indeed true, but as we demonstrate here the initial
massive state that scatters nontrivially must be a super-
position of different masses. Consider state y, a super-
position of M different masses, scattering off a massless
particle. Then, the total transition probability I'y, scales as

M

F07<AN

(97)

where A has no dependence on M and N (see Appendix C
for proof). This transition probability is nonzero in the
N — oo limit, only when M also scales with N.

So, massive — massless scattering indeed happens.
However, the massive state that scatters nontrivially must
be a superposition of (infinitely) many different masses and
in this sense is fine-tuned. It is similar to an egg that
smashes into pieces upon falling on the ground; the reverse
process of pieces assembling into an egg can in principle
happen, but it is very unlikely.

In this sense, we expect the off-shell to on-shell scatter-
ing in the nonlocal theory to be negligible. In principle this
transition can happen, but it is very implausible. The
essence of our reasoning in this section is based on
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thermodynamical arguments and although it is not a
complete proof, we hope that we have provided enough
evidence to show that off-shell — on-shell scattering is
very unlikely. Definitely, further quantitative studies are
needed to augment (or disprove) our claim. Perhaps, a good
starting point is to consider the toy model theory (94), since
it shares a lot of properties with the nonlocal theory.

VII. EXTENSION TO MASSIVE SCALAR FIELDS

Throughout this paper, we only considered the modifi-
cation of a massless scalar field. But what about massive

scalar fields? One may suggest replacing [1 with O in the
equation of motion of a massive scalar field as follows:

(O - M)(x) = J(x) (98)

and follow similar steps of quantization. However, this
method does not work. If M is a real number, then there is
no mode satisfying Eq. (98) in the absence of J. In other
words, there are no on-shell modes.

Another way is to choose M to be a complex number such
that for a timelike future-directed momentum p, B(p) = M>.

In this case, the mass of an on-shell mode is given by

m?* = —p?. However, (] — M? is no longer a real operator

and the solution to Eq. (98) generically cannot be real.

The extension to massive scalar fields can be done by
considering the following observation. All of the properties
in the massless case can be read from the analytic structure
of B(p) in Fig. 1. Massless modes are on shell because
there is a simple zero at p*> = 0 and there are off-shell
modes for timelike momenta because there is a cut for
timelike momenta in Fig. 1.

In this way, the extension to the massive case seems

much simpler. (1 — m? must be replaced with ﬁm whose
eigenvalues B,,(p) satisfy the following:

(1) There is only one simple zero at p> = —m?. Also
im0 fz”;(fn L=—1lto get the correct local limit.

(2) The cut must be only on momenta with higher
masses p?> < —m?. Otherwise, in the quantum
theory, there are off-shell modes with masses smaller
than m which makes the on-shell mode unstable (on-
shell modes can always decay into off-shell modes
with less mass).

(3) ImB,,(p) > 0 for p° > 0.

Conditions 4 and 5 in Sec. II and Eq. (56) must be replaced
by the above-mentioned conditions. One easy way to come
up with such an operator is to make use of the existing
operator B(p) in the massless case, and consider it as a
function of p? and sgn(p°). Then,

B,,(p) = B(p* + m?,sgn(p°)) (99)

has all the desired properties (this also has been shown
in Ref. [11]).
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VIII. CONCLUSION

In this paper, we studied the physical consequences of a
causal nonlocal evolution of a massless scalar field. We
started by modifying the d’Alembertian to a causal non-
local operator at high energies. Quantization of a free field
showed that the field represents a continuum of massive
particles. In fact, there were two sets of modes: on-shell
modes (massless particles) and off-shell modes (massive
particles).

The Feynman rules for the perturbative calculation of
S-matrix amplitudes were discussed. The most important
result (in our opinion) is the fact that the cross section of
any scattering with off-shell particles is zero. This suggests
that although these modes exist and probably can be
detected by other means, there is no way of detecting
them through scattering experiments. This property opens
up the possibility that dark matter particles might be just the
off-shell modes of known matter. Finally, we extended this
formalism to massive scalar fields.

Throughout this paper we only considered scalar field
theories, but how about other types of fields? The extension
to other types of fields, such as a vector field, is not as
straightforward as for scalar fields. Incorporating gauge
symmetry in the theory is another important issue. Whether
causal Lorentzian evolution can be extended to vector fields
(and other types of fields rather than scalars) can be the
subject of future studies.
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APPENDIX A: EXISTENCE AND
EXAMPLES OF []

Here we will show there are operators [] which satisfy all
the axioms introduced in Sec. II. In fact, we will outline a
procedure for constructing such operators.

