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An interaction between the vacuum energy and dark matter is an intriguing possibility which may offer a
way of solving the cosmological constant problem. Adopting a general prescription for momentum
exchange between the two dark components, we reconstruct αðaÞ, the temporal evolution of the coupling
strength between dark matter and vacuum energy, in a nonparametric Bayesian approach using combined
observational data sets from the cosmic microwave background, supernovae and large scale structure. An
evolving interaction between the vacuum energy and dark matter removes some of the tensions between
different data sets. However, it is not preferred over ΛCDM in the Bayesian sense, as improvement in the fit
is not sufficient to compensate for the increase in the volume of the parameter space.
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I. INTRODUCTION

The discovery of cosmic acceleration [1,2] has inspired
the development of a wide range of dark energy (DE)
and modified gravity models. The simplest DE candidate,
the cosmological constant Λ, is a parameter in General
Relativity and is consistent with all current observations
[3]. The main problem with Λ is not why it has a particular
value, but the fact that the vacuum energy contribution to Λ
is sensitive to the ultraviolet cutoff scale and requires a
technically unnatural fine-tuning [4], which is the long-
standing cosmological constant problem (CCP) [5]. Most
of the dynamical DE and modified gravity models pro-
posed in the literature do not offer a solution to this old
problem. The CCP would be surmountable if there was a
dynamical mechanism by which vacuum energy could
decay from its initially large value and settle at an attractor
consistent with the observed value of Λ. While a full theory
of the quantum vacuum that would contain such a mecha-
nism does not exist, this idea has motivated phenomeno-
logical models of decaying vacuum energy [6–12].
One way to have a nonconstant vacuum energy is to

introduce a new dynamical degree of freedom, e.g., a scalar
field. An alternative approach, which avoids explicitly
introducing new degrees of freedom while still preserving
the general covariance of the evolution of cosmological
perturbations, is to allow for the exchange of momentum
between the vacuum energy and other species [13]. Both
the minimally [14–16] and nonminimally [17–19] coupled
quintessence models can be cast in this general framework.
In the former case, the vacuum (the potential energy)
exchanges energy with the kinetic energy of the scalar
field. In the latter, there is an additional exchange with
matter. In this sense, one can say that a time-dependent
vacuum energy is necessarily interacting. Since additional

interactions in the visible matter sector are strongly con-
strained while the nature of dark matter (DM) is largely
unknown, we will consider models in which the vacuum
interacts only with DM.
In this paper we adopt the phenomenological model of

vacuum energy evolution introduced in [13] which avoids
dealing with explicit additional degrees of freedom. The
vacuum equation of state is by definition equal to −1, but
the vacuum energy density V is allowed to vary because
of the interaction with DM, ∇μV ¼ −Qμ.

II. THE MODEL

In the interacting vacuum energy model the background
DM and vacuum energy densities obey continuity equations

_ρdm þ 3Hρdm ¼ −Q; _V ¼ Q; ð1Þ
where Q denotes the energy transfer between DM and
vacuum energy. An arbitrary energy transfer Q can in
principle reproduce an arbitrary background cosmology, with
energy density ρ ¼ ρdm þ V and pressureP ¼ −V [13]. This
reduces to ΛCDM when Q ¼ 0.
To calculate the linear perturbations, we need to specify a

covariant form of the energy-momentum transfer 4-vector.
Following [20,21], we assume that the covariant interaction
is parallel to the 4-velocity of DM, Qμ ¼ QuμðdmÞ. There are
other choices [13], but this covariant form for the interaction
means that there is no momentum transfer in the DM
comoving-orthogonal frame and hence the DM particles
follow geodesics, as in ΛCDM. Although the interacting
vacuum does allow inhomogeneous perturbations, one can
always choose a frame in which the vacuum is spatially
homogeneous, δV ¼ 0. For geodesicDM this coincideswith
a comoving-orthogonal frame [20,21] and the perturbation
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equations are particularly simple in this gauge. Note that in
this case the energy transfer is a potential flow,Qμ ¼ −∇μV,
and therefore the matter velocity uμðdmÞ must be irrotational

