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This paper treats nonrelativistic matter and a scalar field ϕ with a monotonically decreasing potential
minimally coupled to gravity in flat Friedmann-Lemaître-Robertson-Walker cosmology. The field
equations are reformulated as a three-dimensional dynamical system on an extended compact state space,
complemented with cosmographic diagrams. A dynamical systems analysis provides global dynamical
results describing possible asymptotic behavior. It is shown that one should impose global and asymptotic
bounds on λ ¼ −V−1dV=dϕ to obtain viable cosmological models that continuously deform ΛCDM
cosmology. In particular we introduce a regularized inverse power-law potential as a simple specific
example.
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I. INTRODUCTION

Recent observations, such as those of the cosmic back-
ground radiation, show that Λ cold dark matter (ΛCDM)
cosmology is remarkably consistent with observations,
although some tensions remain; see [1,2] and references
therein. On the other hand, the unknown origins and nature
of dark matter and dark energy remain mysteries which
generate a steady flow of models and theories. Nonetheless,
current observations should be taken seriously, and viable
cosmological models should therefore presumably only
deviate from ΛCDM cosmology marginally. Moreover,
although successful, the ΛCDM model still needs to be
observationally tested, which suggests that it should be
continuously deformed. In addition, for a variety of reasons,
it is of interest to consider a dynamical dark energy content
described by a field theoretical model instead of a cosmo-
logical constant Λ or a dark energy fluid. This leads to the
question: What phenomenological conditions must be
imposed on an effective classical field description of dark
energy to continuously deform ΛCDM cosmology for an
open set of observationally viable solutions?
Although observational compatibility arguably comes

first, there also exist other issues that are of interest such as
various fine-tuning problems and if there exist observatio-
nally viable models that emerge from, or at least have ties
to, a fundamental theory. The rather modest purpose of this
paper, however, is to

(i) describe general features and determine asymptotic
behavior of flat Friedmann-Lemaître-Robertson-
Walker (FLRW) models with a perfect fluid and a

scalar field ϕ, minimally coupled to gravity, with a
positive monotonic potential VðϕÞ,

(ii) shed some light on the above “observationally viable
field theoretical ΛCDM-deformation issue” by con-
sidering some simple models of the above type with
the equation of state for the perfect fluid specialized
to dust, representing nonrelativistic matter (mainly
baryons and nonbaryonic dark matter).

Since the literature about minimally coupled scalar fields
and a perfect fluid in a flat FLRW spacetime geometry is
vast, we will start with only a few general sample
references: the influential papers [3–5] and the recent
review [6], and references therein.
It is of interest for discussions and future purposes to first

consider a perfect fluid with a general barotropic equation
of state pm ¼ ðγm − 1Þρm, where pm and ρm ≥ 0 are the
pressure and energy density, respectively, and γm¼ γmðρmÞ,
together with a scalar field ϕ, minimally coupled to gravity,
with a self-interaction potential VðϕÞ. Thus, the Einstein
and matter field equations for the present flat FLRW
models can be written as (see, e.g., [7–9])

3H2 ¼ 1

2
_ϕ2 þ VðϕÞ þ ρm; ð1aÞ

_H ¼ −
1

2
ð _ϕ2 þ γmρmÞ; ð1bÞ

0 ¼ ϕ̈þ 3H _ϕþ Vϕ; ð1cÞ

_ρm ¼ −3Hγmρm; ð1dÞ

where Vϕ ¼ dV=dϕ and where overdots denote derivatives
with respect to cosmic time t. Units are such that
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8πG ¼ 1 ¼ c, where G is the gravitational constant and c
the speed of light in vacuum. It is assumed throughout the
paper that the Universe is expanding, i.e., H > 0.
Equation (1c) can be heuristically interpreted as an

equation for a particle of unit mass with a one-dimensional
coordinate ϕ, moving in a potential VðϕÞ with a friction
force −3H _ϕ. Equation (1a) shows that H can be expressed
in terms of ϕ, _ϕ, and ρm. Introducing _ϕ as an independent
variable therefore leads to a three-dimensional dynamical
system for ϕ; _ϕ; ρm. Alternatively one can solve Eq. (1d) to
obtain ρm ¼ ρmðaÞ and consider the variables ϕ, _ϕ; a as the
dependent variables, where a obeys the equation _a ¼ aH,
where H can be expressed in terms of ϕ; _ϕ; a by means
of (1a).
It is of some interest to introduce effective equation of

state parameters, defined by

γϕ ¼ ρϕ þ pϕ

ρϕ
¼

_ϕ2

1
2
_ϕ2 þ VðϕÞ ; γtot ¼

ρtot þ ptot

ρtot
; ð2Þ

or, alternatively, w� ¼ p�=ρ� ¼ γ� − 1 (� ¼ ϕ; tot), where

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ; pϕ ¼ 1

2
_ϕ2 − VðϕÞ; ð3aÞ

ρtot ¼ ρϕ þ ρm; ptot ¼ pϕ þ pm: ð3bÞ

Adding a cosmological constant to a perfect fluid with a
barotropic equation of state can be regarded as a problem
with a single fluid with a changed barotropic equation of
state. Replacing a cosmological constant in a general
barotropic fluid descriptionwith a scalar field therefore adds
thedynamicaldegreesoffreedom,ϕand _ϕ, toρm (ora),which
implies a complication, since this leads to a larger set of
solutions with different histories. In the context of ΛCDM
deformations this problem is somewhat alleviated by the
followingassumption:Toobtainanevolutionaryhistorysuch
that primordial nucleosynthesis gives observationally com-
patible light nuclear abundances, we will assume that there
exists a mechanism such as inflation that sets initial con-
ditions for the present models at high redshifts so that the
matter content greatly dominates over the scalar field (dark
energy) content in the early Universe.
For simplicity we will from now on consider a linear

equation of state with a constant γm restricted to the range
0 < γm < 2, which avoids bifurcations at γm ¼ 0, corre-
sponding to a cosmological constant, and γm ¼ 2, which
yields a stiff perfect fluid with the speed of sound equal to
the speed of light; γm ¼ 1 corresponds to a fluid without
pressure, which will be the focus when describing and
discussing ΛCDM deformations, while γm ¼ 4=3 corre-
sponds to a radiation fluid. It follows from Eq. (1d) that

ρm ¼ ρ0ða=a0Þ−3γm: ð4Þ

Furthermore, most of the scalar field potentials that
have been considered as possible alternatives to a cosmo-
logical constant as dark energy have strictly monotonic
scalar field potentials, as exemplified by, e.g., the popular
inverse power-law potential. Apart from the model with
V ¼ Λ ¼ const., we will therefore assume that V is
defined, differentiable, positive, and strictly monotone
for ϕ ∈ ðϕ−;ϕþÞ. Without loss of generality, we assume
that V is monotonically decreasing. We also assume that
the potential is such that ϕþ ¼ ∞. If ϕ− is finite or −∞
depends on how fast VðϕÞ increases when ϕ → ϕ−, e.g., for
an inverse power-law potential, V ∝ ϕ−α, ϕ− ¼ 0, while an
exponential potential, V ∝ expð−λϕÞ, leads to ϕ− ¼ −∞.
A constant or monotonically strictly decreasing potential

makes it convenient to use a particular type of dynamical
systems formulation that brings

λðϕÞ ¼ −
Vϕ

V
ð5Þ

into focus, where λ is zero for a constant potential and
positive for ϕ ∈ ðϕ−;∞Þ when VðϕÞ is strictly monoton-
ically decreasing. Within this context it is natural to regard
λ as more “fundamental" than V itself, where V is obtained
from λðϕÞ via

V ¼ V0 exp

�
−
Z

ϕ

ϕ0

λð ~ϕÞd ~ϕ
�
: ð6Þ

In the special case where λ and limϕ→ϕ−
λ are bounded it

follows that the potential can be bounded by an exponential
and therefore ϕ− ¼ −∞. If λ is unbounded, as in the case of
an inverse power-law potential, ϕ− is finite.
Finally we note that the system (1) has unbounded

variables and right-hand sides that blow up. It is therefore
not suitable for a global or asymptotic analysis of the
solution space and its properties. Below we will therefore
make a change of variables in order to obtain a dynamical
systemon a compact state space that allows these issues to be
addressed, as well as giving global illustrative pictures of the
entire solution spaces of the models under consideration.1

The outline of the paper is as follows. In the next section
we (i) formulate the dynamical systems approach that is
used throughout the paper to deal with a fluid and a
minimally coupled scalar field; (ii) describe the state space
features; (iii) point out some global properties and deter-
mine asymptotic behavior for models with a perfect fluid
and a scalar field such that 0 < λðϕÞ < ∞, ϕ ∈ ðϕ−;∞Þ,
and

1For a few examples of work dealing with dynamical systems
methods in cosmology, see [7,8,10–15], and references therein.
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lim
ϕ→∞

λ ¼ λþ; lim
ϕ→ϕ−

λ ¼ λ−; ð7Þ

where λþ is finite and λ− is finite or ∞.
In Sec. III we (i) situate ΛCDM cosmology, which

occurs for λ ¼ 0, in the three-dimensional state space,
which leads to the concept of an attracting separatrix
surface rather than individual “attractor solutions”; (ii) con-
sider the λ ¼ const. (i.e., an exponential potential) and dust
models in the present context and give a specific example
that shows that some of these models are completely
solvable; (iii) discuss the symmetries of the above models
and how the associated structures might be somewhat
misleading for the general picture.
In Sec. IV we turn from the previous “frozen λ”models to

some “dynamical λ” models. We consider (i) the inverse
power-law potentials, characterized by λ ¼ α=ϕ, in a global
dynamical systems setting, tying local results to the global
features discussed in Sec. II; in particular we point out that
observational viability requires fine-tuning of α to small
values, since λ → ∞whenϕ → 0 produces a “memory” that
affects the entire evolution of, e.g., “tracker” (attractor)
solutions. For this reason we therefore (ii) consider the
arguably simplest possible “λ-regularization” of the inverse
power-law potential, namely, λ ¼ α=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
, which, in

contrast to the inverse power-law case, gives rise to con-
tinuous deformations of the attracting ΛCDM separatrix
surface, and which for C≳ α yields much less stringent
observational compatibility conditions on α. Finally, the
section is concluded with (iii) a general discussion about
observational viability conditions that λ should satisfy for
any potential that might arise from some fundamental theory.
Throughout we use dynamical systems pictures which

clearly display general key features, and, in order to
compare with ΛCDM cosmology, these pictures are com-
plemented by diagrams that indicate the evolutionary
history of physically important quantities. Finally, we
outline how it is possible to treat two fluids, e.g., dust
and radiation, and a scalar field in the Appendix.