We shall consider the following operator:

A2(E) (x) = ag(x) + A* / SR)I0. (A

where A denotes the nonlocality energy scale, a is a
dimensionless real number, J~(x) denotes the causal past
of x, and 7,, is the Lorentzian distance between x and y

2, = (0~ [x —yP (A2)
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It may be shown that

Ceip~ — B(p)eip'x, (A3)

B(p) = A%(p/A). (Ad)

i) =a+ / F(O0)2 = [yP)e=dty,  (AS)
J*(0)

where as usual x - y = 1, x*y*. Evaluating g(z) amounts to
computing the Laplace transform of a retarded, Lorentz-
invariant function, which has been done in Ref. [15].
It follows from their result that

9(z) = g(z- 2), (A6)

o(Z) = a + dnz-} / " (s2)52K, (21 25)ds, (A7)
0

where an infinitesimal timelike and future-directed imagi-
nary part ought to be added to z on the right-hand side of
Eq. (A6) (see Ref. [3] for more details).

1. IR conditions

The infrared condition (8) is equivalent to satisfying

9223 - 7.

(A8)
In Ref. [3], a framework was developed to determine what
constraints Eq. (A8) places on a and f, for some specific
choices of f which arise in causal set theory. Generalizing
that methodology in a straightforward manner, we find that
Eq. (A8) is true if and only if the following conditions are
satisfied:

/oof(sz)sz"“ds =0, k=012 (A9
0
® 2GS 4
f(s*)s” Insds = ——, (A10)
0 T
a+ 2zz/°°f(s2)s3 Insds = 0. (Al1)
0

2. From B(p) to [J

It is often desirable to constrain the behavior of B(p),

as opposed to O directly. For instance, as is argued in
Sec. IV C 4, the quantum theory is well behaved only when
the imaginary part of B(p) (for timelike and future-directed
p) is always positive. The question then becomes: are there
any choices of a and f which allow for this possibility,
provided the IR conditions (A9)-(All) are satisfied?
To answer this question, we turn the problem around.
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Given a choice of B(p), we reconstruct a and f and then
ask if the IR conditions are met.

It can be shown that for x > 0 (see e.g. 10.27.9 and
10.27.10 of Ref. [15])

2 2 2

g(=x* —i€) = gr(—x* —ie) + ig;(—x* —ie), (Al12)

gr(—=x* —ie) = a+ 2—ﬂ/°of(s2)s2Y1(xs)ds, (A13)
X Jo

oo
gr(=x* —ie) = —2—/ f(s?)s2J (xs)ds.  (Al4)
X Jo

We can now use the following orthonormality conditions of
Bessel functions (see e.g. 1.17.13 of Ref. [15]) to express f
in terms of g;:

5(x—%) = x / 7y (x0)J, (). (AL5)
0
Doing so yields
F(s?) = f(s*) + h(s?), (A16)
1 S
fo(s?) = -5 g1(=x? —ie)x*J, (sx)dx, (A17)
: 2res 0
where h satisfies for all x
/oo h(s?)sJ(xs)ds = 0. (A18)
0

This means that specifying g,(—x* — ie) fixes f up to any
part for which the right-hand side of Eq. (A14) vanishes. One
example of a nontrivial function which satisfies Eq. (A18) is
the delta function: i(x) = 6" (x) = 6(x — €), where € is an
arbitrarily small positive real number.

We can now express the IR conditions in terms of g;
and h:

© 1 ©
/ h(s?)s*+ds — —2/ g1(=x% — ie)x?
2 0

0

X /oo dss*J,(xs) =0, (A19)
0
o0 1 0 .
/ h(s*)s> Insds — —2/ g1(—=x? —ie)x?
0 27° Jo
0 4 4
X dss*Ji(xs)Ins = ——, (A20)
0 T
C 23 L [e 2 .2
a+2n h(s*)s’ Insds — — gr(—=x* —ie)x
0 .Jo
X /oo dss*J;(xs)Ins = 0. (A21)
0
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The above integrals over s are not absolutely convergent, so
we use the usual trick:

© -0 1
A dsJ, (xs)e 5‘5—9; (A22)
0 -0 36
/ dss?J, (xs)e‘5*5—()>—4, (A23)
0 x
0 -0 —450
A dss4J1(xs)e_5S£)> 5 (A24)
/oo dss*J,(xs)In se 05278 _9x3, (A25)
0
/oo dss*J;(xs)Inse =520 1613 (A26)
0

Having the delta function example in mind, we shall require
h to satisfy for all k =1,2

/oo h(s?)s**tlds =0,

0

/Oo h(s?)s** ! Insds = 0,

0
(A27)