[22]. The DM density contrast evolves according to

_δdm ¼ −ϑþQðaiÞ
ρdm

δdm; ð2Þ

where the divergence of the matter 3-velocity is given by the
extrinsic curvature of the metric, ϑ ¼ _h=2 in the comoving-
synchronous gauge, and h is the scalar mode of metric
perturbations [23].
We take Q to be of a form inspired by the generalized

Chaplygin gas model [24,25], Q ¼ 3αHρdmV=ðρdm þ VÞ,
where α is a dimensionless coupling parameter [13]. This
form naturally reproduces a conventional matter-dominated
solution at early times, and a vacuum dominated solution
at late times, while allowing more general evolution in
between. Previous studies [20,21] have constrained the
interaction assuming α ¼ const.1

In this paper, we make no assumptions about the time
dependence of α and directly reconstruct it from data using
the nonparametric Bayesian approach introduced in [27].We
are thus able to describe a general background cosmology
and reproduce any equation of state seen in quintessence
models, but the perturbations are of a restricted form with
vanishing sound speed but nonzero energy transfer to or from
DM, determined by the background cosmology. Thus our
model is degeneratewith quintessencemodels in terms of the
background cosmology, but distinguished by the evolution of
perturbations.

III. THE RECONSTRUCTION METHOD

We first discretize αðaÞ into bins αi ¼ αðaiÞ, i ¼ 1;…; N,
distributed uniformly in the interval ½amin; amax�, giving usN
parameters αi that can be fit to data. Any representation of a
function with a finite number of parameters is necessarily
inaccurate and, in the absence of additional priors, the
outcome of the fit would directly depend on N. As shown
by Crittenden et al. [27], it is possible to eliminate the
dependence on N and explicitly control the reconstruction
bias by adding a prior that correlates the nearby bins.
In the correlated prior approach one assumes that αðaÞ is a

smooth function, so that its values at neighboring points in a
are not entirely independent. More specifically, αðaÞ is taken
to be a Gaussian random variable with a given correlation
ξ between its values at a and a0, ξðja − a0jÞ≡ h½αðaÞ−
αfidðaÞ�½αða0Þ − αfidða0Þ�i, which is nonzero for ja − a0j
below a given “correlation length” but vanishes at much
larger separations, and αfidðaÞ is a reference fiducial model.
Given a particular functional form of ξðja − a0jÞ, one can
calculate the corresponding covariance matrix for the N
parameters αi:

Cij ¼
1

Δ2

Z
aiþΔ

ai

da
Z

ajþΔ

aj

da0ξðja − a0jÞ; ð3Þ

where Δ is the bin width. This covariance matrix defines a
(Gaussian) prior probability distribution for parameters αi
and its product with the likelihood, according to Bayes’
theorem, gives the desired posterior distribution. Thus,
the reconstruction amounts to finding the minimum of
χ2 ¼ χ2prior þ χ2data, where χ2prior ¼ ðα − αfidÞTC−1ðα − αfidÞ
and αfid is some fiducial model. To avoid dependence on αfid,
we take it to be constant and marginalize over its value
following [27].
Weadopt theCrittenden-Pogosian-Zhao form[27,28] for the

correlation function, ξðja−a0jÞ¼ξð0Þ=½1þðja−a0j=acÞ2�,
where ac determines the correlation length and ξð0Þ sets the
strength of the prior. This form has the advantage of making it
possible to evaluate integrals in Eq. (3) analytically, while also
havinga transparent dependenceon its twoparameters.Wealso
note that, as shown in [27], the outcome of reconstruction is
largely insensitive to the particular function chosen to
represent ξðja − a0jÞ.
The correlation length ac sets the effective number of

degrees of freedom allowed by the prior: Neff ≃ ðamax−
aminÞ=ac. As long as N > Neff , the reconstructed result is
independent of N. Rather than adjusting ξð0Þ to control the
strength of the prior, we use thevariance of themean given by
σ2ᾱ ≃ πξð0Þac=ðamax − aminÞ in the limit ac ≪ amax − amin
[27,28]. Namely, given ac, one can adjust ξð0Þ to keep the
prior on the uncertainty in the mean of αðaÞ independent of
Neff . In what follows, we take σᾱ ¼ 0.04 based on the
constraint on a constantα obtained in [21], and setac ¼ 0.06.
Aswe show later using principal component analysis (PCA),
this choice of ac effectively separates the signal from noise,
thus allowing a high-resolution reconstruction with minimal
contamination from the noise.