II. DYNAMICAL SYSTEMS APPROACH

A. Dynamical systems formulation

The presently used dynamical systems formulation is
based on the following dependent variables,

ðx;ΩV;Ωm; ZÞ ¼
�

_ϕffiffiffi
6

p
H
;
V
3H2

;
ρm
3H2

; ZðϕÞ
�
: ð8Þ

These variables are by no means suitable for all scalar field
potentials, e.g., for potentials with a zero minimum such as
monomial potentials it is advisable to replace the scalar
field variable Z with an H-based variable that takes into
account a varying averaged oscillatory time scale at late
times, as done in [15]. Nevertheless, the above variables are
useful for positive monotonic potentials. An optimal choice

of the variable ZðϕÞ depends on the potential that is studied.
However, to obtain a suitable global dynamical systems
formulation Z should always be chosen to be a globally
invertible monotone function in ϕ, defined on a bounded
interval Z ∈ ðZ−; ZþÞ, Z� ¼ Zðϕ�Þ; without loss of gen-
erality, we choose Z to be monotonically increasing in ϕ so
that dZ=dϕ > 0 for Z ∈ ðZ−; ZþÞ.
Apart from the dependent variables we also need to

choose a new time variable. In order to obtain a regular
dynamical system this choice depends on if λ is bounded or
not. In the case λ is bounded, as exemplified by, e.g.,
exponentially bounded potentials, it is convenient to use τ,
defined by dt ¼ H−1dτ, where τ ¼ lnða=a0Þ sometimes is
referred to as N, the number of e-folds from a reference
time t0 [a0 ¼ aðt0Þ], which for the present time leads to
τ ¼ − lnð1þ zÞ, where z is the redshift. Thus, the field
equations can be written as the following coupled system:

x0 ¼ −ð2 − qÞxþ
ffiffiffi
3

2

r
λðZÞΩV; ð9aÞ

Ω0
m ¼ 3½2x2 − γmð1 − ΩmÞ�Ωm; ð9bÞ

Z0 ¼
ffiffiffi
6

p dZ
dϕ

x; ð9cÞ

where 0 denotes derivatives with respect to τ. With some
slight abuse of notation we have written λðZÞ ¼
λðϕðZÞÞ ¼ −Vϕ=V. Furthermore, the Gauss constraint
(1a) is used to globally express the Hubble-normalized
scalar field potential energy, ΩV , in terms of the state space
variables:

ΩV ¼ 1 − x2 −Ωm; ð10Þ
while the deceleration parameter q, defined via H0 ¼
−ð1þ qÞH, is given by

q ¼ −1þ 3x2 þ 3

2
γmΩm: ð11Þ

The above system is suitable when λ is bounded, but not
when limϕ→ϕ−

λ ¼ ∞, as exemplified by, e.g., inverse
power-law potentials. In order to obtain a regular dynami-
cal system when limϕ→ϕ−

λ ¼ ∞ we therefore choose a new
time variable τ̄, defined by dτ ¼ gðZÞdτ̄, where gðZÞ is a
suitable positive bounded function of Z such that
limZ→Z−

gðZÞ ¼ 0,

lim
Z→Z−

gλðZÞ ¼ gλ− ¼ const<∞; where gλðZÞ≔ gðZÞλðZÞ;

ð12Þ

and limZ→ZþgðZÞ ¼ 1, where, e.g., gðZÞ ¼ 1=ð1þ λðZÞÞ is
a suitable choice for inverse power-law potentials. This
results in the system
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dx
dτ̄

¼ −gðZÞð2 − qÞxþ
ffiffiffi
3

2

r
gλðZÞΩV; ð13aÞ

dΩm

dτ̄
¼ 3gðZÞ½2x2 − γmð1 − ΩmÞ�Ωm; ð13bÞ

dZ
dτ̄

¼
ffiffiffi
6

p
gðZÞ dZ

dϕ
x: ð13cÞ

Note that (9) is obtained by setting gðZÞ ¼ 1, hence τ̄ ¼ τ,
and so the above system formally covers both cases.

B. State space structures

The above assumptions lead to the following domain for
the state vector ðx;Ωm; ZÞ for the interior state space S for
models with a perfect fluid and a scalar field:

Ωm > 0; ΩV ¼ 1 − x2 − Ωm > 0; Z− < Z < Zþ:

ð14Þ
Furthermore, it follows from (9), and the following aux-
iliary equation for ΩV,

Ω0
V ¼ 2

�
1þ q −

ffiffiffi
3

2

r
λðZÞx

�
ΩV; ð15Þ

that it is possible to extend the state space and include the
following boundaries:

(i) The boundaryΩm ¼ 0 (i.e., ρm ¼ 0) yields the (pure)
scalar field boundary subset [see Eq. (9b)], and thus

Ωϕ ¼ x2 þΩV ¼ 1; ð16Þ

with an interior state space Sϕ given by
ΩV ¼ 1 − x2 > 0, Z− < Z < Zþ.

(ii) The boundary ΩV ¼ 1 − x2 −Ωm ¼ 0 corresponds
to a model with a perfect fluid and a massless scalar
field; we refer to this subset as the massless scalar
field boundary subset. Note that this boundary also
contains the pure massless scalar field boundary
subset Ωm ¼ 0, x ¼ �1, and the perfect fluid boun-
dary subset Ωm ¼ 1 (Ωϕ ¼ 0, i.e., ΩV ¼ 0 ¼ x),
which is described by a line of fixed points, FLZ,
with constant Z.

(iii) In addition we assume that the potential and Z are
such that the state space S can be extended to not
only include the boundaries Ωm ¼ 0, ΩV ¼ 0, but
also the boundaries Z ¼ Z− and Z ¼ Zþ, which
furthermore are assumed to constitute invariant
boundary subsets.

Thus the extended compact state spaces S̄ and S̄ϕ are
characterized by

Ωm ≥ 0; ΩV ¼ 1 − x2 −Ωm ≥ 0; Z− ≤ Z ≤ Zþ;
ð17aÞ

ΩV ¼ 1 − x2 ≥ 0; Z− ≤ Z ≤ Zþ; ð17bÞ

respectively, and the dynamical systems on S̄ and S̄ϕ are of
differentiability class C1 or higher. We therefore assume
that the potential is such that it is possible to find a scalar
field variable Z and, if needed, a function gðZÞ so that

(i) gλðZÞ and gðZÞdZ=dϕ are bounded and differen-
tiable on the extended interval Z ∈ ½Z−; Zþ�,

(ii) gðZÞdZ=dϕjZ¼Z� ¼ 0, i.e., Z ¼ Z− and Z ¼ Zþ are
invariant boundary subsets.

Although the above restrictive assumptions require that the
potential VðϕÞ is of differentiability class C2, they cover a
vast class of potentials VðϕÞ. Moreover, the extended state
space treatment of the admissible class of potentials can be
used to provide bounds on asymptotic behavior of poten-
tials that do not admit Z-extended state spaces, and thus
they provide a natural starting point for very general
situations. It should also be noted that for many qualitative
dynamical aspects, as will be seen, there is no need to state
any more information about ZðϕÞ or VðϕÞ, although
quantitative treatments of course need specific functions
and thus we will give specific examples when dealing with
continuous ΛCDM deformations.
To physically compare solutions that are obtained in the

dynamical systems approach with ΛCDM cosmology, we
will complement the state space description with diagrams
involving physically important quantities. Apart from the
physically important state space variable Ωm we have given
the deceleration parameter q in terms of state space
variables in Eq. (11), and below we will also express H
in state space variables. In addition it is of interest to give
the jerk parameter j [16,17], since even though the
observational feasibility of j is questionable, it is still
useful in order to theoretically compare models with
ΛCDM cosmology for which j ¼ 1; for constant γm the
jerk parameter is given by

j ¼ 1þ 9x2 −
9

2
γmð1 − γmÞΩm − 3

ffiffiffi
6

p
λðZÞΩVx: ð18Þ

Next we turn to structures that are helpful when it comes
to determining global and asymptotic state space features.