Also, we assume that the following integrals converge:

‘/w g1(=x* —ie)x*dx| < oo, k=1,2,3,4 (A28)
0
‘/w g(=x2 —ie)x*Inxdx| <0 k=2,4. (A29)
0
The IR conditions then reduce to
/oo g1(=x* —i€)xdx = n? /oo h(u)du, (A30)
0 0
o m
/ gr(=x* —ie)x3dx = =, (A31)
0 2
® 2 -l T
/ gi(=x* —ie)xldx = —5a (A32)
0

Note that the only nontrivial condition to satisfy is
Eq. (A30), since Eq. (A31) just fixes the normalization
of g; and Eq. (A32) determines a. Note that for positive
g1(—x* —ie) which is required by consistent quantum
theory, @ must be a negative number.

If h is taken to be zero, then g; ought to change sign,
which leads to a quantum theory with an unbounded
Hamiltonian. We note that the class of operators which
arise in causal set theory in Ref. [3] all have & = 0, and
therefore this feature.
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Let us work out a complete example in four dimensions.
Let
gi(=x —ie) = Ax?e™/2, h(x) =as™(x) (A33)
where A and a are real constants. It can then be shown
using Eqgs. (A30)—(A32)

4
A:g, a=-, a=-2 (A34)
It then follows from Eq. (A17) that
e—s/Z
fols) =— (24 — 125 + s?). (A35)
: A
Therefore
£s) = 2o+(s) e’ (24 — 125 + 52) (A36)
S) = p S 47[ S S7).

3. Stability from positivity of g;

We have required that evolution defined by [ should be
stable. Instabilities are in general associated with “unstable
modes,” and in line with Ref. [3], we shall use this as our
criterion of instability. More specifically, we take such a
mode to be a plane wave e’P* satisfying the equation of

motion [lefP™ = 0, with the wave vector p possessing a
future-directed timelike imaginary part (i.e. p = pgp +ip;
where p; - p; <0 and p? > 0). It was shown in Ref. [3]
that the necessary and sufficient condition for avoiding
unstable modes is

9(Z) #0,

On the other hand, we argued in Sec. IV C4 that for
consistency reasons we need to assume ImB(p) > 0 for
p® >0 which implies g(Z) has a positive (negative)
imaginary part under (above) the cut in Fig. 1.

Here, we show that the stability condition and positivity
of g;(—x* —ie) (see Appendix A2) are consistent, and
additionally the latter is a sufficient condition for stability.
In order to prove it, we make the following assumptions:

(1) g(Z) has a simple zero at Z = 0. IR conditions on

9(Z) [Eq. (A8)] guarantee this assumption.
(2) ¢(Z) has a positive (negative) imaginary part under
(above) the cut.
We prove this by counting the number of zeros of g inside
contour C = C; + C, + C; + C4 in Fig. 5.

If N and P are the number of zeros and poles of g,
respectively, inside the contour C (taken to be counter-
clockwise), then

J(Z)
/dZ—
V4

VZ#0 and ZeC. (A37)

—27i(N - P). (A38)
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A

Im(Z)

Cy Re(Z)

€1

FIG.5. The integration path in the complex Z plane. The closed
contour is taken to be counterclockwise.

Let us evaluate the left-hand side of Eq. (A38) for each
contour separately.

(1) C;: According to Eq. (A7), g(Z) approaches the

constant value of a < 0 (see Appendix A 2) for large

Z.In fact, g(Z) - a + O() for some positive value

of n (which depends on the function f)). This means

for a # 0,
J(2Z)
dz =0.
/cl 9(2)

(2) C, & Cy4: Since the values of g above and under the
cut are complex conjugate of each other, the con-
tribution from these diagrams can be added together

(A39)

to get
J(2)
/ dz22) — 2iim / gl ic)
C+Cy Z X + l€
0
— 2ilmIn [M] . (A40)
g(—o0 + i€)

where € is an infinitesimal positive number.

If we define g(Z) = r,(Z)e'??), the right-hand
side of Eq. (A40) (apart from the factor of 2i)
measures how much ¢, rotates from Z = —oco + ie
to Z = 0 + ie. Since Img(x + ie) < 0 on the whole
negative real line, In [g(x + i€)] is definable on one
Riemann sheet. Combining this result with g(—oco +
i) =a <0 and g(0 + ie) = —ie, we get

/ dZM = ir.
Co+Cy 9(Z)

(3) C3: IR conditions require that close to Z =0,
g9(Z) = —Z. This means

(A41)
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Z 1

/ A / 1__i
o 92 cZ

Adding the values of all the contours and considering the
fact that g(Z) is finite everywhere (P = 0), we conclude
that the number of zeros of ¢ in the complex plane of Z
(inside contour C) is zero. Since there is no zero on the
negative real line [Img(x + ie) # 0], there is no zero of g in
the complex plane of Z except the one at Z = 0. Therefore,
stability has been proven.