IV. DATA

Our data sets include the CMB temperature and polari-
zation power spectra from Planck [29] and WMAP9 [30]
respectively; the Joint Light-curve Analysis (JLA) super-
novae sample [31]; the baryon acoustic oscillation (BAO)
measurements of 6dFGRS [32], SDSS DR7 [33], BOSS
LOWZ [34] and BOSS Lyman-α Forest (LyaF) [35]; the
redshift space distortion (RSD) measurements which
probe both the expansion and the growth history, namely
(DV=rsðzdÞ, FAP, fσ8) from BOSS CMASS [36] and (A,
FAP, fσ8) from WiggleZ [37], where FAP quantifies the
“Alcock-Paczynski” effect [38]. We denote these data sets
as “RSD (with AP effect),”while we also use a “RSD (All)”
data set that includes additional RSD measurements with-
out the AP effect: 6dFGRS [39], 2dFGRS [40], SDSS LRG
[41] and VIPERS [42]. We present the constraints from
four data combinations as shown in Fig. 1.
The RSD measurements constrain ðfσ8Þ2, the product of

the growth rate and the variance of the total matter density
1Salvatelli et al. [26] considered a related dimensionless

parameter, q ¼ −3αρdm=ðρdm þ VÞ, in four redshift intervals.
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contrast. Note that the continuity equation of DM density
contrast in our model [Eq. (2)] is different from that in
ΛCDM and, therefore, the growth rate probed by the RSD
is no longer simply that of the DM component. Namely, in

ΛCDM, the velocity divergence of DM, ϑ≡ ~∇ · ~v, is
simply fdmHδdm where fdm ≡ d ln δdm=d ln a is the DM
growth rate. In the interacting vacuum model, Eq. (2)
implies that

ϑ ¼ −
�
fdm −

QðaiÞ
Hρdm

�
Hδdm ≡ −fiHδdm ≡ −fϑHδm:

If QðaiÞ ≠ 0, the effective DM growth rate fi, the appro-
priately weighted total matter growth rate fϑ [43] and fdm
are different from each other. It can be shown that

fϑ ¼
�
1

fi

ρdm
ρm

þ 1

fb

ρb
ρm

�
−1
; ð4Þ

where fb ≡ d ln δb=d ln a is the growth rate of baryons. In
the absence of an interaction we recover the standard result:
fϑ ¼ fi ¼ fb, while, in general, i+t is ðfϑσ8Þ2 that is
measured by RSD.

V. RESULTS

We discretize αðaÞ into 40 bins uniform in a within
[0.001, 1], and use Monte Carlo Markov chains (MCMC)
implemented in a modified version of COSMOMC [44] to fit
them to data along with all other relevant cosmological
parameters. A total χ2 is minimized and the joint posterior
probability distribution for all the parameters is obtained
after the MCMC has converged.
The best-fit reconstructed models of αðaÞ (with 68% and

95% C.L. errors) are shown in Fig. 1. The ΛCDM fits the
observations well when the LyaF BAO measurements are
not included (data I) and the reconstruction remains almost
unchanged after adding more RSD data (data II). However,

when the LyaF data is included, we see evidence for an
evolving α: data III (IV) shows a 1.8ð1.9σÞ improvement in
the fit for the α ≠ 0 model. In these cases, the best-fit αðaÞ
model changes sign during its evolution, i.e., it is positive at
z≳ 2.1, implying an energy transfer from DM to vacuum
energy, but negative at 0.6≲ z≲ 2.1, implying vacuum
decay. At z≲ 0.6, α is consistent with ΛCDM. The varia-
tions at higher and lower redshifts compensate to make
the deceleration-acceleration transition redshift, zt ¼ 0.6
from data III, close to the ΛCDM value of zt ¼ 0.65, which
agrees with the value extracted from the HðzÞ data [45]
using aGaussian prior ofH0 ¼ 68� 2.8 km s−1Mpc−1, but
is smaller than the value extracted using a prior of H0 ¼
73.8� 2.4 km s−1Mpc−1 [45]. Again, adding more RSD
data points (data IV versus data III) does not change the
reconstruction significantly.
To understand this result, in Fig. 2 we show the