C. Nonlocal features

1. The monotonicity of H

The Hubble parameter H, or more conveniently H2, can
be expressed in the state space variables in S and Sϕ and is
given by

H2 ¼ VðϕðZÞÞ
3ΩV

¼ VðϕðZÞÞ
3ð1 − x2 −ΩmÞ

; ð19Þ

as follows from the definition of ΩV . This has far-reaching
consequences for the global dynamics due to
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H0 ¼ −ð1þ qÞH ⇒ ðH2Þ0 ¼ −2ð1þ qÞH2; ð20Þ

since Eqs. (10) and (11) lead to

1þ q ¼ 3x2 þ 3

2
γmΩm;

2 − q ¼ 3ΩV þ 3

2
ð2 − γmÞΩm; ð21Þ

which together with 0 < γm < 2 yield

−1 ≤ q ≤ 2: ð22Þ

As will be seen, the above inequalities for q, induced by
energy and causality conditions, play a central role for the
dynamics, which strongly suggests that the field equations
should be expressed in terms of q, as done in (9).
The above relations imply that q ¼ 2 only occurs on the

pure massless scalar field subsets x ¼ �1, while q ¼ −1
requiresΩm ¼ x ¼ 0,ΩV ¼ 1. Since 1þ q > 0 on S,H2 is
a monotonically decreasing function on S. This is also true
for Sϕ, as can be seen as follows. On Sϕ we have the
inequalities −1 ≤ q ≤ 2. As a consequence H2 is a mono-
tonically decreasing function also on this subset, except
when 1þ q ¼ 0. However, when 1þ q ¼ 0 is not an
invariant subset, then 1þ q ¼ 0 just corresponds to an
inflection point in the graph of H2, and H2 is thereby still
monotonically decreasing.2 It is only when 1þ q ¼ 0 is an
invariant subset that H2 stops decreasing and for which
1þ q ¼ 0 can be an asymptotic state. For this to happen
requires that x ¼ 0, since 1þ q ¼ 3x2 on Sϕ, which also
means that x ¼ 0 must be an invariant subset. Since

x0 ¼
ffiffi
3
2

q
λðZÞ when Ωm ¼ 0 ¼ x, ΩV ¼ 1, this leads to

the condition that λðZÞ ¼ 0, which by our assumptions
about monotonically decreasing potentials can only happen
on the Z� boundaries. Hence H2 is also monotonically
decreasing on Sϕ. This implies that there can be no fixed
points or recurring orbits (solution trajectories) in S and Sϕ,
and due to (19) all solution trajectories in S and Sϕ

originate and end at Z� and ΩV ¼ 0, which shows that
it is essential to extend the state space to include these

boundaries in order to fully describe the dynamics of the
present models.

2. The Z� boundaries

Let us begin by considering the Z� boundaries for the
case where limZ→Z�λ ¼ λ� is finite. Dropping the subscript
� on λ� leads to the system

x0 ¼ −ð2 − qÞxþ
ffiffiffi
3

2

r
λΩV; ð23aÞ

Ω0
m ¼ 3½2x2 − γmð1 −ΩmÞ�Ωm; ð23bÞ

on Z� where we recall that ΩV ¼ 1 − x2 −Ωm and
q ¼ −1þ 3x2 þ 3

2
γmΩm. As will be elaborated on in the

next section, these equations describe the reduced equa-
tions of an exponential potential V ∝ expð−λϕÞ when
λ ≠ 0 and those of a constant potential when λ ¼ 0. The
above system has an extended state space S̄red given by

Ωm ≥ 0; ΩV ¼ 1 − x2 −Ωm ≥ 0; ð24Þ

and admits a number of fixed points given in Table I.
We have here introduced a notation for the fixed points

where the kernel M stands for a massless scalar field state;
FL stands for a Friedmann-Lemaître perfect fluid state,
while dS stands for a de Sitter state (for interpretation of
various types of de Sitter states in scalar field cosmology,
see [15]); the kernel PL stands for power law (inflation,
when λ <

ffiffiffi
2

p
, since this leads to an accelerating state with

q < 0), while EM stands for a scaling solution with an
exponential potential and matter in the form of a perfect
fluid with a linear equation of state. In addition, a super-
script describes the value of x, while in the full three-
dimensional treatment we also add a subscript that
describes the value for Z.
A one-parameter set of orbits in S̄red originates from each

of the sources Mþ and M− when λ <
ffiffiffi
6

p
, but when λ >

ffiffiffi
6

p
there are no solutions that originate from Mþ into Sred,
while one solution originates from FL. Toward the future
PL is a sink when λ <

ffiffiffiffiffiffiffiffi
3γm

p
while EM is future stable

when λ >
ffiffiffiffiffiffiffiffi
3γm

p
. Thus bifurcations take place when

λ ¼ ffiffiffi
6

p
, which is when PL leaves the physical state space

via Mþ, and when λ ¼ ffiffiffiffiffiffiffiffi
3γm

p
, which is when EM enters the

TABLE I. Table depicting the type of fixed points that can occur for a FLRW model with a monotonically decreasing scalar field
potential with a finite λ and a perfect fluid with a linear equation of state parameter 0 < γm < 2.

FL x ¼ 0, Ωm ¼ 1 q ¼ ð3γm − 2Þ=2 � � �
EM x ¼ ffiffiffiffiffiffiffiffi

3=2
p

γmλ
−1, Ωm ¼ 1 − 3γmλ

−2; λ >
ffiffiffiffiffiffiffiffi
3γm

p q ¼ ð3γm − 2Þ=2 γϕ ¼ γm
M� x ¼ �1, Ωm ¼ 0 q ¼ 2 γϕ ¼ 2

PL x ¼ λ=
ffiffiffi
6

p
, Ωm ¼ 0; λ <

ffiffiffi
6

p
q ¼ −1þ λ2=2 γϕ ¼ λ2=3

dS x ¼ Ωm ¼ 0; λ ¼ 0 q ¼ −1 γϕ ¼ 0

2For an elaboration of this in the case of monomial potentials,
see [15].
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state space via PL. In addition there is a bifurcation when
λ ¼ 0, which is when PL becomes the future sink dS. The
solution space structures for representative examples of
these different cases are given in Fig. 1.
The case when λ → ∞ when ϕ → ϕ− yields the follow-

ing system on Z−:

dx
dτ̄

¼
ffiffiffi
3

2

r
gλ−ΩV; ð25aÞ

dΩm

dτ̄
¼ 0; ð25bÞ

where we recall that gλ− ¼ limZ→Z−
ðgðZÞλðZÞÞ > 0. It

follows that Ωm ¼ const. while the subset ΩV ¼
1 − x2 −Ωm ¼ 0 forms a line of fixed points Mx, and that
x is monotonically increasing in Sred. Thus Mx with x < 0
is the source while Mx with x > 0 is the sink of all orbits in
Sred; finally, note that Mx with x ¼ 0 is the fixed point FL.

3. The ΩV ¼ 0 boundary

We first note that the equation for x on ΩV ¼ 0 is
invariant under the transformation x → −x, which enables
one to use Ωstiff ¼ x2 as a variable instead of x, and as a
result, the dynamics of the massless scalar field explicitly

takes the same form as that of a stiff fluid, p ¼ ρ. This leads
to the equations

Ω0
m ¼ 3ð2 − γmÞð1 −ΩmÞΩm; ð26aÞ

Z0 ¼
ffiffiffi
6

p dZ
dϕ

x ¼ �
ffiffiffi
6

p dZ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm

p
; ð26bÞ

where we have used the Gauss constraint to write Ωstiff ¼
1 − Ωm and x ¼ � ffiffiffiffiffiffiffiffiffiffi

Ωstiff
p

. Since the equation for Ωm
decouples from that of Z, it follows that all orbits (solution
trajectories) in the two-dimensional state space look the
same as the orbits of the one-dimensional problem asso-
ciated with Ωm, when projected onto Ωm. As follows from
(26a), Ωm monotonically increases from 0 to 1. Thus the
past asymptotic state of all orbits on ΩV ¼ 0 resides on the
pure massless scalar field subset Ωm ¼ 0, x2 ¼ 1 and
thereby q ¼ 2; thus either x ¼ þ1, which from (26b) leads
to Z ¼ Z− and thus a fixed point Mþ

Z−
, since dZ=dϕ > 0, or

x ¼ −1, which yields Z ¼ Zþ and a fixed point M−
Zþ . It

also follows that the future asymptotic state of all orbits on
ΩV ¼ 0 resides on Ωm ¼ 1, x ¼ 0, Z ¼ const, which
thereby form a line of fixed points FLZ. To determine
what happens with Z toward the future on ΩV ¼ 0 we note
that it is possible to solve the equation forΩm explicitly, but

(a) (b)

(c) (d)

FIG. 1. Representative solution space structures for S̄red. (a) Solution space for λ ¼ 0 and γm ¼ 1, (b) Solution space for λ ¼
ffiffi
3
2

q
and

γm ¼ 1, (c) Solution space for λ ¼ 2 and γm ¼ 1, (d) Solution space for λ ¼ 3 and γm ¼ 1.
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the solution can also be obtained by using the fact
that ρstiff ∝ expð−6τÞ, ρm ∝ expð−3τÞ, 3H2 ¼ ρstiff þ ρm,
which gives

H
H0

¼ ðΩstiff0 expð−6τÞ þΩm0 expð−3γmτÞÞ1=2; ð27aÞ

x ¼ �Ω1=2
stiff0 expð−3τÞ=ðH=H0Þ; ð27bÞ

Ωm ¼ Ωm0 expð−3γmτÞ=ðH=H0Þ2: ð27cÞ

To obtain the solution for Z requires a specification of Z.
However, it is easier to obtain Z by integrating the equation
for ϕ,

ϕ0 ¼
ffiffiffi
6

p
x ¼ �ð6Ωstiff0Þ1=2 expð−3τÞ=ðH=H0Þ; ð28Þ

and then inserting the result in the chosen definition of Z.
As follows from the above equation, ϕ → const. when
τ → þ∞, and therefore also Z → const. in this limit; i.e.,
each point on the line FLZ attracts one solution with
positive and one with negative initial x on the ΩV ¼ 0
boundary. For a representative depiction of the ΩV ¼ 0
boundary, see Fig. 3(a).