(A42)

APPENDIX B: FDT

Here, we present the proof of Eq. (52).° Let us start with
the following definitions:

iA(x.y) = [(x). $(V)] (BI)
GO (x,y) = ({d(x).¢()}). (B2)
W (x.y) = (), (B3)
W= (x,y) = (@(1)(x)). (B4)
G (x.y) = ~i{T(x)(y)). (B5)

where {} is the anticommutator and () shows the expect-
ation value in a quantum state. If we define

GX(x.y) =

G (x,y) = —A(x, y)H(x<y),

A(x, y)H (x>y), (B6)
(B7)

where H is the Heaviside function: H(x>y) = 1 if x>y and
otherwise 0. We get the following relations:

iA(x,y) = W (x,y) = W (x,y)
=G -G ) (B
GO(ry) = W) +Wo(y). (B9)
G*(x.y) = G*(y. %), (B10)
G (x.3) = 3 [GF(x,3) + G (x.3)] =5 G(w.y). - (BI)

For a translational invariant system, the value of all the
two-point functions depend only on spacetime separation.
This will allow us to define the following Fourier transform
with respect to time:

"Most of the content of this appendix is taken from Ref. [16].
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A, x,x') = / diA (L, x: 1 X )e=@=). (B12)

Now, let us assume that the quantum system is in a thermal
state with temperature 7 = é It requires that
WE(t, x; ¢, x") = WF(t + i, x; 1, x'), (B13)

resulting in the following relation in Fourier space:

WH(w, x,y) = "W (w,x,y). (B14)
Using Eq. (B8), we get
Y17 -Z bl 9

Ty = D@5 (gs)

l—¢ po

Y17 -Z bl 9
W~ (w,x,y) = _iA(e.x.y) (B16)

1= e

On the other hand since G (¢, x;7,x') = GA(¢, x; 1, x'), in
Fourier space they are complex conjugate. As a result,

_ 1 _
ImGF (w, x,y) = -5 ReGY(w, x,y)
| Q— —
= W @.xy) + (0 x.9)

= —liZ(a), X, y) coth (IE) (B17)
2 2

where Im and Re are the imaginary part and real part

respectively and in the second line we have used the

positivity of the two-point function W7 [giving that

W (w,x,y) and W= (w, x,y) are real].

With the assumption that this field theory in the Hilbert-
space representation has an equivalent representation in
terms of a double path integral, the time-ordered two-point
function is given by Eq. (46). In Fourier space, it reads

G (0.x.y) = 5[0 (0.%.3) + G (0.x.3) + G (. x.y)].
(B18)

GX(w,x,y) is a totally imaginary number and GX (w,x,y)+
EA(a),x,y) is a real number. As a result,

GX(w,x,y) = 2ilmG" (w, x,y). (B19)
Combining Egs. (BS), (B17), and (B19) we arrive at

GX(w,x,y) = coth(ﬁTw) [GR(w, x,y) — G*(w,x,y)],

(B20)

which reduces to Eq. (52) at zero temperature.
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APPENDIX C: QUANTUM TRANSITION

We start by proving a simple theorem for any quantum
system. Consider a quantum-mechanical system in the
(normalized) initial state |a) that evolves in time and the
probability of finding the system at a later time 7 in the state
|B;) is called P;, and assume |f;)’s are orthonormal:

P; = |[(B:|U|a)|? (C1)

where U is the time evolution operator.
Now, consider a (normalized) state |/#) as a superposition

of |f;) states:
) =D _cilbi).

i
Z|Ci|2 =1
i

The probability P of measuring the system at time 7, in the
state |f3) is given by

(€2)

P = (AUl (3)
Then,
P = |(plUla)P
- [Serivia|
< (D) (Z|<ﬁiv|a>|2)
=D P (C4)

where we have used the triangular inequality in the second
line. So P is bounded from above by > ,P;.

Now, let us get back to the scattering of a massless particle
with state y, a superposition of M different masses, in
Sec. VIC. We already have shown [see Eq. (95)] that
[y, defined as the transition probability of a massless
particle scattering with a massive particle (mass m;) scales
with N as

2 ()

1—‘Om[ = N

where A; depends on the momentum of the particles but is
independent of N. Using Eq. (C4) for the transition
probabilities, we conclude that

A M
royszijﬁszaﬁ (C6)

where A is the maximum of the A;’s.
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