theoretical predictions for DV=rs and fϑσ8 for the best-
fit binned model from data III rescaled by the correspond-
ing best-fit ΛCDM model predictions, together with the
actual measurements. In panel (A), the LyaF measurement
(open star) has the smallest error bar and pulls the fit down,
also making it more consistent with the CMASS meas-
urement (filled star). This reduces the BAO χ2 by 4.1. This
fit is favored by the fϑσ8 as well (panel B), further reducing
the χ2 by 1.7. The remaining data from CMB and SN
slightly disfavor this model; namely, they increase χ2 by
∼2, but not enough to compensate for the reduction in χ2

from BAO and RSD.
The improvement in the fit achieved by the binned model

must be weighed against the increased number of degrees
of freedom. This can be quantified via the Bayes factor, or
the ratio of the Bayesian evidences of the interacting model
and the ΛCDM model. For one model to be preferred over
the other, the Bayes factor should be significantly greater
than 1. Since the evidence depends on the prior assumed for
the binned coupling αðaiÞ, we follow the method in [46] to
examine the dependence of the Bayes factor on the the

FIG. 1 (color online). Reconstruction of αðaÞ from four different data combinations: data I: CMBþ SNþ BAO ðwithout LyaFÞ þ
RSD (with AP effect); data II: CMBþ SNþ BAOðwithout LyaFÞ þ RSD (All); data III: CMBþ SNþ BAOðAllÞ þ RSD (with AP
effect) and data IV: CMBþ SNþ BAOðAllÞ þ RSD (All). The best-fit model (central white solid curves) with the 68, 95% C.L. errors
(dark and light blue shaded bands) are shown in each panel. We denote the redshift in each panel on the top x-axis. The horizontal dashed
line denotes the ΛCDM model.
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variance in each bin, σbin, which controls the strength of the
prior. In Fig. 3, we plot the logarithm of the evidence ratio
(Δ ln E) as well as the logarithms of the ratios of the
volumes of parameter space (Δ lnV) and the likelihood
(Δ ln L) as a function of σbin. For σbin → 0, the prior
effectively forces αðaiÞ to become equal to the fiducial
model, which is ΛCDM, and all three ratios approach unity.
Increasing σbin allows for more freedom in the variation of
αðaiÞ and improves the fit. However, as evident from Fig. 3,
the improvement in the fit is not sufficient to compensate
for the increase in the parameter volume. The Bayes factor
is only marginally greater than 1 for a limited range of
σbin around the value of 0.1, which was the value used in
the reconstruction in Fig. 1. Thus, we conclude that the
interacting model is not preferred over ΛCDM.
Even with the lack of strong preference for the evolving

model, it is still interesting to know to what extent our
reconstruction constrains the evolution of the vacuum

energy. For instance, one could ask which part of the
information is informed by data and which part is informed
by the prior. The errors shown in the reconstruction in
Fig. 1 are highly correlated, making their direct interpre-
tation difficult. Principal component analysis (PCA) is a
useful tool that can be used to analyze and tune the prior
(for applications of PCA to DE studies, see e.g.,
[27,28,47]). The PCA seeks the orthonormal eigenmodes
of the inverse covariance matrix Fα of the α bins after
marginalizing over other cosmological parameters.
Namely, Fα ¼ WTΛW, with eigenvectors defined by the
decomposition matrix W and the eigenvalues given by the
elements of the diagonal matrix Λ. Eigenmodes define
independent linear combinations of the original parameters
(α bins) that have uncorrelated errors and, thus, are easier to
interpret. We can also use PCA to compare the eigenmodes
with and without the prior which, as we explain below,
allows us to estimate the effective number of degrees of
freedom of αðaÞ constrained by data. Performing the PCA
is straightforward, since Fα is one of the products of our
MCMC calculation.
The eigenvalues of both the prior and the dataþ prior

covariance are shown in panel (c) of Fig. 2. There are three
data eigenmodes that are not affected by the prior, i.e., these
three best constrained modes pass the prior with almost no
penalty. The shapes of these modes are shown in panel (d)
and we find that they are similar for all data combinations.
The remaining modes, on the other hand, are dominated by
the prior. Thus, even though our model has many bins of α