4. Role of the ΩV ¼ 0 boundary

To study the neighborhood of ΩV ¼ 0 we note that

Ω−1
V Ω0

V jΩV¼0 ¼ 2

�
1þ q −

ffiffiffi
3

2

r
λðZÞx

�
; ð29Þ

and hence

Ω−1
V Ω0

V jM�
Z∓

¼
ffiffiffi
6

p
ð

ffiffiffi
6

p ∓ λðZ∓ÞÞ;
Ω−1

V Ω0
V jFLZ

¼ 3γm: ð30Þ

As a consequence it follows that M−
Zþ is a source for orbits

in S and Sϕ as is Mþ
Z−

when λðZ−Þ <
ffiffiffi
6

p
, but if

λðZ−Þ >
ffiffiffi
6

p
, then no orbits enter S or Sϕ from Mþ

Z−

3; a
one-parameter set of orbits, one from each point on FLZ,
enters S, where FLZ acts as a “transversal saddle line,”
forming a two-dimensional invariant subset in S. By
demanding initial data for which Ωm is close to 1, this
implies the important feature that for all the models we
consider such solutions can be approximated by this (at

least initially) attracting invariant surface subset of codi-
mension 1 with respect to the state space dimension. We
will later contrast this feature with discussions about single
“attracting” solutions that appear for various models in the
literature.

5. Monotonicity of negative x

Further restrictions on the global dynamics of the present
models come from Eqs. (9a) and (9c). It follows from (9a)
that x is monotonically increasing when −1 < x < 0, since
then 2 − q > 0. This in turn implies that if an orbit resides
or partly resides in the region −1 < x < 0, then the orbit
originates from x ¼ −1, which due to (9c) and dZ=dϕ > 0
implies that the past asymptotic state must be M−

Zþ .
Furthermore, the monotonicity of x when −1 < x < 0
implies that all orbits in S and Sϕ must end at x ≥ 0.
The equation for x can be written on the following form:

x0 ¼ −
3

2
ð2 − γmÞxΩm − 3

�
x −

λðZÞffiffiffi
6

p
�
ΩV; ð31Þ

which shows that x is monotonically decreasing if
λðZÞ= ffiffiffi

6
p

< x < 1. In combination with the above result
for x this implies that all orbits in S and Sϕ must end at
0 ≤ x ≤ λðZÞ= ffiffiffi

6
p

. However, in order for an orbit to end at
x ¼ 0 requires that x ¼ 0 be an invariant subset. Since

x0jx¼0 ¼
ffiffiffi
3

2

r
λðZÞð1 −ΩmÞ; ð32Þ

and since Ωm ¼ 1 is the FLZ subset, it follows that this can
only be the case if λðZÞ ¼ 0, which can only happen on the
Z� boundaries for a monotonically strictly decreasing
potential. The above equation also shows that x is mono-
tonically increasing when x ¼ 0 when Z− < Z < Zþ.
Furthermore, since dZ=dϕ > 0 it follows from (9c) that
Z is monotonically increasing (decreasing) in τ, or τ̄, when
x > 0 (x < 0).
If x is future asymptotically positive it follows that

Z → Zþ. However, to exclude or show that any of the orbits
from M−

Zþ end up at dSZ−
if λ− ¼ 0 requires more

information about the potential. If limϕ→ϕ−
VðϕÞ¼ const.,

then there are solutions that end at Z−, but if V → ∞ when
ϕ → ϕ−, there are not. This can be understood by consid-
ering (1c). A solution with negative x can be viewed as a
particle moving in a direction where the potential is
monotonically increasing. At the same time it is losing
energy due to the friction force −3H _ϕ until _ϕ ¼ 0, but then
ϕ̈ ¼ −Vϕ, where Vϕ is strictly negative. As a consequence

the particle changes direction and _ϕ and thereby also x
become positive, and therefore Z → Zþ toward the future.
Thus all orbits in S and Sϕ end at the invariant boundary

subset Zþ when the potential is monotonically decreasing
and V → ∞ when ϕ → ϕ−, which we for simplicity from

3Solutions originating from M−
Zþ corresponds to “scalar field

particles” that come from ∞ moving toward decreasing ϕ, while
if λðZ−Þ <

ffiffiffi
6

p
the potential is shallow enough so that scalar field

particles also can come from −∞ moving toward increasing ϕ.
Solutions originating from FLZ correspond to scalar field
particles that initially lie still at some initial value ϕ and then
roll down the potential VðϕÞ.
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now on assume (apart from the case of a constant potential,
which is treated separately, all our explicit examples obey
these conditions).

6. The role of the Z− subset

The four dynamically qualitatively different cases on Z−
when 0 ≤ λ− < ∞ lead to different interior dynamics:

(i) When λ− <
ffiffiffiffiffiffiffiffi
3γm

p
, a two-parameter (one-parameter)

set of orbits originates from the source Mþ
Z−

into S
(Sϕ), while a single orbit originates from PLZ−

into Sϕ.
(ii) When

ffiffiffiffiffiffiffiffi
3γm

p
< λ− <

ffiffiffi
6

p
, again a two-parameter

(one-parameter) set of orbits originates from the
source Mþ

Z−
into S (Sϕ), but in this case there is also a

one-parameter set (a single orbit) that enters S (Sϕ)
from PLZ−

as well as a single orbit from EMZ−
.

(iii) When λ− >
ffiffiffi
6

p
, a single orbit enters S from EMZ−

.
(iv) When λ− ¼ 0, a two-parameter (one-parameter) set

of orbits originates from the source Mþ
Z−

into S (Sϕ),
while a single orbit originates from dSZ−

into Sϕ.
When λ− → ∞ at Z−, there is just one orbit that enters S

from FLZ−
, the so-called tracker or attractor solution. The

exclusion of orbits into S and Sϕ from the fixed points Mx
Z−

with x ≠ 0 can be understood as follows: There are no
solutions coming from Mx

Z−
when x < 0 since Z is

decreasing toward the future when x < 0. When x > 0,
it follows that ΩV is decreasing in the vicinity of Mx

Z−
and

hence there are no solutions coming from this part of Mx
Z−

into S or Sϕ either. Hence Mx
Z−

with x ¼ 0, i.e., FLZ−
is the

only fixed point on Mx
Z−

which can give rise to a solution
into S, and it does give rise to the tracker solution, which
can be established by center manifold theory or by
consideration of nearby solutions and continuity, since this
fixed point acts as a kind of saddle in the full state space.

7. The role of the Zþ subset

The only solutions that originate from the Zþ subset into
S (Sϕ) are those from the source M−

Zþ , from which a two-
parameter (one-parameter) set of orbits originates into
S (Sϕ).
For the present monotonically decreasing potentials, all

orbits in S and Sϕ end at Zþ as follows when 0 ≤ λþ < ∞:
(i) When λþ <

ffiffiffiffiffiffiffiffi
3γm

p
, a two-parameter (one-parameter)

set of orbits ends at the global sink PLZþ from
S (Sϕ).

(ii) When
ffiffiffiffiffiffiffiffi
3γm

p
< λþ <

ffiffiffi
6

p
, a two-parameter set of

orbits in S ends at the sink EMZþ , while a one-
parameter set of orbits in Sϕ ends at PLZþ .

(iii) When λþ >
ffiffiffi
6

p
, a two-parameter set of orbits in S

ends at the sink EMZþ , while a one-parameter set of
orbits in Sϕ ends at Mþ

Zþ .

(iv) When λþ ¼ 0, a two-parameter (one-parameter) set
of orbits ends at the global sink dSZþ from S (Sϕ).

8. An additional useful quantity

Finally, consider

ξ ¼ Ωm

ΩV
; ð33Þ

which obeys

ξ0 ¼ −
ffiffiffi
6

p � ffiffiffi
3

2

r
γm − λðZÞx

�
ξ; ð34Þ

as follows from (9b) and (15). When
ffiffi
3
2

q
γm − λðZÞx > 0, ξ

is monotonically decreasing. For a globally bounded λ such

that λðZÞ <
ffiffi
3
2

q
γm, it follows that ξ is strictly monotoni-

cally decreasing and hence ξ → 0 and thereby Ωm → 0
toward the future; i.e., the future dynamics resides on the
scalar field subset. Toward the past ξ → ∞ and hence
ΩV → 0 and as a consequence it follows that the past
dynamics asymptotically resides on the ΩV ¼ 0 subset,
which of course is already implied by our previous
discussion in a somewhat more complicated manner,
which, however, includes more details and general
situations.
We will now turn to explicit examples of potentials and

a fluid with a dust equation of state, γm ¼ 1. Throughout
we will choose scalar field variables so that Z− ¼ 0 and
Zþ ¼ 1, so that S̄ is given by

Ωm ≥ 0; ΩV ¼ 1 − x2 −Ωm ≥ 0; 0 ≤ Z ≤ 1: ð35Þ

It should be pointed out that this type of choice of scalar
field variable is by no means an optimal choice for all
scalar field potentials that can be dealt with by means of a
scalar field variable ZðϕÞ, as illustrated by the treatment of
the generalized Chaplygin gas in [11], where −1 ≤ Z ≤ 1,
but choices such that 0 ≤ Z ≤ 1 are “good enough” for
our present purposes. Since Z− ¼ 0 and Zþ ¼ 1 we will
introduce 0 and 1 as subscripts instead of Z� to distinguish
fixed points on the two boundaries (in addition we have the
subscript Z for the line of fixed points FLZ and, for a
constant potential, the line of fixed points dSZ).

III. FROZEN λCDM DYNAMICS

Before considering the constant and exponential
potentials, let us first recall some facts about ΛCDM
cosmology. In their simplest form, the ΛCDM models
are solutions of Einstein’s equations with (i) a spatially
isotropic and homogeneous flat FLRW geometry and
(ii) a perfect fluid that has negligible pressure, i.e., dust,
representing nonrelativistic matter, and a cosmological
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constant Λ. It is useful to describe solutions by the
following quantities:

H ¼ _a=a; ð36aÞ

q ¼ −H−2
�
ä
a

�
¼ −

�
1þH0

H

�
; ð36bÞ

j ¼ H−3
�
a⃛
a

�
¼ −q0 þ qþ 2q2; ð36cÞ

Ωm ¼ ρm
3H2

; ð36dÞ

ΩΛ ¼ Λ
3H2

: ð36eÞ

Here the cosmographic (or cosmokinetic) quantities
aðtÞ; HðtÞ; qðtÞ; jðtÞ are the cosmological scale factor
and the time-dependent Hubble, deceleration, and jerk
parameters, respectively [16,17], which take the following
form for the ΛCDM models:

H
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0 expð−3τÞ þ ΩΛ0

p
; ð37aÞ

q¼−1þ3

2
Ωm

¼−1þ3

2

�
Ωm0 expð−3τÞ

Ωm0 expð−3τÞþΩΛ0

�
; ð37bÞ

j ¼ 1; ð37cÞ

Ωm ¼ Ωm0 expð−3τÞ
Ωm0 expð−3τÞ þΩΛ0

; ð37dÞ

ΩΛ ¼ ΩΛ0

Ωm0 expð−3τÞ þ ΩΛ0
; ð37eÞ

where Ωm þΩΛ ¼ 1 and where H0, Ωm0, and ΩΛ0 are the
values of H, Ωm, and ΩΛ at the reference time t0 and hence
τ ¼ 0.4 Throughout we will use the following present
values:

Ωm0 ¼ 0.3; ΩΛ0 ¼ 0.7: ð38Þ

It follows from (37b) that q0 ¼ −0.55.
Figure 2 depicts the evolution of H=H0, q, and Ωm in

terms of the redshift z for the ΛCDM models with the
above present values. As can be seen, Ωm monotonically
decreases from 1 (corresponding to the big bang limit
τ → −∞) to zero (corresponding to the infinite future
limit τ → þ∞, described by a de Sitter state with
ΩΛ ¼ 1). Alternatively this also follows by considering
the differential equation for Ωm, which is given by (see,
e.g., p. 62 in [7])

Ω0
m ¼ −3ð1 −ΩmÞΩm: ð39Þ

A. ΛCDM dynamics as λ ¼ 0-CDM dynamics

Setting pm ¼ 0 and V ¼ Λ yields a model that can be
interpreted as that of dust, a massless scalar field, and a
cosmological constant Λ. The associated model does not
solve any of the issues one might find unattractive with the
ΛCDM model, but it does show some aspects that are
important in a broader context. Since λ ¼ 0, one obtains a
reducedcoupledtwo-dimensionalsystemforxandΩm,while
the decoupled equation for Z can be integrated once the
evolution for x and Ωm is found. However, instead of just
considering the essential reduced extended two-dimensional
state space S̄red, we need to consider the full three-
dimensional extended state space S̄ to illustrate how this
model is connected with more general models for which
λ ¼ λðZÞ.Note, however, that the decoupling of the equation
for Z from the coupled system of x andΩm results in that all
solutionswith the same initial dataofxandΩm yield the same
curveswhenprojectedonto thex −Ωm-plane, irrespectiveof
the initial value ofZ. To proceed requires thatZ be specified.
There are many possible choices that lead to an analytic
dynamical system on a compact state space that cover the
domain ϕ� ¼ �∞, but here, due to future purposes, we
choose

Z ¼ 1

1þ expð−λϕÞ ; ð40Þ

which is monotonically increasing in ϕ and where λ is an
arbitrary positive constant; the scalar field variableZ thereby
has an extended rangeZ ∈ ½0; 1�. This leads to the following
dynamical system for the present models:

x0 ¼ −ð2 − qÞx; ð41aÞ

Ω0
m ¼ 3½2x2 − ð1 − ΩmÞ�Ωm; ð41bÞ

Z0 ¼
ffiffiffi
6

p
λZð1 − ZÞx; ð41cÞ

4Due to noisy data, the current observational feasibility of the
jerk parameter j is questionable. Nevertheless, the fact that j ¼ 1
for the ΛCDMmodels makes it useful as a theoretical indicator of
deviations from ΛCDM cosmology, and it is for this reason we
give j. Moreover, as will be seen, the jerk parameter seems to be
the parameter that is most sensitive when it comes to deviations
from ΛCDM cosmology; it is unfortunate that it is also the most
difficult quantity to observationally measure of the presently
discussed ones.
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where 2− q ¼ 3ð1− x2Þ− 3
2
Ωm ¼ 3ð1− x2 −ΩmÞ þ 3

2
Ωm.

The reduced coupled system for x andΩm is invariant under
the transformation x → −x, which makes it possible to
identify this problem with that of a stiff fluid, characterized
by Ωstiff ¼ x2, a cosmological constant, and dust. In a
similar manner as for the ΩV ¼ 0 subset, this leads to

H
H0

¼ ðΩstiff0 expð−6τÞ þ ΩΛ0 þΩm0 expð−3τÞÞ1=2;

ð42aÞ

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
Ωstiff0

p
expð−3τÞ=ðH=H0Þ; ð42bÞ

Ωm ¼ Ωm0 expð−3τÞ=ðH=H0Þ2: ð42cÞ

As for the ΩV ¼ 0 subset it is easiest to obtain Z by
integrating the equation for ϕ, given by

ϕ0 ¼
ffiffiffi
6

p
x ¼ �ð6Ωstiff0Þ1=2 expð−3τÞ=ðH=H0Þ; ð43Þ

and then inserting the solution into (40).
We have previously dealt with the global dynamics

of monotonically decreasing potentials. We here give a
complete description for the constant potential. The past
and future states of all orbits follow from the exact
solution, or from the monotone function H2 in combi-
nation with the dynamical structure at the boundaries and

the local properties of the fixed points. The result is that a
two-parameter set of orbits in S and a one-parameter set
in Sϕ originate from each of the hyperbolic sources Mþ

0

and M−
1 , while a one-parameter set of solutions originates

from the transversally hyperbolic line of fixed points
FLZ into S; orbits in S and Sϕ end at the transversally
hyperbolic line of fixed points dSZ, which thereby
constitute the future attractor. The orbits that come from
Mþ

0 (M−
1 ) correspond to solutions with increasing

(decreasing) ϕ from ϕ → −∞ (ϕ → þ∞), starting from
a massless state [heuristically this can be understood from
Eq. (1c) where the friction force −3H _ϕ generates energy
toward the past, making the energy content of Λ (and ρ)
negligible compared to the kinetic energy of the scalar
field], while solutions that originate from FLZ reside on
the invariant subset x ¼ 0.
Since the x ¼ 0 subset corresponds to solutions with

different constant ϕ, and thereby also a constant ρϕ ¼ Λ,
these models are identical to the ΛCDM models. We
therefore denote the x ¼ 0 invariant subset surface as the
ΛCDM surface or subset. Furthermore, this surface divides
the state space into two disconnected domains with x > 0
and x < 0, respectively, and the ΛCDM subset thereby
acts as a separatrix surface. Note that it is a necessary
condition that the potential is a constant for x ¼ 0 to be an
invariant subset in S and thus no other potentials yield a
ΛCDM model.

FIG. 2. Depiction of the evolutionary history of ΛCDM cosmology for Ωm0 ¼ 0.3, ΩΛ0 ¼ 0.7 in terms of the redshift z. (a) HðzÞ-
diagram for the ΛCDM models, (b) qðzÞ-diagram for the ΛCDM models, (c) ΩmðzÞ-diagram for the ΛCDM models.
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Due to the regularity of the dynamical system and that
each fixed point on FLZ acts as a transversal saddle point
(exemplifying the previous general discussion concerning
the ΩV ¼ 0 subset and the vicinity of ΩV ¼ 0 and FLZ),
and since dSZ is the future attractor, it follows that the
ΛCDM separatrix surface x ¼ 0 is an “attracting" surface
or invariant subset (indeed, x2 is monotonically decreas-
ing). As a consequence, demanding that Ωm be close to 1
initially leads to solutions with almost ΛCDM behavior.
The solution space for this set of models is depicted in
Fig. 3 where we have chosen λ ¼ ffiffiffiffiffiffiffiffi

3=2
p

. Note that the
structure on the ΩV ¼ 0 subset is qualitatively the same for
all the potentials we consider, as discussed in the previous
section.
The present models in effect do not really have a

dynamical dark energy since the dark energy content
“freezes” toward an “unnatural” value Λ > 0 toward the
future for models with x ≠ 0, and they therefore do not
solve any coincidence or energy scale problems one might
have with the ΛCDM models. Nevertheless, since models
with Ωm close to 1 as an initial condition basically have the
same evolution as the ΛCDM models, these models with
their attracting ΛCDM separatrix surface subset, in an

evolutionary history sense, are the best a scalar field and
dust model can accomplish when it comes to mimicking
ΛCDM cosmology, and they therefore, from a purely time
development perspective, set the standards for any truly
dynamical dark energy model. Next we turn to the well-
known case of an exponential potential (see, e.g., [18,19]),
but in the present three-dimensional context.