(a) (b) (c) (d)

FIG. 2 (color online). Panels (a) and (b): The theoretical prediction of DV=rs and fϑσ8 by the best-fit αðaÞ model (solid line), and
measurements (data with error bars), rescaled by the best-fit ΛCDM model. The rescaled BAO measurements are 6dFGRS (filled
circles), BOSS LOWZ (open circles), SDSS DR7 (filled squares), WiggleZ (open squares), CMASS (filled star), and LyaF (open star).
The RSD points from WiggleZ (open squares) and CMASS (filled star) are shown in panel (b). The dashed horizontal line denotes the
ΛCDM model. Panel (c): The eigenvalues of the covariance matrix obtained using data plus prior for four different data combinations,
and using prior alone. Panel (d): The first three eigenvectors of the best-fit αðaÞ. See the text for more details.

FIG. 3 (color online). The logarithms of the ratios of volumes of
parameter space (Δ ln V), of likelihoods (Δ ln L), and of the
evidences (Δ ln E) for the binned model and the ΛCDM as a
function of the strength of the prior set by the variance in each
bin, σbin.

TABLE I. The coefficients (best-fit and 68% C.L. uncertainty)
of the first three best-determined modes, βi, of the best-fit models
using different data combinations.

Data I Data II Data III Data IV

−0.17� 0.30 −0.19� 0.30 −0.34� 0.30 −0.40� 0.29
βi 0.34� 0.61 0.34� 0.63 0.47� 0.65 0.48� 0.64

−0.25� 1.35 −0.21� 1.35 −0.19� 1.34 −0.10� 1.31
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as parameters, there are effectively only three additional
degrees of freedom. As mentioned earlier, we find that the
total χ2 is reduced by ∼4, which is somewhat greater than
expected for a model with three additional parameters.
The eigenvectors provide a natural basis onto which an

arbitrary αðaÞ can be expanded, i.e., αðaÞ ¼ P
iβieiðaÞ.

Given any αðaÞ, the coefficients β can then be found using
the orthogonality of the modes. The β’s corresponding to
the three best constrained eigenmodes of the best-fit models
from the four data combinations are listed in Table I. Since
the uncertainty in the third eigenmode is large, adding more
modes by relaxing the prior [either by reducing ξð0Þ or ac]
would not notably change the fit.

VI. CONCLUSION AND DISCUSSIONS

We performed a high-resolution reconstruction of α, the
coupling between DM and vacuum energy, as a function of
the scale factor using the latest observations including CMB,
SN, BAO and RSD. Our model is degenerate with standard
quintessence models in terms of the background cosmology,
but is distinguished by the growth of perturbations.We found
that, when the BAO measurement using the BOSS LyaF
sample [35] is used, an evolving α is mildly favored by the
joint data set. Interestingly, the best-fit αðaÞ model changes
sign during its evolution: α > 0 at higher redshifts, implying
an energy transfer from DM to vacuum energy, while α < 0
at lower redshifts, corresponding to a decaying vacuum
energy. A PCA study of our result shows that we have
extracted three informative eigenmodes from the data.

The LyaF BAO measurement, which is the best existing
BAOmeasurement at such a high redshift, is in tension with
the ΛCDM model at the 2–2.5σ level. As noted in [35,48],
it can be interpreted as favoring a DE component with a
negative energy density at z ∼ 2.3. The RSD measurements
from BOSS and WiggleZ are also in tension with ΛCDM:
the RSD measurements favor a lower growth rate than the
ΛCDM prediction at low redshifts. The interacting vacuum
model provides another physical interpretation of these
tensions if α is allowed to change sign during its evolution.
We note that extracting BAO from LyaF data is a relatively
new field, and the current measurement could be subject to
systematic issues [35]. Our method opens a new window
into investigation of the interacting vacuum model that can
be applied to improved future data sets as they become
available.
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