B. Constant λ λCDM dynamics

An exponential potential

V ¼ V0 expð−λϕÞ; λ > 0; ð44Þ

and a dust matter equation of state results in the dynamical
system

x0 ¼ −ð2 − qÞxþ
ffiffiffi
3

2

r
λð1 − x2 − ΩmÞ; ð45aÞ

Ω0
m ¼ 3½2x2 − ð1 −ΩmÞ�Ωm; ð45bÞ

Z0 ¼
ffiffiffi
6

p
λZð1 − ZÞx; ð45cÞ

(a) (b)

(c)

FIG. 3. Depiction of the solution space of a fluid without pressure and a scalar field with a constant potential VðϕÞ ¼ Λ > 0, where
Z ¼ ð1þ expð− ffiffiffiffiffiffiffiffi

3=2
p

ϕÞÞ−1, illustrating the x ¼ 0 ΛCDM separatrix surface subset and its attracting nature. (a) The massless scalar
field boundary ΩV ¼ 0, (b) The scalar field boundary Ωm ¼ 0, (c) The ðx; Ωm; ZÞ state space for a constant potential and dust.
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where we have used the definition (40) for Z [also, recall
that 2 − q ¼ 3ð1 − x2Þ − 3

2
Ωm]. Once again there is a

decoupling between the scalar field variable Z and a
coupled system for x and Ωm on a reduced state space
Sred, parametrized by λ. As for a constant potential, it
therefore follows that solutions with the same initial x and
Ωm, but with different initial Z, have the same trajectories
when projected onto the x − Ωm-plane.
The qualitative structure of the solution space of S̄ is

entirely determined by the general monotonic features
and the structures on the boundary subsets of S and their
neighborhoods described earlier. Thus there are two-
parameter sets of orbits in S that originate from the sources
Mþ

0 andM−
1 when λ <

ffiffiffi
6

p
, but only fromM−

1 when λ >
ffiffiffi
6

p
,

while a one-parameter set of solutions originates from the
transversally hyperbolic line of fixed points FLZ. Toward the
future PL1 is a sinkwhen λ <

ffiffiffi
3

p
(and the future attractor on

S and Sϕ) while EM1 is future stable when λ >
ffiffiffi
3

p
(and the

future attractor on S). As previously shown, it is a general
feature that there is a one-parameter set of solutions that
originate from the line FLZ, forming an attracting invariant
subset, but it is only when λ <

ffiffiffi
3

p
that this invariant subset

forms an “attracting separatrix surface,” which in the limit
λ → 0 leads to the previous ΛCDM surface.
It is of historical interest to point out that it was the case

with λ >
ffiffiffi
6

p
with EM1 as the future attractor (although in

the two-dimensional projected context) that was the origi-
nal role model for concepts such as attractor (the fixed
point EM1 is the formal future attractor) and tracker
solutions in scalar field cosmology [recall that γϕ ¼ γm
for general γm (see Table I); i.e., the effective scalar field
equation of state “tracks" the matter equation of state]. As
we will see, this is rather misleading. Moreover, from
current observational constraints these models are no
longer viable cosmological models since q ¼ 1=2 for the
future attractor EM1. Since models with small λ are
arguably more relevant for understanding more general

and observationally competitive scalar field models, we
focus on this class of models next.
It is worthwhile to point out that since this does not seem

to be generally known, there are models with a perfect fluid
and a scalar field with an exponential potential that admits
simple explicit solutions, as shown by Uggla et al. in [20]
(where many other solvable scalar field and modified
gravity models can be found as well). One such example
is for dust when λ ¼ ffiffiffiffiffiffiffiffi

3=2
p

. Using the methods in [20], we
see that x and Ωm can be found in terms of cosmological
time t:

x ¼ 2t3 − c
4t3 þ 6tþ c

;

Ωm ¼ 1 − x2

1þ t2
¼ 12tðt3 þ 3tþ cÞ

ð4t3 þ 6tþ cÞ2 ; ð46Þ

which thus explicitly gives the trajectories in the x −Ωm-
plane in parametrized form, where the constant c character-
izes the different solutions, with c ¼ 0 yielding the
separatrix subset, i.e., the heteroclinic orbits from FLZ to
PL1 in S (a heteroclinic orbit is a solution trajectory that
connects two distinct fixed points). The solution space
structure is depicted in Fig. 4 [see also the reduced state
space in Fig. 1(b)].
Let us now consider the interior solutions in Fig. 4(b)

with λ ¼ ffiffiffiffiffiffiffiffi
3=2

p
in an Ωm − q diagram and in several

cosmographic diagrams (see Fig. 5), together with the
ΛCDM model with Ωm0 ¼ 0.3 and ΩΛ0 ¼ 0.7. To have a
feeling for the evolution in terms of redshift one can
compare with the graphs in Fig. 2, which gives a good
estimate for the history also for the other solutions when
expressed in the redshift z, as long as they are close to the
ΛCDM model. As can be seen, these models are deviating
rather significantly from the ΛCDM model, and therefore a
considerably smaller value of λ is needed to obtain an
evolution that is close to ΛCDM dynamics, even when Ωm
is close to 1 initially. Furthermore, in a certain sense,

(a) (b)

FIG. 4. State space structures for dust and V ¼ V0 expð−λϕÞ with λ ¼ ffiffiffiffiffiffiffiffi
3=2

p
. (a) The scalar field boundary Ωm ¼ 0; λ ¼ ffiffiffiffiffiffiffiffi

3=2
p

,
(b) The ðx; Ωm; ZÞ space for dust and λ ¼ ffiffiffiffiffiffiffiffi

3=2
p

.
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discussed next, the present class of models is as special as
the scalar field models with a cosmological constant, and
they are therefore unlikely candidates for solving any of the
issues one might have with ΛCDM cosmology.

C. Symmetries of frozen λCDM dynamics

It is only the cases of a constant or an exponential
potential that effectively reduce the problem from three to
two dimensions by decoupling the equation for the scalar
field variable. The underlying reason for this is that these
models admit scaling symmetries.
In the case of an exponential potential, a translation of the

scalar field leads to a scaling of the potential, which in
combination with an appropriate scaling of t yields a scaling
of ρϕ; furthermore, a scaling of the spatial coordinates leads
to a scaling of the scale factor a and thereby also of ρm in the
case of a linear equation of state with γm ≠ 0, which results
in a scaling symmetry of Einstein’s field equations. This in
turn gives rise to a one-parameter set of equivalent sol-
utions, being the reason for the decoupling property, and it
is also the underlying reason for why there exist “scaling
solutions,” which more appropriately should be referred to
as homothetic self-similar solutions since the spacetime
geometry of these solutions admits a homothetic Killing

vector field. For models with both a perfect fluid with a
linear equation of state and a scalar field with an exponential
potential, a scaling solution can only exist if ρm and ρϕ
behave in the same manner, which requires γm ¼ γϕ. The
existence of a fixed point EM on the reduced state space
x − Ωm therefore necessarily depends on this feature, but it
turns out to not always be possible since EM only exists
when λ >

ffiffiffiffiffiffiffiffi
3γm

p
; furthermore, the global attractive property

of EM, which does not follow from a fixed point analysis,
follows from a monotone function that can be derived from
another kind of symmetry of the field equations that is
associated with coordinate scalings (this is a general
mechanism, discussed for anisotropic models and perfect
fluids in [21]). For a constant potential, scalings of the
coordinates instead bring a solution with a given V ¼ Λ to a
solution with a differentΛ, and becauseΛ carries dimension
(length−2), there are no solutions admitting a homothetic
symmetry when Λ ≠ 0; i.e., this scaling symmetry is not
quite the same as that in the exponential case.
The existence of symmetries is what makes these

models tractable and therefore also popular. However,
the symmetries endow these models with special proper-
ties, which suggests that perhaps it is not a good idea to
consider these models as role models, since other models

(a) (b)

(c) (d)

FIG. 5. Diagrams for the observable Ωm and the cosmographic parameters H, q, j (the Hubble, deceleration, and jerk parameters) for
dust and a potential V ¼ V0 expð−

ffiffiffiffiffiffiffiffi
3=2

p
ϕÞ for the solutions (with the same notation) in Fig. 4(b). The thick line represents ΛCDM

cosmology with Ωm0 ¼ 0.3,ΩΛ0 ¼ 0.7. The horizontal lines with Ωm ¼ 0.3,H=H0 ¼ 1, and q ¼ −0.55 represent the present situation,
i.e., z ¼ 0. (a) Ωm − q diagram, (b) H − q diagram, (c) H − j diagram, (d) q − j diagram.
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do not admit similar symmetries and properties, or at least
that some careful considerations may be needed. Moreover,
originally, before one realized that the deceleration param-
eter q is evolving, it was thought that scale invariance and
thereby a constant q was quite desirable, since this would
solve fine-tuning problems such as coincidence and energy
scale problems. On the other hand, the symmetries also
make the models quite inflexible. Due to the changing
evolutionary history of q, where q is currently negative, the
scaling symmetries must be broken, while still leading to
models that in some way at least alleviate various fine-
tuning problems; for these reasons, and from a phenom-
enological perspective, scale-invariant models are no
longer the favorite candidates as dark energy models.

IV. DYNAMICAL λCDM DYNAMICS

A. Inverse power-law potentials

In the influential papers [3,4] Peebles and Ratra argued
that dark energy can be phenomenologically modeled by a
minimally coupled scalar field with a potential with a
shallow tail, which results in the dark field energy density
decreasing more slowly than the matter energy density to
its “natural” value—zero. In particular they considered an
inverse power-law potential,

V ¼ V0

ϕα ; ϕ > 0; α > 0 ⇒ λ ¼ α

ϕ
: ð47Þ

In addition they assumed a matter dominated flat FLRW
universe after inflation, which resulted in a set of approxi-
mate flat FLRWequations for which they found a particular
solution, which was shown to be linearly stable within the
approximate context. The associated solution of the exact
FLRW equations has subsequently been referred to as an
attractor or tracker solution [5], and has resulted in
numerous papers. In [13] a thorough local dynamical
systems analysis of the present models was performed,
based on previous work, e.g., [22–24] (for additional
references see, e.g., [6,13]). Here we will use a slight
variation of this approach and use the following bounded
scalar field variable:

Z ¼ 1

1þ λ
¼ ϕ

ϕþ α
⇒ λ ¼ 1 − Z

Z
; ϕ ¼ α

�
Z

1 − Z

�
;

ð48Þ

where Z thereby is monotonically increasing in ϕ (in [13]
1 − Z was used as the scalar field variable).
The present case has an unbounded λ, and therefore we

use the dynamical system (13), where we choose gðZÞ ¼ Z,
and thus gλ− ¼ 1 and

dτ
dτ̄

¼ Z;
dt
dτ̄

¼ H−1Z; ð49Þ

and the following dynamical system for the state vector
ðx;Ωm; ZÞ:

dx
dτ̄

¼ −ð2 − qÞxZ þ
ffiffiffi
3

2

r
ð1 − ZÞð1 − x2 −ΩmÞ; ð50aÞ

dΩm

dτ̄
¼ 3½2x2 − ð1 − ΩmÞ�ΩmZ; ð50bÞ

dZ
dτ̄

¼
ffiffiffi
6

p

α
ð1 − ZÞ2Zx; ð50cÞ

where 2 − q ¼ 3ð1 − x2Þ − 3
2
Ωm.

Due to the discussion about global dynamics in Sec. II, it
follows that the conclusions obtained from the local fixed
point results in [13] correspond to global asymptotic
features. Hence a two-parameter set of solutions originates
from M−

1 , and a one-parameter set from FLZ, where the
tracker solution originates from FL0. Toward the future all
orbits on S and Sϕ end at the global future attractor dS1.

5

The solution structure for α ¼ 6, and especially that of the
subset that originates from FLZ, is depicted in Fig. 6.
It is of some interest to complement the dynamical

systems picture with a heuristic description where we
regard the scalar field as a particle moving in a potential,
while losing energy due to the friction force −3H _ϕ. Due to
the existence of a potential wall that is so steep that λ → ∞
when ϕ → 0, all “scalar field particles” (solutions) either
come from ϕ → −∞ and bounce against the potential wall
(the two-parameter set of solutions fromM−

1 ) or from being
initially still at some ϕ (no initial kinetic scalar field energy,
i.e., x ¼ 0) and then rolling down the potential in the
positive ϕ-direction; the tracker solution corresponds to the
solution that starts by being initially still with an infinite
scalar field energy associated with the limit ϕ → 0 (note
that this result also follows from the asymptotic explicit
results concerning this solution given originally in [3,4]).
All solutions therefore eventually move in an increas-

ingly shallow potential, slowed by “friction,” and hence
with decreasing scalar field energy, although the matter
energy decreases faster, thus leading to a future asymptotic
(quasi) de Sitter state at ϕ → þ∞ (i.e., dS1).
Loosely speaking, the tracker solution is connected with

a bifurcation associated with going from a potential with
finite λ to infinite λ, transforming the attracting focus of the
exponential case with large λ to a center. The orbits on

5Since limϕ→þ∞VðϕÞ ¼ 0 it follows that the future asymptotic
state dS1 now corresponds to the Minkowski spacetime instead of
the de Sitter spacetime. However, because the matter energy
density goes to zero faster than the scalar field energy density, it
still follows that q → −1; the asymptotic evolution thus resem-
bles that of the de Sitter spacetime, since asymptotically the
spacetime approaches that of a Minkowski spacetime in a (local)
foliation where q → −1. A similar statement holds for the models
in the next subsection.
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Z ¼ 0 are characterized by Ωm ¼ const. They therefore
correspond to the periodic orbits found in the monomial
case at late times, given in different variables in [15], but in
the present case they are interrupted by being cut in half by
the line of fixed points, Mx

0, which is a formal consequence
of the new time variable. The physical reason for this
feature is that in contrast to the monomial case there are no
scalar field oscillations at late times for inverse power-law
potentials.
As can be seen from Fig. 6, the tracker solution forms

part of the boundary of the FLZ saddle subset, which
therefore is not a separatrix surface. Because of its initial
linear stability property in the Peebles-Ratra formulation
[3,4], which was seen as alleviating the coincidence
problem, nearby solutions are attracted to it. However,
there exists an open set of solutions that are further away
from it that are not, even if Ωm is close to 1 initially (those
with fairly large initial Z). This is to be expected since the
Peebles-Ratra stability analysis is only local. It should also
be pointed out that there is no a priori reason for believing
that the local attracting property holds globally in time.6

However, all solutions near the tracker solution, indeed all
solutions that are near or on the subset that originates from
FLZ, are eventually shadowing the center manifold of the
fixed point dS1 on Sϕ

7 and it is the center manifold solution
on Sϕ that is an “attractor solution” rather than the tracker
solution, since any solution close to this solution is attracted
to it because it is a center manifold, but note that it is dS1
that is the formal future attractor.

As seen from Fig. 6, the tracker solution and the
solutions that are near to it on the subset that originates
from FLZ are those solutions on this subset that diverge
from ΛCDM dynamics the most (in this sense they are the
observationally worst solutions in this subset of solutions,
which is also seen by plotting the solutions in diagrams for
the observables; see Fig. 7) and quite substantially when
α ¼ 6. Let us therefore consider the dynamics for models
with lower α.
The solution structure for α ¼ 1=2, and especially that of

the subset that originates from FLZ, is depicted in Fig. 8.
The topological structure is the same as for α ¼ 6, but the
subset that originates from FLZ is now located closer to the
x ¼ 0-plane and as a consequence the dynamics of sol-
utions with Ωm close to 1 initially more closely resembles
that of the ΛCDM models. These results are therefore in
line with the conclusion in [6], that it is only for quite small
α that the tracker solution is observationally viable, which
restricts the observational relevance of these models. The
deviations from ΛCDM cosmology can be explicitly seen
in the diagrams for the observables in Fig. 9.
Note that Figs. 6 and 8 also show that it is not only the

tracker solution that attracts nearby solutions, but the
whole FLZ saddle subset. The underlying reasons for this
are that (i) the whole line of fixed points FLZ acts as a
line of saddle points, and (ii) all solutions in this subset
are attracted to the center manifold of dS1 at late times
before asymptotically approaching the global future
attractor dS1.
Finally, it is worth noting that the underlying reason for

why the early behavior of the tracker solution exhibits a
“tracking property” is because the present case can be
viewed as a bifurcation where EM0 merges with FL0 in the
limit λ → ∞. The property that γϕ ¼ γm¼ 1 for EM,
irrespective of λ (as long as EM exists until it merges with
PL), can subsequently be exploited by comparing the
reduced two-dimensional dynamics of a sequence of

(a) (b)

FIG. 6. Solution structure for the state space for models with dust and a scalar field with inverse power-law potential V ¼ V0ϕ
−α with

α ¼ 6. (a) The ðx; Ωm; ZÞ state space, (b) Projection of ðx; Ωm; ZÞ state onto ðx; Ωm Þ.

6See, e.g., [11] for an example of an attracting solution that is
locally but not globally attracting.

7Incidentally, it is the center manifold solution on Sϕ that the
slow-roll approximation, given in, e.g., [9], describes approx-
imately; see [14,15] for a similar situation at early times instead of
late times.
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reduced exponential scalar field state spaces, as done in
[13,22,23], to yield an approximate heuristic description of
the behavior of the tracking solution. Nevertheless, it
should be clear that the dynamics of an inverse power-
law potential model is globally very different from that of a
given exponential potential, which is what can be expected
from a model that does not exhibit scaling symmetries.

The observational viability difficulties of the dust and
inverse power-law potential models, including those of
tracker solutions, arise because λ → ∞when ϕ → ∞, since
a large λ makes the dynamics deviate from ΛCDM
dynamics. This motivates us to consider other types of
scalar field potentials for which λ is globally and asymp-
totically regularized. For this reason, we therefore

(a) (b)

FIG. 8. The solution space of dust and an inverse power-law potential V ¼ V0ϕ
−α with α ¼ 1=2. (a) ðx; Ωm; ZÞ state space,

(b) Projection of ðx; Ωm; ZÞ state onto ðx; Ωm Þ.

FIG. 7. Observables for dust and an inverse power-law potential V ¼ V0ϕ
−α with α ¼ 6. The thick solid line represents ΛCDM

cosmology; the horizontal lines represent now, i.e., zero redshift; and the other lines correspond to the solutions in Fig. 6, where the grey
line corresponds to the tracker solution. (a) Ωm − q diagram, (b) h − q diagram, (c) h − j diagram, (d) q − j diagram.
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phenomenologically regularize λ of the inverse power-law
potential and use (6) to derive V, in arguably the simplest
possible way, so that λ becomes finite and one obtains
continuous deformations of ΛCDM cosmology.

B. λ-regularization of inverse power-law potentials

To obtain a type of potential that has a regular λ and still
behaves like an inverse power-law potential for large ϕ, we
generalize the inverse power-law potential by choosing

λ ¼ αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p ¼ λmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðϕ=CÞ2

p ; C > 0: ð51Þ

Here λmax ¼ α=C is the maximum value of λðϕÞ while C
describes the peak width of the present λðϕÞ. Using (6), this
“regularized” inverse power-law λðϕÞ leads to the potential

V ¼ V0

�
ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

q �
−α
: ð52Þ

It follows that limϕ→�∞ðϕ�αVÞ ¼ const. Note that this
class of potentials contains the inverse power-law potential
by setting C ¼ 0 (restricting dynamics to ϕ > 0) and a
cosmological constant by setting α ¼ 0. As an example, we

give the potential and λ for α ¼ 6 and C ¼ 10, depicted
in Fig. 10.
The above is (so far) a purely phenomenologically

motivated potential, but so was the original motivation
for the inverse power-law potential [3,4]. The point here is
to give a simple specific example of continuous ΛCDM
scalar field deformations, illustrating features that any
observationally viable model arising from some fundamen-
tal theory must have.
To continue we choose

Z ¼ z
1þ z

; z ¼ ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

q
;

ϕ ¼ z2 − C2

2z
¼ Z2 − C2ð1 − ZÞ2

2Zð1 − ZÞ ð53Þ

as the scalar field variable (here z should not be confused
with the redshift). This leads to

λ ¼ 2αZð1 − ZÞ
Z2 þ C2ð1 − ZÞ2 ð54Þ

and the regular dynamical system

FIG. 9. Observables for dust and an inverse power-law potential V ¼ V0ϕ
−α with α ¼ 1=2. The thick solid line represents ΛCDM

cosmology; the horizontal lines represent now, i.e., zero redshift; and the other lines correspond to the solutions in Fig. 8, where the grey
line corresponds to the tracker solution. (a) Ωm − q diagram, (b) h − q diagram, (c) h − j diagram, q − j diagram.
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x0 ¼ −ð2 − qÞxþ
ffiffiffi
3

2

r
λðZÞð1 − x2 −ΩmÞ; ð55aÞ

Ω0
m ¼ 3½2x2 − γmð1 −ΩmÞ�Ωm; ð55bÞ

Z0 ¼
ffiffiffi
6

p
α−1λZð1 − ZÞx ¼

ffiffiffi
6

p 2Z2ð1 − ZÞ2
Z2 þ C2ð1 − ZÞ2 x; ð55cÞ

where 2 − q ¼ 3ð1 − x2Þ − 3
2
Ωm. The qualitative properties

of this system follow from the general discussion in Sec. II.
We give an explicit representation of the solution space for
the case C ¼ 10 and α ¼ 6 in Fig. 11. The associated
diagrams for physical observables are given in Fig. 12. As
can be seen the λ-regularized models give much better
results than the corresponding models with an inverse
power-law potential with the same α, when C is chosen so
that it is of the same order of magnitude as α, and even
better if C is larger (cf. Figs. 7 and 12, which both have
α ¼ 6). The results basically linearly improve with

increasing C for a fixed α, which should not come as a
surprise since λmax ¼ α=C; for α ¼ 6 and C ¼ 100, and
therefore λmax ¼ 0.06, the dynamics for models with Ωm
close to 1 initially is almost indistinguishable from ΛCDM
dynamics. Toward smaller C, the models increasingly yield
similar results as the inverse power-law potential, which
again is to be expected.

C. Observational λ conditions for continuous
ΛCDM deformation

The structure of the flat FLRW models with dust and
inverse power-law potential strongly suggests that it does
not suffice to just have a monotonically decreasing poten-
tial with a shallow potential tail, since even if λ → 0 when
ϕ → þ∞ a large λðϕÞ for some ϕ generally results in
considerable deviations from ΛCDM cosmology. There are
significant differences in the solution structure if λ is
globally and asymptotically bounded or not.
This suggests that observational viability implies global

and asymptotic boundedness conditions on λ, so that the

FIG. 10. The potential V ¼ V0ðϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
Þ−α and associated λ ¼ α=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
for α ¼ 6 and C ¼ 10. (a) Potential diagram,

(b) λ diagram.

(a) (b)

FIG. 11. Depiction of the solution space of flat FLRWmodels with dust and a scalar field with a potential V ¼ V0ðϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
Þ−α

and associated λ ¼ α=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
for α ¼ 6 and C ¼ 10. (a) ðx; Ωm; ZÞ state space, (b) Projection of ðx; Ωm; ZÞ state space onto

ðx; ΩmÞ.

ARTUR ALHO AND CLAES UGGLA PHYSICAL REVIEW D 92, 103502 (2015)

103502-18



whole subset that originates from FLZ into S only deviates
moderately from the x ¼ 0 ΛCDM surface. It should be
pointed out that this not only produces an observationally
viable set of models, but also alleviates the coincidence and
possibly other fine-tuningproblems sinceallorbitswith initial
values ofΩm close to 1 behave similarly because the invariant
subset that originates from FLZ then constitutes an attracting
separatrix surface, eliminating the need for any measure.8
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APPENDIX: A SCALAR FIELD
AND TWO FLUIDS

In this work we have considered a matter content
that consists of a fluid without pressure. However, the
early Universe after inflation is radiation dominated and
therefore somewhat more sophisticated models have both
radiation and dust as matter content. In a dynamical
systems context this situation can be treated as follows.
Consider two noninteracting fluids with energy densities ρ1
and ρ2, respectively. It is then convenient to introduce

ρm ¼ ρ1 þ ρ2; χ ¼ ρ1
ρm

; ðA1Þ

as the two perfect fluid variables instead of ρ1 and ρ2.
9

Assume further that the fluids obey linear equations of state

(a) (b)

(c) (d)

FIG. 12. Observables for flat FLRW models with dust and a scalar field with the potential V ¼ V0ðϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
Þ−α and associated

λ ¼ α=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ϕ2

p
for α ¼ 6 and C ¼ 10. The thick solid line represents ΛCDM cosmology; the horizontal lines represent now, i.e., zero

redshift; and the other lines correspond to the solutions in Fig. 11. (a) Ωm − q diagram, (b) h − q diagram, (c) h − j diagram, (d) q − j
diagram.

8Because open sets of solutions do not follow the tracker
solution closely, it was argued in [13] that solutions that were
close to the tracker solution were in some sense generic due to the
center manifold structures. However, such structures can be
eliminated or changed by a change of variables, while the fact
that there are open sets of solutions that behave quite differently
than the tracker solution in terms of physical observables cannot.
It is therefore a question of measures if trackerlike behavior is
generic or not, and a consensus about measures seems rather
unlikely. On the other hand, if center manifold structures reflect
behavior in physical observables, they might very well play an
important role in cosmology.

9For alternative ways of handling several fluids, see, e.g.,
[25,26].
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characterized by the constant equation of state parameters
γ1 and γ2, where we without loss of generality set γ2 > γ1
(if γ2 ¼ γ1 we treat the problem as a single fluid). The
system (9) holds for fluids with general barotropic equa-
tions of state, which includes the present case. However,
having two fluids instead of one with linear equations of
state makes it convenient to augment the system (9) with
the additional variable χ, which leads to

x0 ¼ −ð2 − qÞxþ
ffiffiffi
3

2

r
λðZÞΩV; ðA2aÞ

Ω0
m ¼ 3½2x2 − γmð1 −ΩmÞ�Ωm; ðA2bÞ

Z0 ¼
ffiffiffi
6

p dZ
dϕ

x; ðA2cÞ

χ0 ¼ 3ðγ2 − γ1Þχð1 − χÞ; ðA2dÞ
where, as before, ΩV ¼ 1 − x2 −Ωm and Ωm ¼ ρm=3H2.
The deceleration parameter is given by

q ¼ −1þ 3x2 þ 3

2
γmΩm

¼ −1þ 3x2 þ 3

2
ðγ1χ þ γ2ð1 − χÞÞΩm; ðA3Þ

since γm ¼ ρ1þρ2þp1þp2

ρ1þρ2
¼ γ1χ þ γ2ð1 − χÞ. Due to the sim-

ilarity with the single fluid case we choose to include the
same boundaries, but with the addition of χ we also
consider χ ∈ ½0; 1�, where χ ¼ 0 (χ ¼ 1) corresponds to
the single fluid case for ρ2 (ρ1).
Since γ2 > γ1 it follows that χ is strictly monotonically

increasing when 0 < χ < 1. Furthermore, χ can be solved
in terms of the scale factor a by using the conservation
equation dρi=d ln a ¼ −3γiρi, which yields ρi ∝ a−3γi and
therefore

χ ¼ 1

1þ kða=a0Þγ1−γ2
¼ 1

1þ k exp½ðγ1 − γ2Þτ�
; ðA4Þ

where k ¼ ρ20=ρ10 ¼ Ω20=Ω10. It follows that χ → 0
(χ → 1) when a → 0, i.e., τ → −∞ (a → ∞, i.e.,
τ → þ∞). Thus χ ¼ 0 in the asymptotic past and χ ¼ 1
in the asymptotic future, which tells us that the fluid with the

most soft (stiff) equation of state dominates asymptotically
over the other fluid at late (early) times. As a consequence of
the above features it follows that asymptotic future (past)
dynamics reside on the χ ¼ 1 (χ ¼ 0) subset.
Because it is possible to solve the conservation equations

for each of the two fluids in terms of the scale factor, this
gives rise to a constant of motion, which also reflects that
the problem is really a three-dimensional one. To obtain
this conserved quantity we first note that

Ω1 ¼ χΩm; Ω2 ¼ ð1 − χÞΩm: ðA5Þ

Then, since ρ1 ∝ a−3γ1 and ρ2 ∝ a−3γ2 , it follows that

const ¼ ργ21
ργ12

∝
Ωγ2

1

Ωγ1
2

ðH2Þγ2−γ1

¼ χγ2ð1 − χÞ−γ1Ωγ2−γ1
m ðH2Þγ2−γ1 ; ðA6Þ

where H2 is given in terms of the state space variables
in Eq. (19).
The matter subset Ωm ¼ 1, i.e., x ¼ 0, ΩV ¼ 0, now

corresponds to the two-dimensional system

Z0 ¼ 0; ðA7aÞ

χ0 ¼ 3ðγ2 − γ1Þχð1 − χÞ; ðA7bÞ

which has the solution Z ¼ const, χ ¼ 1=
ð1þ k exp½ðγ1 − γ2Þτ�Þ. The analysis of the single fluid
case is directly translatable to the present context, and the
line of fixed points FLZ is now replaced with the above
two-dimensional subset. It follows that the inclusion of
radiation changes little of the previous discussion as
regards qualitative dynamical features.
It should perhaps be pointed out that instead of χ andΩm

it is possible to use Ω1 ¼ ρ1=3H2 and Ω2 ¼ ρ2=3H2 as
variables, where

dΩi

dτ
¼ ½2q − ð3γi − 2Þ�Ωi;

q ¼ −1þ 3x2 þ 3

2
ðγ1Ω1 þ γ2Ω2Þ; ðA8Þ

and where ΩV ¼ 1 − x2 −Ω1 − Ω2.
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